
Ajax

00_0132272679_FM.qxd 7/17/06 8:57 AM Page i

00_0132272679_FM.qxd 7/17/06 8:57 AM Page ii

Ajax
Creating Web Pages with Asynchronous

JavaScript and XML

Edmond Woychowsky

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

00_0132272679_FM.qxd 7/17/06 8:57 AM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari‚ Enabled icon on the cover of your favorite technology book means the book is avail-
able through Safari Bookshelf. When you buy this book, you get free access to the online edi-
tion for 45 days. Safari Bookshelf is an electronic reference library that lets you easily search

thousands of technical books, find code samples, download chapters, and access technical information when-
ever and wherever you need it.

• To gain 45-day Safari Enabled access to this book:

• Go to http://www.prenhallprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code WZM8-GZEL-ZTEE-4IL7-W2R5

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data:

Woychowsky, Edmond.

Ajax : creating Web pages with asynchronous JavaScript and XML / Edmond Woychowsky.

p. cm.

ISBN 0-13-227267-9 (pbk. : alk. paper) 1. Web sites—Design—Computer programs. 2. Ajax (Web site
development technology) 3. JavaScript (Computer program language) 4. XML (Document markup lan-
guage) I. Title.

TK5105.8885.A52W69 2006

006.7’86—dc22

2006017743

Copyright © 2007 Pearson Education, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN 0-13-227267-9
Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana.
First printing, August 2006

00_0132272679_FM.qxd 7/17/06 8:57 AM Page iv

This book is dedicated to my wife, Mary Ann, and my children,
Benjamin and Crista. Without their constant support, the book

that you hold in your hands would definitely not exist.

00_0132272679_FM.qxd 7/17/06 8:57 AM Page v

00_0132272679_FM.qxd 7/17/06 8:57 AM Page vi

Contents

About the Author xiii

Preface xv

Acknowledgments xxi

1 Types of Web Pages 1
1.1 Static Web Pages 2
1.2 Dynamic Web Pages 3

1.2.1 HTML 4
1.2.2 CSS 5
1.2.3 JavaScript 6

1.3 Web Browsers 7
1.3.1 Microsoft Internet Explorer 8
1.3.2 Mozilla-Based Browsers (Netscape, Mozilla, and Firefox) 9
1.3.3 Linux Browsers (Konqueror, Ephiphany, Galeon, Opera,

and Firefox) 10
1.3.4 The Others (Opera, Safari) 10

1.4 A Brief Introduction to Cross-Browser Development 11
1.4.1 Casualties of the Browser Wars 12
1.4.2 Market Share Does Not Equal Right 12
1.4.3 The World Wide Web Consortium, Peacekeepers 13

1.5 The Server Side of Things 13
1.5.1 Apache 14
1.5.2 Internet Information Server 14
1.5.3 The Remaining Players 14

1.6 We Learn by Doing 15
1.6.1 Coding by Hand 15
1.6.2 Tools to Make Tools 16

1.7 Summary 17

vii

00_0132272679_FM.qxd 7/17/06 8:57 AM Page vii

2 Introducing Ajax 19
2.1 Not a Mockup 20
2.2 A Technique Without a Name 20

2.2.1 Names 20
2.3 What Is Ajax? 21

2.3.1 The Ajax Philosophy 21
2.3.2 Meddling with Unnatural Forces 22

2.4 An Ajax Encounter of the First Kind 23
2.4.1 A World Unseen 27
2.4.2 Enter JavaScript 27

2.5 An Ajax Encounter of the Second Kind 28
2.5.1 XML 28
2.5.2 The XMLHttpRequest Object 31

2.6 An Ajax Encounter of the Third Kind 33
2.6.1 XSLT 33
2.6.2 Variations on a Theme 36

2.7 The Shape of Things to Come 38
2.8 Summary 38

3 HTML/XHTML 41
3.1 The Difference Between HTML and XHTML 42

3.1.1 Not Well Formed 42
3.1.2 Well Formed 43
3.1.3 A Well-Formed Example 43

3.2 Elements and Attributes 44
3.2.1 A Very Brief Overview of XHTML Elements and Their

Attributes 44
3.2.2 Frames Both Hidden and Visible 57
3.2.3 Roll Your Own Elements and Attributes 58
3.2.4 A Little CSS 59

3.3 Summary 62

4 JavaScript 63
4.1 Data Types 63

4.1.1 Numeric 64
4.1.2 String 64
4.1.3 Boolean 68
4.1.4 Miscellaneous 69
4.1.5 Arrays 69
4.1.6 Object 70

4.2 Variables 70
4.3 Operators 71
4.4 Flow-Control Statements 72

4.4.1 Conditionals 73
4.4.2 Looping 75

4.5 Functions 77

viii Contents

00_0132272679_FM.qxd 7/17/06 8:57 AM Page viii

4.6 Recursion 78
4.7 Constructors 80
4.8 Event Handling 84
4.9 Summary 86

5 Ajax Using HTML and JavaScript 89
5.1 Hidden Frames and iframes 90
5.2 Cross-Browser DOM 91

5.2.1 JavaScript, ECMAScript, and JScript 96
5.2.2 A Problem to Be Solved 102

5.3 Tabular Information 105
5.3.1 Read Only 109
5.3.2 Updateable 117

5.4 Forms 122
5.4.1 Read Only 122
5.4.2 Updateable 127

5.5 Advantages and Disadvantages 134
5.6 Summary 134

6 XML 135
6.1 Elements 136
6.2 Attributes 138
6.3 Handling Verboten Characters 139

6.3.1 Entities 139
6.3.2 CDATA Sections 140

6.4 Comments 140
6.5 Expectations 141

6.5.1 Namespaces 141
6.5.2 DTD 142
6.5.3 Schema 142

6.6 XML Declaration 144
6.7 Processing Instructions 144
6.8 XML Data Islands 144

6.8.1 Internet Explorer 145
6.8.2 Firefox 145

6.9 Summary 149

7 XMLHttpRequest 151
7.1 Synchronous 152
7.2 Asynchronous 153
7.3 Microsoft Internet Explorer 155
7.4 XML Document Object Model 156
7.5 RSS 166
7.6 Web Services 168

7.6.1 What Is a Web Service? 168
7.6.2 SOAP 170

7.7 Summary 173

Contents ix

00_0132272679_FM.qxd 7/17/06 8:57 AM Page ix

8 Ajax Using XML and XMLHttpRequest 175
8.1 Traditional Versus Ajax Websites 176
8.2 XML 178

8.2.1 Well Formed 179
8.2.2 Data Islands for Internet Explorer 182
8.2.3 Data Islands for All! 184
8.2.4 Binding 187

8.3 The XMLHttpRequest Object 192
8.3.1 Avoiding the Unload/Reload Cycle 192
8.3.2 Browser Differences 193
8.3.3 Cleaning Up with SOAP 202

8.4 A Problem Revisited 203
8.5 Tabular Information and Forms 207

8.5.1 Read Only 216
8.5.2 Updateable 219

8.6 Advantages and Disadvantages 221
8.7 Summary 221

9 XPath 225
9.1 Location Paths 227
9.2 Context Node 228
9.3 Parent Nodes 228
9.4 Attribute Nodes 228
9.5 Predicates 228
9.6 XPath Functions 230

9.6.1 Boolean Functions 230
9.6.2 Numeric Functions 230
9.6.3 Node Set Functions 231
9.6.4 String Functions 231

9.7 XPath Expressions 233
9.8 XPath Unions 234
9.9 Axis 234

9.9.1 Ancestor Axis Example 236
9.9.2 ancestor-or-self Axis Example 236
9.9.3 attribute Axis Example 236
9.9.4 child Axis Example 237
9.9.5 descendant Axis Example 237
9.9.6 descendant-or-self Axis Example 238
9.9.7 following Axis Example 238
9.9.8 following-sibling Axis Example 239
9.9.9 namespace Axis Example 239
9.9.10 parent Axis Example 240
9.9.11 preceding Axis Example 240
9.9.12 preceding-sibling Axis Example 241
9.9.13 self Axis Example 241

9.10 Summary 242

x Contents

00_0132272679_FM.qxd 7/17/06 8:57 AM Page x

10 XSLT 243
10.1 Recursive Versus Iterative Style Sheets 244

10.1.1 Scope 248
10.1.2 Nonvariable Variables 248

10.2 XPath in the Style Sheet 249
10.3 Elements 250

10.3.1 In the Beginning 253
10.3.2 Templates and How to Use Them 255
10.3.3 Decisions, Decisions 260
10.3.4 Sorting Out Looping 260

10.4 XSLT Functions 262
10.5 XSLT Concepts 262
10.6 Client-Side Transformations 265

10.6.1 XSLT in Microsoft Internet Explorer 265
10.7 Summary 268

11 Ajax Using XSLT 269
11.1 XSLT 269

11.1.1 XML Magic 270
11.1.2 How Microsoft Shot Itself in the Foot 270
11.1.3 XPath, or I Left It Around Here Someplace 271
11.1.4 What I Learned from the Gecko 274

11.2 Tabular Information 277
11.2.1 Read Only 278
11.2.2 Updateable 281

11.3 Advantages and Disadvantages 282
11.4 Summary 283

12 Better Living Through Code Reuse 285
12.1 Reuse = Laziness 286

12.1.1 Paid by the Line 286
12.1.2 Paid by the Page 287

12.2 JavaScript Objects 287
12.2.1 Collections 289
12.2.2 XML 291
12.2.3 XSLT 303
12.2.4 Serialization Without Berries 307

12.3 Generic XSLT 307
12.3.1 Forms 308
12.3.2 Tabular 309

12.4 Summary 311

13 Traveling with Ruby on Rails 313
13.1 What Is Ruby on Rails? 314

13.1.1 Ruby 314
13.1.2 Ruby on Rails 314

Contents xi

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xi

13.2 Installation 315
13.3 A Little Ruby on Rails Warm-Up 317
13.4 A Problem Revisited 320
13.5 Whither Ajax? 324
13.6 Summary 326

14 Traveling Farther with Ruby 327
14.1 Data Types 328

14.1.1 Numeric 328
14.1.2 String 330
14.1.3 Boolean 330
14.1.4 Objects 330

14.2 Variables 331
14.3 Operators 332
14.4 Flow-Control Statements 333

14.4.1 Conditions 333
14.4.2 Looping 334

14.5 Threads 335
14.6 Ajax 336
14.7 Summary 340

15 The Essential Cross-Browser HTML DOM 341
15.1 Interfaces 342

15.1.1 Window 344
15.2 Document 344
15.3 Frames 349
15.4 Collections 349
15.5 Summary 350

16 Other Items of Interest 351
16.1 Sarissa 352

16.1.1 A Brief Overview of Sarissa 352
16.2 JSON and JSON-RPC 356

16.2.1 JavaScript Object Notation 356
16.3 ATLAS 357

16.3.1 A Picture of ATLAS 358
16.4 The World Wide Web Consortium 358
16.5 Web Browsers 358
16.6 Summary 359

xii Contents

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xii

About the Author

xiii

A graduate of Middlesex Country College and Penn State, Edmond
Woychowsky began his professional life at Bell Labs as a dinosaur writing
recursive assembly-language programs for use in their DOSS order entry sys-
tem. Throughout his career, Ed has worked in the banking, insurance, phar-
maceutical, and manufacturing industries, slowly sprouting feathers and
evolving into a web developer. He is best known for his often unique articles
on the TechRepublic website, as well as his ability to explain how Muenchian
grouping works in small words. Currently, he can be found working in New
Jersey as a consultant, applying both Ajax and XSLT to problems in often
bizarre ways and looking forward to his next meal.

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xiii

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xiv

Preface

xv

The purpose of the book that you hold in your hands, Ajax: Creating Web Pages
with Asynchronous JavaScript and XML, is simply to show you the fundamen-
tals of developing Ajax applications.

WHAT THIS BOOK IS ABOUT

For the last several years, there has been a quiet revolution taking place in
web application development. In fact, it was so quiet that until February 2005,
this revolution didn’t have a name, even among the revolutionaries them-
selves. Actually, beyond the odd mention of phrases such as XMLHttpRequest
object, XML, or SOAP, developers didn’t really talk about it much at all, prob-
ably out of some fear of being burned for meddling in unnatural forces. But
now that the cat is out of the bag, there is no reason not to show how Ajax
works.

Because I am a member of the “we learn by doing” cult (no Kool Aid
required), you’ll find more code examples than you can shake a stick at. So
this is the book for those people who enjoyed the labs more than the lectures.
If enjoyed is the wrong word, feel free to substitute the words “learned more
from.”

Until around 2005, the “we learn by doing” group of developers was
obscured by the belief that a piece of paper called a certification meant more
than hands-on knowledge. I suppose that, in a way, it did. Unfortunately, when
jobs became fewer and farther between, developers began to collect certifica-
tions the way that Imelda Marcos collected shoes. Encyclopedic knowledge
might have helped in getting interviews and subsequent jobs, but it really
didn’t help very much in keeping those jobs. However, now that the pendulum

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xv

has begun to swing in the other direction, it is starting to become more impor-
tant to actually know a subject than to be certified in it. This leads to the ques-
tion of “Why learn Ajax?”

The answer to that question can be either short and sweet or as rich and
varied as the concept of Ajax itself. Let’s start with the first answer because it
looks good on the resumé. We all know that when something looks good on the
resumé, it helps to keep us in the manner in which we have become accus-
tomed, living indoors and eating regularly. Couple this with the knowledge of
actually having hands-on knowledge, and the odds of keeping the job are
greatly increased.

The rich and varied answer is that, to parrot half of the people writing
about web development trends, Ajax is the wave of the future. Of course, this
leads to the statement, “I heard the same thing about DHTML, and nobody
has talked about that for five years.” Yes, some of the same things were said
about DHTML, but this time it is different.

The difference is that, this time, the technology has evolved naturally
instead of being sprung upon the world just so developers could play buzzword
bingo with their resumés. This time, there are actual working examples
beyond the pixie dust following our mouse pointers around. This time, the
companies using these techniques are real companies, with histories extend-
ing beyond last Thursday. This time, things are done with a reason beyond the
“it’s cool” factor.

WHAT YOU NEED TO KNOW BEFORE READING THIS BOOK

This book assumes a basic understanding of web-development techniques
beyond the WYSIWYG drag and drop that is the current standard. It isn’t nec-
essary to have hand-coded HTML; it is only necessary to know that HTML
exists. This book will hopefully fill in the gaps so that the basics of what goes
where can be performed.

Beyond my disdain for the drag-and-drop method of web development,
there is a logical reason for the need to know something about HTML—
basically, we’re going to be modifying the HTML document after it is loaded in
the browser. Nothing really outrageous will be done to the document—merely
taking elements out, putting elements in, and modifying elements in place.

For those unfamiliar with JavaScript, it isn’t a problem; I’ve taken care
to explain it in some depth because there is nothing worse than needing a sec-
ond book to help understand the first book. Thinking about it now, of course, I
missed a wonderful opportunity to write a companion JavaScript volume. Doh!

If you’re unfamiliar with XML, don’t be put off by the fact that Ajax is
short hand Asynchronous JavaScript and XML because what you need to

xvi Preface

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xvi

know is in here, too. The same is also true of XSLT, which is a language used to
transform XML into other forms. Think of Hogwarts, and you get the concept.

In this book, the evolution (or, if you prefer, intelligent design) of Ajax is
described from the beginning of web development through the Dynamic
HTML, right up to Asynchronous JavaScript and XML. Because this book
describes a somewhat newer technique of web development, using a recent
vintage web browser such as Firefox or Flock is a good idea. You also need an
Internet connection.

HOW THIS BOOK IS LAID OUT

Here is a short summary of this book’s chapters:

+ Chapter 1, “Types of Web Pages,” provides a basic overview of the various
ways that web pages have been coded since the inception of the Web. The
history of web development is covered beginning with static web pages
through dynamic web pages. In addition, the various technologies used in
web development are discussed. The chapter closes with a discussion on
browsers and the browser war.

+ Chapter 2, “Introducing Ajax,” introduces Ajax with an account of what
happened when I demonstrated my first Ajax application. The concepts
behind Ajax are described and then are introduced in a step-by-step
manner, from the first primordial Ajax relatives to the current evolution.

+ Chapter 3, “HTML/XHTML,” describes some of the unmentioned basic
building blocks of Ajax, HTML/XHTML, and Cascading Style Sheets.

+ Chapter 4, “JavaScript,” serves as an overview of JavaScript, including
data types, variables, and operators. Also covered are flow-control state-
ments, recursive functions, constructors, and event handlers.

+ Chapter 5, “Ajax Using HTML and JavaScript,” describes one of the ear-
lier ancestors of Ajax. Essentially, this is how to fake it using stone
knives and bear skins. Although the technique described is somewhat
old-fashioned, it demonstrates, to a degree, how processing flows in an
Ajax application. In addition, the “dark art” of communicating informa-
tion between frames is covered. Additionally, in an effort to appease those
who believe that this is all old hat, the subject of stored procedures in
MySQL is covered.

+ Chapter 6, “XML,” covers XML, particularly the parts that come into play
when dealing with Ajax. Elements, attributes and entities, oh my; the
various means of describing content, Document Type Definitions, and
Schema are covered. Also included are cross-browser XML data islands.

Preface xvii

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xvii

+ Chapter 7, “XMLHttpRequest,” dissects the XMLHttpRequest object by
describing its various properties and methods. Interested in making it
synchronous instead of asynchronous? You’ll find the answer in this
chapter. In addition, both web services and SOAP are discussed in this
chapter.

+ Chapter 8, “Ajax Using XML and XMLHttpRequest,” covers what some
might consider pure Ajax, with special attention paid to the
XMLHttpRequest object that makes the whole thing work. Additionally, var-
ious back ends are discussed, ranging from PHP to C#. Also covered are
two of the more popular communication protocols: RPC and SOAP.

+ Chapter 9, “XPath,” covers XPath in detail. Starting with the basics of
what is often considered XSLT’s flunky, this chapter describes just how to
locate information contained in an XML document. Included in this chap-
ter is a detailed description of XPath axis, which is at least worth a look.

+ Chapter 10, “XSLT,” goes into some detail about the scary subject of
XSLT and how it can be fit into a cross-browser Ajax application.
Starting with the basics and progressing to the more advanced possibili-
ties, an attempt is made to demystify XSLT.

+ Chapter 11, “Ajax Using XSLT,” takes the material covered in the first
four chapters the next logical step with the introduction of XSLT. Until
relatively recently, this was typically considered a bad idea. However,
with some care, this is no longer the case. XSLT is one of those tools that
can further enhance the site visitor’s experience.

+ Chapter 12, “Better Living Through Code Reuse,” introduces a home-
grown client-side JavaScript library that is used throughout the exam-
ples shown in this book. Although this library doesn’t necessarily have to
be used, the examples provide an annotated look at what goes on behind
the scenes with most of the Ajax libraries currently in existence.

+ Chapter 13, “Traveling with Ruby on Rails,” is a gentle introduction to
the open source Ruby on Rails framework. Beginning with where to
obtain the various components and their installation, the chapter shows
how to start the WEBrick web server. Following those examples, a simple
page that accesses a MySQL database is demonstrated.

+ Chapter 14, “Traveling Farther with Ruby,” looks a little deeper into
Ruby on Rails, with the introduction of a simple Ajax application that
uses the built-in Rails JavaScript library.

+ Chapter 15, “The Essential Cross-Browser HTML DOM,” describes the
dark and mysterious realm of the cross-browser HTML Document Object
Model. Another unmentioned part of Ajax, the HTML DOM is essentially

xviii Preface

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xviii

how the various parts of an HTML or XHTML document are accessed.
This is what makes the “only update part of a document” feature of Ajax
work.

+ Chapter 16, “Other Items of Interest,” describes some of the resources
available via the World Wide Web. These resources range from pre-
written Ajax-capable JavaScript libraries to some of the numerous
browsers available for your personal computer.

CONVENTIONS USED IN THIS BOOK

Listings, code snippets, and code in the text in this book are in monospaced font.
This means that the code could be typed in the manner shown using your edi-
tor of choice, and the result would appear as follows:

if(enemy = ‘troll’)
runaway();

Preface xix

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xix

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xx

Acknowledgments

xxi

Even though this book is essentially “my” book, it has been influenced in many
ways (all of them good) by multiple individuals. Because the roles that each of
these individuals played in the creative process were very significant, I would
like to take the time to thank as many of them as I can remember here.

Mary Ann Woychowsky, for understanding my “zoning out” when writing
and for asking, “I guess the book is finished, right?” after catching me playing
Morrowind when I should have been writing. Benjamin Woychowsky, for ask-
ing, “Shouldn’t you be writing?” whenever I played a computer game. Crista
Woychowsky, for disappearing with entire seasons of Star Gate SG-1, after
catching me watching them when I should have been writing.

My mother, Nan Gerling, for sharing her love of reading and keeping me
in reading materials.

Eric Garulay, of Prentice Hall, for marketing this book and putting me in
touch with Catherine Nolan. Catherine Nolan, of Prentice Hall, for believing
in this book and for her assistance in getting started with a book. Bruce
Perens, for his belief that because I use Firefox, I had not tread too far down
the path that leads to the dark side. Denise Mickelson, of Prentice Hall, for
making sure that I kept sending in chapters. Chris Zahn, of Prentice Hall, for
his editing, for answering my often bizarre questions, and for his knowledge of
things in general. Thanks to George Nedeff for managing the editorial and
production workflow and Heather Fox for keeping this project in the loop and
on track. Any errors remaining are solely my own.

I would like to thank the late Jack Chalker for his assistance with what
to look for in writing contracts and for essentially talking me through the
process using words that I could understand. Also for his writing a number of
science-fiction novels that have influenced the way that I look upon the world.
After all, in the end, everything is about how we look upon the world.

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xxi

Dossy Shiobara, for answering several bizarre questions concerning
MySQL.

Richard Behrens, for his assistance in formulating my thoughts.
Joan Susski, for making sure that I didn’t go totally off the deep end

when developing many of the techniques used in this book.
Premkumar Ekkaladevi, who was instrumental in deciding just how far

to push the technology.
Jon (Jack) Foreman, for explaining to me that I can’t know everything.
David Sarisohn, who years ago gave a very understandable reason for

why code shouldn’t be obscure.
Finally, to Francis Burke, Shirley Tainow, Thomas Dunn, Marion

Sackrowitz, Frances Mundock, Barbara Hershey, Beverly Simon, Paul Bhatia,
Joseph Muller, Rick Good, Jane Liefert, Joan Litt, Albert Nicolai, and Bill
Ricker for teaching me how to learn.

xxii Acknowledgments

00_0132272679_FM.qxd 7/17/06 8:57 AM Page xxii

C H A P T E R 1

Types of Web Pages

While I was in college, sometime during the Pliocene, I took a science fiction
class. The interesting thing about this class is that one student didn’t realize
until midterms that it wasn’t a physiology class. I bring this up only because if
you’ve picked up this book expecting Corinthian helmets and hoplites, which,
incidentally, have one-third less fat than regular hops (useful information for
Hydras on a diet), this is the wrong book.

According to legend, the Web was originally created by Tim Berners-Lee
to distribute documents of a technical nature. Think of it as the late-
twentieth-century version of leaving a note on the refrigerator describing how
to preheat the oven, put the casserole in, make a salad, and serve it after 1
hour. As you can well imagine, posting this kind of information on a computer
network has a much farther reach than posting it on a single refrigerator.

The existence of the World Wide Web hit all of us suddenly, like a sum-
mer thunderstorm, from clear skies to cracks of lightning in what felt like 15
minutes. All of a sudden all the friends and relatives who thought I was a little
strange for having a computer were calling Gateway and Dell or were in a
store getting a Toshiba or Compaq. It was as if they were all suddenly afflicted
with some illness that made them say words like bits, bytes, and baud. Instead
of strutting around comparing the size of their sailboats, they were all strut-
ting comparing the size of their hard disks.

In just over a decade of existence, the World Wide Web has transformed
dramatically from its humble beginnings on a single server stuck on a desk in
an out-of-the-way office. In the first few years, the growth of the World Wide
Web resembled Fibonacci numbers. If you’re unfamiliar with Fibonacci num-
bers, they are a mathematical representation of the increase in the numbers of
immortal bunnies in a garden with no predators. Assume an infinite supply of
carrots and, well, you get the idea—it was that kind of growth. Unfortunately,

1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 1

growth at that rate cannot be maintained forever; eventually, that many bun-
nies are bound to attract something with a taste for hasenpfeffer.

My opinion of this situation is that, contrary to popular belief, the end of
growth in leaps and bounds is not the beginning of the end; it is merely the
end of the beginning. Change is good, change is inevitable, and change rarely
comes without pain.

Speaking of change, Ajax is a bit of a change from the earlier types of web
pages, be they static HTML or Dynamic HTML/DHTML. The interesting thing
is that all types of web pages rely upon essentially the same ingredients:
HTML, JavaScript, CSS, and sometimes XML. In this chapter, I take our dis-
cussion a little beyond those simple ingredients, though, to consider the only
two additional factors that can affect the end result: the browser and the web
server.

1.1 STATIC WEB PAGES

Static web pages are the original type (and for what seemed like about 10 min-
utes the only type) of web pages. When dealing with the distribution of techni-
cal documents, there aren’t very many changes to the original document. What
you actually see more of is a couple of technical documents getting together,
settling down, and producing litter after litter of little technical documents.
However, the technical documents didn’t have this fertile landscape com-
pletely to themselves for very long.

If you’ve ever traveled anywhere in the United States by automobile, you
might be familiar with one of the staples of the driving vacation: the travel
brochure. Often describing places like Endless Caverns, Natural Bridge,
Mystic Aquarium, or Roadside America, they’re a staple of the American land-
scape. Designed to catch attention and draw the traveler in to spend some
cash, they’ve been around seemingly forever.

The web equivalent, sometimes referred to as brochure-ware, also is
designed to draw in the virtual traveler. This type of website is usually used to
inform the visitor about subjects as varied as places to visit, cooking, children,
or my nephew Nick and niece Ashley’s 2002 visit to Walt Disney World. This is
actually a great medium for information that is relatively unchanging.

Allow me to digress for a little computer history lesson. Back in the old
days when dinosaurs—eh, mainframes—ruled computing, there were pseudo-
conversational systems that faked some of the functionality seen in web appli-
cations. These applications essentially displayed a form on what was called a
dumb terminal. It was called a dumb terminal because it had no real process-
ing power of its own. The user then filled out the form and hit a program func-
tion key, which transferred the input data to the mainframe. The mainframe

2 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 2

processed the data, based upon content and the specific program function key,
and the results, if any, were displayed on the user’s dumb terminal. End of his-
tory lesson.

Static web pages offer the same functionality as those monster com-
puters of old, in much the same way. The only real changes are form “buttons”
instead of program function keys, the presence of a mouse, and the price tags
for the equipment involved. Well, maybe that isn’t entirely true; a dumb termi-
nal will set you back about as much as one of today’s off-the-shelf computers.
The real difference lies in the price difference between a web server and a
mainframe: thousands of dollars vs. millions of dollars. Those dinosaurs didn’t
come cheap.

1.2 DYNAMIC WEB PAGES

Static web pages have three major problems. The first is that they’re boring.
Think of it as visiting the park down the road on vacation every year. Unless
that park is Yellowstone, or there’s lots of alcohol involved, it’s going to get old
very quickly.

The second problem is that, unlike a dumb terminal, a personal com-
puter has processing power of its own. Some, in fact, have more processing
power than the web servers that they are communicating with. Why not take
advantage of this processing power? It won’t cost the server anything to utilize
this essentially free resource.

The final problem with static web pages is that all validation is per-
formed by the server. This means that if a user enters a telephone number as
(999)999-9999 instead of 999-999-9999, it is up to the server to catch the error
and inform the user of the correct format. So the user is forced to endure the
entire cycle in which the form is sent to the server, which finds the error and
then sends the whole page back to the web browser. And unless the web devel-
oper took care to retain the information already entered, the user is forced to
re-enter everything. I don’t know about you, but this wouldn’t give me the
warm fuzzes about a website.

For all of these reasons and the “wouldn’t it be cool?” factor, a technique
called Dynamic Hypertext Markup Language, or DHMTL, was created. Even
at first glance, it was obvious that there was a vast difference between static
web pages and pages that employed DHTML techniques. The first of these dif-
ferences is that things happened on dynamic web pages.

There were events. No, not events like the grand opening of the Wal-Mart
Super Center down the road—browser events. When the mouse pointer was
moved around the page, things happened, and not just the pointer changing

1.2 Dynamic Web Pages 3

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 3

from an arrow to a hand and back again. Real things happened. Hyperlinks
changed color; menus dropped down.

As incredible as all of this seemed, the biggest difference came when
working with HTML forms. Much of the validation was performed on the
client side, right on the browser (which is what client side means, but I was
going for the effect here). The fact was that the user no longer had to wait for
the entire unload/reload cycle to discover that some moron web developer
wants dashes separating the parts of a date instead of forward slashes. This
was a real improvement.

In fact, on some websites, techniques were used to prevent the user from
entering characters that weren’t allowed. If a numeric value is expected in an
input box, well, try as you might, only the numeric keys and the decimal point
will work; if an integer is expected, users don’t even get the decimal point.

Of course, it wasn’t long before DHTML was taken to the extreme. On
some pages the mouse pointer turned into a magic wand, trailing pixie dust
like flies behind a garbage truck. Other web pages seemed to nearly explode
whenever the mouse pointer moved because of the sheer number of drop-down
menus, rollovers, and assorted “features.” Basically, too much of a good thing
makes it no longer a good thing.

However, as they say on television, “How’d they do that?”
The quick answer is “Very carefully,” but if we we’re concerned with quick

answers, we would all be millionaires from using a Magic Eight Ball for
investment decisions. Of course, this doesn’t seem to be working for my broker,
so I could be wrong.

The way DHTML works is through a mixture of HTML, Cascading Style
Sheets, and JavaScript. Also, as the cooking shows demonstrate, it is all in
how the ingredients are put together instead of the fact that they are put
together. For example, quite a few people like chicken and chocolate, but with
the exception of mole, how many dishes are there that combine the two?

1.2.1 HTML

Yeah, Hypertext Markup Language was what made static web pages work,
but just because the web pages were static doesn’t mean that HTML was
static. Time moved forward, as time usually does, and new capabilities and
features were added. Some were, well, not removed, but deprecated, which
means that they’re still there, but only for compatibility purposes. These dep-
recated features, however, were more than made up for by the addition of the
new features.

The big question is, who decides which features stay, which are depre-
cated, and which are added? The answer is that all of these decisions are made

4 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 4

by the World Wide Web Consortium, which, in secret midnight meetings,
dances around a bonfire, drinks mead, and listens to Jethro Tull CDs. Alright,
the truth is that committees meet periodically in a conference room and dis-
cuss modifications to HTML. However, my explanation accounts for the exis-
tence of the marquee tag better than the official explanation.

The World Wide Web Consortium is the governing body that issues
“Recommendations” concerning the more technical aspects of the Web. Start-
ing with Hypertext Markup Language version 1.0 and moving through the
more current version 4.01 and XHTML version 1.1, the World Wide Web
Consortium attempts to keep things standard among the various web browser
developers. Theoretically, the end result of these “Recommendations” is that
all web browsers behave identically on any specific website, but as I explain
later, there are degrees of compliance and interpretation. In addition, there
are plenty of nonstandard extensions by browser developers, who, in the hopes
of getting a leg up on the competition, continue to add “features” until their
browser resembles a Swiss Army knife more than a web browser.

1.2.2 CSS

The problem with HTML is that it was never intended to deal with anything
beyond the structure of a page. Unfortunately, early on, somebody new to
HTML asked the question, “Hey, how do I make text bold?” and the pure struc-
tural language called HTML was polluted by presentation. The end result of
this was documents with more HTML than text. Mostly consisting of b tags, i
tags, and the dreaded font tags, these documents were a nightmare if it
became necessary to make a change.

Cascading Style Sheets, Level 1, are an attempt to bring this situation
back under control by providing a way to avoid the b, i, and font tags. Instead,
presentation could be dealt with on a per-tag basis, which makes coding some-
what like being a Roman emperor: “The text in the anchor tags amuses me—
make it bold and Tahoma!”

Cascading Style Sheets work by associating style rules to the elements of
an HTML document. These rules can be applied to single tags, tags of a spe-
cific type, or developer-specified tags. This eliminates the need to code tags
within tags until the page is so bloated that it is nearly impossible to follow;
instead, a CSS is specified on the page level or tag level to describe the style
for the entire page.

Just in case you’re wondering, the cascading part of Cascading Style
Sheets comes into play when there is more than one style sheet with rules
that can be applied to a specific tag. The specific style sheet rule that is
applied depends exactly on how the applicable Cascading Style Sheet is

1.2 Dynamic Web Pages 5

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 5

defined. The problem, for me, at least, is remembering cascade sequence. One
method of keeping the cascade straight is equating it to something else, some-
thing a bit more familiar, as in the winning hands of poker. In poker, the win-
ning hands, from high to low, are:

1. Royal flush
2. Straight flush
3. Four of a kind
4. Full house
5. Flush

With Cascading Style Sheets, the “winning” hands are as follows:

1. Inline CSS defined in the element’s style attribute
2. Internal CSS defined using the style tag
3. External CSS defined using the style tag
4. External CSS defined using the link tag
5. The default built into the web browser

As with poker, when there is a winning hand, any other hands are all for
naught.

1.2.3 JavaScript

JavaScript is a lightweight, interpreted, object-based programming language
that has become the standard client-side scripting language. Based upon the C
programming language of Kernighan and Richie fame, JavaScript is how all of
those neat and nifty little client-side tricks work. Whether it is event trapping,
validation, or whatever, nine times out of ten, JavaScript is the man behind
the curtain pulling the levers to make things happen.

Even though JavaScript is widespread doesn’t mean that there isn’t a lot
of confusion about JavaScript. Take, for example, the name; originally called
LiveScript, the name was changed to cash in on some of the press that Java
was getting early on. To confuse things further, Microsoft sometimes refers to
its implementation as JScript, while in Europe, the name ECMAScript is used
to refer to JavaScript. I, for one, believe that all of these aliases are designed to
hide a gangster past or something along those lines.

Seriously, most of the client-side logic on the Web is coded in JavaScript.
This doesn’t mean that JavaScript is innately superior to VBScript, Perl, or
even Java itself; it is only because JavaScript is built into practically every

6 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 6

browser currently available. This means that visitors to websites that use
JavaScript, as opposed to any of the alternatives, can jump right into shopping
or whatever without waiting for a download to complete.

1.3 WEB BROWSERS

Without a web browser, though, web pages are rather useless. The majority of
people wandering around the Internet wouldn’t fully appreciate them. Yes,
there is the indentation, but without a browser, there is no scripting or pic-
tures. A lot can be said about web browsers; after all, they color our web
browsing experience nearly as much as the pages we visit. The decision to use
a specific web browser probably says a great deal about who each of us is as an
individual. Unfortunately, I’m not aware of any study along those lines. I, for
one, would like to see what would be said about somebody still running
Internet Explorer version 2 on a 100-MHz Pentium with Windows 95. But
come to think of it, that describes some of the employees on my last consulting
assignment.

Nevertheless, a web browser is our window (note the small w) to the
World Wide Web, and, as with windows, quite a few choices are available to us.
However, instead of having names like “double hung” and “casements,” web
browsers have names like “Firefox” and “Opera.” And just as with window
styles, web browsers go in and out of fashion. For example, think for a
moment: How many houses in your neighborhood have arrow slits for win-
dows? However, unlike the majority of windows that either work or do not
work, an added factor must be taken into account when considering web
browsers: They are not stagnant. Even though their evolution has slowed
somewhat compared to a few years ago, web browsers are still evolving.

In some ways, this evolution parallels the evolution that has taken place
in the natural world, with the better adapted supplanting those that don’t
quite fit in as well. Of course, just as in the natural world, there are hangers-
on from earlier ages. Sometimes these holdovers exist in isolated communi-
ties, and sometimes they’re lone individuals living among us unnoticed.

However, unlike in the natural world, evolution in web browsers is
driven by an intelligence, or, at least, I’d like to think so. Behind every feature
there are individuals who decide what features to include and how to imple-
ment those features. Because of this, web browsers can be both very similar to
and very different from one another. Let’s now take the opportunity to explore
some of those similarities and differences.

1.3 Web Browsers 7

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 7

1.3.1 Microsoft Internet Explorer

Love it or hate it, there is no denying that Microsoft Internet Explorer is cur-
rently the most used web browser. In fact, according to one website that meas-
ures browser statistics, Internet Explorer comes in both first and third. Huh?
Sounds a little like the 1960s version of The Love Bug, doesn’t it? This incredi-
ble feat can be attributed to the estimated 5 percent of people who are still
running some incarnation of version 5, which can be versions 5.0, 5.01, or
5.5—your guess is as good as mine.

Although I can’t tell you exactly which version of Microsoft Internet
Explorer they might be running, I can give several possible reasons for living
in the past. The first of these is simple inertia; a body at rest tends to stay at
rest. Upgrades take time, and there is always the possibility of something
going wrong, so why run the risk of causing problems?

Another possibility is the old “if it ain’t broke, why fix it?” reason. Of
course, there are different tolerances for “ain’t broke.” For example, I knew a
professor in college who had a car that lost a quart of oil every 50 miles. For
him, 50 miles fell within the boundaries of his “ain’t broke” tolerance.
Unfortunately, the car had other tolerances when someone borrowed the car
and forgot about the leak.

The third possible reason for still running some flavor of Microsoft Inter-
net Explorer version 5 is that the machine simply doesn’t have the resources
for version 6. I know that this can happen; I’ve seen it with my own eyes. In
fact, it was quite some time before Mary Ann, my wife, let me near her com-
puter or its replacement.

I can think of one final reason for running version 5 of Internet Explorer:
the sheer size of the download for version 6. When last I looked, it was more
than 100MB. This is tolerable with DSL or cable, but with a dial-up connec-
tion, it would finish up around the same time that the sun is a burnt-out
cinder.

Now let’s look at the users of Internet Explorer as a whole, all of the more
recent versions, be they 5.0, 5.01, 5.5, or even 6.0. Why do these individuals
use a web browser that, according to many, is several years out-of-date? Well,
the fact that it came with the computer might have a little to do with it.

The average user has problems setting the clock on the VCR; do you
really think that users are ready to install what could be considered a part of
the computer’s operating system? Some of them know their limitations, and a
computer represents a substantial amount of money. They are more likely to
give themselves a haircut using a bowl and scissors than to risk “breaking”
the computer. After all, Internet Explorer version 6 isn’t so bad; it does work,
after all.

8 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 8

From a developer’s perspective, Internet Explorer also isn’t too bad. Yes,
it is dated and a little flakey, but that’s nothing that we haven’t been able to
deal with in the past. We’re developers; we have powers like Super(insert
appropriate gender here). Just beware of the deviations from standards, the
developer’s version of Kryptonite.

1.3.2 Mozilla-Based Browsers (Netscape, Mozilla, and Firefox)

Before going any further, allow me to come clean. I use Firefox whenever I can,
and before Firefox, I used Mozilla, so I’m a wee bit biased. Just in case you’ve
only recently come out of the Y2K shelter, Firefox is an open-source browser
that is the descendant of the Netscape Navigator that you remember from
before going into the shelter.

Netscape was the original Godzilla—eh, Mozilla—web browser, which, in
its day, had a market share equally as impressive as Microsoft Internet
Explorer’s. In fact, it could be considered more impressive if you consider that,
before 1998, Netscape wasn’t free. Unfortunately, without the advantage of
being bundled to an operating system, Netscape lost ground and Internet
Explorer has kept nibbling away until the present day.

The Mozilla browser was the first attempt at an open-source browser,
which, unfortunately, never achieved the popularity of the original browser.
There is, however, an interesting side note: Version 7 of Netscape was created
using Mozilla version 1 as a starting point. For a really successful open-source
browser, one needs to look at Firefox.

Originally called Firebird, a synonym for Phoenix that led to quite a few
comments about rising from the ashes of Netscape, Firefox is sort of doing to
Internet Explorer what Internet Explorer did to Netscape. I say “sort of”
because the nibbles seem larger. Maybe this is due to foxes having relatively
larger mouths for their size. The actual reason is that it seems that when the
goal of dominating the market was achieved, Microsoft lost interest in enhanc-
ing Internet Explorer.

As I stated earlier, Firefox is my favorite browser, which doesn’t mean
that there isn’t something that I find troubling with it. Consider the size of the
download compared to other web browsers; it is a fraction of the size of most of
the others, yet every feature is in there. I’m not troubled enough to give up
using Firefox or to lose any sleep—well, maybe just a little sleep. Which is prob-
ably how my twisted mind came up with a logical method of how they did it.

Because the majority of web browsers are produced by corporations, they
are limited in the number of potential developers to employees and consult-
ants of the corporation. Firefox, on the other hand, is open source. This means

1.3 Web Browsers 9

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 9

that although there is still a limited potential pool of developers, the pool is
much larger—say, about the population of the planet, minus two (Bill Gates
and Steve Baulmer).

This line of reasoning makes the most sense, far more than my other pos-
sible explanation. Open source has better-trained Bit-Gnomes, little people
that live in the computer and move the data around. But this theory really
makes sense only after the better part of a bottle of Scotch, so I’ll stop here.

1.3.3 Linux Browsers (Konqueror, Ephiphany, Galeon, Opera, and Firefox)

Forgive me, Father, for I have sinned: I really don’t use Linux very much. The
reason for this omission can be explained in a brief conversation that occurred
between my then boss and me. It started when out of the blue he said, “It must
really piss you off.”

My reply was both logical and to the point. “What?”
“The idea that you can’t know everything.”
After a moment of thought, I replied in the only way I could. I said “Yes,

it does!”
For me, Linux is like that. I read about it, but before I get a chance to use

what I’ve read, something comes up and the promise of knowledge fades like a
dream in the first light of day. What I do know, however, is that Firefox is prob-
ably comparable to the Windows versions, and all of the rest are all open
source. This means that if I say that browser A doesn’t support B today, by
next Thursday, it will, so I’m keeping my mouth shut. If you want to know
whether a browser supports a particular feature, the only way to learn is to
try it.

However, I’d like to point out one thing: Look at the previous subhead-
ing—I’ll wait. Alright, notice anything? Yeah, Firefox is listed there. Being
open source, Firefox really gets around, which is really comforting. It is a bit
like visiting a city far away, feeling lonely, and finding an old friend there.

1.3.4 The Others (Opera, Safari)

These are the browsers that fight for a percentage of what’s left over from
the big players: Microsoft Internet Explorer and Firefox. Although taken
together they don’t command a large percentage of the browsers out there,
they shouldn’t be ignored. It is very possible that the next Internet Explorer or
Firefox will come from this group.

Opera, considered a minor player by some, has taken up two spots in the
current top ten. And, no, they’re not being piggy; it’s Opera version 8 and
Opera version 7. The interesting thing is that Opera appears to be the sole
stand-alone web browser that until very recently charged, although a free

10 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 10

version was available for those willing to tolerate advertisements. In this day
of “free” web browsers, any browser that charged and survived definitely
deserves a closer look.

A relative newcomer, Apple Computer’s Safari is, at least, according to
the specs and everything I’ve heard from Mac worshippers, a solid feature-
packed browser. Although Apple is currently only a minor player in the com-
puting world, excluding the iPod, its ease-of-use is bound to keep it going for
the foreseeable future. So Safari shouldn’t lightly be ignored.

In addition to the aforementioned web browsers, there are a slew of
others with much smaller user bases. These relative unknowns include
browsers for the visually impaired, text-only browsers, and browsers that run
on mobile devices. Unfortunately, having used Microsoft’s Pocket Internet
Explorer 2002 (PIE), I really wouldn’t expect much in the way of Ajax support
in the near future.

1.4 A BRIEF INTRODUCTION TO CROSS-BROWSER DEVELOPMENT

Knowledge of different browsers, their capabilities, or merely their existence is
often an aid in a discipline called cross-browser development. Cross-browser
development can be one of the most exciting programming disciplines; unfor-
tunately, in programming, “exciting” isn’t usually a good thing. The problem is
that, in most instances, cross-browser development is essentially writing the
same routines two or more times, slightly different each time. Personally, I get
a feeling of satisfaction whenever I get a routine to work, but when coding a
cross-browser, getting it to work in one browser is only half the job.

The issue with cross-browser development is that some “features” that
are available on one browser either aren’t available on another or have
slightly different syntax. Imagine the feeling of satisfaction of solving a partic-
ularly thorny problem in Firefox only to have the same page crash and burn in
Internet Explorer. Take, for example, the serialization of XML in Firefox; it
works great, but try the same code in Internet Explorer, and here be monsters!

To avoid the monsters, it is necessary to understand where they usually
hang around waiting for the unsuspecting developer. But first let’s establish
where the monsters don’t reside; for example, the standard data types such as
Boolean, numeric, and string are pretty safe. The same can be said for the
statements, such as flow-control statements and assignment statements.

It is just too bad the same cannot be said for objects and event handlers.
At least for me, this is where most of the problems arise. Everything will be
going along fine, with the page working perfectly right up to point that either
there is a spectacular failure, or worse, the page just simply stops working.
Fortunately, with a little knowledge and a little planning, it is possible to

1.4 A Brief Introduction to Cross-Browser Development 11

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 11

avoid these web development monsters that live where the standards don’t
quite mesh with reality.

1.4.1 Casualties of the Browser Wars

Cross-browser compatibility was probably the first casualty of the Browser
Wars that began about 20 minutes after the second web browser was devel-
oped. In those days, browser developers had a tendency to play fast and loose
with things in an effort to pack features into their browser before the competi-
tion. In the rush to be the first with a new feature, or to play catch-up, no
thought was given to the web developers who would actually have to program
for these browsers.

Because of this, it wasn’t unusual to see two browsers with essentially
the same functionality, but having entirely different approaches. Look at how
the XMLHttpRequest object is implemented in Microsoft Internet Explorer and
in Gecko-based browsers such as Firefox. Internet Explorer, which was the
first to implement this object, made it part of ActiveX. This means that to cre-
ate an instance of this object in Internet Explorer, the following syntax is used:

var objXMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

With Firefox and any other browser that implements the XMLHttpRequest
object, the syntax is as follows:

var objXMLHTTP = new XMLHttpRequest();

The reason for this is that ActiveX is a Microsoft-only technology, which
means that short of trying to license it from Microsoft, which I can’t imagine
would come cheap, it was necessary to find another way. And, when found, this
other way became the standard for all non-Microsoft web browsers.

1.4.2 Market Share Does Not Equal Right

While I’m on the subject of proprietary technologies, I’d like to point out that
market share does not equate to being right. History is full of cases in which
the leader, the one with the largest market share, was blindsided by some-
thing that he or she didn’t realize was a threat until too late. Does anybody
remember Digital Research’s CP/M? If you haven’t, CP/M was the premier
operating systems in the days when 64K was considered a lot of memory. In a
fractured landscape of operating systems, it had more than half of the operat-
ing system market.

12 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 12

Then there was the release of the IBM PC, which offered a choice of three
operating systems: CP/M-86, PC DOS, and UCSD D-PASCAL. At the time,
everybody thought that Digital Research had the new landscape of the Intel
8086 as theirs for the foreseeable future. Unfortunately, because Microsoft’s
DOS was $50 less, market share yielded to economic pressure. Microsoft went
on to become the leader in computer operating systems, while Digital
Research faded into history.

1.4.3 The World Wide Web Consortium, Peacekeepers

During the height of the Browser Wars, there was the definite feeling that web
browser technology was advancing at a breakneck pace, so much so that the
World Wide Web Consortium seemed to be playing catch-up. It was a case of
putting the cart before the horse, with the web browsers getting features and
then the recommendations being published, which explains the weirdness
with the XMLHttpRequest object.

Now the war is, if not over, at least at intermission, giving us time to get
some popcorn and a soda. In addition, whether by accident or by design, this
break has given the World Wide Web Consortium time to move once more
into the lead. Unfortunately, the damage is done and we’re all forced to code
around the little differences in the various browsers.

1.5 THE SERVER SIDE OF THINGS

The purpose of this book is to explain how Ajax works, paying particularly
close attention to the web browser; however, a web browser is only part of the
equation. Even for the biggest client-side fan in the world, it is impossible to
totally ignore the web server. A web browser without a web server is totally
cut off, limited to little client-side tasks such as Fahrenheit-to-Celsius conver-
sions or some equivalent. But add a web server to the mix, and all of a sudden
there is an entire universe at your fingertips.

As with the choice of a web browser, the choice of a web server is a deeply
personal experience. Requiring much thought as to the capabilities and fea-
tures of each and every server available, it is also important to take into con-
sideration knowledge and training before coming to a decision.

For these reasons and others, in large corporations, decisions like this are
usually made by upper management. After exhausting research consisting of a
round of golf and a 17-martini lunch, managers decide to use whatever their
golfing buddy Bob is using and issue a decree. The fact that Bob thinks that a
megabyte is what sharks do to swimmers never really comes up.

1.5 The Server Side of Things 13

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 13

But maybe your manager doesn’t know Bob, so the decision is up to you.
The question comes down to, what is the middle tier going to be? The answer
to this question is totally up to you. Open source or proprietary? Whether to
use PHP, ASP, JSP, ASPX, or Ruby? The answer isn’t as clear as you’d think.
Feel like using PHP and Internet Information Server? Not a problem, just
download and install PHP. If ASP .Net and Apache is your thing, try Mono. I’m
not here to make the decision for you; regardless of the server side, Ajax will
work on the client side.

1.5.1 Apache

First and foremost, Apache is not a web server developed by Native Ameri-
cans; the name is, in fact, a pun. In the early days of the Apache Project, the
server was patched nearly daily, leading someone to declare that it was “a
patchy” server. Needless to say, the name stuck.

Things have changed quite a bit since those early days; Apache has been
the most popular server since the latter half of the 1990s. At the time that I’m
writing this, more than two-thirds of web servers use Apache, which says a lot
about stability.

1.5.2 Internet Information Server

IIS, as it is known to those of us who use it, is Microsoft’s answer to Apache. In
fact, most of the examples in this book use IIS on the server side. Don’t get
excited—it isn’t because it is better; it is only because it comes bundled with
Windows XP Pro. It comes down to the whole Internet Explorer thing; I’m lazy,
and I use it at my day job.

1.5.3 The Remaining Players

Yes, there are other web servers beyond the big two. For example, there is the
CERN Server, brought to you by the same people who created the World Wide
Web. Another choice is NCSA HTTPd, from the National Center for Super-
computing Applications at the University of Illinois in Urbana, Illinois.
Unfortunately it is no longer under development, which is too bad; I, for one,
would like a web server from HAL’s hometown.

I’d like to mention another “minor” server: WEBrick. Technically consid-
ered an “HTTP server library” for creating web servers, it is included with
downloads of the Ruby programming language. Note that the quotes are mine
because it just isn’t natural to be able to create a web server with only a few
lines of code. WEBrick falls into the “tools to make tools” category, which I
cover later.

14 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 14

1.6 WE LEARN BY DOING

The problem with working in the computing field is that technology insists on
advancing. Learn something new today, and 2 years down the road, it is obso-
lete. Because of this, it’s necessary to continue learning the latest new technol-
ogy, which means lots of reading and lots of training. While at Bell Labs, I
formulated two rules of training that I’d like to share with you:

1. Training will be given far enough in advance of the project that there is
sufficient time to forget everything learned.

2. If sufficient time does not exist for the first rule, the training will take
place a minimum of 6 months after the project has been completed.

These rules have proved true every place that I have ever worked
throughout my career. Banks, insurance, manufacturing, whatever—it doesn’t
matter. These rules have always held true.

There is, however, a way to skirt these rules. Simply try the examples,
play with them, alter the code, make it better, break it, and fix it. There is no
substitute for immersing yourself in any subject to learn that subject. It might
be difficult at first, and sometimes it might even be painful, but the easiest
way to learn is by doing.

1.6.1 Coding by Hand

Currently, coding web applications by hand has fallen out of favor, and rightly
so, replaced by packaged components that can be dragged and dropped. Unfor-
tunately, although the practice of using components means that individual
pages are developed quicker, it also means that it isn’t always easy to deter-
mine what the components are actually doing behind the scenes. This is espe-
cially true when the underlying code isn’t fully understood because the
developers skipped ahead to the parts that will keep them employed.

However, when learning something new, or trying to explain it to some-
one else, I have a strong tendency to code an application by hand. In part, the
reason for this is that it gives me a better feel for the new subject. Of course,
the other part is that I coded classic ASP for quite some time and spend a
great deal of time writing client-side workarounds for managers who insisted
on the use of design-time controls. Although it improved developers’
JavaScript skills considerably, it had the same effect upon those developers
that mercury had upon hat makers in the nineteenth century. Don’t believe
me? Go ask Alice.

Seriously, though, the idea of coding at least the first couple of applica-
tions by hand is to attempt to get a feel for the technology. Feel free to ignore

1.6 We Learn by Doing 15

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 15

my advice on this subject. What does matter, however, is making it easier for
us in the end, which is why tools are important.

1.6.2 Tools to Make Tools

If the idea of coding by hand is repugnant to you, consider this: On some level,
somebody coded something by hand. It is a pretty sure bet that there are no
software tool trees, although I have used several that weren’t quite ripe yet.

Many developers have issues with the very concept of creating their own
common tools for web development. The first issue probably relates to the idea
of job security; after all, if a company has a “developer in a box,” why would it
pay for the real thing? The answer to this is relatively simple: What if they
want changes to what’s in the box? Let me put it another way: Have you ever
written some code and played the “I bet you can’t guess what this does” game?
I have, and not only is it good for feeding the old ego, but it is a blast, too! Of
course, there is the tendency to strut around like Foghorn Leghorn afterward,
but as long as you avoid the young chicken hawk developer and the old dog
developer, everything will be fine. Also remember that, by himself, the weasel
isn’t a real threat.

Another issue is the “I can tell you, but then I’ll have to kill you” mindset.
A while back, I had a manager with this mindset; she seemed to withhold
required information just for fun from every assignment. For example, she
once gave me the assignment to produce a report from a payroll file and then
told me that I didn’t have high enough security to see either the file or the file
layout. Somebody once said that information is power, and some people take it
to heart. The danger with this philosophy is that information can literally be
taken to the grave, or it is so out-of-date that it no longer applies.

Finally, there’s what I believe to be the biggest issue, which I call “The
Wonder Tool”; it dices, it slices, and it even makes julienne fries. Similar to the
“feature creep” that we’re all familiar with, but with a difference, it starts out
unrealistic. “The Wonder Tool” is a mouse designed to government specifica-
tions, more commonly called an elephant. For the interest of sanity (yeah,
right, me talking about sanity), it makes far more sense to break up the tool
into more manageable pieces. For example, let’s say that we need common
tools to do X and Y, both of which need a routine to do Z. Rather than code Z
twice as part of X and Y, it makes more sense to code a separate tool to do Z
and have X and Y use this tool. And who knows? Sometime in the future, you
might need a few Zs, and you’ll already have them.

16 Types of Web Pages Chapter 1

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 16

1.7 SUMMARY

The intention behind this chapter is that it serve as something of an explana-
tion of the humble beginnings of the World Wide Web, starting with a single
server and growing into the globe-spanning network that it is today.

First there was a brief explanation of both static and dynamic web pages,
including the components that go into building each type of page. Components
such as HTML, CSS, and JavaScript were briefly covered. Several examples of
“DHTML out of control” were also mentioned; I, for one, can’t wait for the
video.

There was also a brief description, or, in some cases, an honorable men-
tion, of several different web browsers. These browsers included some of the
more popular web browsers for Linux, Windows, and Mac OS X. In addition,
mention was made of some of the more annoying problems with cross-browser
development.

The server side of things was briefly covered, to illustrate that there are
always alternatives to whatever is being used currently. Also, I mentioned how
it might be possible to mix and match technology, such as ASP.NET on Linux.

Finally, I covered the biggest problem with technical training today: how
to apply it and how to circumvent it. Regardless of who we are, we learn by
doing, and that information is like cookies; it’s meant to be shared.

1.7 Summary 17

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 17

01_0132272679_ch01.qxd 7/17/06 8:58 AM Page 18

C H A P T E R 2

Introducing Ajax

A little more than a year ago, an article by Jesse James Garrett was published
describing an advanced web development technique that, even though individ-
ual components of it have existed for years, few web developers had ever stum-
bled across. I can guess the reason for this lack of knowledge; basically, in the
last few years, the need to produce measurable results has gotten in the way of
the need to practice our craft. Or, as a former manager of mine would say, it’s
“that mad scientist stuff,” except, as I recall, he used another word in place of
stuff. Unfortunately, nine times out of ten, the need to produce measurable
results gets in the way of “that mad scientist stuff.”

However, it’s the tenth time that’s important. The article didn’t stop at
just describing the technique; it went on to say that Google used the very same
technique. Invoking that single name, Google, was enough to change a point of
view. Quicker than you could say, “Igor, the kites!” the phrase “that mad scien-
tist stuff” morphed into “Why aren’t we doing it this way?” The reason for this
change of perception is that the name Google made this a technique that could
produce measurable results. All it took was that single name, Google, to make
using the XMLHttpRequest object so that the browser could communicate with
the server without the page ever unloading and reloading into an acceptable
practice.

This chapter introduces you to that practice, the practice of updating web
pages with information from the server. Beyond the XMLHttpRequest object,
which has been around for several years as a solution looking for a problem,
there is nothing weird needed. Basically, it is how the individual pieces are put
together. When they’re put together in one way, it is nothing more than a pile
of parts; however, when put together in another way, the monster essentially
rises from its slab.

19

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 19

2.1 NOT A MOCKUP

A few years ago, I demonstrated an application that did what I just described.
The demo ran for more than 2 hours with the same questions repeated over
and over.

“It’s a mockup, right?”
“No, it is the actual application.”
“It can’t be. The screen doesn’t blink.”
“That’s because XML, HTTP, and SOAP are used to get the data directly

from the server. JavaScript then updates only the parts of the page that have
changed.”

“It’s a mockup, right?”
And so on. It took the client more than 2 hours to realize that the data-

base was actually being updated without the page “blinking,” as he referred
to it.

2.2 A TECHNIQUE WITHOUT A NAME

Now, if I had been smart, I would have given the technology a name then and
there, and thus ensured my place in Web history, shutting up the client as
well. After all, a name is a thing of power, and the client, not wanting to sound
stupid for not knowing what the acronym meant, would have saved more than
2 hours of my life that were spent re-enacting the scene of peasants with pitch
forks from the 1931 version of Frankenstein, minus the tongs. Unfortunately, I
drew an absolute blank and just called it as it was.

With apologies to the people who make the cleanser and the detergent,
legend has it that the original Ajax was the second most powerful of the Greek
warriors at Troy. Even though he had some issues (who in the Illiad didn’t?),
his strength and skill in battle were second to none (well, okay, second only to
Achilles). In naming the technology Ajax, Jesse James Garrett gave the tech-
nology both Ajax’s strengths and issues.

2.2.1 Names

An old idea dates back to the dawn of human civilization that to know some-
one’s or something’s true name is to have power over that person or thing. It is
one of the basic concepts of what is commonly referred to as magic, and
although magic isn’t real, the idea that names can hold power isn’t very far
from the truth. Consider, if you will, a resumé. If ever a document held names
of power, a resumé is it. Not very long ago, resumés invoking words such as
JavaScript, DHTML, and XML were looked upon with envy, perhaps even

20 Introducing Ajax Chapter 2

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 20

awe. After all, for a little while, it seemed as though web developers were rock
stars that, thankfully, were never asked to sing. Unfortunately, those names
are now considered passé or even a little old-fashioned.

In his essay describing this web development technique, Mr. Garrett did
one final thing; he gave it a name, Ajax, and thus gave us power over it. The
acronym refers to Asynchronous JavaScript And XML, and whether you love
or hate the name, the technology now has a name. At the very least, this nam-
ing means that we can describe what we’ve been doing at work. Ajax is a lot
easier to say than, “I’ve been using client-side JavaScript, SOAP, and XML to
obtain data directly from the server using XMLHTTP instead of the standard
unload/reload cycle.”

2.3 WHAT IS AJAX?

As stated previously, Ajax stands for Asynchronous JavaScript And XML, but
what exactly does that mean? Is the developer limited to only those technolo-
gies named? Thankfully, no, the acronym merely serves as a guideline and not
a rule. In some ways, Ajax is something of an art, as with cooking. Consider, for
a moment, the dish called shrimp scampi; I’ve had it in restaurants up and
down the East Coast of the United States, and it was different in every restau-
rant. Of course, there were some common elements, such as shrimp, butter,
and garlic, but the plethora of little extras added made each dish unique.

The same can be said of Ajax. Starting with a few simple ingredients,
such as HTML and JavaScript, it is possible to cook up a web application with
the feel of a Windows or, if you prefer, a Linux application. You might have
noticed earlier that my ingredients list omitted XML; the reason for that omis-
sion is that XML is one of those optional ingredients. This might sound
strange because the x in Ajax stands for XML, but it is also useful in those
instances when a particular client does not support XML or doesn’t support
some of the more “mad scientist” methods of communicating with the server.

2.3.1 The Ajax Philosophy

How the client—in this case, a web browser—communicates with the server is
one of the cornerstones of Ajax. Designed with the philosophy of not using
bandwidth just because it’s there, a web page coded using these techniques
won’t go through the unload/reload cycle, or “blink,” as some refer to it, unless
absolutely necessary. Why send 100,000 bytes back and forth to the server
when 300 bytes will suffice?

Of course, this means that, to the casual observer, the browser is behaving
strangely because sometimes only selected parts of a web page are updated.

2.3 What Is Ajax? 21

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 21

This means that the page won’t “blink,” as the peasant—er, client—so ele-
gantly put it. Instead, in a wink of an eye, parts of the page will update
quicker than they believed possible. The speed difference can be compared to
the difference between accessing a file on a floppy disk and accessing a file on
the hard disk. Personally, my reaction was along the lines of “I am never going
back!” But individual results can vary, so consult your doctor.

Another concept that Ajax uses is, why not make the client work for a liv-
ing? Have the client’s web browser handle parts of the processing rather than
just parrot preprocessed information on the screen. The initial page load
would consist of data and JavaScript, instructions on what to do with the data.
To expand upon the earlier mad scientist analogy, imagine a do-it-yourself
“mad scientist” kit consisting of a pile of parts and a minion that answers to
Igor, and you’ll get the idea.

With an Ajax application, the browser is expected to actually process the
data supplied by the server. This means not only the little things that DHTML
did, such as rollovers and hierarchical drop-down navigation menus, but real
things, such as posting to the server and handling the response, whether it is
handling it either synchronously or asynchronously. In addition, Ajax applica-
tions need to be able to not only find objects on the HTML page but also, if nec-
essary, update them.

This leads to the question of how, short of the whole kites and Igor
methodology, does one accomplish this unholy task? The answer is that it
depends on just how and how far one wants to pursue this course. There are
three ways to bring life to an Ajax application, and each has its own advan-
tages and disadvantages. It all depends on just which parts of the Ajax toolset
the developers are comfortable with. It also depends on how comfortable you
are with excluding certain members of the planet from the application. Yes,
I’m talking about those people who are still running Internet Explorer version
2.0. Fortunately, it isn’t my job to issue decrees concerning browser compatibil-
ity; however, it is my job to cover how to implement an Ajax application.

2.3.2 Meddling with Unnatural Forces

Earlier I explained how I, and probably quite a few others, stumbled upon the
then nameless technique that was to become Ajax. However, that was not my
first brush with what my supervisor called “mad scientist stuff.” Several years
earlier, as a consultant for the group insurance division of a large insurance
company, I had the good fortune to get the assignment to automate a paper-
based request system.

22 Introducing Ajax Chapter 2

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 22

Armed with a file layout, salespeople would try to sell group insurance to
companies and, theoretically, would explain that enrollee information needed
to conform to the file layout. However, possibly in an effort to make the sale
and thereby get the commission, they would accept it in any conceivable elec-
tronic format. XML, Excel, or flat files—it was all the same to them because
they would fill out a multipage form and the minions in systems would take
care of it. Needless to say, quite a few of these pieces of paper got lost, got
coffee spilled on them, or simply got filed under “it’s real work and I don’t want
to do it” by the folks in systems.

Arriving onsite, I quickly got to work researching the various forms and
how they were handled, which led to documenting how the process should
work. Because I was the sole designer and developer for this new system,
there was, shall I say, some freedom as to the technologies at my disposal. The
back end was classic ASP and SQL Server, both of which are beyond the scope
of this book. The front end, however, was a combination of HTML, JavaScript,
and DOM, with a little CSS thrown in for good measure.

Here’s how it worked: The user would enter multiple pages of informa-
tion concerning the request. This information would be cached on the client
side until the user reached the end of the chain of pages and clicked the final
submit button. The caching was accomplished through the use of HTML
frames; the first frame, as the user input frame, filled the entire browser’s
window. However, the second frame, the data frame, was the interesting one
because it wasn’t visible even though it was always there.

This trick, for lack of a better word, with hidden frames was that they
had the advantage of speeding up the application. The speeding up was due to
reduced interaction with both the web server and the database server. Another
benefit was that, in addition to the performance improvements, the applica-
tion seemed to flow better because the input was broken into convenient
chunks instead of the usual approach of entering between 80 and 200 items at
one time.

2.4 AN AJAX ENCOUNTER OF THE FIRST KIND

Now that I’ve gushed about the why of this technique, let me offer a little
insight on the how of this technique. Let’s start with the three HTML docu-
ments shown in Listing 2-1, Listing 2-2, and Listing 2-3. Some readers might
not consider this a true example of Ajax, but it does share many of the same
qualities of Ajax, in much the same way that a Star Trek fan and a Star Wars
fan share many of the same qualities.

2.4 An Ajax Encounter of the First Kind 23

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 23

Listing 2-1 HTMLfs.htm

<html>
<head>
<title>HTMLfs</title>

</head>
<frameset rows=”100%,*”>
<frame name=”visible_frame” src=”visible.htm”>
<frame name=”hidden_frame” src=”hidden.htm”>
<noframes>Frames are required to use this Web site.</noframes>

</frameset>
</html>

Listing 2-2 visible.htm

<html>
<head>
<title>visible</title>
<script language=”javascript”>

/*
Perform page initialization.

*/
function initialize() { }

/*
Handle form visible form onchange events. Values from the visible
form are copied to the hidden form.

*/
function changeEvent(obj)
{
parent.frames[1].document.getElementById(obj.id).value = obj.value;

}

/*
Submits the form in the hidden frame then reloads the hidden frame.

*/
function submitForm() {
parent.frames[1].document.getElementById(‘hidden_form’).submit();
parent.frames[1].document.location = “hidden.htm”;

}
</script>

</head>
<body onload=”initialize()”>
<form name=”visible_form” id=”visible_form”></form>

</body>
</html>

24 Introducing Ajax Chapter 2

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 24

Listing 2-3 hidden.htm

<html>
<head>
<title>hidden</title>
<script language=”javascript”>

var reBrowser = new RegExp(‘internet explorer’,’gi’);

/*
Perform page initialization, waits for the visible frame to load and

clones the hidden form to the visible form.
*/
function initialize()
{
var hiddenForm = document.getElementById(‘hidden_form’);

if(reBrowser.test(navigator.appName))
{
while(parent.document.frames.item(0).document.readyState !=

‘complete’) { }

parent.frames[0].document.getElementById(‘visible_form’).innerHTML =
hiddenForm.innerHTML;
}
else
{
var complete = false;

while(!complete)
{
try
{

parent.frames[0].document.getElementById(‘visible_form’).appendChild
(hiddenForm.cloneNode(true));

complete = true;
}
catch(e) { }

}
}

}
</script>

</head>
<body onload=”initialize()”>
<form name=”hidden_form” id=”hidden_form” action=”post.aspx”>
<h1>Address Information</h1>
<table border=”0” width=”100%”>
<tr>
<th width=”30%” align=”right”>Name: </th>
<td align=”left”>

2.4 An Ajax Encounter of the First Kind 25

continues

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 25

Listing 2-3 continued

26 Introducing Ajax Chapter 2

<input type=”text” name=”name” id=”name” value=””
onchange=”changeEvent(this)”>

</td>
</tr>
<tr>
<th align=”right”>Address Line 1: </th>
<td align=”left”>
<input type=”text” name=”address1” id=”address1” value=””

onchange=”changeEvent(this)”>
</td>

</tr>
<tr>
<th align=”right”>Address Line 2: </th>
<td align=”left”>
<input type=”text” name=”address2” id=”address2” value=””

onchange=”changeEvent(this)”>
</td>

</tr>
<tr>
<th align=”right”>City: </th>
<td align=”left”>
<input type=”text” name=”city” id=”city” value=””

onchange=”changeEvent(this)”>
</td>

</tr>
<tr>
<th align=”right”>State: </th>
<td align=”left”>
<input type=”text” name=”state” id=”state” value=””

onchange=”changeEvent(this)”>
</td>

</tr>
<tr>
<th align=”right”>Zip Code: </th>
<td align=”left”>
<input type=”text” name=”zip” id=”zip” value=””

onchange=”changeEvent(this)”>
</td>

</tr>
</table>

<input type=”button” value=”Submit” onclick=”submitForm()”>

</form>
</body>

</html>

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 26

2.4.1 A World Unseen

Any developer familiar with the use of frames and framesets will find Listing
2-1 pretty normal looking. However, one item isn’t plain vanilla:
the rows=”100%,*” attribute on the frameset element, which states that the
first frame gets 100 percent of available rows. The asterisk (*) states that any-
thing left over goes to the second frame. In this example, there is nothing left
over, so it is the equivalent of coding zero. This results in the first frame being
visible and the second frame being hidden. In essence, this is a sneaky way to
hide what’s going on from prying eyes—namely, the user. The next two listings
are the visible frame, Listing 2-2, and the hidden frame, Listing 2-3. Listing 2-
3 is where the real mad science happens.

2.4.2 Enter JavaScript

Listing 2-2 is short and sweet, basically two short JavaScript functions that
don’t appear to do anything. The first of these functions, changeEvent, is just
what it says it is, a handler for an on change event. When fired, it copies the
value associated with the current object on the current frame to one with the
same ID on the hidden frame. The second function, submitForm, submits a form;
however, like the previous function, it works with the hidden frame by locating
and submitting the form there.

This leaves just one question: Where does the HTML for the visible form
come from? The answer lies in Listing 2-3, the one for the hidden frame. Like
the visible frame, it has JavaScript functions and a form. There is, however, a
major difference in the form. Unlike its visible counterpart, it has all of the
HTML necessary to make a nice little form. The trick is getting it from the
hidden frame to the visible frame.

This magic is accomplished in the pages’ on load event handler, initialize.
This function waits for the other frame to load and then copies this form’s
inner HTML to the other frame. When this is done, the result is the normal-
looking web page shown in Figure 2-1. The way it behaves, however, is almost
application-like, with parts of the visible page being updated each time the
hidden frame does an unload/reload cycle.

2.4 An Ajax Encounter of the First Kind 27

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 27

28 Introducing Ajax Chapter 2

Figure 2-1 A normal-looking web page that functions almost like a desktop
application

2.5 AN AJAX ENCOUNTER OF THE SECOND KIND

As flexible and cross-browser capable as the “hidden frames” method of imple-
menting Ajax is, all that has been accomplished is the “AJ” part of Ajax. Which
is sort of like the sound of one hand clapping, and that usually means that
Igor has been slacking off again. Thankfully, there’s another part—eh, make
that technology—available: XML. The problem with XML is that it has devel-
oped a reputation of being difficult; however, it doesn’t have to be. Just keep in
mind that, in those situations, code has a tendency to follow you around, like
Igor.

2.5.1 XML

In its simplest form, XML is nothing more than a text file containing a single
well-formed XML document. Come to think of it, the same is pretty much true

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 28

in its most complex form as well. Looking past all of the hype surrounding
XML, it is easy to see that XML is merely the text representation of self-
describing data in a tree data structure. When this is understood, all that is
left are the nitty-gritty little details, like “What’s a tree data structure?” and
“How exactly does data describe itself?”

A tree data structure is built of nodes, with each node having only one
node connected above it, called a parent node. The sole exception to this rule is
the root node, which has no parent node. Nodes can also have other nodes con-
nected below, and these are called child nodes. In addition, nodes on the same
level that have the same parent node are called children. Figure 2-2 is a
graphical representation of a tree data structure.

2.5 An Ajax Encounter of the Second Kind 29

library

book

series title author

book

library

series title author

book

series title author

Figure 2-2 Tree data structure

Figure 2-2 can also be represented as the XML document shown in
Listing 2-4.

Listing 2-4 XML Representation of the Same Information as in Figure 2-2

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<library>
<book>
<series>The Wonderland Gambit</series>
<title>The Cybernetic Walrus</title>
<author>Jack L. Chalker</author>

</book>
<book>
<series>The Wonderland Gambit</series>
<title>The March Hare Network</title>
<author>Jack L. Chalker</author>

</book>
<book>
<series>The Wonderland Gambit</series>
<title>The Hot-Wired Dodo</title>
<author>Jack L. Chalker</author>

</book>
</library>

The nodes shown in Listing 2-4 are called elements, which closely resem-
ble HTML tags. And like HTML tags, start tags begin with < while end tags

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 29

begin with </. However, unlike HTML tags, all XML tags either must have a
closing tag or be self-closing or must be empty elements. Self-closing tags are
recognizable by the ending />; if the forward slash was omitted, the document
would not be a well-formed XML document. In addition, to all elements being
either closed or self-closing, the tags must always match up in order. This
means that the XML document in Listing 2-5 is well formed but the XML doc-
ument in Listing 2-6 is not well formed. In a nutshell, “well formed” means
that there is a right place for everything. Feet are a good example of this:
Imagine if Igor used two left feet; the monster wouldn’t be well formed and
wouldn’t be able to dance, either.

Listing 2-5 A Well-Formed XML Document

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<one>
<two>
<three>
<four/>

</three>
</two>

</one>

Listing 2-6 An XML Document That Is Not Well Formed

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<one>
<two>
<three>
<four/>

</two>
</three>

</one>

As neat and nifty as the hidden frames method of communicating with
the server is, the addition of an XML document provides another option,
XMLHTTP, or, as some refer to it the XMLHttpRequest object. Note all those
capital letters, which are meant to indicate that it is important. The
XMLHttpRequest object sends information to and retrieves information from the
server. Although it doesn’t have to be, this information is usually in the form of
XML and, therefore, has the advantage of being more compact than the usual
HTML that the server sends. Just in case you’re interested, this was the
means of communication for that page that I had handwritten and was using
during the “it doesn’t blink” fiasco.

30 Introducing Ajax Chapter 2

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 30

2.5.2 The XMLHttpRequest Object

Unlike the hidden frames approach, in which the unload/reload cycle is still
there but is tucked out of the way, using the XMLHttpRequest object means
finally saying good-bye to the unload/reload cycle that we’ve all come to know
and loathe. This means that, in theory, if not in practice, a single page could
conceivably be an entire website. Basically, it’s a load-and-go arrangement.

In theory, the original page loads and a user enters information into a
form and clicks submit. A JavaScript event handler sends the user’s informa-
tion to the server via XMLHTTP and either waits penitently for a response
(synchronous) or sets an event handler for the response (asynchronous). When
the response is received, the JavaScript takes whatever action that it is pro-
grammed to, including updating parts of the page, hence the lack of an
unload/reload cycle or “blink.” This is great theory, but a theory is pretty use-
less if it cannot be put into practice; let’s take a look in Listings 2-7 and 2-8 at
how this can be implemented from a client-side perspective.

Listing 2-7 Example Ajax Web Page

<html>
<head>
<title>AJAX Internet Explorer Flavor</title>
<script language=”javascript”>

var dom = new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);
var objXMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

/*
Obtain the XML document from the web server.

*/
function initialize()
{
var strURL = ‘msas.asmx/getTime’;

objXMLHTTP.open(‘POST’,strURL,true);
objXMLHTTP.onreadystatechange = stateChangeHandler;

try
{
objXMLHTTP.send();

}
catch(e)
{
alert(e.description);
}

}

/*
Handle server response to XMLHTTP requests.

*/
function stateChangeHandler()

2.5 An Ajax Encounter of the Second Kind 31

continues

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 31

Listing 2-7 continued

32 Introducing Ajax Chapter 2

{
if(objXMLHTTP.readyState == 4)
try
{
dom.loadXML(objXMLHTTP.responseText);
document.getElementById(‘time’).innerText =

dom.selectSingleNode(‘time’).text;
}

catch(e) { }
}

</script>
</head>
<body onload=”initialize()”>
<div id=”time”></div>

</body>
</html>

Listing 2-8 XML Document

<?xml version=”1.0” encoding=”utf-8” ?>
<time>3:30 PM</time>

If this were CSI, Columbo or The Thin Man, now is the time when the
hero explains how the deed was done. It goes something like this: The HTML
page loads, which causes the onload event handler, initialize, to fire. In this
function, the XMLHttpRequest object’s open method is invoked, which only sets
the method (POST), gives the relative URL of a web service, and states that the
request will be asynchronous (true). Next, the onreadystatechage event handler
is set; this is the function that handles what to do when the web service
responds. Finally, the send method of the XMLHttpRequest object is invoked,
sending our request on its merry way.

When a response is received from the web service, the stateChangeHandler
is fired. You’ve probably noticed the test of the readyState property. The reason
for this is that there are more than one possible readyState values, and we’re
interested in only four, complete. When the response is complete, the result is
loaded into an XML document, the appropriate node is selected, and the
HTML is updated.

Listings 2-7 and 2-8 could be considered by some a pure example of Ajax.
Unfortunately, the way it is currently coded, browsers other than Microsoft
Internet Explorer would have real issues with it. What sort of issues? The code
simply won’t work because of differences in how XML and the XMLHttpRequest
object work in various browsers. This doesn’t mean that this form of Ajax is an

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 32

IE-only technology; it simply means that careful planning is required to
ensure cross-browser compatibility.

On the subject of compatibility, I don’t want to scare you off, but let me
point out that the more advanced the client-side coding is, the more likely it is
that there will be issues. The majority of these issues are merely little annoy-
ances, similar to flies buzzing around. These “flies” aren’t fatal, but it is a good
idea to keep these things in mind.

2.6 AN AJAX ENCOUNTER OF THE THIRD KIND

The fifth part of Ajax, an optional part, isn’t for the faint of heart. It tran-
scends the “mad scientist stuff” into the realm of the magical, and it is called
eXtensible Stylesheet Language for Transformations, or XSLT. In other words,
if Ajax really was mad science and it was taught in school, this would be a 400-
level course. Why? The reason is that the technology is both relatively new and
very, very browser dependent. However, when it works, this method provides
an incredible experience for the user.

2.6.1 XSLT

XSLT is an XML-based language that is used to transform XML into other
forms. XSLT applies a style sheet (XSLT) as input for an XML document and
produces output—in most cases, XHTML or some other form of XML. This
XHTML is then displayed on the browser, literally in the “wink of an eye.”

One of the interesting things about XSLT is that, other than the XML
being well formed, it really doesn’t make any difference where the XML came
from. This leads to some interesting possible sources of XML. For example, as
you are probably aware, a database query can return XML. But did you know
that an Excel spreadsheet can be saved as XML? XSLT can be used to trans-
form any XML-derived language, regardless of the source.

Listing 2-9 shows a simple Internet Explorer–only web page along the
same lines as the earlier examples. By using XSLT and the XMLHttpRequest
object to retrieve both the XML and XSLT shown in Listing 2-10, it is
extremely flexible. This is because after the initial page is loaded, any conceiv-
able page can be generated simply by changing the XML and/or the XSLT.
Sounds pretty powerful, doesn’t it?

Listing 2-9 A Simple IE-Only Web Page

<html>
<head>
<title>AJAX Internet Explorer Flavor</title>

2.6 An Ajax Encounter of the Third Kind 33

continues

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 33

Listing 2-9 continued

34 Introducing Ajax Chapter 2

<script language=”javascript”>
var dom = new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);
var xslt = new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);
var objXMLHTTP;

/*
Obtain the initial XML document from the web server.

*/
function initialize()
{
doPOST(true);

}

/*
Use the XMLHttpRequest to communicate with a web service.

*/
function doPOST(blnState) {
var strURL = ‘http://localhost/AJAX/msas.asmx’;

objXMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

objXMLHTTP.open(‘POST’,strURL,true);

if(blnState)
objXMLHTTP.setRequestHeader(‘SOAPAction’,’http://

tempuri.org/getState’);
else

objXMLHTTP.setRequestHeader(‘SOAPAction’,’http://tempuri.org/getXML’);

objXMLHTTP.setRequestHeader(‘Content-Type’,’text/xml’);

objXMLHTTP.onreadystatechange = stateChangeHandler;

try
{
objXMLHTTP.send(buildSOAP(blnState));

}
catch(e)
{
alert(e.description);
}

}

/*
Construct a SOAP envelope.

*/
function buildSOAP(blnState) {
var strSOAP = ‘<?xml version=”1.0” encoding=”UTF-8”?>’;

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 34

strSOAP += ‘<soap:Envelope
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>’;
strSOAP += ‘<soap:Body>’;

if(blnState)
{
strSOAP += ‘<getState xmlns=”http://tempuri.org/”>’;
strSOAP += ‘<state_abbreviation/>’;
strSOAP += ‘</getState>’;

}
else
{
strSOAP += ‘<getXML xmlns=”http://tempuri.org/”>’;
strSOAP += ‘<name>xsl/state.xsl</name>’;
strSOAP += ‘</getXML>’;

}

strSOAP += ‘</soap:Body>’;
strSOAP += ‘</soap:Envelope>’;

return(strSOAP);
}

/*
Handle server response to XMLHTTP requests.

*/
function stateChangeHandler()
{
if(objXMLHTTP.readyState == 4)
try
{
var work = new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

work.loadXML(objXMLHTTP.responseText);

switch(true) {
case(work.selectNodes(‘//getStateResponse’).length != 0):
dom.loadXML(objXMLHTTP.responseText);
doPOST(false);

break;
case(work.selectNodes(‘//getXMLResponse’).length != 0):
var objXSLTemplate = new

ActiveXObject(‘MSXML2.XSLTemplate.3.0’);

xslt.loadXML(work.selectSingleNode(‘//getXMLResult’).firstChild.xml);

objXSLTemplate.stylesheet = xslt;

var objXSLTProcessor = objXSLTemplate.createProcessor;

objXSLTProcessor.input = dom;

2.6 An Ajax Encounter of the Third Kind 35

continues

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 35

Listing 2-9 continued

36 Introducing Ajax Chapter 2

objXSLTProcessor.transform();

document.getElementById(‘select’).innerHTML =
objXSLTProcessor.output;

break;
default:
alert(‘error’);

break;
}

}
catch(e) { }

}
</script>

</head>
<body onload=”initialize()”>
<div id=”select”></div>

</html>

Listing 2-10 The XML and XSLT Part

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” version=”1.0” encoding=”UTF-8” indent=”yes”/>

<xsl:template match=”/”>
<xsl:element name=”select”>
<xsl:attribute name=”id”>state</xsl:attribute>
<xsl:attribute name=”name”>selState</xsl:attribute>
<xsl:apply-templates select=”//Table[country_id = 1]”/>

</xsl:element>
</xsl:template>

<xsl:template match=”Table”>
<xsl:element name=”option”>
<xsl:attribute name=”value”><xsl:value-of

select=”state_abbreviation”/></xsl:attribute>
<xsl:value-of select=”state_name”/>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

2.6.2 Variations on a Theme

At first glance, the JavaScript in the previous example appears to be very sim-
ilar to that shown in Listing 2-7; however, nothing could be further from the

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 36

truth. The first of these differences is due to two calls being made to a web
service and the use of XSLT to generate the HTML to be displayed in the
browser. Let’s look at this in a little more detail.

First, the only thing that the initialize function does is call another
function, doPOST, passing a true. Examining doPOST reveals that the purpose of
the true is to indicate what the SOAPAction in the request header is, http://
tempuri.org/getState to get information pertaining to states and provinces
from the web service, or http://tempuri.org/getXML to get XML/XSLT from the
web service. The first time through, however, we’re getting the XML.

The second difference, also in doPOST, is the addition of a call to buildSOAP
right smack in the middle of the XMLHttpRequest object’s send. This is how argu-
ments are passed to a web service, in the form of text—a SOAP request, in this
instance. Checking out buildSOAP, you’ll notice that Boolean from doPOST is
passed to indicate what the body of the SOAP request should be. Basically,
this is what information is needed from the web service, states or XSLT.

You’ll remember the stateChangeHandler from the earlier set of examples,
and although it is similar, there are a few differences. The first thing that
jumps out is the addition of a “work” XML document that is loaded and then
used to test for specific nodes; getStateResponse and getXMLResponse. The first
indicates that the SOAP response is from a request made to the web service’s
getState method, and the second indicates a response from the getXML method.
Also notice the doPOST with an argument of false in the part of the function
that handles getState responses; its purpose is to get the XSLT for the XSL
transformation.

Speaking of a transformation, that is the purpose of the code that you
might not recognize in the getXML portion of the stateChangeHandler function.
Allow me to point out the selectSingleNode method used, the purpose of which
is to remove the SOAP from the XSLT. The reason for this is that the XSLT
simply won’t work when wrapped in a SOAP response. The final lines of
JavaScript perform the transformation and insert the result into the page’s
HTML.

The use of XSLT to generate the HTML “on the fly” offers some interest-
ing possibilities that the other two methods of implementing Ajax do not. For
instance, where in the earlier example the look of the page was dictated by the
hard-coded HTML, this doesn’t have to be the case when using XSLT. Consider
for a moment the possibility of a page using multiple style sheets to change
the look and feel of a page. Also, with the speed of XSLT, this change would
occur at Windows application speeds instead of the usual crawl that web
applications proceed at.

2.6 An Ajax Encounter of the Third Kind 37

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 37

2.7 THE SHAPE OF THINGS TO COME

The sole purpose of this chapter is to offer a glimpse of the shape of things to
come, both in this book and in the industry. All joking aside, this glimpse
wasn’t the result of mad science or any other dark art. It is the result of several
years of beating various web browsers into submission, consistently pushing a
little further to create rich application interfaces with consistent behavior.

The wide range of technologies that comprise Ajax can be a double-edged
sword. On one hand, there is extreme flexibility in the tools available to the
developer. On the other hand, currently Ajax applications are often sewn
together in much the same way that DHTML pages were in the late 1990s.
Unfortunately, although the hand-crafted approach works for furniture and
monsters, it relies heavily on the skill level of Igor—eh, the developer.

In future chapters, it is my intention to elaborate on the various tech-
niques that were briefly touched upon in this chapter. Also, even though Ajax
is currently considered a technique that takes longer to develop than the “tra-
ditional” methods of web development, I’ll show some ideas on how to reduce
this time. After all, what self-respecting mad scientist cobbles together each
and every monster by hand? It’s all about tools to make tools—eh, I mean
monsters.

2.8 SUMMARY

This chapter started with a brief introduction to Ajax that included some of
the origins and problems associated with using “mad scientist stuff,” such as
the accusations of attempting to pass off a mock-up as an actual application
and the inability to describe just how something works. Of course, some people
still will think Corinthian helmets and hoplites at the very mention of Ajax,
but you can’t please everyone.

Next there was a brief outline of the philosophy behind Ajax, which cen-
ters on the idea of not bothering the server any more than is necessary. The
goal is that of reducing, if not eliminating, the unload/reload cycle—or “blink,”
as some call it. The Ajax philosophy also includes the idea of making the
client’s computer work for a living. After all, personal computers have been
around in some form for close to 30 years; they should do some work—take out
the trash, mow the lawn, or something.

Finally, I presented the three simple examples of how Ajax can be imple-
mented. The first example, although not quite Ajax, does much to show some-
thing of the first attempts to implement a web application with the feel of a
Windows application. Although it’s primitive by today’s standard, it is still bet-
ter than 99 percent of the web pages out there today.

38 Introducing Ajax Chapter 2

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 38

Using the XMLHttpRequest object, the second example is dead on as to
what is expected from an Ajax application. Broken are the bonds that limit
updates to the unload/reload cycle that has been confronting us on the Web
since Day 1. In addition, XML plays well with the concept of reducing traffic.

The third and final example pushes Ajax to the current limits with the
addition of XSLT to the mix. XSLT allows XML to be twisted and stretched
into any conceivable shape that we can imagine. No longer are our creations
limited to the parts that we can dig up here and there; we can make our own
parts on demand.

2.8 Summary 39

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 39

02_0132272679_ch02.qxd 7/17/06 8:58 AM Page 40

C H A P T E R 3

HTML/XHTML

If you’ve made it this far, you’re now in the “road warrior” section of the book,
where all the reference materials and bizarre ideas dwell. The origin of this
section goes all the way back to the trunk of my car—unless you’re British, in
which case, the origin of this section goes all the way back to the boot of my
automobile. Until relatively recently, as I previously stated, I was a consult-
ant, a hired gun, a one-man medicine show, or a resident visitor. No matter
which term you prefer, a permanent office with bookshelves was not an option.
So I was forced to carry books in and out with me each day.

This was a real educational experience. I’ve learned things from com-
puter books that you wouldn’t believe. First, regardless of the subject and the
type, hardcover or paperback, computer books are heavy. Also, there is a little-
known law of computer books—let’s call it Ed’s Law of Computer Books. It
goes something like this: “Regardless of the subject, whatever you need to
know is in another book.”

It is true; I’ve lost count of the number of times that the information
needed was in a book that was still in my car. So if the car was parked some-
where nearby, I’d trek downstairs and out to my car, grab the book, and then
go back upstairs, only to find that I needed yet another book. This is the pur-
pose of this section: so that I can plant my tush and not have to travel out to
my car.

If, unlike myself, you’re not too lazy to carry more than one book, consider
this chapter something of a refresher on a few of the basic building blocks of
Ajax. Well, maybe it’s technically not a refresher because XHTML is still con-
sidered by some to be a little mysterious. That is probably due to the X.

This chapter covers some of the background material that is necessary to
develop an Ajax application, specifically HTML and XHTML. Odds are, you’re
familiar with much, if not all, of the material covered here. But because I’m in
Pennsylvania writing this and you’re wherever you are reading this, it is kind
of hard to tailor this specifically to your needs.

41

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 41

3.1 THE DIFFERENCE BETWEEN HTML AND XHTML

From its very beginning, Hypertext Markup Language is what has made the
World Wide Web possible. It both conveys the thoughts of the person who cre-
ated the page and defines nearly every aspect of what we see on each and
every web page visited. Like English, French, Spanish, Japanese, Russian, or
any other language in use today, it is a living language, evolving and growing.

Early on, this growth was fast and sudden, with “features” often doing an
end-run around the World Wide Web Consortium. Add to that the fact that
many of the designers of web pages play fast and loose in an effort to have
more content than the next guy. So what if some corners were cut? It was all
about content, and content was king.

Enter XHTML, considered by some as an effort to reign in the Wild West
approach to web development by making HTML a dialect of XML. XHTML
came in three flavors: transitional, strict, and frameset, with each flavor offer-
ing either different capabilities or different degrees of conformance to the
XML standard.

3.1.1 Not Well Formed

Probably the biggest single difference between HTML and XHTML is that
XHTML must be well formed. “Not a big deal,” you say. Well, it could be. The
part of the document that isn’t well formed doesn’t have to be glaring, like a
foot being attached to the forehead. Because an XHTML document is essen-
tially XML, simply following the HTML practices that we’ve followed for years
is enough to get us into trouble. Consider the following two HTML input
statements:

<input type=”text” name=”bad” id=”bad” value=”Not well-formed”>

<input type=”text” name=”alsobad” id=”alsobad”
value=”Not well-formed” disabled>

Both statements are perfectly acceptable HTML, but as XHTML, they
don’t make the grade because neither is well formed. The problem with the
first statement is that the tag isn’t closed—perfectly acceptable in HTML, but
verboten in XHTML. Fortunately, correcting it is a simple matter; just close
the tag in the manner of self-closing tags or treat it as a container tag. The
problem with the second statement might be a little harder to spot. I’ll give
you a hint: attributes. Yes, in XML, attributes must always have values, so
give it one. disabled=”disabled” might look goofy, but it works.

42 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 42

3.1.2 Well Formed

At first glance, it might appear that all that is required to convert HTML into
XHTML is to slap a DTD before the HTML tag, close some tags, and clean up
some attributes. Voilà, instant XHTML! Well, maybe, sometimes, occasionally,
except on Tuesdays or at night during a full moon. You see, unfortunately,
there is still a potential source of problems.

I stumbled on this problem approximately 5 minutes after creating my
first XHTML page, and I immediately felt betrayed. The source of the problem
was compares in my JavaScript functions. With the assorted compares using
ampersand (&), greater than (>), and less than (<), the document wasn’t well
formed. In my despair, I knew how Victor Frankenstein felt, brought down by
creatures of my own creation. Oh, the irony!

3.1.3 A Well-Formed Example

Thankfully, my despair didn’t last very long. It wasn’t like there was a death
in the family, or Stargate SG-1 had been cancelled, or anything important like
that. It was merely a technical speed bump (or white tail deer, to those of you
in Pennsylvania) on the road of life. I wasn’t worried because I knew a trick
that would make anything well formed.

XHTML is really nothing more than a dialect of XML, in the same way
that both XSL and SVG are. This means that although it falls under the rules
of XML, it also falls under the exceptions to those rules. For example, there are
two ways to ensure that a greater than is well formed, but because JavaScript
can’t handle > entities aren’t an option. This leaves only CDATA as the way
to hide the JavaScript from the browser.

If you’re unfamiliar with CDATA, it is the XML equivalent of saying “Pay
no attention to that man behind the curtain.” Basically, anything that is
within the CDATA won’t be parsed as XML, which is quite convenient for this
case. There is, however, one problem with using CDATA; certain web browsers
have issues with it, so it is necessary to hide it from the browser in the manner
shown in Listing 3-1.

Listing 3-1 Hiding CDATA

<!-- <![CDATA[
function xyzzy(a,b) {
if(a > b)
alert(‘a is bigger’);

else
if(a = b)

3.1 The Difference Between HTML and XHTML 43

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 43

Listing 3-1 continued

44 HTML/XHTML Chapter 3

alert(‘a & b are equal’);
else
alert(‘b is bigger’)

}
//]]> -->

The purpose of the HTML/XML comments is to hide the CDATA section
from HTML. The JavaScript comment prevents select browsers from having
issues from a JavaScript perspective. Although it might not be pretty to look
at, it does work well.

3.2 ELEMENTS AND ATTRIBUTES

I’m not sure why, but there seems to be a law stating that the sections of books
intended for reference must be both dry and boring. Please bear with me as I
try to conform to this law while describing the relationship between elements
and attributes. Unfortunately, the American educational system falls short
when attempting to teach students how to write in a monotone, but I’ll do my
best.

3.2.1 A Very Brief Overview of XHTML Elements and Their Attributes

In the interest of being boring, I put together Table 3-1 which covers attributes
along with the elements associated with them. Because this is a high-level
overview—say, around 30,000 feet—there isn’t much beyond the “this element
goes with that attribute” kind of thing. However, it is important to remember
two things when referring to this table.

The first is that although this table was created from the request for
HTML 4.01, it is by no means gospel. There will always be web browsers that
either don’t support select attributes and/or elements, and browsers that add
some of their own. Also, if you recall our escapade with binding XML and
HTML, web browsers don’t get the least bit cranky if developers make up their
own attributes and elements, or even use onchange when it should have been
onclick.

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 44

Table 3-1 XHTML Elements and Associated Attributes

Element Description Deprecated Attributes
a Anchor accesskey, charset, class, coords,

dir, href, hreflang, id, lang,
name, onblur, onclick, ondblclick,
onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, rel, rev, shape, style,
tabindex, target, title, type

abbr Abbreviated class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

acronym class, dir, id, lang, onclick,
ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

address Author class, dir, id, lang, onclick,
information ondblclick, onkeydown, onkeypress,

onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

applet Java applet Yes align, alt, archive, class, code,
codebase, height, hspace, id,
name, object, style, title,
vspace, width

area Client-side accesskey, alt, class, coords,
image map dir, href, id, lang, nohref,
area onblur, onclick, ondblclick,

onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, shape, style, tabindex,
target, title

b Bold class, dir, id, lang, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

3.2 Elements and Attributes 45

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 45

Table 3-1 continued

Element Description Deprecated Attributes
base Base URI href, lang, target

of document
basefont Document Yes color, face, id, size

base font size
bdo BiDi override class, id, lang, style, title

big Large text class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

blockqoute Block cite
quotation

body Document alink, background, bgcolor,
body class, dir, id, lang, link,

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onload,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, onunload, style, text,
title, vlink

br Line break class, clear, id, style, title

button Button accesskey, class, dir, disabled,
object id, lang, name, onblur, onclick,

ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
tabindex, title, type, value

caption Table align, class, dir, id, lang,
caption onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style and
title

center Center Yes class, dir, id, lang, onclick,
contents ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

46 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 46

Element Description Deprecated Attributes
code Code class, dir, id, lang, onclick,

fragment ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

col Table align, char, charoff, class, dir,
column id, lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title, valign,
width

colgroup Table align, char, charoff, class, dir,
column id, lang, onclick, ondblclick,
group onkeydown, onkeypress, onkeyup,

onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, span, style, title,
valign, width

dd Definition class, dir, id, lang, onclick,
description ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

del Deleted cite, class, datetime, dir, id,
text lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

dfn Instance class, dir, id, lang, onclick,
definition ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

dir Directory Yes class, compact, dir, id, lang,
list onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

3.2 Elements and Attributes 47

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 47

Table 3-1 continued

Element Description Deprecated Attributes
div Style align, class, dir, id, lang,

container onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

dl Definition class, compact, dir, id, lang,
list onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

dt Definition class, dir, id, lang, onclick,
term ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

em Emphasis class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

fieldset Form class, dir, id, lang, style,
control group title

font Font Yes class, color, dir, face, id,
change lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, size, style, title

form Input accept-charset, accept, action,
form class, dir, enctype, id, lang,

method, name, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, onreset,
onsubmit, style, target, title

frame Frameset class, frameborder, id, longdesc,
window marginheight, marginwidth, name,

noresize, scrolling, src, style,
title, width

48 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 48

Element Description Deprecated Attributes
frameset Collection of class, cols, id, onload,

window onunload, style, title
subdivisions

h1 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

h2 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

h3 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

h4 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

h5 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

h6 Heading align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

head HTML dir, lang, profile
document
head

3.2 Elements and Attributes 49

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 49

Table 3-1 continued

Element Description Deprecated Attributes
hr Horizontal align, class, dir, id, lang,

rule noshade, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, size, style, title,
width

html HTML dir, lang, version
document
root

i Italic class, dir, id, lang,
marginwidth, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

iframe Inline align, class, frameborder,
frame height, id, longdesc,

marginheight, name, scrolling,
src, style, title

img Embedded align, alt, border, class, dir,
image height, hspace, id, ismap, lang,

longdesc, name, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, src,
style, title, usemap, vspace,
width

input Form accept, accesskey, align, alt,
input checked, class, dir, disabled,
control id, ismap, lang, maxlength, name,

onblur, onchange, onclick,
ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, onselect,
readonly, size, src, style,
tabindex, title, type, usemap,
value

50 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 50

Element Description Deprecated Attributes
ins Inserted cite, class, datetime, dir, id,

text lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

isindex Single-line Yes class, dir, id, lang, prompt,
input prompt style, title

kbd Keyboard class, dir, id, lang, onclick,
text entry ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

label Form text accesskey, for, onblur, onfocus
field

legend Fieldset accesskey, align, class, dir, id,
legend lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

li List class, dir, id, lang, onclick,
item ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
style, title, title, type, value

link Media- charset, class, dir, href,
independent hreflang, id, lang, media,
link onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, rel, rev,
style, target, title

map Client-side class, dir, id, lang, name,
image map onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

3.2 Elements and Attributes 51

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 51

Table 3-1 continued

Element Description Deprecated Attributes
menu Menu list Yes class, compact, dir, id, lang,

onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

meta Document content, dir, http-equiv, lang,
meta- name, scheme
information

noframes Alternate class, dir, id, lang, onclick,
text when ondblclick, onkeydown,
frames are onkeypress, onkeyup,onmousedown,
not supported onmousemove, onmouseout,

onmouseover, onmouseup, style,
title

noscript Alternate text class, dir, id, lang, onclick,
when JavaScript ondblclick, onkeydown,
is not supported onkeypress, onkeyup, onmousedown,

onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

object Embedded align, archive, border, class,
object classid, codebase, codetype,

data, declare, dir, height,
hspace, id, lang, name, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, standby,
style, tabindex, title, usemap,
vspace, width

ol Ordered class, compact, dir, id, lang,
list onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, start,
style, style, title, title, type

optgroup Option class, dir, disabled, id, label,
group lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title

52 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 52

Element Description Deprecated Attributes
option Select class, dir, disabled, id, label,

option lang, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, selected, style,
title, value

p Paragraph align, class, dir, id, lang,
onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

param Applet/ id, name, type, value, valuetype
object
parameter

pre Preformatted class, dir, id, id, lang,
text onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title, width

q Inline cite, class, dir, id, lang,
quotation onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

s Strike- Yes class, dir, id, lang, onclick,
through ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

samp Sample class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

script Container charset, defer, language, src,
for scripts type

3.2 Elements and Attributes 53

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 53

Table 3-1 continued

Element Description Deprecated Attributes
select Option select class, dir, disabled, id, lang,

multiple, onblur, onchange,
onclick, ondblclick, onfocus,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, size, style, tabindex,
title

small Small text class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

span Style class, dir, id, lang, onclick,
container ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

strike Strike- Yes class, dir, id, lang, onclick,
through ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

strong Strong class, dir, id, lang, onclick,
emphasis ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

style CSS class, dir, lang, media, type

sub Subscript class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

sup Superscript class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

54 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 54

Element Description Deprecated Attributes
table HTML align, bgcolor, border,

table cellpadding, cellspacing, class,
dir, frame, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, rules,
style, summary, title, width

tbody Table align, char, charoff, class,
body dir, id, lang, onclick,

ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title, valign

td Table abbr, align, axis, bgcolor, char,
data cell charoff, class, colspan, dir,

headers, height, id, id, lang,
nowrap, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, rowspan, scope, style,
title, valign, width

textarea Multiline accesskey, class, cols, dir,
text-input disabled, id, lang, name, onblur,
area onchange, onclick, ondblclick,

onfocus, onkeydown, onkeypress,
onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, onselect,
readonly, rows, style, tabindex,
title

tfoot Table align, char, charoff, class, dir,
footer id, lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title, valign

3.2 Elements and Attributes 55

continues

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 55

Table 3-1 continued

Element Description Deprecated Attributes
th Table abbr, align, axis, bgcolor, char,

header charoff, class, colspan, dir,
cell headers, height, id, lang,

nowrap, onclick, ondblclick,
onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, rowspan, scope, style,
title, valign

thead Table align, char, charoff, class, dir,
header id, lang, onclick, ondblclick,

onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove,
onmouseout, onmouseover,
onmouseup, style, title, valign,
width

title Document cite, class, dir, id, lang,
title onclick, ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

tr Table align, bgcolor, char, charoff,
row class, dir, id, lang, onclick,

ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title, valign

tt Teletype class, dir, id, lang, onclick,
text style ondblclick, onkeydown,

onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

u Underlined Yes class, dir, id, lang, onclick,
ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

56 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 56

Element Description Deprecated Attributes
ul Unordered class, compact, dir, id, lang,

list onclick, ondblclick, onkeydown,
onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title, type

var Variable class, dir, id, lang, onclick,
ondblclick, onkeydown, onkey-
press, onkeyup, onmousedown,
onmousemove, onmouseout,
onmouseover, onmouseup, style,
title

3.2.2 Frames Both Hidden and Visible

The question is, exactly what purpose can HTML frames serve in the brave
new world of Ajax applications?

To be perfectly honest, I don’t exactly know, but I can offer some possible
suggestions.

The first suggestion that I can offer is to use an IFRAME with CSS posi-
tioning instead of either a JavaScript alert or a JavaScript prompt to convey
information to and from the visitor. Not only would it allow for additional
opportunities regarding the physical layout, but it wouldn’t have the stigma
associated with pop-ups. In fact, it might even provide a way around some pop-
up-blocking software.

Here’s how it would work: A zero-sized IFRAME would be created along
with the original page. When needed, it could be moved about the page using
CSS positioning and could be resized to display the required information. The
source of the information could be from the page’s JavaScript, another page on
the web server, or a web service.

My second suggestion is to use the frames, especially hidden ones, as
somewhere to cache information. I’m not only referring to the garden variety
forms of information, such as XML or XSL stylesheets, but also to in-line
Cascading Style Sheets. Imagine the reaction of visitors discovering that they
can customize their browsing experience on a website that already feels like
an application. Think along the likes of using the CSS from the fifth IFRAME
for Bob, and you’ll get the idea.

The same technique can also be used to cache large XML documents, of
the kind that eat up bandwidth. Caching whole or nearly whole pages that

3.2 Elements and Attributes 57

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 57

don’t often load is also a possibility, as with the Items page from earlier exam-
ples. Instead of retrieving the XML every time the visitor wanders to the page,
just build the page once and cache. This would also have the advantage of fur-
ther increasing application speed.

3.2.3 Roll Your Own Elements and Attributes

We use Microsoft Internet Explorer’s XML element in both IE and Firefox. The
interesting thing is that, unlike Internet Explorer, Firefox doesn’t support the
XML element, so how exactly did it work? According to several recommenda-
tions published by the World Wide Web Consortium, when an unrecognized
document element is encountered, it needs to be handled gracefully. Most
likely, this is a “plan for future expansion” thing.

Think about it; this makes a great deal of sense because if you go without
it, boom, the web browser would just roll over and die whenever somebody
with sausage fingers mistyped a tag. The World Wide Web wouldn’t be a pretty
sight without this feature. Interestingly, the same feature is also available for
attributes, which explains how the home-grown data binding works.

A number of times in the past, I took advantage of this in regard to
attributes. I took advantage of this little trick in several different ways, but I
have a couple of favorites. The first was stashing the original values of HTML
input objects for the purposes of resets. Click a button, and a client-side
JavaScript event handler would update the value attribute from the oldvalue
attribute.

Another one of my favorite uses was to use it as a “value has changed”
indicator. This indicator would be checked when the form was submitted.
Based upon the result of a test, any number of actions could be taken, includ-
ing producing a client-side error message.

However, my most favorite was to stash other options for selects. You
see, the system that I worked on had pages with several HTML select objects
with the contents of each select based upon the selection made in the previous
select. Originally, whenever a visitor came to the website and made a selec-
tion, that visitor was forced to wait through an unload/reload for each
selection.

The “mad scientist” solution was to create a series of attributes consisting
of the various attributes. Each select had an onchange event handler that would
update the options of the next logical select object. Although this wasn’t an
Ajax application, the change that I made gave it one of the same characteris-
tics; it didn’t bother the server any more than absolutely necessary.

58 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 58

3.2.4 A Little CSS

Before the introduction of Cascading Style Sheets, when a developer wanted
to change the font name or color, there was only one option, the HTML FONT
element. If you’ve never seen a page written using the FONT element, consider
yourself lucky. They were bloated, like a balloon in the Macy’s Thanksgiving
Day parade.

They also seemed to attract managers who felt the need to change the
font from 11 point to 12 point or use color for bold text. “You know, it would
look better in Magenta or Peach Puff.” So there I was looking up the RGB val-
ues for Magenta (#FF00FF) and Peach Puff (#FFDAB9), which was much eas-
ier than hunting throughout the document looking for all the FONT elements.
Needless to say, the day I found out that the FONT element was deprecated was
one of my happiest days.

Now instead of being forced to use the HTML FONT element, I’m pre-
sented with a choice. Basically, it comes down to setting the font for the docu-
ment as a whole, individual element types, or individual elements. This
presents a quandary, unless, of course, you’re like me: a bad typist in a career
that requires typing. In that case, I recommend applying Cascading Style
Sheets in the following manner:

1. Set the overall style of the document by setting the style for the BODY,
TABLE, DIV, and SPAN elements. This is one area where trickle down eco-
nomics actually works.

2. Next concentrate on the other elements that you plan to use, such as the
INPUT element. This is also the time and the place for handling any home-
grown elements, such as the XML element in Firefox.

3. Third, take care of the classes, those elements that go a long way toward
giving a website a particular look and feel. The rowHeader and rowData
classes from the earlier examples reflect this philosophy.

4. Finally, deal with the style of the individual elements themselves: posi-
tional CSS and the scrollable DIV.

Finally, because the main purpose of this chapter is to serve as a refer-
ence, there is Table 3-2, whose purpose is to describe some of the more com-
mon CSS 1 elements.

3.2 Elements and Attributes 59

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 59

Table 3-2 Some of the More Common CSS 1 Elements

Property CSS Description
font-family 1 Sets the font name or font family name
font-style 1 Either normal, italics, or oblique
font-variant 1 Either normal or small-caps
font-weight 1 Either normal, bold, bolder, lighter, 100,

200, 300, 400, 500, 600, 700, 800, or 900.
font-size 1 Size of the font as an absolute, relative,

length, or percentage
font 1 Sets all font properties at once
color 1 Sets the color for the element specified
background-color 1 Sets the background color for an element
background-image 1 Sets the background image for an element
background-repeat 1 Sets the repeat for the background image
background-attachment 1 Sets the scroll for the background image
background-position 1 Sets the position of the background image
background 1 Sets all background properties at once
word-spacing 1 Sets the spacing between words
letter-spacing 1 Sets the spacing between letters
text-decoration 1 Sets the text decoration: blink, line-

through, none, overline, or underline
vertical-align 1 Sets the vertical positioning: baseline,

bottom, middle, percentage, sub, super,
text-bottom, text-top, or top

text-transform 1 Sets the text transformation: capitalize,
lowercase, none, or uppercase

text-align 1 Sets the text alignment: left, right,
center, or justify

text-indent 1 Sets the indent property for container
elements

line-height 1 Sets the spacing between lines
margin-top 1 Sets the property as a percentage, length,

or auto
margin-right 1 Sets the property as a percentage, length,

or auto
margin-bottom 1 Sets the property as a percentage, length,

or auto
margin-left 1 Sets the property as a percentage, length,

or auto
margin 1 Sets all margin properties at once
padding-top 1 Sets the property as either a percentage or

a length

60 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 60

Property CSS Description
padding-left 1 Sets the property as either a percentage or

a length
padding-right 1 Sets the property as either a percentage or

a length
padding-bottom 1 Sets the property as either a percentage or

a length
padding 1 Sets all the padding properties at once
border-top-width 1 Sets the property to thin, medium, thick, or

length

border-bottom-width 1 Sets the property to thin, medium, thick,
or length

border-right-width 1 Sets the property to thin, medium, thick,
or length

border-left-width 1 Sets the property to thin, medium,
thick, or length

border-width 1 Sets all of the border properties at once
border-color 1 Sets the color of the border
border-style 1 Sets the border style to one of the

following: none, dotted, dashed, solid,
double, groove, ridge, inset, or outset

border-top 1 Sets the border width, style, and color
border-bottom 1 Sets the border width, style, and color
border-right 1 Sets the border width, style, and color
border-left 1 Sets the border width, style, and color
border 1 Sets the border width, style, and color for

all the borders at once
width 1 Sets the width for an element
height 1 Sets the height for an element
float 1 Indicates that text can wrap around an

element
clear 1 Specifies whether floating elements can

float to the side
display 1 Sets how and whether an element will

display: lock, inline, list-item, or none
white-space 1 Sets how whitespace is treated: normal,

pre, or nowrap.
list-style-type 1 Specifies the type of a list item marker:

disc, circle, square, decimal,
lower-roman, upper-roman, lower-alpha,
upper-alpha, or none

list-style-image 1 Sets the image
list-style-position 1 Sets the position
list-style 1 Sets all the list-style properties at once

3.2 Elements and Attributes 61

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 61

Although Cascading Style Sheets is about as different as you can get
from HTML/XHTML, they work together—actually, they work together
extremely well. Before the adoption of CSS, the task of giving web pages a
common look and feel was handled using the font tag, which, thankfully, has
been deprecated (or, as I like to think of it, taken out and shot!). Sorry, I have
never liked the font tag since the time a little cosmetic change to a web page
took 2 days, mostly because there were about 700 instances scattered through-
out a page. Think of the combination of technologies as a kind of synergy, like
deuterium and a fission bomb or peanut butter and chocolate.

3.3 SUMMARY

In this, hopefully, refresher/reference chapter, some of the differences between
the older HTML and the new and improved XHTML were covered. Special
attention was paid to the fact that XHTML, unlike its cousin HTML, must be
well formed and what exactly that means. Additionally, this chapter showed
how to hide JavaScript, which is about as well formed as a platypus, within
XHTML.

Next, some of the basics of the HTML/XHTML elements were covered:
specifically which attributes go along with which elements, and which ele-
ments are deprecated. Next frames, the visible kind and otherwise, were dis-
cussed, followed by the advantages of being able to add custom elements and
attributes. I wrapped things up with a high-level overview of Cascading Style
Sheets.

62 HTML/XHTML Chapter 3

03_0132272679_ch03.qxd 7/17/06 8:59 AM Page 62

C H A P T E R 4

JavaScript

I would like to point out that JavaScript has nothing to do with the Java pro-
gramming language itself. Many people unfamiliar with JavaScript have a
real problem with this, thinking that the word Java in JavaScript denotes
some kind of relationship. Well, the relationship is similar to the relationship
between “pine” trees and pineapples, or apples and pineapples. Yes, they are
all distantly related, but that is the end of it.

My first encounter with coding JavaScript was in a web development
class that was taught at Penn State as part of a web design certificate pro-
gram. Impatiently I took the precursors, waiting for the class in which my
programming skills would help. About 5 minutes into the class, it quickly
became apparent that certain experiences would be more useful JavaScript
precursors than others. For example, other than providing somewhere for the
JavaScript to go, the HTML class wouldn’t be of much use. Knowledge of C or
any similar language, such as C++, Java, Pascal, or even PL/I, on the other
hand, would go a long way toward helping to learn JavaScript.

In this chapter, I cover the following aspects of JavaScript:

+ Data types
+ Variables
+ Operators
+ Flow-control statements
+ Functions
+ Recursion
+ Constructors
+ Event handling

4.1 DATA TYPES

As with its ancestor, the C programming language of Kernighan and Ritchie,
JavaScript supports a number of data types. Although the number isn’t nearly
as large as C, representatives of the basic data types are all present, and

63

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 63

methods of describing your own data types exist. In fact, with only a little
delving into the “dark arts,” it is quite possible that many problems can be
solved on the client side using JavaScript.

4.1.1 Numeric

In JavaScript, all numbers are 64-bit double-precision floating-point numbers,
whether they are floating point or integer. This means that 18,437,736,874,
454,810,624 values divided evenly between positive and negative can be rep-
resented in JavaScript. In addition, there are three “special” values, increasing
the total to 18,437,736,874,454,810,627. And you thought that you were being
robbed.

The first of the three “special” values is NaN, which means Not a Number
or “oops,” as I like to think of it. From my point of view, it means that I made
some kind of boneheaded mistake and am doomed to suffer for it. The second
and third values are positive and negative infinity, which are, well, infinite.

4.1.2 String

JavaScript strings are UTF-16 strings or 16-bit Unicode Transformation
Formats: character encoding. What it comes down to is that each character in
a string is represented in 2 bytes, which means that the potential for display
of non-English characters exists. This might not seem like a big deal, but it
very well could be when the boss walks into your office and asks about inter-
nationalization. Ooh, scary.

Seriously, though, quite a number of things can be done in JavaScript
along the lines of string manipulation. For example, it is quite easy to make an
entire line either upper case or lower case, a really nice feature when testing
for a particular string value. In addition, other functions allow for the search-
ing, extracting, and replacing of substrings. Table 4-1 outlines these features.

Table 4-1 JavaScript String Functions

Name Type Description
escape(string) Method Converts the characters that would be ille-

gal in a URL into legal escape sequences.
string.charAt(n) Method Returns the character at the position n,

where n is a positive integer.
string.charCodeAt(n) Method Returns the encoded character at the

position n, where n is a positive integer.
string.concat(stringB) Method Returns a string consisting of both strings

concatenated.

64 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 64

Name Type Description
String.fromCharCode Static Returns a string constructed
(u1,...,uN) Method from a series of Unicode

characters.
string.indexOf(stringB,n) Method Starting at position n or 0, if n is

omitted, returns the start position
of the second string in the first
string. A -1 is returned when the
second string isn’t found within
the first.

string.lastIndexOf Method Starting at position n or the end
(stringB,n) of the string, if n is omitted,

returns the start position of the
second string in the first string
starting at the end of the string. A
-1 is returned when the second
string isn’t found within the first.

string.length Property The length of the string in
characters.

string.match(regexp) Method Returns an array consisting of
matches to the pattern in the
regular expression regexp.

string.replace Method Replaces of one or more
(regexp,text) instances that match the pattern

with text.
string.search(regexp) Method Returns a Boolean indicating

whether a match to the pattern is
found in the string.

string.slice(n,m) Method Returns the portion of the string
starting at n and continuing to m,
where both n and m are integers.
In addition, if either value is
negative, it indicates the position
from the end of the string.

string.split(regexp) Method Returns an array consisting of the
strings that were separated by
instances of the pattern in the
regular expression regexp.

string.substr(n,m) Method Returns a substring starting at
position n for a length of m
characters. In instances where m is
omitted or exceeds the length of
the string, the final character is
the final character of the string.

4.1 Data Types 65

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 65

Table 4-1 continued

Name Type Description
string.substring(n,m) Method Returns a substring starting at position n

for a length of m characters. In instances
where m is omitted or exceeds the length
of the string, the final character is the
final character of the string.

string.toLowerCase() Method Converts the string to lower case.
string.toString() Method Returns the string value.
string.toUpperCase() Method Converts the string to upper case.
string.valueOf() Method Returns the value of the string.
unescape(string) Method The inverse of escape; the escape

sequences are converted back into the
original characters.

In my opinion, one of the coolest ways to manipulate strings has got to be
regular expressions, although, come to think of it, it is also probably one of the
most obscure ways to manipulate strings as well. If you’re unfamiliar with
regular expressions, they are an object that stores a pattern for use in the
searching of strings. This pattern is then applied to a string using either a reg-
ular expression method or a string method.

The theory behind regular expressions is relatively easy to grasp, but the
actual practice is not. The reason for this comes down to the pattern; it needs
to be specific enough to find only what you are actually looking for, yet it also
needs to be general enough to be able to find sequences that aren’t always
easy to find. Maybe you’ll be able to understand how this works a little better
after looking at Table 4-2, which describes the special characters that go into
constructing a pattern.

Table 4-2 Characters Used to Create Regular Expressions

Pattern Description
\ Designates the next character as either a literal or a special character.
^ Designates the beginning of a string.
$ Designates the end of a string.
* Specifies a match to the preceding character zero or more times.
+ Specifies a match to the preceding character one or more times.
? Specifies a match to the preceding character zero or one time.
. Matches any single character, excluding newline.
() Matches the contents of the parenthesis. Note that this is a pattern

match and is remembered.

66 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 66

Pattern Description
a|b Specifies a match to either a or b.
{n} Specifies a match to the preceding pattern exactly n times, where n is a

nonzero positive integer.
{n,} Specifies a match to the preceding pattern at least n times, where n is a

nonzero positive integer.
{n,m} Specifies a match to the preceding pattern at least n times and at most

m, where n and m are nonzero positive integers.
[xyz] Matches any single character enclosed by the brackets.
[^xyz] Matches any single character not enclosed by the brackets.
[0-9] Matches the range of characters enclosed by the brackets.
[^0-9] Matches the characters not included in the range of characters enclosed

by the brackets.
\b Matches a word boundary.
\B Matches a nonword boundary.
\d Matches a numeric character, synonym for [0-9].
\D Matches a non-numeric character, synonym for [^0-9].
\f Matches a form feed.
\n Matches a newline.
\r Matches a carriage return.
\s Matches any single whitespace character.
\S Matches any single nonwhitespace character.
\t Matches a tab.
\v Matches a vertical tab.
\w Matches any single word character or underscore.
\W Matches any character that is not a word character or an underscore.
\n When preceded by a pattern (), matches n times, where n is a positive

integer. When not preceded by a pattern, matches an octal escape value.
\xn Matches a hexadecimal escape value where n is a positive integer.

Alright, now for a quickie example. Let’s say, for instance, that we want
to replace all instances of either the word red or the word blue in a string with
the word purple. Although this could be done programmatically, as shown in
Listing 4-1, it isn’t the easiest thing in the world. However, with a regular
expression, also shown in Listing 4-1, it really isn’t too bad.

Listing 4-1 Programmatic and Regular Expression Approaches to String Substitution

function initialize() {
var colors = ‘redorangebluegreenblueyellow’;

/*
Call the substitute function twice, once for blue and once for
red.

4.1 Data Types 67

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 67

Listing 4-1 continued

68 JavaScript Chapter 4

*/
alert(substitute(substitute(colors,’blue’,’purple’),’red’,’purple’));

/*
Define the regular expression to search for red or blue, in
addition set the options for global and ignore case.
The available options are:
g = global (all occurrences in a string)
i = ignore case
gi = global and ignore case

*/
var re = new RegExp(‘red|blue’,’gi’);

/*
Perform the replacement.

*/
alert(colors.replace(re,’purple’));

}

function substitute(text,word,replacement) {
var temp = text;

/*
perform string replacement using substring.

*/
while(temp.indexOf(word) >= 0) {
temp = temp.substr(0,temp.indexOf(word)) + replacement +

temp.substr(temp.indexOf(word)+word.length);
}

return(temp);
}

I would like to point out that, at the time of this writing, Microsoft Internet
Explorer appears to have a bug with regular expressions. It occurs when per-
forming regular expressions in a loop. Occasionally, even though a pattern
match exists, it isn’t recognized. Fortunately, there is a workaround. Within
the body of the loop, use the compile method to “reset” the pattern. When this
is done, pattern matches are always recognized. Yes, it is something of a
kludge, but regular expressions are too useful to ignore, and we should also be
kind to those less fortunate than ourselves by accommodating their broken
web browsers.

4.1.3 Boolean

JavaScript Boolean data types are the standard true/false data types that
we’ve all been exposed to umpteen times, end of story.

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 68

4.1.4 Miscellaneous

These are the two data types that don’t cleanly fit into any category: null and
undefined. The null data type represents nothing, and the undefined data type
represents something that is not defined.

4.1.5 Arrays

Although it’s not an object type, I’ve chosen to include arrays here because
they are a useful mechanism for grouping related information. A relatively
simple data structure, arrays permit the access of information based upon an
integer index. In JavaScript arrays, this index begins at zero and increases by
one for each element of the array.

An item of interest about arrays in JavaScript is that it isn’t necessary
for the individual elements of an array to all be of the same type, although it
might be a good idea to ignore this capability because it presents a world of
opportunities to really screw up. However, some really nice goodies built into
JavaScript more than make up for the potential issues that might arise from
weak typing.

First things first. Let’s take a look at the three ways to define a
JavaScript array: defining an empty array, defining an array with a set num-
ber of elements, and defining an array with a set number of elements with val-
ues. Each of these three ways uses the Array() constructor, as shown in the
following snippets:

var one = new Array();
var two = new Array(3);
var three = new Array(‘red’, ‘green’, ‘blue’);

Earlier I stated that there are some really nice goodies built into
JavaScript arrays, but they’re rather numerous, so I’ve chosen to list them in
Table 4-3.

Table 4-3 Features of JavaScript Arrays

Method Description
array.concat(arrayb) Concatenates two arrays into a single array
arraylength() Returns the length of an array, as in the number of

elements
array.reverse() Returns the array with the elements in reverse order
array.slice(start,end) Returns a portion of an array
array.sort() Sorts the array into ascending order

4.1 Data Types 69

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 69

Table 4-3 continued

Method Description
array.join() Converts all elements to strings and concatenates

them, separated by commas
array.push(item) Adds an element to the end of an array
array.pop() Removes and returns an element from the end of the

array
array.splice(r,a…a) Removes the element specified by the first parameter

and adds subsequent elements
array.unshift(item) Adds an element to the beginning of an array
array.shift() Removes and returns an element from the beginning

of an array

4.1.6 Object

In JavaScript, the Object type is an unordered collection of name and value
pairs. Although this doesn’t sound like much, it is a type of data structure that
is commonly referred to as an associative array. I have a tendency to use an
associative array.

4.2 VARIABLES

Unlike many other programming languages, in JavaScript, variables are not
strongly typed, which means that what once contained a number could now be
a string. This can sometimes cause some issues when developing on the client
side; think about the idea of running across a string when a number is
expected. A situation like that could prove somewhat embarrassing, especially
because applications are like dogs; they can smell fear. This explains why
applications always fail during a demo to upper management.

The names of variables in JavaScript consist of alpha characters followed
by a number. The underscore character is also permitted; I usually use it to
remind myself that a particular variable is not to be touched. Along the line of
the wires that hold up Buck Rogers’ spaceship, if you mess with it, bad things
could happen.

As with many programming languages, variables in JavaScript have a
scope. Before you have an attack of paranoia (“They’re watching me!”), please
allow me to explain what scope is in reference to variables. Variable scope
refers to where the variable is defined. In JavaScript, variables can have
either local scope or global scope.

70 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 70

In local scope, the variable is defined within a particular function. The
simplest way to explain it is by examining the two functions in Listing 4-2.
The first function, Jeckle, defines a variable named monster. The second func-
tion, Frankenstein, also defines a variable named monster. Because both vari-
ables are local, Jeckle’s monster is a different monster than Frankenstein’s.

Listing 4-2 Two Local Variables

function Jeckle() {
var monster = ‘Mister Hyde’;

}

function Frankenstein() {
var monster = ‘Bob’;

}

Global scope refers to variables that are defined throughout the entire
page. They are defined in one of two ways, either using a var and declaring the
variable outside a function, or omitting the var and declaring it within a func-
tion. I don’t have a problem with the first method of declaring a global vari-
able, but I have some definite issues with the second. All that it takes is one
case of “sausage fingers”; a mistyped variable name, and I’m debugging for
hours.

4.3 OPERATORS

JavaScript has a number of operators that you might or might not be familiar
with. These include the ever-present == (equals) and != (not equals), to which
you have undoubtedly been exposed; there are a number of others. Although
some of these operators are familiar, some others might not be as familiar, so
Table 4-4 briefly touches upon these.

Table 4-4 JavaScript Operators

Operator Type Description
a + b Arithmetic Addition
a - b Arithmetic Subtraction
a* b Arithmetic Multiplication
a / b Arithmetic Division
a % b Arithmetic Modulus, the remainder to division
++a Arithmetic Increment by one
--a Arithmetic Decrement by one

4.3 Operators 71

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 71

Table 4-4 continued

Operator Type Description
a = b Assignment Set equal to
a += b Assignment Increment by the value on the right
a -= b Assignment Decrement by the value on the right
a *= b Assignment Multiply by the value on the right
a /= b Assignment Divide by the value on the left
a %= b Assignment Modulus by the value on the right
a == b Comparison Equal to, value
a === b Comparison Equal to, value and type
a != b Comparison Not equal to
a > b Comparison Greater than
a < b Comparison Less than
a >= b Comparison Greater than/equal to
a <= b Comparison Less than/equal to
a && b Logical And
a || b Logical Or
!a Logical Not
a + b String String concatenation
a=(condition)?b:c Comparison Comparison operator
typeof(a) Special Returns a string consisting of the

operand type
void a Special Suppresses the return of a variable

I’ll bet you didn’t know that typeof was an operator.

4.4 FLOW-CONTROL STATEMENTS

My first job straight out of college was working on an order-entry system that
was developed by the elves at Bell Labs. Needless to say, I found myself in the
Promised Land; although the salary was only alright, the tools and some of the
code were brilliant. Notice that I said “some of the code.” There was also some
code that really, really stunk.

One particular “utility” comes to mind. Its purpose was to simulate an
order being sent to manufacturing and billing. It had absolutely no conditions
or loops—just the brute-force changing of the order status, totally disregard-
ing whether the order was ready for transmittal. I’m not 100 percent sure why,
but this inelegant code bothers me to this day.

One possible reason could be that I visualize code as a river with cur-
rents and eddies. As with a river, the flow of the program slows down and

72 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 72

speeds up, depending upon the existing conditions. In my mind, I can almost
see the flow following a particular channel, branching left or right and occa-
sionally looping back upon itself. Maybe this is a strange way to look at it, but
I consider flow-control statements to be elegant.

4.4.1 Conditionals

The granddaddy of all conditional statements has to be the if statement. In
some form, the if statement is present in every programming language that
I’ve ever used, seen, read about, or just plain stumbled across. Because of
JavaScript’s C roots, the if statement syntax is like a function with the condi-
tion being enclosed in parenthesis and the following statement being executed
only when the condition is true. Sometimes there is an else followed by the
statement to execute when the condition is false, and sometimes there isn’t.
When multiple statements need to be executed, they are enclosed in curly
braces. Listing 4-3 shows the basics.

Listing 4-3 The Basics of the JavaScript if Statement

if(a == 1)
alert(‘a is one’);

else {
alert(‘a is not one’);

if(b == 1) {
if(c == 1)
alert(‘Both b and c are one’);

} else
alert(‘b is not one’);

}

Almost as if it were cloned right from the pages of Kernighan and
Ritchie’s The C Programming Language (Prentice Hall, 1988), the conditional
operator is a ternary operator, essentially an entire if statement/else state-
ment shrunken into a convenient package for those of us who suffer from the
sausage fingers affliction. The only problem is that many developers consider
it too confusing and, therefore, avoid it. But it isn’t really that hard; just
remember that it breaks down in the following manner:

room != ‘y2’ ? ‘xyzzy’ : ‘plugh’

Most often you’ll see the result assigned to a variable like this:

magicWord = room != ‘y2’ ? ‘xyzzy’ : ‘plugh’

4.4 Flow-Control Statements 73

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 73

To those of you with mad scientist tendencies, the answer is, yes, condi-
tional operators can be nested. The answer to the next question is also, yes, I
have nested conditional operators.

The next four flow-control statements go together; in fact, you’ll never
see three of them by themselves. I am referring to the conditional structure
that is known in various programming languages by a number of names,
including case, select, choose, or switch, as it is called in JavaScript.

The switch statement evaluates a series of conditions until a condition is
met. When this happens, execution begins at the case statement with the true
condition. If none of the conditions is true, the execution begins at the default
statement or after the switch, if there is no default statement. Listing 4-4
shows the basic structure of the switch statement.

Listing 4-4 Basic Structure of the switch Statement

switch(number) {
case(0):
alert(‘zero’);

break;
case(1):
case(3):
alert(‘odd < 5’);

break;
case(2):
case(4):
alert(‘even < 6’);

break;
default:
alert(‘many’);

break;
}

In addition to the “standard” version of the switch statement shown in
Listing 4-4, there is a little known variant. Instead of using a variable as the
expression, true or false can be used. This allows for the possibility of using a
switch statement instead of a series of nested if statements, as Listing 4-5
illustrates.

Listing 4-5 A switch Statement Acting Like a Series of Nested if Statements

switch(true) {
case(number == 0):
alert(‘zero’);

74 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 74

break;
case(color == ‘red’):
alert(‘#FF0000’);

break;
case(color == ‘green’):
alert(‘#00FF00’);

break;
case(color == ‘blue’):
alert(‘#0000FF’);

break;
case((color % 2) == 0):
alert(‘even’);

break;
default:
alert(‘whatever’);

break;
}

4.4.2 Looping

The purpose of looping in programs is to execute a series of statements repeat-
edly, thus cutting down on the required lines to code. This reduction in the
number of lines has the advantage of improving the overall readability. In
addition, loops allow for a variable number of executions. Personally, loops
mean that I don’t have to type any more than I have to, but, hey, I’m a hunt-
and-peck typist.

It has been a while since CSC 100, “Introduction to Computer Science,”
but if I remember correctly, the for loop was the first type of looping structure
taught. Most likely the reason for this is that it is really hard to mess it up,
even for virgin programmers. A block of code is executed a specific number of
times, incrementing a variable for each iteration.

The for/in loop is a close relative of the for loop. However, unlike the for
loop, which specifies the number of iterations using a numeric value, an object
is used. The really unfortunate thing about the for/in loop is that most people
forget it exists, myself included. Listing 4-6 has several examples of both for
and for/in loops.

4.4 Flow-Control Statements 75

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 75

Listing 4-6 Examples of for and for/in Loops

var factorial = 1;
var numbers = new Array(1,2,3,4,5);
var index;

for(var i=1;i < 6;i++)
factorial *= i;

factorial = 1;

for(var i=5;i > 0;i—)
factorial *= i;

factorial = 1;

for(index in numbers)
factorial *= numbers[index];

alert(factorial);

Because they are so similar in function, the while loop and the do/while
loop offer a quandary concerning which to use. They both execute a block of
instructions while a condition is true. So why are there two different loops, you
ask? Go on, ask; I’ll wait.

The reason there are two different loops is that one tests before executing
the block of code, and the other tests after executing the block of code. The
while loop performs the test and then executes the code block only if the condi-
tion is true. Iteration continues until the condition is no longer true, at which
time execution continues with the code immediately following the loop.

On the other hand, the do/while loop executes the code block before per-
forming the test. Because the test is performed after the execution of the code
block, it guarantees that the code block will be executed at least once. This is
quite useful when it is necessary to execute the code block once, regardless of
whether the condition is true.

The majority of times that I code a loop, it is because I’m looking for
something. Where I’m looking isn’t important, although it is usually either in
an array or in the DOM. However, what is important is that I need to find it.
So I’ll write a little routine that loops through whatever, looking for some-
thing. Let’s say that there are 600 whatevers and I find what I’m looking for at
number 20. Wouldn’t it be nice to be able to stop looking?

It is possible; remember the break statement from the switch? It also ter-
minates a loop-dropping execution to the statement immediately following the
loop. Heck, it is even elegant.

76 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 76

But what if you don’t want to exit the loop, but rather continue with the
next iteration? Then you use the continue statement, which causes the current
iteration to stop and the next iteration to begin. It is sort of like going back for
a second helping of the entreé when you haven’t finished your vegetables, but
hey, unlike your mother, JavaScript doesn’t complain.

One more issue arises with exiting loops; JavaScript allows labels to be
placed on statements, like looping statements. This provides a way to refer
to the statement from elsewhere in the script. This means that a break or
continue can refer to a specific loop so that it is possible to break or continue
an outer loop from an inner loop. Listing 4-7 gives an example of how this
works—a useless example, but an example nonetheless.

Listing 4-7 A Useless Example of Using break and continue to Refer to a
Specific Loop

var result = 1;

Iloop: for(var i=0;i < 5;i++)
Jloop: for(var j=0;j < 5;j++)

if(j == 2)
break Jloop;

else
Kloop: for(var k=0;k < 5;k++)

if(k == 3)
continue Iloop;

else
result += k;

alert(result);

4.5 FUNCTIONS

Fromsome points of view, JavaScript functions are a little bit on the strange
side when compared to other programming languages. This is because even
though they are functions, they don’t necessarily return a value. JavaScript
functions are really groupings of code designed to perform a specific task.
Quick, imagine yourself writing a JavaScript function that concatenates
two strings. Visualize it fully in your mind before looking at the example in
Listing 4-8.

Listing 4-8 A Function That Concatenates Two Strings

function concatenate(a,b) {
return a.toString() + b.toString();

}

4.5 Functions 77

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 77

Don’t be surprised if the function that you visualized looks remarkably
similar to the one in Listing 4-8. There is a perfectly logical reason for this
similarity; my mind-reading machine has been perfected. Either that or I’m
aware that the majority of developers know only a couple ways to define a
JavaScript function. Which is the truth? I’ll give you a hint: It is currently the
fall of 2005, and I’m writing this on the SEPTA R5 line on my way to
Doylestown, Pennsylvania. If I actually could read minds across space and
time, I would have won Powerball last week and I’d be writing this on the
beach in Tahiti.

This means that, as web developers, we’re all in a rut, doing the same
thing the same way day after day and year after year. Yeah, I know the drill:
“It works, so why change it?” and “I always do it that way” are usually the
statements used. To these statements, I have one response, “You learn more
from your mistakes than you do from your successes!”

When you actually get down to it, there are several separate and distinct
ways to define a function in JavaScript. Why so many ways to define a func-
tion? I can’t rightfully say, but I can take a guess. It has always seemed to me
that the more ways there are to perform a single task, the more flexible the
language is and the more problems can be solved.

Getting back to our function that concatenates two strings, we’ve already
seen one possible method of implementing the solution, so let’s take a look at
another way. JavaScript has the Function() constructor for, interestingly
enough, constructing functions. The Function constructor, an example of which
is shown here, is used to create a function and assign it to a variable or an
event handler.

var concatenate = new Function(‘a’,’b’,’return a.toString()
+ b.toString()’);

In addition to the Function constructor, the function operator can be used
to assign a function to a variable. One of the more interesting “features” of the
Function constructor is that it shows that JavaScript is really an interpreted
language because the function is stored as a string. This is an example of our
string concatenation example defined using the function operator:

var concatenate = function(a,b) {return a.toString() + b.toString()}

4.6 RECURSION

Feel free to skip over this section if you’re one of those developers with a fear
of recursion; not only is this considered an advanced topic, but it can also

78 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 78

literally cause headaches. If you should decide to read on, good for you! The
only real way to get over the headaches is to use recursion as much as possible
and work your way through them. After all, what’s a couple of weeks of pain
compared to being able to write some really tight code?

Are you still there? Rats! I guess I’ll have to write this part of the chap-
ter. So much for kicking back and watching My Name Is Nobody on DVD.

In its simplest form, recursion occurs when a function calls itself repeat-
edly to achieve some kind of result. Some examples of functions that readily
lend themselves to recursion are mathematical, such as the Euclidean algo-
rithm, the Ackerman Function and the functions to compute factorials,
Fibonacci numbers, and Catalan numbers.

When setting out to create a recursive function, one thing to keep in
mind is that anything that can be done recursively can also be done itera-
tively. In fact, sometimes it is actually more efficient to code an iterative func-
tion. This is because there are limits on how deep the recursion can go, usually
around 32K. Attempts to exceed this built-in limitation will result in a nicely
worded error message that essentially means “stack overflow.” Keep this in
mind when implementing recursive functions.

With the disclaimer about the perils of recursion out of the way, let’s
examine one of the older examples of recursive algorithms, the Euclidean algo-
rithm. Dating from approximately 200 B.C., the Euclidean algorithm is a
method for computing the Greatest Common Divisor of two integers. Listing
4-9 shows a recursive implementation of the Euclidean algorithm.

Listing 4-9 A Recursive Implementation of the Euclidean Algorithm

function gcd(m, n) {
if ((m % n) == 0)
return n;

else
return gcd(n, m % n);

}

To show how this function works, let’s call the gcd function with the val-
ues 24 and 18. Because 24 % 18 is 6, the function is called again with the values
18 and 6. Because 18 % 6 is 0, we’re done, and the value 6 is returned as the
Greatest Common Divisor.

Just in case you were wondering what an iterative version of the gcd
function would look like, it is shown in Listing 4-10.

4.6 Recursion 79

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 79

Listing 4-10 An Iterative Implementation of the Euclidean Algorithm

function gcd(m, n) {
var t;

while(n != 0) {
t = n;
n = m % n;
m = t;

}

return(m);
}

4.7 CONSTRUCTORS

The capability to create custom objects is what separates modern program-
ming languages from the programming languages of yore. Unfortunately, in
JavaScript, this capability is one of those language features that is often
either ignored or overlooked. Believe it or not, there is actually a good reason
for this; it is all a matter of perception. You see, JavaScript is often viewed as a
lightweight language or a kid’s programming language, good only for tasks
such as creating pop-ups or handling mouseover events.

Although I believe that everybody is entitled to their opinion, I also
believe that this opinion has kept web applications mired in their original
unload/reload glory. For this reason, as well as the fact that I’m not terribly
fond of writing hundreds or thousands of lines of custom code, I began to play
around with JavaScript constructors. Yes, with some planning and design
work in the beginning, it is very possible to free up some time for the occa-
sional mad scientist project later.

The first question is, how do we start writing a constructor? Do we just
jump in and create a constructor and use it? Or should we work out the details
of how something works and then use that to write a constructor? Which
approach is better?

Tough questions, and, unfortunately, I can’t say what will work for you. I
can, however, tell you what works for me. Whenever I’m developing a construc-
tor, the first thing that I do is write a sample application that does what I
want it to do, but not using a constructor. After the sample application is
developed the next step is to rewrite it using a constructor. This might seem
like more work than it’s worth, but it works for me. Also, I have a tendency to
see a better way to accomplish tasks with each subsequent rewrite.

80 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 80

With that explained, let’s take a look at some of the coding details of cre-
ating JavaScript constructors. I’ve always been fond of palindromes (words,
numbers, or sentences that are spelled the same forward and backward), so
let’s create a constructor something along those lines. Without further ado,
here is an introduction to the two ways of coding class constructors in
JavaScript.

Yes, there are two different ways to code class constructors in JavaScript.
The first, which is probably the easier of the two, involves creating a function
and then creating an instance of that function using the new operator. Listing
4-11 shows an annotated example of using this method to create a constructor.

Listing 4-11 An Annotated Example of Creating a Class Constructor

function Monster(text) {
/*

The purpose of the following code is to increment a global
variable for each instance of this class. In the event of the
global variable being undefined it will be initialized with a
value of one.

*/
try {
++_monster;

}
catch(e) {
_monster = 1;

}

/*
This code, which is executed whenever a new instance is
created, initializes new occurrences of this object. Private
and public properties are defined and initialized. In
addition, methods are exposed making them public.

*/
var occurrence = _monster; // Private property
this.string = text; // Public property
this.palendrome = _palendrome; // Public method
this.number = _number; // Public method

/*
The following function is a method which has been made public
by the above: this.palendrome = _palendrome; statement.

*/
function _palendrome() {
var re = new RegExp(‘[,.!;:\’]{1,}’,’g’);
var text = this.string.toLowerCase().replace(re,’’);

return(text == _reverse(text))
}

4.7 Constructors 81

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 81

Listing 4-11 continued

82 JavaScript Chapter 4

/*
The following function is a public read only method that gets
the value of the private property occurrence. Through
techniques like this it is possible to maintain control over
the inner workings of objects.

*/
function _number() {
return(occurrence);

}

/*
The _reverse function is a private method. Methods are private
when they are not exposed using the this.[external name] =
[internal name] statement as _palendrome and _number were.

*/
function _reverse(string) {
var work = ‘’;

for(var i=string.length;i >= 0;—i)
work += string.charAt(i);

return(work);
}

}

To instantiate (a fancy way to say “create an instance”) this class, all that
is necessary is to use the new operator in the following manner:

var myMonster = new Monster();

Using the newly instantiated class is just a matter of using the various
public properties and methods that were defined by the constructor. For exam-
ple, to set and get the string property for the myMonster instance of the Monster
class, the code would look like this:

myMonster.string = ‘Able was I ere I saw Elba!’;
alert(myMonster.string);

To use the properties methods, statements would look like the following:

alert(myMonster.palendrome());
alert(myMonster.number());

However, there is another way to create a class constructor in JavaScript:
use the prototype property. This is shown in Listing 4-12.

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 82

Listing 4-12 Using the prototype Property to Create an sclass Constructor

Creature.prototype = new Creature;
Creature.prototype.constructor = Creature;

function Creature() {
/*

The purpose of the following code is to increment a global
variable for each instance of this class. In the event of the
global variable being undefined it will be initialized with a
value of zero.

*/
try {
++_creature;

/*
This is a public property which really shouldn’t be accessed
externally.

*/
this._instance = _creature;

}
catch(e) {
/*

Zero is used here due to the fact that this constructor is
executed at class definition time.
*/
_creature = 0;

}
}

Creature.prototype.string; // Public property

/*
The following function is a method which has been made public
by the Creature.prototype.palendrome = _Creature_palendrome;
statement below.

*/
function _Creature_palendrome() {
var re = new RegExp(‘[,.!;:\’]{1,}’,’g’);
var text = this.string.toLowerCase().replace(re,’’);

return(text == _reverse(text))

/*
The _reverse function is a private method available only within
the enclosing method.

*/
function _reverse(string) {
var work = ‘’;

for(var i=string.length;i >= 0;—i)
work += string.charAt(i);

4.7 Constructors 83

continues

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 83

Listing 4-12 continued

84 JavaScript Chapter 4

return(work);
}

}
Creature.prototype.palendrome = _Creature_palendrome;

/*
The following function is a method which has been made public
by the Creature.prototype.number = _Creature_Number; statement
below.

*/
function _Creature_Number() {

return(this._instance);
}
Creature.prototype.number = _Creature_Number;

4.8 EVENT HANDLING

Bring up the subject of client-side events among a group of web developers,
and the first (sometimes the only) one mentioned is the onclick event handler.
Occasionally, someone will acknowledge the onmouseover and the onmouseout
events, but that is usually a rare occurrence, such as leap year or a pay raise
after Y2K. Come to think of it, you’re more likely to hear a story about some-
one holding a door open for Walter Koenig than to hear the smallest utterance
about another event.

The problem is that developers get into a rut, a comfort zone, and use the
same events day in and day out. After a few months of this, we have a ten-
dency to forget that the event handlers are even there. One of the reasons for
this is that developing web applications is like riding a bike; when you don’t
remember how to do it right, there isn’t even time to scream before the splat.
For this reason, I have compiled Table 4-5, which covers the event handlers
common to most browsers. Yes, Bill, that means that the beforeunload event is
omitted.

Table 4-5 Event Handlers Common to Most Browsers

Operator Syntax Description
blur object.onblur = function Fires when an object loses focus, such

as when Tab is pressed or another
object is clicked.

focus object.onfocus = function Fires when the object gets focus,
either programmatically or through
user interaction.

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 84

Operator Syntax Description
load window.onload = function Fires when the page is loaded. This

event can be simulated by periodically
checking the document’s readystate
property.

resize window.onresize Fires when the window is resized.
= function

scroll window.onscroll = function Fires when the page’s scroll bars are
used.

unload window.onunload = function Fires just before the page is onloaded.
Although it is commonly used by pop-
ups to spawn more pop-ups, it does
have some legitimate uses.

onclick object.onclick = function Fires when an object is clicked.
dblclick object.ondblclick = function Fires when an object is double-clicked.
mousedown object.onmousedown = function Fires when the mouse button is

pressed.
mouseup object.onmouseup = function Fires when the mouse button is

released.
mousemove object.onmousemove = function Fires when the mouse is moved.
mouseover object.onmouseover = function Fires when the mouse pointer moves

over the specified object.
mouseout object.onmouseout = function Fires when the mouse pointer moves

off the specified object.
change object.onchange = function Fires when the object’s value changes.
reset object.onreset = function Fires when the object (form) is reset.
select object.onselect = function Fires when a different option is

selected on the object (select).
submit object.onsubmit = function Fires when the object (form) is

submitted.
keydown object.onkeydown = function Fires when a keyboard key is pressed

when the specified object has focus.
keyup object.onkeyup = function Fires when a keyboard key is released

when the specified object has focus.
keypress object.onkeypress = function A combination of both the keydown

and keyup events.

Unfortunately, knowing the events is only half the battle. For this knowl-
edge to be of any use, it is necessary to know how to assign a JavaScript event
to the handler. And as with many endeavors in JavaScript, there are two ways
to accomplish this task. No, I’m not referring to a right way and a wrong way;
I’m referring to assigning via HTML and via JavaScript. Listing 4-13 shows
both ways to assign an event handler.

4.8 Event Handling 85

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 85

Listing 4-13 The Two Ways to Assign an Event Handler in JavaScript

document.getElementById(‘myButton’).onclick = new
Function(‘alert(\’Ouch! You clicked me!\’)’);

<input type=”button” id=”myButton” value=”Don’t click”>

<input type=”button” id=”myButton” value=”Click” onclick=”alert(‘Oooh! Do
it again!’)”>

Before wrapping up this chapter, there are some important items that
could fall under the umbrella of event handling. Although they aren’t really
events, they do raise events. The items that I am referring to are the
window.setTimeout() and window.setInterval() methods. Don’t be surprised if
you’ve never heard of them; they’re a little “out there.”

The purpose of these methods is to delay the execution of a JavaScript
function for a specific number of milliseconds. Why? Well, let’s say, for exam-
ple, that you’d like to check later to see if an event has taken place and leave it
at that. The real question is really, why are there two methods instead of one?
The reason for two methods is that setTimeout executes a function once,
whereas setInterval executes a function repeatedly until told otherwise.
Think of setInterval as being afflicted with lycanthropy, and you get the con-
cept. The syntax, shown here, for both of these methods is identical:

var oTime = window.setTimeout(‘myFunction()’,1000);

var oInterval = window.setInterval(‘myYour()’,100);

All that is left is what to do when it is necessary to clear a timeout or an
interval. It is simple; just do the following, and they’re cleared:

window.clearTimeout(oTime);

window.clearInterval(oInterval);

Remember one important thing when coding in JavaScript: Bending the
rules is allowed. Experiment, and delve into matters that man, or woman, was
not meant to delve into. After all, it is the mad scientist way.

4.9 SUMMARY

In this chapter, we started with the basics of JavaScript data types and vari-
ables; with a side trip to operators, we covered the basics and a little more.

86 JavaScript Chapter 4

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 86

Our trek continued through the flow-control statements, the conditional
ones such as if-then-else and the switch statement. In addition, the looping
statements were covered, from the common for loop to the more obscure
for-in loop.

Next, JavaScript functions were covered along with the somewhat feared
topic of recursive functions. In the same vein as functions, constructors we
covered, starting with the “function” method of creating constructors. The
prototype method also was covered. Finally, event handling was discussed—
specifically, how to set handlers and how to deal with the event when it fires.

4.9 Summary 87

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 87

04_0132272679_ch04.qxd 7/17/06 9:00 AM Page 88

C H A P T E R 5

Ajax Using HTML and JavaScript

Human beings, as well as other life forms, are made up of chemicals such as
iron, nitrogen, and water. However, simply mixing everything together in a
cauldron and giving it a quick stir won’t result in someone climbing out of the
cauldron. The reason for this is that it isn’t the type of ingredients put
together; it is how the ingredients are put together. After all, if girls really
were made of sugar and spice and everything nice, there would be a lot more
geeky guys with dates at the prom. If you’ve ever read Lester Del Rey’s short
story Helen O’Loy, you might be accustomed to the concept of building a date
from things lying about.

The same is true for web applications. Consider for a moment what is
commonly referred to as Dynamic HTML, or DHTML, for short. Still com-
monly used in web applications, it is distinguished from plain HTML only by
the fact that things happened based upon events. This is where the dynamic
part comes in. I would like to point out that at no time did I mention the word
JavaScript. The reason for this is that not only is it possible to have DHTML
without JavaScript, but it is also possible to have JavaScript without DHTML.

Just in case you’re curious, the way to have DHTML without JavaScript
is to use Cascading Style Sheets in event handlers instead of JavaScript.
Although it wouldn’t be quite as flexible as JavaScript, and it could be used
only for things such as mouseovers and mouseouts, it does fulfill the dynamic
requirement. After all, it really is how the various parts are put together, not
the parts themselves. Let’s dig a little into the pile of client-side parts avail-
able when starting an Ajax application and see what can be of use in building
our monster.

In this chapter, however, I intend to take advantage of the tools available
to us. Most of these tools are used in the traditional manner. However, some
are not; what fun would it be if everything was done according to the manual?
Consider frames, for example. Whether or not you’re aware of it, you can abuse
frames in quite a number of ways. Other tools that I use are the cross-browser

89

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 89

Document Object Model and HTML tables for displaying information. Hey,
torture the information enough, and eventually it will confess.

In addition to these tools, I cover the ultimate database “tool,” stored pro-
cedures, but with a quirky difference. The difference is that I’m using MySQL,
not Oracle or Microsoft SQL Server. Just in case you’re wondering why, I have
three very good reasons. The first is that MySQL is an open source database.
The second is that stored procedures are rather new in MySQL, so there isn’t
very much written about them. The final reason, and, in my opinion the most
important, is that my wife keeps me on a budget; alas, no Tesla coils for me.

5.1 HIDDEN FRAMES AND IFRAMES

Frames and iframes (in-line frames), for some reason, are one of those things
that strike fear into the heart of web developers everywhere. It is one of those
deep-seated fears, like tanning products are to a vampire or advertisements
for having your pet spayed or neutered are to a werewolf. Several reasons for
this primal fear of frames exist; fortunately, there is a countermeasure for
each of these reasons.

The first of these reasons is the mistaken belief that frames are nonstan-
dard and, therefore, are supported by only a handful of “unholy” web browsers.
Fortunately, this belief is a total and complete myth because frames and
iframes have the blessing of the World Wide Web Consortium. In fact, the only
unholy—eh, make that unusual—part is that the frames are hidden, but,
then, that’s the entire point of this endeavor.

Now let’s get into the actual specifics of making frames behave like
Claude Rains, who, if I may digress for a moment, brilliantly played a mad sci-
entist even if he didn’t start that way. First starting with the older frame
instead of the more recent iframe, the hiding entirely takes place in the frame-
set, as Listing 5-1 shows.

Listing 5-1 The Older Frame

<frameset rows=”100%,*”>
<frame name=”visible_frame” src=”visible.htm”>
<frame name=”hidden_frame” src=”hidden.htm”>
<noframes>

Frames are required to use this web site.
</noframes>

</frameset>

As mentioned in the previous chapter, the rows=”100%,*” performs the
magic, but it isn’t the only method available to us. In fact, looking at only the

90 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 90

opening frameset tag, the following eight examples all produce the desired
results:

<frameset rows=”100%,*”>

<frameset rows=”100%,0”>

<frameset rows=”*,0%”>

<frameset rows=”*,0”>

<frameset cols=”100%,*”>

<frameset cols=”100%,0”>

<frameset cols=”*,0%”>

<frameset cols=”*,0”>

The reason for this plethora of choices is that this is one of those times
when we really don’t care how the hiding is accomplished—all that matters is
that the hiding is accomplished. Oh, this is a good time for me to point out that
when developing a new application using hidden frames, it isn’t a violation of
the mad scientist rules to make the hidden frame visible for testing. It is, how-
ever, a violation to let others see the frame with the hidden frame visible, both
because it gives the impression that something is wrong with our fiendish
plans and because it looks ugly.

Unlike framesets, in which the hiding is accomplished through the use of
either rows or columns, iframes have the much-easier-to-remember height and
width attributes, as the following tag shows:

<iframe height=”0” width=”0” src=”hidden.htm”>

That’s it—just the one measly little tag, and we’ve got something that
kind of looks a lot like Ajax. Right about now you’re either taking my name in
vain or wondering why I didn’t start with iframes. In fact, there are probably
some out there who are doing both. Well, the answer is both personal and sim-
ple. Whenever I learn something new, I try to immerse myself totally in it,
avoiding all shortcuts until whatever I learned becomes second nature. To be
totally honest, after learning to swim, I was wrinkled for a week.

5.2 CROSS-BROWSER DOM

Now that we have either classic frames or iframes, we have reached one of the
most widespread reasons for their avoidance: the matter of access. Short of a
crystal ball and tea leaves, or maybe two soup cans and a piece of string, just

5.2 Cross-Browser DOM 91

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 91

how do the various frames communicate? I’ve worked with some web develop-
ers who believed that it was easier to talk with the ghost of Elvis than to have
individual frames communicate with one another. However, to be honest, most
of those web developers talked of black helicopters and wore aluminum foil
hats to ward off mind control.

As much as it seems otherwise, interframe communications is relatively
simple and can be dealt with using one word: DOM. Alright, you caught me in
a fib; DOM is an acronym, so it’s really three words, Document Object Model.
Coming in both HTML and XML flavors, in this instance, the DOM is a hierar-
chical representation of a web page that allows JavaScript to access and mod-
ify a page. Actually, careless coding when using the DOM is a most excellent
way for a page to self-destruct, a la “Good morning, Mister Phelps.”

As formidable as the DOM sounds, it is nothing more than a hierarchical
representation of a document, which, in this case, is an HTML document.
Think trees—the data structure trees, not the green woody things. And, no,
not binary trees; we want the ones that can have more than two children.

Just in case you need a little refresher in the structure of trees, it goes
like this:

+ Each of the tags in an HTML document can be referred to as a node or
element.

+ There is only one topmost node, which is called the root node.
+ All nodes are descendants of the root node, either directly or indirectly.
+ With the exception of the root node, all nodes have a single parent node.
+ Nodes that occur on the same tree level that share a parent are called

siblings.
+ The immediate descendants of a particular node are referred to as that

node’s children.

However, you must remember one thing when accessing the Document
Object Model: Here be monsters. This is one of those places where it is really
necessary to test things on several different browsers. The reason for this is
the usual; it is basically a question of interpretation of the World Wide Web
Consortium’s DOM specifications. This might sound a little like the schisms
that occur between different sects of the same religion, but depending on the
application, it can cause some major headaches. Listing 5-2 shows an example
of this potential problem.

Listing 5-2 Example of a Problem Created by Differing Interpretations of the W3C’s
DOM Specs

<html>
<head>

<title>DOM Test</title>

92 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 92

<script language=”JavaScript”>
/*

Recursively transverse the HTML DOM using the passed
node as a starting point.

*/
function transverse(obj) {

var strNode = ancestor(obj) + obj.nodeName.toString() + ‘\n’;

for(var i=0;i < obj.childNodes.length;i++)
strNode += transverse(obj.childNodes.item(i));

return(strNode);

function ancestor(obj) {
if(obj.parentNode != null)

return(‘>’ + ancestor(obj.parentNode));
else

return(‘’);
}

}
</script>

</head>
<body onload=”document.getElementById(‘textarea1’).value =

transverse(document)”>
<table width=”300” border=”1” cellspacing=”1” cellpadding=”1”>
<tr>

<td>
<input type=”text” id=”input1” name=”input1” />

</td>
</tr>
<tr>

<td>
<textarea id=”textarea1” name=”textarea1”

cols=”80” rows=”20”></textarea>
</td>

</tr>
</table>
</body>

</html>

Consisting of an HTML document with an embedded JavaScript function
whose sole purpose is to transverse the document, the page just shown yields
some interesting results, depending on the web browser. Listings 5-1, 5-2, and
5-3 show the result of loading the document in Microsoft Internet Explorer,
Firefox, and Opera, respectively.

Listing 5-3 Microsoft Internet Explorer

#document
>HTML
>>HEAD

5.2 Cross-Browser DOM 93

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 93

Listing 5-3 continued

94 Ajax Using HTML and JavaScript Chapter 5

>>>TITLE
>>>SCRIPT
>>BODY
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>INPUT
>>>>>>>#text
>>>>>TR
>>>>>>TD
>>>>>>>TEXTAREA
>>>>>>>>#text
>>>>>>>#text

Listing 5-4 Firefox

#document
>HTML
>>HEAD
>>>TITLE
>>>>#text
>>>#text
>>>SCRIPT
>>>>#text
>>#text
>>BODY
>>>#text
>>>TABLE
>>>>#text
>>>>TBODY
>>>>>TR
>>>>>>#text
>>>>>>TD
>>>>>>>#text
>>>>>>>INPUT
>>>>>>>#text
>>>>>>#text
>>>>>#text
>>>>>TR
>>>>>>#text
>>>>>>TD
>>>>>>>#text
>>>>>>>TEXTAREA
>>>>>>>#text
>>>>>>#text
>>>>>#text
>>>#text

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 94

Listing 5-5 Opera

#document
>HTML
>>HEAD
>>>TITLE
>>>>#text
>>>SCRIPT
>>BODY
>>>#text
>>>TABLE
>>>>TBODY
>>>>>TR
>>>>>>TD
>>>>>>>#text
>>>>>>>INPUT
>>>>>>>#text
>>>>>TR
>>>>>>TD
>>>>>>>#text
>>>>>>>TEXTAREA
>>>>>>>>#text
>>>>>>>#text
>>>#text
>>>#text
>>>#text

Interesting, isn’t it? You can’t even play the Sesame Street “One of these
things ain’t like the other” song because none of them is like the others.
However, more similarities exist than differences, such as the basic structure
and the existence of specific nodes. What is important to remember is that,
depending on the web browser, #TEXT elements can be sprinkled here and
there.

Now that this is out of the way, let’s take a closer look at the HTML docu-
ment in Listing 5-6, with the goal of locating specific elements, such as the
BODY element. As a matter of fact, grab a number 2 pencil; it’s time for a pop
quiz. Which of the following JavaScript statements can be used to locate the
BODY element in the HTML document shown in Listing 5-6?

1. window.document.body;

2. document.body;

3. self.document.body;

4. document.getElementsByTagName(“body”).item(0);

5.2 Cross-Browser DOM 95

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 95

Listing 5-6 Sample HTML Document

<html>
<head>
<title>Sample</title>

</head>
<body>
<p>Hello, World!</p>

</body>
</html>

Pencils down. The correct answer is: all of them. Yes, it is a trick question,
but it points out that there are many ways to reach the same destination.
Think of it as an “All roads lead to Rome” thing, and no one will get hurt. Of
course, it might be important to remember that some of the routes to a desti-
nation could be quicker than others.

I’d like to cover one additional, often overlooked, DOM topic. When deal-
ing with frames, there will always be more than one #document. Not only does
the frameset have a #document, but each frame will have a #document of its own.

5.2.1 JavaScript, ECMAScript, and JScript

Regardless of the name they call it by, people either love or hate JavaScript,
which is probably why opinions range from it being either the greatest thing
since sliced bread or the tool of the devil. Personally, I believe that cheeseburg-
ers are the greatest thing since sliced bread and that the tool of the devil is
cellphones. Nothing worse than enjoying a good cheeseburger, with onion rings
on the side, and the damn phone starts playing “The Monster Mash.” But I
digress.

JavaScript is a tool, neither good nor bad, like any other tool; it’s all in
how the tool is used. Give ten people a box of tools and a job to do, and nine of
them will get the job done in various degrees, while the tenth will require a
call to 911. With human nature being what it is, you’ll never hear about the
first nine; you’ll only hear about poor old Bob who did himself serious bodily
harm with a router. For this reason, people will decide that routers are evil.

JavaScript essentially falls into the same category, a lightweight, inter-
preted object-based language, and it is extremely flexible and tightly coupled
with the browser. For instance, you’re now aware that by using JavaScript and
DOM it is possible to modify the contents of the page as previously demon-
strated without bothering the server, but are you also aware that by using
JavaScript it is also possible to create objects?

Let’s say, for instance, that you’ve got a website that uses a handful of
standard-sized pop-ups. Well, rather than code them each by hand and possi-
bly have typos on a few pages, why not create an object to open a number of

96 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 96

standard-sized windows? Three different-sized pop-ups should suffice; add to
that the capability to override the various properties, and we end up with the
“function,” which is really a class shown in Listing 5-7.

Listing 5-7 JavaScript childWindow Class

function childWindow(strURL, strName, strChildType) {
/* The purpose of this function is to act as a
class constructor for the childWindow object.

The properties for this object are the following:
url = uniform resource locator
name = child window name
child = child window object
attributes = child window attributes

The methods for this object are the following:
open() = Opens and sets focus to the

childWindow
close() = Closes the childWindow
focus() = Sets focus to the childWindow
closed() = Returns a boolean indicating if the

childWindow is open.
*/
var reName = new RegExp(‘[^a-z]’,’gi’); // Regular expression
var e;

// Dummy for error code

// Properties
this.url = strURL; // Uniform resource locator
this.name = strName.toString().replace(reName,’’);
this.childType = strChildType; // Child window type
this.child = null; // Child window object
this.alwaysRaised = ‘no’; // Window always raised
this.copyhistory = ‘yes’; // Copy browser history
this.height = ‘’; // Window’s height
this.left = 0; // Window’s left start position
this.location = ‘no’; // Window’s location box
this.menubar = ‘no’; // Window’s menu bar
this.resizable = ‘yes’; // Window’s resizable
this.scrollbars = ‘yes’; // Window’s scroll bars
this.status = ‘yes’; // Window’s status bar
this.toolbar = ‘yes’; // Window’s tool bar
this.width = ‘’; // Window’s width
this.top = 0; // Window’s top start position

// Methods
this.open = childWindowOpen; // Open method
this.close = childWindowClose; // Close method
this.focus = childWindowFocus; // Focus method

5.2 Cross-Browser DOM 97

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 97

Listing 5-7 continued

98 Ajax Using HTML and JavaScript Chapter 5

// Determine attributes based on type
try {

if(typeof this.childType != ‘undefined’)
switch(this.childType.toLowerCase()) {

case ‘info’:
this.height = Math.round(screen.availHeight

* 0.4);
this.width = Math.round(screen.availWidth *

0.4);
this.left = (screen.availWidth -

Math.round(screen.availWidth * 0.4) - 8) / 2;
this.top = (screen.availHeight -

Math.round(screen.availHeight * 0.3) - 48) / 4;
this.toolbar = ‘no’;

break;
case ‘help’:

this.height = Math.round(screen.availHeight
* 0.7);

this.width = Math.round(screen.availWidth *
0.8);

this.left = screen.availWidth -
Math.round(screen.availWidth * 0.8) - 8;

this.top = (screen.availHeight -
Math.round(screen.availHeight * 0.7) - 48) / 4;

break;
case ‘full’:

this.height = screen.availHeight - 48;
this.width = screen.availWidth - 8;
this.toolbar = ‘no’;

break;
default:

throw(null);

break;
}

else
throw(null);

}
catch(e) {

this.height = screen.availHeight - 147;
this.width = screen.availWidth - 8;
this.menubar = ‘yes’;
this.resizable = ‘yes’;
this.scrollbars = ‘yes’;
this.status = ‘yes’;
this.toolbar = ‘yes’;
this.location = ‘yes’;

}

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 98

function childWindowOpen() {
/* The purpose of this function is to act as the open

for the childWindow object by
opening a window with attributes based upon

the window type specified.
*/

var strAttributes; // Window attributes
var e;

// Dummy error

// Build window attribute string
strAttributes = ‘alwaysRaised=’ + this.alwaysRaised;
strAttributes += ‘,copyhistory=’ + this.copyhistory;

if(typeof this.height == ‘number’)
if(this.height > 0)

strAttributes += ‘,height=’ + this.height;

strAttributes += ‘,left=’ + this.left;
strAttributes += ‘,location=’ + this.location;
strAttributes += ‘,menubar=’ + this.menubar;
strAttributes += ‘,resizable=’ + this.resizable;
strAttributes += ‘,scrollbars=’ + this.scrollbars;
strAttributes += ‘,status=’ + this.status;
strAttributes += ‘,toolbar=’ + this.toolbar;
strAttributes += ‘,top=’ + this.top;

if(typeof this.width == ‘number’)
if(this.width > 0)

strAttributes += ‘,width=’ + this.width;

// Try to open a child window
try {

this.child = window.open(this.url, this.name,
strAttributes);

if(window.opener.name == this.name)
this.child = window.opener;

else
if(window.opener.opener.name == this.name)

this.child = window.opener.opener;
else

if(window.opener.opener.opener.name ==
this.name)

this.child =
window.opener.opener.opener;

else
if(window.opener.opener.opener.name ==

this.name)
this.child =

window.opener.opener.opener;

5.2 Cross-Browser DOM 99

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 99

Listing 5-7 continued

100 Ajax Using HTML and JavaScript Chapter 5

this.focus();
}
catch (e) {

this.focus();
}

}

function childWindowClose() {
/* The purpose of this function is to act as the

close method for the childWindow
object and close the child window.

*/
var e;

// Dummy for error code

try {
this.child.close();

}
catch (e) { }

}

function childWindowFocus() {
/* The purpose of this function is to act as the

focus method for the childWindow
object. In other words, set focus to the

child window.
*/
this.child.focus();

}
}

As with the more traditional languages, to use our window object, it is
necessary to instantiate the class—in other words, create an instance of the
class. Listing 5-8 shows how instantiation is accomplished, and Figure 5-1 dis-
plays the result.

Listing 5-8 Example of Using the childWindow Class

var child = new childWindow(‘child.html’,’child’,’info’);
child.open();

Another often overlooked feature of JavaScript is its recursive capabili-
ties, although, come to think of it, this might be an intentional omission. For
some reason, the majority of developers avoid recursion like it’s an Osmonds’
or a Carpenters’ album. I’m of the opinion that the reason for this is that, as

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 100

with the albums from either of the two mentioned groups, recursion can cause
headaches. Of course, it might be more because, unless trained, our minds
don’t readily lend themselves to thinking recursively.

5.2 Cross-Browser DOM 101

Figure 5-1 childWindow class in action

Nevertheless, sometimes recursion is the easiest way to handle a particu-
lar coding issue. And not computing Fibonacci numbers or the factorial of a
number, which are those “make work tasks” designed to keep computer science
professors off the street. Group those two problems with singly- and doubly-
linked lists, and they’re good for a whole semester.

Instead, let’s examine the transverse() function from Listing 5-2, which,
for convenience, has been copied here to Listing 5-9. With the exception of the
enclosed ancestor() function, the transverse() function is pretty much a clas-
sic example of recursion coded in JavaScript. The same can be said of the
ancestor() function, whose sole purpose is to return a greater-than sign for
every ancestor of the current node.

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 101

Listing 5-9 Listing 5-2 Repeated

/*
Recursively transverse the HTML DOM using the passed

node as a starting point.
*/
function transverse(obj) {

var strNode = ancestor(obj) + obj.nodeName.toString() + ‘\n’;

for(var i=0;i < obj.childNodes.length;i++)
strNode += transverse(obj.childNodes.item(i));

return(strNode);

function ancestor(obj) {
if(obj.parentNode != null)

return(‘>’ + ancestor(obj.parentNode));
else

return(‘’);
}

}

5.2.2 A Problem to Be Solved

With all due respect to one of my previous managers who believed that there
were no such thing as problems, only opportunities, there is one problem that
I’ve been meaning to solve for a while now. It’s one of those things that the
average person, one without mad scientist tendencies, doesn’t realize exists.
Where do mad scientists shop online? Oh, sure, there’s Amazon.com and
Walmart.com, but have you ever tried to purchase a cask of Amontillado, or
stones and mortar from either website? These essential tools of the trade just
aren’t readily available online.

The big websites just don’t appreciate the needs of the lonely mad scien-
tist. In fact, it might be a good idea to include some of the other often-under-
represented groups as well. I imagine that alchemists and sorcerers have
some issues shopping for the tools of their trades as well. I, for one, have never
seen either site offer retorts or grimoires or anything along those lines. Not
that I know what a retort is; I imagine that it is some kind of backup Linzer
torte or something along those lines. There is definitely an untapped market
here, so much so that, had I conceived of this idea about six years ago, it would
be necessary to beat off potential investors with a stick.

I envision this website as a pretty normal series of web pages, starting
with a splash page that takes the visitor to a page displaying items for the
various guilds: mad scientist, alchemist, and sorcerer. The visitor would then
have the option of browsing all the items available or filtering by guild.

102 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 102

Shoppers could view the details of the individual items and, if desired, add
them to their shopping cart, which can be displayed at any time. When they
were sure that they had everything they want, they could proceed to checkout,
enter their shipping and billing information, and be off.

So with that idea in mind, the various web pages fall into a few simple
categories:

+ Those that display tabular information that cannot be altered, such as
the items for sale

+ Pages that display tabular information that can be updated, such as the
quantities of items in the shopping cart

+ Static form-type pages, such as those that verify your shipping address
page

+ Updateable forms, such as the page where the visitor enters the shipping
billing information

Oh, and the other thing I forgot to mention: This site needs to work with
a selection of different web browsers. I have a couple of totally logical reasons
to require this cross-browser capability. The first reason is to appeal to as wide
a customer base as possible because the more customers, the more sales. The
second is, it might not be a good idea to tick off someone who is potentially cre-
ating a Moon-Mounted Death Ray. Hmm, note to self: Use a P.O. Box as a cor-
porate address.

Before proceeding any further, now is a good time to delve a little into the
server-side environment. Let’s start with the operating system and web
server; I’m using Windows XP Professional and Internet Information Server.
The reason for this is the usual: It came on the machine, and I’m too lazy to
change it. Besides, I’m pretty sure that “Age of Mythology” doesn’t run on
Linux. Note to self: Make sure that you don’t get caught by Mary Ann playing
when you should be writing.

So far, my environmental choices have been pretty boring, and the open
source people are thinking that Firefox alone doesn’t cut it for a book. Alright,
how about MySQL version 5? In fact how, about MySQL version 5 with stored
procedures? Interested? Well, then, read on.

In version 5, MySQL introduced a feature that had been in the propri-
etary databases for quite some time: stored procedures. Just in case you were
abducted by aliens in 1974 and only recently got back to Earth, let me explain
what stored procedures are. Stored procedures are preparsed SQL that
accepts parameters and can return results.

Let’s say, for example, that we have a table consisting of the states and
territories of the United States and the provinces of Canada. Let’s also say that
we’d like the option of passing the procedure a two-character abbreviation to

5.2 Cross-Browser DOM 103

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 103

receive the name of the state or province, or passing a null value to obtain the
names and abbreviations of all. We would create a stored procedure that looks
a lot like the one shown in Listing 5-10.

Listing 5-10 A MySQL Stored Procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS 'ajax'.'stateSelect'$$
CREATE PROCEDURE 'ajax'.'stateSelect'(
stateAbbreviation VARCHAR(2)

)
BEGIN
SELECT state_abbreviation,

state_name
FROM state
WHERE (stateAbbreviation IS NULL OR stateAbbreviation =

state_abbreviation);
END$$

DELIMITER ;

Now that we have a stored procedure, the big question is, what do we do
with it? Fortunately, that’s an easy question; we call it as shown in the first
example here. However, I’d like to point out that because of the way the stored
procedure is called, when a parameter is null, a null must, in fact, be passed as
shown in the second example.

CALL stateSelect('NJ');

CALL stateSelect(NULL);

Now that the database issue is out of the way, it is time to figure out
what to code the server side in. My first thought was to pick a language that
has a proven track record and was widely accepted, but I could not find a reli-
able source of punch cards, so COBOL wasn’t a viable option. The really scary
part is that I’ve seen it attempted at companies because they thought that
they could port their mainframe CICS code to the Web, but that is another
story.

I finally decided on PHP 5. My reasons for this are several. The first is
that I’ve seen it and know that, not only does it work, but it works well.
Another reason is that it appears to be a combination of C and UNIX Shell,
both of which I’ve worked with in the past. The third reason is that it plays
well with MySQL and stored procedures—at least, once configured correctly
and if I remember to use the mysqli library instead of the older mysql library.

104 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 104

The final reason is that it is open source, and, therefore, several slick IDEs
such as PHP Designer 2005 from MPSOFTWARE are available to those of us
on limited budgets.

5.3 TABULAR INFORMATION

As stated previously, the first two types of web pages required both deal in
some way with tabular information, either for display or for updates.

When I was in high school, I took quite a few drafting classes, thinking
that perhaps a career in architecture lay in my future. But I discovered com-
puters, and, eh, a career in a different kind of architecture lay in my future.
And that is exactly what we need now: an architecture upon which to build our
creature—eh, er, e-commerce—site. So let’s send Igor to get a cold beverage
and queue the storm sound effects before we start.

Back already?
Because programming is one of those fields, like politics, in which trot-

ting out an old idea is a virtue, we’ll drag the frameset from Chapter 2,
“Introducing Ajax,” into this chapter and use it again. If Congress can recycle
the same bills year after year, surely we can do the equivalent with some code.
Just in case you’ve forgotten what it looks like, Listing 5-11 shows it in its
entirety, without commercial interruption.

Listing 5-11 Frameset

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>

<head>
<title>MSAWSS</title>

</head>
<frameset rows=”100%,*”>

<frame name=”visible_frame” src=”visible.html”>
<frame name=”hidden_frame”

src=”customer.php?email=ewoychowsky@yahoo.com”>
<noframes>

Frames are required to use this web site.
</noframes>

</frameset>
</html>

Unfortunately, because of scope creep, the visible page from Chapter 2
doesn’t make the grade for this chapter. It is almost there, but it needs a little
more functionality—basically, additional logic to make it bulletproof. By
bulletproof, I mean able to withstand attack by Machinegun Kelly or any other
“guest” who can click a mouse button upward of 200 times a minute.

5.3 Tabular Information 105

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 105

But before adding the necessary logic, let’s see what JavaScript functions
we already have that can be cloned for our nefarious purpose. The first
JavaScript function to be cloned is changeEvent, which itself does a little
cloning. The sole purpose of this little cross-browser-capable function is to
handle an onchange event for HTML input, textarea, and select tags. The sec-
ond function that can be cloned is submitForm, which, surprisingly, is also cross-
browser-capable.

At this point in designing the architecture, I have run out of code to clone
and now must write code from scratch. But before I do, allow me to explain
what I’d like to do. After all, explaining plots is a common weakness that we
mad scientists all have, and if I can’t explain it to you, I’ll have to explain it to
Igor, and the blank, glassy stare that he gets is so unnerving.

First I’d like a routine that ensures that the peasants—eh, guests—don’t
muck around with the Back button. This is because the Back button is like fire
to Victor’s monster—it causes unpredictable results. With any kind of HTML
frames, hitting the Back button is just as likely to cause the hidden page to go
back as the visible page. In short, it is not a good thing. Fortunately, in this
instance, a little JavaScript goes a long way, as the following line of code
shows:

window.history.forward(1);

Doesn’t look like much, does it? Well, it isn’t the size of the boat, but the,
um, never mind. Let’s just say that it is all that is necessary to ensure that the
current page is always the top page in the history, which is exactly what this
does. Of course, it needs to be included on every page, both visible and hidden.
It is also important to remember to provide some means of navigation; other-
wise, shoppers will be lost in a “twisty little maze of passages, all alike,” which
isn’t real good for repeat business.

The next function isn’t really a function at all; it is actually a Boolean
global variable that merely indicates whether the web browser is Microsoft
Internet Explorer or another browser. The reason this is an Internet Explorer
indicator isn’t because I’m in love with IE; it is because the larger the software
company is, the more likely that it has wandered off the path when it comes to
following standards. So with this in mind, the following code was written:

var _IE = (new RegExp(‘internet explorer’,’gi’)).test(navigator.appName);

The third function that is necessary to this project is one that “clones” a
form on the hidden frame to the visible. Although this sounds pretty simple, it

106 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 106

is anything but simple. In fact, most developers never ask one major question
unless they try this kind of thing for themselves:

When loading the frameset for the first time, which page loads first?
Fortunately, there is a simple answer to this question; unfortunately, the

answer is that I don’t know, which is a rather big stumbling block to overcome
to complete the website. This means that not only will the function need to
clone the hidden form to the visible form, but it might have to sit around wait-
ing for the visible form to finish loading. The good thing is that the process of
checking for frame completeness is very similar to what was done in Chapter
2, as shown in Listing 5-12.

Listing 5-12 initialize Function

/*
Update the visible frame with information from this page.

*/
function initialize()
{
var hiddenForm = document.getElementById(‘hidden_form’);

if(_IE)
{
if(parent.document.frames.item(‘visible_frame’).document.readyState

!= ‘complete’)
window.setTimeout(‘initialize()’,100);

else

parent.frames[‘visible_frame’].document.getElementById(‘visible_form’).
innerHTML = hiddenForm.innerHTML;
}
else
{
try
{
var node =

parent.frames[‘visible_frame’].document.getElementById(‘visible_form’).
firstChild;

try
{

parent.frames[‘visible_frame’].document.getElementById(‘visible_form’).
removeChild(node);

}
catch(e) { }

parent.frames[‘visible_frame’].document.getElementById(‘visible_form’).
appendChild(hiddenForm.cloneNode(true));

}
catch(e)

5.3 Tabular Information 107

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 107

Listing 5-12 continued

108 Ajax Using HTML and JavaScript Chapter 5

{
window.setTimeout(‘initialize()’,100);

}
}

}

The initialize() function is invoked by the hidden frame’s onload event
handler, and the first thing that it does is use the _IE Boolean that I created
earlier. The reason for this is that occasionally I do give in to temptation and
use a nonstandard browser feature. In this instance, the feature is the docu-
ment object’s readyState property. Just test it against “complete,” and we’re
good to go (that is, if the browser is Microsoft Internet Explorer; otherwise, it
is necessary to give it the old college try and catch).

If the visible frame isn’t ready, it is necessary to use the window.
setTimeout() method to invoke the initialize() function again after waiting
the specified number of milliseconds. Don’t confuse this method with the win-
dow.setInterval() method because setTimeout invokes the specified function
only once. With setInterval(), the function repeats like salami does until it is
stopped, which is bad, unless you are fond of debugging really weird client-
side happenings.

The next function that I want to add is one to restrict keyboard input to
numeric values. Although the appropriate elements can be tested at submis-
sion time, we’re dealing with guests who could potentially unleash a plague of
giant hedgehogs on Spotswood, New Jersey, when ticked off. So why not avoid
any problems before they occur? Listing 5-13 shows this function in all its
glory.

Listing 5-13 restrict Function

/*
Restrict keyboard input for the provided object using the
passed regular

expression and option.
*/
function restrict(obj,rex,opt) {

var re = new RegExp(rex,opt);
var chr = obj.value.substr(obj.value.length - 1);

if(!re.test(chr)) {
var reChr = new RegExp(chr,opt);

obj.value = obj.value.replace(reChr,’’);
}

}

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 108

The final two functions are the changeEvent() and the submitForm() func-
tions, which have been copied directly from Chapter 2. Listing 5-14 shows both
of these functions.

Listing 5-14 changeEvent and submitForm Functions

/*
Handle form visible form onchange events. Values from the

visible form are copied to the hidden form.
*/
function changeEvent(obj)
{

parent.frames[1].document.getElementById(obj.id).value = obj.value;
}

/*
Submits the form in the hidden frame.

*/
function submitForm() {

parent.frames[1].document.getElementById(‘hidden_form’).submit();
}

</script>
</head>
<body onload=”initialize()”>

<form name=”visible_form” id=”visible_form”></form>
</body>

</html>

5.3.1 Read Only

As strange as it sounds, when I’m creating a website from scratch, I often find
it simpler to begin coding nearer to the end than the beginning. This is proba-
bly some sort of unique mental defect, but it works, so I’m not about to mess
with it. So let’s start with the page that shows the garbage that the sucker
ordered—eh, the items that the customer selected for purchase. In fact, let’s
play nice and try to refer to customers as “guests” instead of “users” or
“suckers”—at least, to their faces (remember the Moon-Mounted Death Ray).

So with my new and enlightened attitude, let’s determine what informa-
tion the guests require. Well, the order number would be nice, if only for our
own protection. The same can be said for item numbers, item names, quantity,
and both unit price and total item price. Showing the total along with any
shipping charges and tax (at least, until our own Death Ray is operational) is
an absolute must.

5.3 Tabular Information 109

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 109

So let’s see, we have the following:

+ One order number
+ A variable number of item lines consisting of item numbers, item names,

quantity ordered, unit price, and total item price
+ One shipping total
+ One tax total, at least for the near future
+ One grand total

Now that we’ve got something that remotely resembles a plan, it is time
to implement it. First there are the database tables that describe the guild
(Mad Scientist, Alchemist, or Sorcerer), orders, items, and lines. From this
SQL it is pretty easy to infer what some of the other tables are, but we ignore
them for now because they’re not needed at this point. Listing 5-15 shows the
SQL necessary to define these tables.

Listing 5-15 SQL to Create MySQL Database Tables

CREATE TABLE guild (
guild_id int(6) auto_increment NOT NULL,
guild_name varchar(255) NOT NULL,
PRIMARY KEY (guild_id),
UNIQUE id (guild_id)

);

CREATE TABLE orders (
orders_id int(6) auto_increment NOT NULL,
customer_id int(6) NULL,
ship_address_id int(6) NULL,
orders_date datetime NOT NULL,
PRIMARY KEY (orders_id),
UNIQUE id (orders_id),
KEY customer_key (customer_id),
KEY ship_address_key (ship_address_id)

);

CREATE TABLE item (
item_id int(6) auto_increment NOT NULL,
item_name varchar(255) NOT NULL,
item_description varchar(255) NULL,
item_price decimal(10,2) NOT NULL,
PRIMARY KEY (item_id),
UNIQUE id (item_id)

);

CREATE TABLE line (
line_id int(6) auto_increment NOT NULL,
orders_id int(6) NOT NULL,

110 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 110

item_id int(6) NOT NULL,
line_quantity int NOT NULL,
line_item_price decimal(10,2) NOT NULL,
PRIMARY KEY (line_id),
UNIQUE id (line_id),
KEY orders_key (orders_id),
KEY item_key (item_id)

);

If you recall, earlier I stated that MySQL version 5 and higher support
stored procedures; in fact, I even gave you an example. We’ve just covered the
tables we’re using for this example, so now is a good time to cover the stored
procedure. The stored procedure lineSelect (see Listing 5-16) is relatively sim-
ple, just a select statement with a bunch of inner joins. Although it isn’t heavy
duty—no cursors, transactions, or anything like that—it is an example of a
stored procedure in MySQL, currently a thing only slightly more common
than unicorns.

However, there are a number of reasons for the inclusion of stored proce-
dures, especially in MySQL. The first of these is to avoid the use of Microsoft
Access, which is technically a database; however, it really isn’t very robust.
Some might argue that Access is a replacement for SQL Server, which I agree
to, but I’m on a budget here and a stripped-down developers’ edition isn’t what
I want. Besides, both Access and SQL Server are Windows-only databases.
Oracle, on the other hand, runs a number of platforms and is robust, but it
isn’t open source. As for my final reason for stored procedures, speed thrills.

Listing 5-16 lineSelect stored procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`lineSelect`$$
CREATE PROCEDURE `ajax`.`lineSelect`(
ordersId INTEGER(6)

)
BEGIN
SELECT line_id,

item_id,
line_quantity,
line_item_price

FROM line
WHERE (ordersId IS NULL OR ordersId = orders_id)
ORDER BY line_id ASC;

END$$

DELIMITER ;

5.3 Tabular Information 111

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 111

Earlier I said that the examples would be in PHP, and because stored
procedures are being used, it is necessary to use the mysqli library instead of
the mysql library. This might not sound like a big deal, but it would be a good
idea to provide some basic information on the parts ofmysqli that are used in
this example. Table 5-1 outlines these “parts.”

Table 5-1 mysqli

Method/Property Type Description
mysqli Constructor Returns a connection
connect_errno() Property Returns the result of the connection

attempt
query Method Executes the provided SQL statement
error Property Returns the result of the command
fetch_array Method Returns the result of a query as an array
close() Method Closes the connection

The odd thing is that after all the little details are covered, such as the
client-side JavaScript, database tables, and stored procedures, there is actu-
ally very little code to write. Mostly it comes down to putting the pieces
together and using the Cascading Style Sheets (CSS) shown in Listing 5-17 to
give the website a consistent look and feel.

Listing 5-17 CSS

A:active
{
color: 0000FF

}
A:visited
{
color: 0000FF

}
A:hover
{
color: 800080;
text-decoration: none

}
BODY
{
background-color: F0F8FF;
font-family: tahoma;
font-size: 12px

}
BUTTON
{
cursor: hand;
font-family: tahoma;

112 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 112

font-size: 12px
}
INPUT
{
cursor: hand;
font-family: tahoma;
font-size: 12px

}
H1
{
font-family: tahoma;
font-size: 18px

}
TABLE
{
border: collapse

}
TH
{
font-family: tahoma;
font-size: 12px

}
TD
{
font-family: tahoma;
font-size: 12px

}
.cellAlert
{
color: FF0000;
font-weight: bold

}
.pageHeader
{
background-color: 000080

}
.pageCell
{
color: FFFFFF;
font-family: tahoma;
font-size: 16px;
font-weight: bold

}
.rowHeader
{
background-color: 6495ED;
color: FFFFFF;
font-weight: bold

}
.rowData
{
background-color: D3D3D3

5.3 Tabular Information 113

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 113

Listing 5-17 continued

114 Ajax Using HTML and JavaScript Chapter 5

}
.numeric
{
font-family: tahoma;
text-align: right

}

The end result of this endeavor is the page shown in Figure 5-2, whose
code is shown in Listing 5-18 along with some common PHP variables and
routines shown in Listing 5-19. While we’re on the subject of common routines,
I should state now that there are several different approaches to handling
inclusion of common code. The first, which I’m using here, is to include every-
thing that could possibly be of any use from a single file. Later, however, I
switch to an approach that breaks up variables and routines by function. For
example, database-related items are here and rendering-related items are
there, and anything else is handled on a case-by-case basis. This might seem
like overkill now, but it falls under the category of defensive programming.

Figure 5-2 The page resulting from our efforts

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 114

Listing 5-18 Code for the Page in Figure 5-2

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<?php
include(‘common.php’);

$title=”Order Detail”;
$order = substr(@$_SERVER[‘QUERY_STRING’],6);
$order = 1;
$query = “CALL lineSelect(“ . $order . “)”;
$mysqli = new mysqli($server,$user,$password,$database);

if(mysqli_connect_errno())
{
printf(“Connect failed: %s\n”, mysqli_connect_error());

exit();
}

if(!$result = $mysqli->query($query))
{
printf(“Error: %s\n”, $mysqli->error);

exit();
}
?>

<head>
<link rel=”stylesheet” type=”text/css” href=”common.css”/>
<title><?php echo $title; ?></title>
<script language=”javascript” src=”library.js”></script>

</head>
<body onload=”initialize()”>

<form name=”hidden_form” id=”hidden_form” action=”post.aspx”>
<?php
pageHeader($system,$title);
?>

<table border=”0” width=”980px” ID=”Table1” border=”1”
cellpadding=”2” cellspacing=”2”>

<tr class=”rowHeader”>
<th>Item Name</th>
<th>Description</th>
<th>Quanitity</th>
<th>Unit Price</th>
<th>Price</th>

</tr>
<?php
$total = 0;

while($row = $result->fetch_array(MYSQLI_ASSOC))
{
printf(“<tr class=’rowData’><td

align=’center’>%s</td>”,$row[“item_name”]);
printf(“<td align=’left’>%s</td>”,$row[“item_description”]);

5.3 Tabular Information 115

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 115

Listing 5-18 continued

116 Ajax Using HTML and JavaScript Chapter 5

printf(“<td class=’numeric’>%s</td>”,$row[“line_quantity”]);
printf(“<td class=’numeric’>$%s</td>”,$row[“line_item_price”]);
printf(“<td class=’numeric’>$%s</td></tr>”,($row[“line_item_price”] *

$row[“line_quantity”]));

$total += ($row[“line_item_price”] * $row[“line_quantity”]);
}
?>

<tr class=”rowData”>
<td> </td>
<td> </td>
<td> </td>
<th class=’numeric’>Total</th>

<?
printf(“<td class=’numeric’>$%s</td>”,$total);

?>
</tr>
</table>

</form>
</body>

<?php
$result->close();
?>
</html>

Listing 5-19 PHP Variables and Routines

<?php
$server=”localhost”; // MySQL database server
$user=”root”; // MySQL user id
$password=”wyvern”; // MySQL password
$database=”ajax”; // MySQL database

$system=”Mad Scientist-Alchemist-Sorcerer Sales & Services”;

/*
Write the header for a web page.

*/
function pageHeader($systemName,$pageName)
{
?>
<table border=”0” height=”60px” width=”975px” ID=”<?php $pageName ?>”
border=”0” cellpadding=”0” cellspacing=”0”>

<tr class=”pageHeader” height=”40px”>
<td width=”5%”> </td>
<th class=”pageCell” width=”45%” align=”left”>

<?php

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 116

echo $systemName;
?>

</th>
<th class=”pageCell” width=”45%” align=”right”>

<?php
echo $pageName;

?>
</th>
<td width=”5%”> </td>

</tr>
<tr>

<td> </td>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>
<?php
}
?>

5.3.2 Updateable

As with the previous page type, the next type of page to be generated is also
tabular in nature. However, unlike the previous example, this page allows for
input beyond the navigation to the next page type. In a nutshell, here is our
first chance to use the majority of the architecture functions, and, in a nut-
shell, here is where there is a big chance that things can go seriously wrong.

The big question is, just how can things go seriously wrong? Is it a flaw in
the underlying concepts of Ajax? Nope, it is more of what I refer to as a
“Homer Simpson Moment.” These moments are caused by coding while the
brain is on autopilot, and for me it usually manifests itself in the form of using
the wrong event handler or forgetting an event handler altogether. Fortu-
nately, by coding the submitForm() handler to deal with changes to HTML
objects, I’ve managed to avoid one of my more common points of failure.

Alright, now with that out of the way, I feel less likely to screw up in the
same old way. If I am going to screw up, I want it to be in an entirely new and
original way. After all, in most cases, more can be learned from getting some-
thing wrong than by getting something right.

Now that we’ve covered the basics of what can go wrong when working
with forms, let’s put it into practice. Hmm, that didn’t sound right. Okay, take
two. Now that we’ve covered some of the potential pitfalls of working with
forms, let’s create a web page avoiding them. Whew!

5.3 Tabular Information 117

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 117

The purpose of the next page that we are working with is to display the
contents of the guest’s virtual shopping cart. As with its real-world counter-
part, shoppers will have several possible actions available to them. First, they
can remove individual items from the cart just like they do in the real world;
how else do you suppose frozen peas find their way to the cookie aisle? The
next possible action is to change the quantity, either up (yeah!) or down
(pout!). Oh, I should mention that decreasing an item’s quantity to zero has
the same end result as removing the item from the cart. Finally, shoppers will
have the option of giving up and just abandoning their shopping cart.

This is a good time to point out that, unlike some virtual shopping carts
where the contents are stored on the server, this one doesn’t. Instead, I chose
to follow the “why bother the server any more than absolutely necessary?” phi-
losophy, so the shopping cart is cached in a hidden text box in a form on the
visible frame as item-quantity pairs. Why? Because after being loaded, with
the exception of the cloned form, the visible frame doesn’t change. Although it
sounds somewhat strange, it has the advantage of reducing server traffic.
When the time comes to display the shopping cart, it can simply be coded into
the URL, which, although it does have a 4K limit, should be more than enough
for our purpose.

Although we already have a lot of the code necessary for this to work (the
numeric input function and the CSS), several bits of code are needed. First,
there is the JavaScript function that builds the URL for displaying the shop-
ping cart (see Listing 5-20). In addition, there is the stored procedure and two
stored functions to retrieve all the necessary information from the tables
shown in Listing 5-21. Finally, there is the page itself in Figure 5-3 and
Listing 5-22.

Listing 5-20 JavaScript Function That Builds the URL for Displaying the Shopping Cart

function displayCart() {
if(document.getElementById(‘cartContents’).value.length = 0)
alert(“Your shopping cart is empty.”);

else
parent.frames[‘hidden_frame’].document.location =

‘displayCart.php?cart=’ + document.getElementById(‘cartContents’).value;
}

Listing 5-21 The Stored Procedure and the Two Stored Functions

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`shoppingCartSelect`$$
CREATE PROCEDURE `ajax`.`shoppingCartSelect`(
/*

118 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 118

To display the contents of the shopping cart.
*/
itemIds LONGTEXT
)
BEGIN
DECLARE work LONGTEXT;

CREATE TEMPORARY TABLE search (
id INTEGER(6) AUTO_INCREMENT NOT NULL,
search_id INTEGER(6) NOT NULL,

quantity INTEGER NOT NULL,
PRIMARY KEY (id),
UNIQUE id (id)

);

SET work = itemIds;

WHILE INSTR(work,’,’) > 0 DO
INSERT INTO search

(search_id,
quantity)

VALUES (CAST(f_substringBefore(work,’-’) AS UNSIGNED),
CAST(f_subStringAfter(work,’-’) AS UNSIGNED));

SET work = f_substringAfter(work,’,’);
END WHILE;

SELECT s.id,
i.item_name,
i.item_description,
i.item_price,
s.quantity,
i.item_price * s.quantity total_price

FROM search s
INNER JOIN guild_item_bridge b
ON s.search_id = b.guild_item_id
INNER JOIN item i
ON b.item_id = i.item_id
ORDER BY s.id ASC;

DROP TEMPORARY TABLE search;
END$$

DELIMITER ;

DROP FUNCTION IF EXISTS `ajax`.`f_substringAfter`$$
CREATE FUNCTION `ajax`.`f_substringAfter`(
/*
To return the text after a string.

*/
stringOperand LONGTEXT,
stringSearch LONGTEXT

5.3 Tabular Information 119

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 119

Listing 5-21 continued

120 Ajax Using HTML and JavaScript Chapter 5

) RETURNS longtext
BEGIN
RETURN SUBSTRING(stringOperand,INSTR(stringOperand,stringSearch) + 1);

END$$

DELIMITER ;

DELIMITER $$

DROP FUNCTION IF EXISTS `ajax`.`f_substringBefore`$$
CREATE FUNCTION `ajax`.`f_substringBefore`(
/*
To return the text before a string.

*/
stringOperand LONGTEXT,
stringSearch LONGTEXT

) RETURNS longtext
BEGIN
RETURN SUBSTRING(stringOperand,1,INSTR(stringOperand,stringSearch) - 1);

END$$

DELIMITER ;

Figure 5-3 The shopping cart page

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 120

Listing 5-22 Code for the Shopping Cart Page

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<?php
include(‘common.php’);

$title=”Item Detail”;
$id = substr(@$_SERVER[‘QUERY_STRING’],3);
$query = “CALL itemSelect(“ . $id . “,NULL)”;
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
printf(“Connect failed: %s\n”, mysqli_connect_error());

exit();
}

if(!$result = $mysqli->query($query))
{
printf(“Error: %s\n”, $mysqli->error);

exit();
}
?>

<head>
<link rel=”stylesheet” type=”text/css” href=”common.css”/>
<title><?php echo $title; ?></title>
<script language=”javascript” src=”library.js”></script>

</head>
<body onload=”initialize()”>

<form name=”hidden_form” id=”hidden_form” action=”post.aspx”>
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);

$rowLabel =”<div class=’rowHeader’ style=’position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: “;
$rowData = “<div class=’rowData’ style=’position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: “;

echo $rowLabel . “75px’> Guild Name:</div>”;
echo $rowLabel . “92px’> Item Name:</div>”;
echo $rowLabel . “110px’> Description:</div>”;
echo $rowLabel . “127px’> Price:</div>”;
echo $rowLabel . “144px’> Quantity:</div>”;

printf($rowData . “75px’> %s</div>”,$row[“guild_name”]);
printf($rowData . “92px’> %s</div>”,$row[“item_name”]);
printf($rowData . “110px’> %s</div>”,$row[“item_description”]);
printf($rowData . “127px’> %s</div>”,$row[“item_price”]);
?>

5.3 Tabular Information 121

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 121

Listing 5-22 continued

122 Ajax Using HTML and JavaScript Chapter 5

<input type=’text’ id=’quantity’ name=’quantity’ value=’’
onkeyup=’restrict(this,\’[0-9]\’,\’gi\’)’ style=’position: absolute; left:
255px; right: auto; bottom: auto; top: 144px; text-align: right’>
<?php
echo “<input type=’button’ value=’Add to cart’
onclick=’JavaScript:add2Cart(“ . $row[“guild_item_id”] . “)’
style=’position: absolute; top: 175px; left: 50px; right: auto; bottom:
auto; height: 22px; width: 110px’>”;
echo “<input type=’button’ value=’Return to items’
onclick=’JavaScript:itemsList()’ style=’position: absolute; top: 175px;
left: 175px; right: auto; bottom: auto; height: 22px; width: 110px’>”;
echo “<input type=’button’ value=’View Cart’
onclick=’JavaScript:displayCart()’ style=’position: absolute; top: 175px;
left: 300px; right: auto; bottom: auto; height: 22px; width: 110px’>”;
echo “<input type=’button’ value=’Place Order’
onclick=’JavaScript:itemsList()’ style=’position: absolute; top: 175px;
left: 425px; right: auto; bottom: auto; height: 22px; width: 110px’>”;
?>

</form>
</body>

<?php
mysqli_close($mysqli);
?>
</html>

5.4 FORMS

This heading does say “Forms,” which we briefly touched upon in the previous
section, even if it was because we needed somewhere to cache information,
such as the contents of the shopping cart. Because of this, and the fact that
I don’t like to code similar functions too often, much of the client-side
JavaScript from the tabular web pages is reused here—or, if you’re a friend of
nature, recycled. See, not only is Ajax the wave of the future, it is also environ-
mentally friendly.

5.4.1 Read Only

In my opinion, the classic read-only form on an e-commerce website has to be
the shipping information page. In fact, it is so well known that the page does-
n’t even have to be coded as a form. It is perfectly acceptable to “fake it” using
Cascading Style Sheets, or simply display the information in some kind of
orderly fashion. The advantage of this is that we can avoid having to use the
disabled and readonly attributes, which, in the case of the disabled attribute,
tends to be a little hard on the eyes because the text is grayed out.

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 122

The approach that I’ve decided upon here is to simply display the infor-
mation directly from the database. Also, because I’m feeling somewhat adven-
turous, I’ve used CSS positioning for content layout instead of the method that
I normally employ. Just in case you’re wondering, using HTML tables is my
usual method of content layout, but I’m undergoing therapy to overcome this
shortcoming.

Before going into detail about the SQL that defines the tables needed for
this example, I want to clarify one thing again. I am by no means a DBA; I am,
according to some, a mad scientist (or mad, at the very least). Any of these can
be used as an explanation of why I did what I did when designing these tables.
In short, I went a little bit overboard when normalizing.

There isn’t a single table to contain information pertaining to a customer.
There aren’t two tables to contain the information pertaining to a customer,
such as one for the address and one for everything else. I made three tables:
one for the customer name, one for the address, and one for all other customer-
related information. I’m pretty sure that if you look up the word overkill, this
is definition number six, but it does have some advantages that we’ll get into
later when doing updates.

Now that my long-winded excuse is over, let’s take a gander at the SQL
that defines the tables and the associated stored procedure that retrieves the
information. The SQL for this is shown in Listings 5-23 and 5-24, respectively.

Listing 5-23 SQL to Create MySQL Database Tables

CREATE TABLE address (
address_id int(6) auto_increment NOT NULL,
address_company varchar(255) NULL,
address_line1 varchar(255) NOT NULL,
address_line2 varchar(255) NULL,
address_city varchar(255) NOT NULL,
state_abbreviation varchar(2) NOT NULL,
address_postal varchar(10) NOT NULL,
names_id int(6) NULL,
PRIMARY KEY (address_id),
UNIQUE id (address_id)

);

CREATE TABLE country (
country_id int(6) auto_increment NOT NULL,
country_name varchar(255) NOT NULL,
PRIMARY KEY (country_id),
UNIQUE id (country_id)

);

CREATE TABLE customer (
customer_id int(6) auto_increment NOT NULL,
customer_telephone varchar(10) NULL,

5.4 Forms 123

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 123

Listing 5-23 continued

124 Ajax Using HTML and JavaScript Chapter 5

customer_email varchar(255) NOT NULL,
customer_credit_card varchar(16) NOT NULL,
customer_credit_pin varchar(6) NULL,
customer_expiration datetime NOT NULL,
names_id int(6) NULL,
address_id int(6) NULL,
PRIMARY KEY (customer_id),
UNIQUE id (customer_id),
KEY names_key (names_id),
KEY address_key (address_id)

);

CREATE TABLE names (
names_id int(6) auto_increment NOT NULL,
names_last varchar(255) NOT NULL,
names_first varchar(255) NOT NULL,
names_mi varchar(1) NULL,
PRIMARY KEY (names_id),
UNIQUE id (names_id)

);

CREATE TABLE state (
state_abbreviation varchar(2) NOT NULL,
state_name varchar(255) NOT NULL,
country_id int(6) NOT NULL,
PRIMARY KEY (state_abbreviation),
UNIQUE id (state_abbreviation),
KEY country_key (country_id)

);

Listing 5-24 MySQL Stored Procedure to Select Address Information

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`addressSelect`$$
CREATE PROCEDURE `ajax`.`addressSelect`(
email VARCHAR(255)
)
BEGIN
SELECT c.customer_id,

n.names_last,
n.names_first,
n.names_mi,
c.customer_telephone,
c.customer_email,
a.address_company,
a.address_line1,
a.address_line2,
a.address_city,

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 124

a.state_abbreviation,
s.state_name,
a.address_postal,
y.country_name

FROM customer c
INNER JOIN names n
ON c.names_id = n.names_id
INNER JOIN address a
ON c.address_id = a.address_id
INNER JOIN state s
ON a.state_abbreviation = s.state_abbreviation
INNER JOIN country y
ON s.country_id = y.country_id
WHERE (email IS NULL OR c.customer_email = email);

END$$

DELIMITER ;

The thing that I always find amazing about stored procedures is that
they have a tendency to reduce the amount of code needed on the web server.
Consider the example that we’re currently going over; the PHP merely for-
mats the information returned by the stored procedure for the web browser, as
Listing 5-25 illustrates.

Listing 5-25 Customer Display

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<?php
include(‘common.php’);

$title=”Customer Display”;
$email = substr(@$_SERVER[‘QUERY_STRING’],6);
$query = “CALL addressSelect(“ . $email . “)”;
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
printf(“Connect failed: %s\n”, mysqli_connect_error());

exit();
}

if(!$result = $mysqli->query($query))
{
printf(“Error: %s\n”, $mysqli->error);

exit();
}

5.4 Forms 125

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 125

Listing 5-25 continued

126 Ajax Using HTML and JavaScript Chapter 5

?>
<head>

<link rel=”stylesheet” type=”text/css” href=”common.css”/>
<title><?php echo $title; ?></title>
<script language=”javascript” src=”library.js”></script>

</head>
<body onload=”initialize()”>

<form name=”hidden_form” id=”hidden_form” action=”post.aspx”>
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);
$rowLabel =”<div class=’rowHeader’ style=’position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: “;
$rowData = “<div class=’rowData’ style=’position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: “;

echo $rowLabel . “75px’> Name:</div>”;
echo $rowLabel . “92px’> Company:</div>”;
echo $rowLabel . “110px’> Address Line 1:</div>”;
echo $rowLabel . “127px’> Address Line 2:</div>”;
echo $rowLabel . “144px’> City:</div>”;
echo $rowLabel . “161px’> State:</div>”;
echo $rowLabel . “178px’> Zip/Postal Code:</div>”;
echo $rowLabel . “195px’> Country:</div>”;
echo $rowLabel . “212px’> Telephone Number:</div>”;
echo $rowLabel . “229px’> EMail Address:</div>”;

echo $rowData . “75px’> ” . $row[“names_last”] . ‘, ‘ .
$row[“names_first”] . ‘ ‘ . $row[“names_mi”] . “</div>”;
echo $rowData . “92px’> ” . $row[“address_company”] . “</div>”;
echo $rowData . “110px’> ” . $row[“address_line1”] . “</div>”;
echo $rowData . “127px’> ” . $row[“address_line2”] . “</div>”;
echo $rowData . “144px’> ” . $row[“address_city”] . “</div>”;
echo $rowData . “161px’> ” . $row[“state_name”] . “</div>”;
echo $rowData . “178px’> ” . $row[“address_postal”] . “</div>”;
echo $rowData . “195px’> ” . $row[“country_name”] . “</div>”;
echo $rowData . “212px’> ” . $row[“customer_telephone”] . “</div>”;
echo $rowData . “229px’> ” . $row[“customer_email”] . “</div>”;

echo “<input type=’button’ value=’Continue to items’ onclick=’itemsList()’
style=’position: absolute; top: 250px; left: 50px; right: auto; bottom:
auto; height: 22px; width: 120px’>”;

hidden($row,’customer_id’);
hidden($row,’names_last’);
hidden($row,’names_first’);
hidden($row,’names_mi’);
hidden($row,’customer_email’);
hidden($row,’customer_id’);
?>

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 126

</form>
</body>

<?php
mysql_close();
?>

5.4.2 Updateable

In the previous example, we covered the display of information from multiple
tables, which was easy enough because there wasn’t much happening on the
client side. The server side was also rather easy; yeah, there were some inner
joins, but it is hard to get all worked up about something that easy. There is,
however, something that you might have missed—I know that I did.

Let’s review my overzealous database normalization from a different
point of view. First, customer information is spread across three tables. Second,
the customer table contains the information that specifies how to find the
related information in the other two tables. Third, retrieving the information is
merely a matter of using inner joins. So we know what the data looks like and
how to get it out of the tables, but the big question is, how do I get it in?

On the bright side, I know how the guy who spent years building a sail-
boat in his basement felt when his wife said, “Nice, but how are you going to
get it out of the basement?” Whoops, didn’t think that far ahead. What he
ended up doing was supporting the floor joists along one outside basement
wall, digging a ramp from the outside to that position, and knocking out a
boat-sized hole. It worked, but I want a little more elegant solution. In fact, I
want one so elegant that you might think that my earlier screw-up was inten-
tional so that I could demonstrate some really cool features of MySQL.

All my current issues arise from the fact that data in three different
tables needs to be updated. Seems simple enough—just use a transaction.
Unfortunately, I forgot to mention that during my earlier fit of normalization,
I wrote two stored procedures, shown in Listings 5-26 and 5-27, that I want to
use. Waste not, want not.

Listing 5-26 Stored Procedure to Insert Names

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`namesInsert`$$
CREATE PROCEDURE `ajax`.`namesInsert`(
IN nameLast VARCHAR(255),
IN nameFirst VARCHAR(255),
IN nameMI VARCHAR(1),
OUT namesId INTEGER(6)

5.4 Forms 127

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 127

Listing 5-26 continued

128 Ajax Using HTML and JavaScript Chapter 5

)
BEGIN
INSERT INTO names

(names_last,
names_first,
names_mi)

VALUES (nameLast,
nameFirst,
nameMI);

SET namesID = LAST_INSERT_ID();
END$$

DELIMITER ;

Listing 5-27 MySQL Stored Procedure to Insert Customer Address Information

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`addressInsert`$$
CREATE PROCEDURE `ajax`.`addressInsert`(
IN addressCompany VARCHAR(255),
IN addressLine1 VARCHAR(255),
IN addressLine2 VARCHAR(255),
IN addressCity VARCHAR(255),
IN stateAbbreviation VARCHAR(255),
IN addressPostal VARCHAR(10),
IN namesId INTEGER(6),
OUT addressId INTEGER(6)

)
BEGIN
INSERT INTO address

(address_company,
address_line1,
address_line2,
address_city,
state_abbreviation,
address_postal,
names_id)

VALUES (addressCompany,
addressLine1,
addressLine2,
addressCity,
stateAbbreviation,
addressPostal,
namesId);

SET addressId = LAST_INSERT_ID();
END$$

DELIMITER ;

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 128

Alright, if I have it straight and haven’t painted myself into another cor-
ner, what is needed is a way to tie these stored procedures together. I suppose
that I could somehow stick them together using PHP, but that seems too much
like making the sailboat out of duct tape, and that solution is a little too Red
Green for me. I ended up writing a third stored procedure (see Listing 5-28)
that uses transactions and calls the other two stored procedures.

Listing 5-28 MySQL Stored Procedure That Calls Other Stored Procedures

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`customerInsert`$$
CREATE PROCEDURE `ajax`.`customerInsert`(
IN namesLast VARCHAR(255),
IN namesFirst VARCHAR(255),
IN namesMI VARCHAR(1),
IN customerTelephone VARCHAR(10),
IN customerEmail VARCHAR(255),
IN customerCreditCard VARCHAR(16),
IN customerCreditPin VARCHAR(6),
IN customerExpiration DATETIME,
IN addressCompany VARCHAR(255),
IN addressLine1 VARCHAR(255),
IN addressLine2 VARCHAR(255),
IN addressCity VARCHAR(255),
IN stateAbbreviation VARCHAR(2),
IN addressPostal VARCHAR(10),
OUT customerId INTEGER(6)

)
BEGIN
DECLARE errorInd INTEGER DEFAULT 0;
DECLARE namesId INTEGER(6);
DECLARE addressId INTEGER(6);
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET errorInd = 1;

START TRANSACTION;

CALL namesInsert(namesLast,
namesFirst,
namesMI,
namesId);

CALL addressInsert(addressCompany,
addressLine1,
addressLine2,
addressCity,
stateAbbreviation,
addressPostal,
namesId,
addressId);

5.4 Forms 129

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 129

Listing 5-28 continued

130 Ajax Using HTML and JavaScript Chapter 5

INSERT INTO customer
(customer_telephone,
customer_email,
customer_credit_card,
customer_credit_pin,
customer_expiration,
names_id,
address_id)

VALUES (customerTelephone,
customerEmail,
customerCreditCard,
customerCreditPin,
customerExpiration,
namesId,
addressId);

IF errorInd = 0 THEN
COMMIT;

SET customerId = LAST_INSERT_ID();
ELSE
ROLLBACK;

SET customerId = 0;
END IF;

END$$

DELIMITER ;

Now that the sailboat is out of the basement, the remaining task is sim-
ply a matter of putting all the pieces together, as shown in Listing 5-29 and
Figure 5-4.

Listing 5-29 Customer Display Page

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<?php
include(‘common.php’);

$title=”Customer Display”;
$email = substr(@$_SERVER[‘QUERY_STRING’],6);
$query = “CALL addressSelect(‘“ . $email . “‘)”;
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
printf(“Connect failed: %s\n”, mysqli_connect_error());

exit();

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 130

}

if(!$result = $mysqli->query($query))
{
printf(“Error: %s\n”, $mysqli->error);

exit();
}
?>

<head>
<link rel=”stylesheet” type=”text/css” href=”common.css”/>
<title><?php echo $title; ?></title>
<script language=”javascript” src=”library.js”></script>

</head>
<body onload=”initialize()”>

<form name=”hidden_form” id=”hidden_form”
action=”customerInput.php”>
<?php
pageHeader($system,$title);

$row = $result->fetch_array(MYSQLI_ASSOC);
$rowLabel =”<div class=’rowHeader’ style=’valign: center; height: 20px;
width: 200px;’> %s</div>”;
$rowData = “<div class=’rowData’ style=’position: absolute; left: 255px;
right: auto; bottom: auto; width: 600px; top: “;

?>
<table border=”0” width=”980px” id=”Table1” border=”1” cellpadding=”2”
cellspacing=”2”>

<?php
echo “<tr><th class=’rowHeader’ width=’20%’ align=’left’> First
Name:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’names_first’
id=’names_first’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“names_first”]);
echo “<tr><th class=’rowHeader’ align=’left’> Middle Initial:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’names_mi’
id=’names_mi’ size=’2’ maxlength=’1’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“names_mi”]);
echo “<tr><th class=’rowHeader’ align=’left’> Last Name:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’names_last’
id=’names_last’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“names_last”]);
echo “<tr><th class=’rowHeader’ align=’left’> Address Line 1:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’address_line1’
id=’address_line1’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“address_line1”]);
echo “<tr><th class=’rowHeader’ align=’left’> Address Line 2:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’address_line2’
id=’address_line2’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“address_line2”]);
echo “<tr><th class=’rowHeader’ align=’left’> City:</th>”;

5.4 Forms 131

continues

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 131

Listing 5-29 continued

132 Ajax Using HTML and JavaScript Chapter 5

printf(“<td class=’rowData’> <input type=’text’ name=’address_city’
id=’address_city’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“address_city”]);
echo “<tr><th class=’rowHeader’ align=’left’> State:</th><td
class=’rowData’>”;
stateSelect($server,$user,$password,$database,$row[‘state_abbreviation’]);
echo “</td></tr><tr><th class=’rowHeader’ align=’left’> Postal
Code:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’address_postal’
id=’address_postal’ size=’50’ maxlength=’10’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“address_postal”]);
echo “<tr><th class=’rowHeader’ align=’left’> Telephone
Number:</th>”;
printf(“<td class=’rowData’> <input type=’text’
name=’customer_telephone’ id=’customer_telephone’ size=’50’ maxlength=’10’
value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“customer_telephone”]);
echo “<tr><th class=’rowHeader’ align=’left’> E-Mail Address:</th>”;
printf(“<td class=’rowData’> <input type=’text’ name=’customer_email’
id=’customer_email’ size=’50’ maxlength=’255’ value=’%s’
onchange=’changeEvent(this)’></td></tr>”,$row[“customer_email”]);
?>
</table>
<?php
echo “<input type=’button’ value=’Place Order’ onclick=’submitForm()’>”;
?>

</form>
</body>

<?php
mysqli_close($mysqli);

function stateSelect($server,$user,$password,$database,$value)
{

$query = “CALL stateSelect(null)”;
$mysqli = new mysqli($server,$user,$password,$database);

if (mysqli_connect_errno())
{
printf(“Connect failed: %s\n”, mysqli_connect_error());

exit();
}

if(!$result = $mysqli->query($query))
{
printf(“Error: %s\n”, $mysqli->error);

exit();
}

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 132

echo “<select id=’state_abbreviation’ name=’state_abbreviation’
onchange=’changeEvent(this)’>”;

while($row = $result->fetch_array(MYSQLI_ASSOC))
{

if($row[‘state_abbreviation’] == $value)
printf(“<option value=’%s’

selected=’true’>%s</option>”,$row[state_abbreviation],$row[state_name]);
else

printf(“<option
value=’%s’>%s</option>”,$row[state_abbreviation],$row[state_name]);

}

echo “</select>”;

mysqli_close($mysqli);
}
?>

5.4 Forms 133

Figure 5-4 Customer display page

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 133

5.5 ADVANTAGES AND DISADVANTAGES

The major advantage to developing an application using this technique is that
there are very few browsers for which this method does not work, including
older browsers. In fact, the only thing that some web developers might con-
sider out of the ordinary is the use of hidden frames. Nevertheless, it works,
which is all that really matters when developing an application.

Unfortunately, problems begin to arise when an inexperienced developer
attempts to maintain an application developed using this technique. In fact,
several years ago, I developed an application that used hidden frames for an
insurance company. It was one of the few applications for which I received
calls after leaving the company. It was explained to me that there wasn’t any-
thing wrong with the application—in fact, it worked wonderfully—but the
new developers couldn’t quite grasp how it worked. To the new developers, the
application was a classic black box; information went in and information came
out, but what happened to it in the box was a complete mystery.

The final problem with this technique is that it really isn’t Ajax; it only
offers a similar look and feel. Think of it as a kind of primitive ancestor to Ajax
or, if you prefer, as flexing our mental muscles getting ready for the main
event. So now that we’re all warmed up, let’s push the knuckle-walking ances-
tor out the door and move on to the next chapter and something that every-
body will agree is Ajax.

5.6 SUMMARY

Although the technique is somewhat old-fashioned, it demonstrates, to a
degree, how processing flows in an Ajax application. In addition, the “dark art”
of communicating information between frames was covered. However, two
items of note from this chapter will be carried into later chapters: JavaScript
and MySQL stored procedures.

Regardless of any opinion to the contrary, JavaScript has become essen-
tial in the development of web applications that feel more like GUI applica-
tions. And even though some shortcuts may have been taken with these
examples, they do serve their purpose.

The inclusion of stored procedures in MySQL was a purely personal deci-
sion on my part. Originally, I considered using straight SQL; however, it has
been several years since I created any kind of nontrivial application using
anything but stored procedures. In addition, because the topic of stored proce-
dures in MySQL is so new, trying to find examples is pretty much like looking
for a unicorn. So I thought, why not include a few examples here? And as
you’ve probably determined by now, I like examples.

134 Ajax Using HTML and JavaScript Chapter 5

05_0132272679_ch05.qxd 7/17/06 2:37 PM Page 134

C H A P T E R 6

XML

What can I say about XML that somebody before me hasn’t already said? One
little Google search is enough to learn that XML whitens whites and brightens
brights. In short, name an ill that plagues today’s world, and there is probably
someone out there who has written an article about it and how XML can fix it.

Alright, I admit it, I’m stretching the truth a little to get my point across.
However, it does give something of the feel of the aura that surrounds XML—
well, at least from an outsider’s perspective. XML is another one of those “I
don’t know what it is, but I want it” type of things.

The format of this chapter goes along the following lines:

� Elements
� Attributes
� Handling Verboten Characters
� Comments
� Document description
� XML declarations
� Processing instructions
� XML Data Islands

In its simplest form, XML is nothing more than a text file containing a
single well-formed XML document. Come to think of it, the same is pretty
much true in its most complex form as well. Looking past all the hype sur-
rounding XML, it is easy to see that XML is merely the text representation of
self-describing data in a tree data structure. When you understand this, all
that is left are the nitty-gritty little details, as in “What’s a tree data struc-
ture?” and “How exactly does data describe itself?”

135

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 135

A tree data structure is built of nodes, with each node having only one
node connected above it, called a parent node. The sole exception to this rule is
the root node, which has no parent node. Nodes can also have other nodes con-
nected below; these are called child nodes. In addition, nodes that are on the
same level as the same parent node are called children. Figure 6-1 is a graphi-
cal representation of a tree data structure. If you are thinking to yourself, “I’ve
seen this before,” you’re right—we also used this example in Chapter 2,
“Introducing Ajax.”

136 XML Chapter 6

library

book

series title author

book

library

series title author

book

series title author

Figure 6-1 An XML document as a tree

The diagram in Figure 6-1 can also be represented as the XML document
shown in Listing 6-1. We used this listing in Chapter 2 as well. But it doesn’t
hurt to reiterate the points here.

Listing 6-1 An XML Document as Text

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<library>

<book>
<series/>
<title/>
<author/>

</book>
<book>

<series/>
<title/>
<author/>

</book>
<book>

<series/>
<title/>
<author/>

</book>
</library>

6.1 ELEMENTS

The nodes shown in Listing 6-1 are called elements, and they closely resemble
HTML tags. And like HTML tags, start tags begin with < and end tags begin

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 136

with </. However, unlike HTML tags, all XML tags must either have a closing
tag or be self-closing or empty elements. Self-closing tags are recognizable by
the ending />. If the forward slash was omitted, the document would not be a
well-formed XML document. In addition to all elements being either closed or
self-closing, the tags must always match up in order. This means that the XML
document in Listing 6-2 is well formed, whereas the XML document in Listing
6-3 is not well formed.

Listing 6-2 A Well-Formed XML Document

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<one>

<two>
<three>

<four/>
</three>

</two>
</one>

Listing 6-3 A Document That Is Not Well Formed

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<one>

<two>
<three>

<four/>
</two>

</three>
</one>

So far, we have covered elements that contain either other elements or
empty elements, leaving the question of what elements that contain actual
data look like. Using the XML from Listing 6-1 as a starting point, you can see
that the answer is not very different. Listing 6-4 shows what elements that
contain text data look like.

Listing 6-4 An XML Document with Text Data

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<library>

<book>
<series>The Lord of the Rings</series>
<title>The Fellowship of the Ring</title>
<author>J.R.R. Tolkien</author>

</book>
<book>

<series>The Lord of the Rings</series>

6.1 Elements 137

continues

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 137

Listing 6-4 continued

138 XML Chapter 6

<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book>

<series>The Lord of the Rings</series>
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
</library>

One thing to remember is that elements aren’t limited to containing
either other elements or text data; they can do both at the same time. In fact,
there is even a way for empty elements to contain text data through the use of
attributes.

6.2 ATTRIBUTES

Attributes are a name-value pair that is contained in an element’s start tag.
The name portion of an attribute is separated from the value by an equals
sign, and the value is enclosed in either single or double quotes. Elements can
have multiple attributes, separated from one another by whitespace, usually
one or more spaces. It is not unusual for XML documents to use a combination
of container elements and attributes. Listing 6-5 shows what the XML docu-
ment in Listing 6-4 would look like using attributes.

Listing 6-5 An XML Document with Attributes

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<library>

<book series=”The Lord of the Rings” title=”The Fellowship of the
Ring” author=”J.R.R. Tolkien”/>

<book series=”The Lord of the Rings” title=”The Two Towers”
author=”J.R.R. Tolkien”/>

<book series=”The Lord of the Rings” title=”The Return of the King”
author=”J.R.R. Tolkien”/>
</library>

Before proceeding any further, I want to cover the three rules for the
naming of elements and attributes; these rules are only slightly more complex
than the rules for the addressing of cats. The first rule is that only alphanu-
meric (a–z, 0–9) characters, the underscore (_), the hyphen/dash (-), and the
colon (:) are permissible in names. The second rule is that names can begin

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 138

only with an alpha, underscore, or hyphen character. The third and final rule
is that names are case sensitive, so Mistoffelees is a different animal than
MISTOFFELEES, and mistoffelees is yet another animal. Think of these rules as a
practical guide, and you won’t have any problems with names.

6.3 HANDLING VERBOTEN CHARACTERS

Occasionally when dealing with XML documents, you will encounter certain
characters that will cause a document to be not well formed. For example,
imagine an element that contains a JavaScript function, such as the one
shown in Listing 6-6. Examined from a JavaScript perspective, the function
looks like it works, but when examined from an XML point of view, there is
one big glaring error. Here is a hint: Look at the for loop.

Listing 6-6 A Script Element That Is Not Well Formed

<script language=”JavaScript”>
function hello(intTimes) {

for(var i=0;i < intTimes;i++)
alert(‘Hello, World!’);

}
</script>

XML interprets the less-than (<) operator as the beginning of a new ele-
ment, and from an XML viewpoint, the new tag is not well formed. Fortu-
nately, you can use one of two methods to get around this issue: entities or
CDATA sections. Each of these methods is suited to a different purpose, so
let’s examine each to determine which better suits our problem.

6.3.1 Entities

Entities. A part of me just likes to say the word entities. It’s just a fun word to
say, especially to a manager who is unfamiliar with XML. Just imagine some-
one’s reaction when being told that the XML contains entities. Talk about your
flashbacks to late-night horror movies! Of course, there is always the alterna-
tive: being fitted for a jacket with wraparound sleeves. Either way, you’ve got-
ten the manager’s attention.

XML has five predefined entities whose purpose it to avoid well-formed-
ness issues when encountering select common characters. Table 6-1 defines
these five entities, and later topics cover how to define additional entities.

6.3 Handling Verboten Characters 139

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 139

Table 6-1 Entities

Character Entity Description
< < Less than
> > Greater than
‘ ' Apostrophe/single quote
“ &qout; Double quote
& & Ampersand

The JavaScript in Listing 6-6 can be made well formed by replacing the
character < by its corresponding entity <. Unfortunately, although the use
of entities would correct the issue from an XML point of view, from a
JavaScript perspective, there is a world of difference between < and <. To
make both XML and JavaScript happy, it is necessary to use a CDATA section.

6.3.2 CDATA Sections

A CDATA section is the XML equivalent of “Pay no attention to that man
behind the curtain,” from The Wizard of Oz. However, there is no pesky little
girl with a little dog to mess things up. Because of this, XML totally ignores
whatever is within a CDATA section’s tags, <![CDATA[and]]>, as shown in
Listing 6-7.

Listing 6-7 A Well-Formed Script Element

<script language=”JavaScript”>
<![CDATA[
function hello(intTimes) {

for(var i=0;i < intTimes;i++)
alert(‘Hello, World!’);

}
]]>

</script>

6.4 COMMENTS

From an XML point of view, Listing 6-7 is well formed; unfortunately, some
web browsers would have an issue with it as part of a web page. A method is
needed to hide the JavaScript from XML, and the CDATA section tags from
both the browser and the browser’s JavaScript interpreter. This can be accom-
plished with XML comment tags, which, by the way, are identical to the

140 XML Chapter 6

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 140

comment tags from HTML. Because the JavaScript interpreter has problems
only with the CDATA section’s closing tag, a // is enough to make the browser
look the other way. The end result is the node shown in Listing 6-8.

Listing 6-8 A Well-Formed Cross-Browser Script Element

<script language=”JavaScript”>
<!-- <![CDATA[
function hello(intTimes) {

for(var i=0;i < intTimes;i++)
alert(‘Hello, World!’);

}
//]]> -->

</script>

6.5 EXPECTATIONS

When the Rolling Stones sang “You Can’t Always Get What You Want,” they
were telling only half of the story. The other half is, “You Don’t Always Want
What You Get.” Yeah, it doesn’t roll off of the tongue the same way, and I don’t
sing anything like Mick Jagger; in fact, my children would prefer it if I didn’t
sing at all. So when I sing, they’re both not getting something they want and
getting something that they don’t want. They’ll get over it, but how would
XML handle getting something expected and getting something unexpected?

6.5.1 Namespaces

Dealing with both the expected and the unexpected is what namespaces in
XML are all about. A namespace is used to describe vocabularies because in
some instances the same element name could have two different meanings,
which is an unexpected occurrence often with undesirable results.

To put it in nontechnical terms, imagine that you have a shipment of cot-
ton that you want to ship from India to England. Let’s say that you want it to
be sent on a particular ship that sails in November. Seems clear, doesn’t it?
Well, now imagine that there is another ship with the same name that sets
sail in December. See the problem? Simply using the name isn’t enough
because it can have more than one meaning.

Namespaces are a URI that is used to get around this type of problem by
providing what in law would be called a “meeting of the minds.” It is a way to
ensure that when the elements and attribute have the same names, the cor-
rect meaning is used. This is a good way to avoid conflict. The only alternative
would be to guess, which was done in the previous example from the mid-
1800s. In case you were wondering, they guessed wrong.

6.5 Expectations 141

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 141

6.5.2 DTD

A Document Type Definition is used to describe and validate an XML docu-
ment. Essentially, you spell out exactly what to expect in a particular XML
document, to avoid confusion. Consider the XML document shown in Listing
6-9, basically a short list of monsters and where they’ve appeared.

Listing 6-9 An Example XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<monsters >

<monster name=”Dracula” books=”yes” plays=”yes” movies=”yes”/>
<monster name=”Alien” books=”yes” plays=”no” movies=”yes”/>
<monster name=”The Thing” books=”yes” plays=”no” movies=”yes”/>
<monster name=”Sweeny Todd” books=”yes” plays=”yes” movies=”no”/>

</monsters>

If confusion concerning names were a possibility, a DTD like the one in
Listing 6-10 would then be used.

Listing 6-10 The DTD for Listing 6-9

<!ELEMENT monster EMPTY>
<!ATTLIST monster

name CDATA #REQUIRED
books CDATA #REQUIRED
plays CDATA #REQUIRED
movies CDATA #REQUIRED

>
<!ELEMENT monsters (monster+)>

All that then would be left to do would be to save it in a folder called
namespace on the C: drive and assign the DTD by inserting the following before
the first element:

<!DOCTYPE monsters SYSTEM “C:\namespace\sample.dtd”>

Just in case you haven’t noticed something strange about Document
Type Definitions, I want to point out that they are not XML. However, there is
an XML equivalent to Document Type Definitions called schemas.

6.5.3 Schema

Schemas have the advantages of being XML and being able to provide greater
validation than DTDs. The reason for this is that a schema can describe
complex data types beyond the basic dateTime, decimal, integer, and string

142 XML Chapter 6

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 142

available with DTDs. This essentially means that it is possible to describe
complex types, as shown in Listing 6-11.

Listing 6-11 Schema for Listing 6-9

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<!--W3C Schema generated by XMLSpy v2006 sp2 U (http://www.altova.com)-->
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:complexType name=”monsterType”>
<xs:attribute name=”name” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”Alien”/>
<xs:enumeration value=”Dracula”/>
<xs:enumeration value=”Sweeny Todd”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”books” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”no”/>
<xs:enumeration value=”yes”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”plays” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”no”/>
<xs:enumeration value=”yes”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”movies” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”no”/>
<xs:enumeration value=”yes”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:element name=”monsters”>

<xs:complexType>
<xs:sequence>

<xs:element name=”monster” type=”monsterType”
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

6.5 Expectations 143

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 143

144 XML Chapter 6

Yes, it is longer, but it also better describes the XML document in greater
detail than the DTD ever could. This leaves only the “how to assign it?” ques-
tion, which Listing 6-12 answers.

Listing 6-12 The Document with the Schema Applied

<?xml version=”1.0” encoding=”UTF-8”?>
<monsters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”C:\namespace\sample.xsd”>

<monster name=”Dracula” books=”yes” plays=”yes” movies=”yes”/>
<monster name=”Alien” books=”yes” plays=”no” movies=”yes”/>
<monster name=”Sweeny Todd” books=”yes” plays=”yes” movies=”no”/>

</monsters>

6.6 XML DECLARATION

Before proceeding any further, I want to explain a little about the stuff
between the <? and the ?>. It is called the XML declaration, which is an exam-
ple of a META data tag that appears at the beginning of an XML document.
Its purpose is to specify the version of XML, the character encoding, and
whether there is an external markup declaration.

Determining whether the XML document has an external markup decla-
ration (standalone=”no”) or not (standalone=”true”) is based upon three rules.
An XML document has an external markup declaration if attributes have
default values, there are entities used other than the five default entities, or
either elements or attributes are subject to whitespace nominalization.

6.7 PROCESSING INSTRUCTIONS

In addition to the XML declaration META tag, there is something called a pro-
cessing instruction that also uses the <? and ?>. At first glance, processing
instructions appear to be the same as the XML declaration, but they have dif-
ferent capabilities and serve a different purpose. For example, unlike an XML
declaration, a processing instruction can appear anywhere in an XML docu-
ment. Also, processing instructions are used to pass information to an applica-
tion that can read the XML document.

6.8 XML DATA ISLANDS

For readers who are unfamiliar with the term XML Data Islands, they refer to
the real estate that is usually purchased with the profits from one’s first book.

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 144

You know, the kind of real estate that isn’t there when the tide is in. Oops, my
mistake: wrong definition.

Take two!
For those readers who are unfamiliar with the term XML Data Islands,

they are XML that is embedded with the body of an HTML document.
Although this sounds simple enough, there is a little more to it than that;
Microsoft Internet Explorer hides the XML, whereas Firefox and other Gecko-
based web browsers do not.

6.8.1 Internet Explorer

Because Microsoft Internet Explorer has built-in support for XML data
islands, it is simply a matter of embedding the XML in a web page, as
described in more detail in Chapter 8. Binding the XML to the HTML is
merely a matter of defining the datasrc and the datafld, where the datasrc is
the ID from the XML element and the datafld is either an element or an
attribute. The idea is that because the HTML is bound to the XML, changes in
one are reflected in the other, which can be a real timesaver when developing
a web application.

6.8.2 Firefox

With Gecko-based web browsers such as Firefox, Flock, Netscape, or Mozilla
XML, data islands require a bit more work to pull off. Let’s look at an example
of a Cascading Style Sheet shown here in Listing 6-13. Its purpose is to pre-
vent the XML data island from being rendered, which solved only part of the
problem.

Listing 6-13 CSS to Hide XML

xml
{
display: none;
font-size: 0px
}

The rest of the problem, the binding, was resolved using JavaScript and
HTML as originally shown in Listing 4-7 and again is shown in Listing 6-14.

Listing 6-14 Cross-Browser Binding XML

<html>
<head>

<title>XML Data Island Test</title>
<style type=”text/css”>

6.8 XML Data Islands 145

continues

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 145

Listing 6-14 continued

146 XML Chapter 6

xml
{

display: none;
font-size: 0px

}
</style>
<script language=”JavaScript”>

var _IE = (new RegExp(‘internet explorer’,’gi’)).test(navigator.appName);

/*
Function: _bind
Programmer: Edmond Woychowsky
Purpose: Handle the logic necessary to bind HTML elements

to XML nodes. Note that in some instances this
binding is a two-way street. For example, if the value in
a text box should change the corresponding value in the
XML data island will also change.
*/
function _bind() {
if(arguments.length == 0) {
doBind(document.body.getElementsByTagName(‘div’));
doBind(document.body.getElementsByTagName(‘input’));
doBind(document.body.getElementsByTagName(‘select’));
doBind(document.body.getElementsByTagName(‘span’));
doBind(document.body.getElementsByTagName(‘textarea’));

} else {
applyChange(arguments[0],arguments[1]);
_bind(); // Re-bind

}

/*
Function: doBind
Programmer: Edmond Woychowsky
Purpose: To handle data-binds for specific nodes

based upon HTML element type and browser type.
*/
function doBind(objects) {
var strTag; // HTML tag
var strDI; // XML data island id
var strNode; // XML node name
var strValue; // XML node value

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagName;
strDI = objects[i].getAttribute(‘xmldi’);
strNode = objects[i].getAttribute(‘xmlnode’);

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(i).text;

else

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 146

strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

switch(strTag) {
case(‘DIV’):
case(‘SPAN’):

objects[i].innerHTML = strValue;

break;
case(‘INPUT’):

switch(objects[i].type) {
case(‘text’):
case(‘hidden’):
case(‘password’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
case(‘checkbox’):

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,” +
i.toString() + “)”);

break;
case(‘radio’):

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(0).text;

else
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,0)”);

break;
}

break;
case(‘SELECT’):
case(‘TEXTAREA’):

objects[i].value = strValue;

6.8 XML Data Islands 147

continues

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 147

Listing 6-14 continued

148 XML Chapter 6

objects[i].onchange = new Function(“_bind(this,” +
i.toString() + “)”);

break;
}

}
}

/*
Function: applyChange
Programmer: Edmond Woychowsky
Purpose: To handle changes to the bound HTML elements and apply

those changes to the appropriate XML node.
*/
function applyChange(obj,index) {
var strDI = obj.getAttribute(‘xmldi’);
var strNode = obj.getAttribute(‘xmlnode’);
var strValue = obj.value;

if(obj.type == ‘checkbox’)
if(obj.checked)

strValue = obj.value;
else

strValue = ‘’;

if(_IE)
document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +

strNode).item(index).text = strValue;
else

document.getElementById(strDI).getElementsByTagName(strNode)[index].innerH
TML = strValue;
}

}
</script>

</head>
<body onload=”_bind()”>

<xml id=”xmlDI”>
<a>

<c>one</c>

<c>two</c>

<c>three</c>

</xml>
XML Data Island Test

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 148

<div xmldi=”xmlDI” xmlnode=”c”></div>

<div xmldi=”xmlDI” xmlnode=”c”></div>

<div xmldi=”xmlDI” xmlnode=”c”></div>

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

</body>
</html>

Essentially, the code in this listing searches the HTML document for tags
of the type that can be bound to the XML. As they are encountered, the next
value from the XML is used and a change event handler is attached to the
HTML. This way, when the visitor changes the value, the XML Data Island is
updated.

Talk about lazy! No need to code-change event handlers by hand. This
leads to the possibility of simply refreshing the XML Data Island from the
server and rebinding to display updates. Pretty useful when the user requests
another page of information, not only the next page or the previous page, but
maybe even a search.

6.9 SUMMARY

This chapter covered some of the basics of XML, including the differences
between elements and attributes. It also delved into what makes an XML doc-
ument well formed and not well formed. In addition, I covered how to make
script elements in XHTML from both an XML and JavaScript point of view, as
well as entities.

The subject of namespaces was covered along with their purpose. This
included a brief look at both Document Type Definitions and schemas, and the
role that they play in validation. Finally, this chapter covered the role that
XML Data Islands can play within an HTML document.

6.9 Summary 149

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 149

06_0132272679_ch06.qxd 7/17/06 9:02 AM Page 150

C H A P T E R 7

XMLHttpRequest

Several years ago, I worked for a company that had a reputation for conceiv-
ing incredible ideas. Unfortunately, the company also had a reputation for
being unable to either recognize the value of those ideas or market a product
using those ideas. Such was the case with the XMLHttpRequest object, originally
created by Microsoft for use with one of the products in its Office Suite. It lan-
guished unused until outsiders discovered it in Internet Explorer.

These unknown intrepid developers knew immediately that the
XMLHttpRequest object was a solution in search of a problem. The only real
question was in finding the problem. And although I can’t speak for anyone
else, the problem that I chose was a shopping cart application described in
Chapter 2, “Introducing Ajax.” Remember the “mockup” that wasn’t a mockup
and didn’t “blink”? After that particular incident, I was considerably more
careful in my selection of applications—or, at least, in my selection of atten-
dees at my demonstrations.

In fact, at times I was so careful in selecting where to use the
XMLHttpRequest object that it was necessary to examine the code to see exactly
how it worked. I started by choosing applications in which it appeared that the
information was cached on the client side: the dreaded HTML select whose
contents are based upon another HTML select, which, in turn, is based upon
another HTML select. As long as nobody ever looked at the code, which
nobody ever did, the web page wouldn’t appear any different from the hun-
dreds of others in the system. That is, it wouldn’t appear different unless you
take into account speed. Without all the cached information, the initial load
was considerably faster.

In retrospect, looking back upon several of those “mad scientist” applica-
tions, I realize now that not all of them could be considered Ajax. This is
because Ajax is shorthand for Asynchronous JavaScript and XML, and some of
these applications were coded to be synchronous. And whoever heard of Sjax?

151

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 151

Nevertheless, because the XMLHttpRequest object can be used both syn-
chronously and asynchronously, both are covered. Moreover, we cover the fol-
lowing topics in this chapter:

� Synchronous
� Asynchronous
� Microsoft Internet Explorer
� XML Document Object Model
� RSS
� Web Services

7.1 SYNCHRONOUS

Although not nearly as cool as coding an asynchronous client-side application,
a synchronous client-side application is nothing to look down at. In fact, it
beats the pants off the average web application—figuratively speaking, of
course, because web applications don’t wear pants. Thinking about it, using
the XMLHttpRequest object synchronously is actually a good way to expose your-
self, also figuratively, to some of the basics.

One of the interesting things about the basics of the XMLHttpRequest
object is that these basics are actually basic. Only a few parameters and a few
lines of code separate the synchronous from the asynchronous. When you
understand that, not much is required to change a synchronous application
into an asynchronous application. Don’t believe me? Take a look at the
XMLHttpRequest object’s properties and methods shown in Table 7-1.

Table 7-1 XMLHttpRequest Object Properties and Methods

Method/Property Description
abort() Terminates the previous outstanding request.
getAllResponseHeaders() Returns all response headers, labels, and values, as

a string.
getResponseHeader(“label”) Returns the value for the provided label.
open(“method”,”url”, Opens/assigns a method: GET or POST and,
asynchronous,”username”, optionally, an asynchronous indicator.
”password”)

send(content) Sends the request with optional content. This
content can be either a string or DOM data.

setRequestHeader Sets a request header label/value pair.
(“label”,”value”)

152 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 152

Method/Property Description
onreadystatechange Event handler for asynchronous requests; fires on

each change to the readyState property.
readyState Status of the request as an integer.

0 = uninitialize
1 = loading
2 = loaded
3 = interactive
4 = complete

responseText String returned from the server.
responseXML XML document returned from the server.
status HTTP response code returned from the server.
statusText String message associated with the HTTP a.

Right now, the XMLHttpRequest object might seem like a pile of unrelated
parts, but when the individual parts are assembled in the correct sequence,
things are different. To prove my point, let’s take a look at the JavaScript that
uses XMLHTTP to synchronously get a file from the server in Gecko-based
browsers such as Firefox, Mozilla, and Flock (see Listing 7-1).

Listing 7-1 Getting a File Synchronously

var objXMLHTTP = new XMLHttpRequest();

objXMLHTTP.open(‘GET’, ‘books.xml’, false);
objXMLHTTP.send(null);

var objXML = objXMLHTTP.responseXML;

The first step is to create an instance of the XMLHttpRequest object using
the JavaScript new operator. Next, the open method is invoked using the
request method, GET, a destination URL, and a Boolean indicating that the
request is not asynchronous. The third and final step is to invoke the send
method and assign the responseXML, an XML document, to a variable. And if
you’re not interested in using XML, there is always the responseText property.

7.2 ASYNCHRONOUS

On the surface, what’s required to change the request from synchronous to
asynchronous appears to be simply changing the false parameter to true for
the open method. Unfortunately, although that would make the request asyn-
chronous, it would have some issues with the responseXML property. This is
because the request is asynchronous; instead of waiting for a response from

7.2 Asynchronous 153

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 153

the send method, processing just continues on its merry way. This means that
the responseXML property is undefined, which is not exactly what we’re looking
for or expecting.

Fortunately, there is a way to correct this issue, but it requires creating
an event handler to, er, handle changes to the readyState property. With the
XMLHttpRequest object, the value of the readyState property changes every time
something changes with the response to the request. This change fires the
handler defined by the onreadystatechange property. Let’s take a look at the
example shown in Listing 7-2.

Listing 7-2 Example of Creating an Event Handler to Correct the Problem

var objXMLHTTP = new XMLHttpRequest();
var objXML;

objXMLHTTP.onreadystatechange = asyncHandler;
objXMLHTTP.open(‘GET’, ‘books.xml’, true);
objXMLHTTP.send(null);

function asyncHandler() {
if(objXMLHTTP.readyState == 4)
objXML = objXMLHTTP.responseXML;

}

In this example, the function asyncHandler is assigned as an event handler
using the onreadystatechange property. This means that the asyncHandler func-
tion fires each time the readyState property changes. Because it fires every time
the property changes, it is necessary to verify that the response is actually com-
plete before doing anything with the response. The if statement in the
asyncHandler function takes care of this issue; a readyState equal to 4 means
that everything is fine and we’re done. But what if everything isn’t fine?

Anyone who has ever played any of the Mech Assault campaigns knows
that something always goes wrong. What fun would it be if everything worked
all the time? Thinking about it, please disregard my last statement as the
ramblings of a sick mind. Nevertheless, the universe is perverse, so bad things
happen to good people, countries, cities, and web applications. Because of this,
it is sometimes necessary to code defensively, to handle the unexpected. Note
that I said defensively, not offensively. Don’t go looking for problems; like a
mad cat with charged PPCs, they’ll find you soon enough.

You can handle this potential problem in several ways. The first possible
method involves hoping and wishing. Unfortunately, management has a ten-
dency to frown upon this method of error handling. Possibly this is because
mangers aren’t a particularly hopeful group of people. Maybe because their
heads are on the chopping block right next to our own.

154 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 154

A better method of handling potential problems, at least from a job
longevity point of view, is to consider what could go wrong. The way that I see
it, things can go wrong in two possible ways. The first of these is getting basic
bad information back from the server. During development, this can be han-
dled by an alert and the responseText property. Beyond the development
phase, however, this would probably scare away the non–mad scientists. At
these times, you might want to inform the user that an error has taken place
and use the XMLHttpRequest object to tell development about it. A more com-
mon, and much harder to handle, error is a timeout.

A timeout, for those who have been watching Star Gate SG-1 instead of
reading about web development, occurs when an application either doesn’t
respond at all or doesn’t respond in a reasonable amount of time. Who defines
“reasonable”? You do. Big believer in the 7-second rule? Then use 7 seconds.
Like the Hitchhiker’s Guide to the Galaxy? Then use 42 seconds. In short, use
whatever time period seems appropriate. After you decide this, all that is nec-
essary is to figure out how to handle it.

Personally, I’m fond of using the setTimeout method with a variable set to
the result from the method. If the response is received within the specified
time limit, clearTimeout can be used to prevent the timeout function from exe-
cuting. Otherwise, the function specified by the setTimeout method will exe-
cute and any problems can be dealt with then. All in all, using the setTimeout
method is a rather elegant solution to a potentially fatal problem.

This leaves really only one issue: What to do with those individuals who,
for some reason, choose to use Microsoft Internet Explorer? Keep it clean! Yes,
we have to accommodate those people in some way, beyond the Click Here to
Download option.

7.3 MICROSOFT INTERNET EXPLORER

Unlike most other web browsers, Microsoft Internet Explorer uses something
called ActiveX, which is a holdover from an earlier age when object libraries
where new, untried, and obscure. Because of this, ActiveX is like the bowels of
a ship: Sometimes nasty things are down there. In the case of ActiveX, the
ship is a spaceship named Nostromo. However, this isn’t a “knock Internet
Explorer” session. You’ll find enough of those online today.

Unlike most cross-browser differences encountered when developing web
applications, this one doesn’t require a lot of code. In fact, the single line of
code shown here is enough to do the deed, from an Internet Explorer point of

7.3 Microsoft Internet Explorer 155

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 155

view. This JavaScript creates in Microsoft Internet Explorer an ActiveX object
that is the XMLHttpRequest object:

var objXMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

So now that we’ve got a potential source of XML, the big question is how
to handle it.

7.4 XML DOCUMENT OBJECT MODEL

The majority of web developers are familiar with the HTML DOM, but unless
they’re used to XML development, they might not even realize that the XML
DOM exists. In fact, even if they are aware that there is a Document Object
Model for use with XML, they might not know that there is a difference
between the XML and the HTML DOM. For example, the HTML DOM is
geared more toward the various HTML elements, whereas the XML Document
Object Model is somewhat more generic.

The XML Document Object Model is a common API for dealing with
XML. It provides a standard interface for accessing, modifying, and creating
the various parts of an XML document. Let’s take a look at the XML document
shown in Listing 7-3 as a starting point, and you’ll see what I mean.

Listing 7-3 An XML Document

<?xml version=”1.0”?>
<garden>
<plant>
<name>Foxglove</name>
<use>heart</use>
<part>root</part>

</plant>
<plant>
<name>Mandrake</name>
<use>impotency</use>
<part>root</part>

</plant>
<plant>
<name>Trillium</name>
<use>poison</use>
<part>leave</part>

</plant>
<plant>
<name>Wolfsbane</name>
<use>werewolf repellent</use>
<part>flower</part>

</plant>

156 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 156

<plant>
<name>Meadowsweet</name>
<use>cramps</use>
<part>leave</part>

</plant>
</garden>

After the requisite browser-specific JavaScript is executed and the XML
document from Listing 7-3 is loaded into a variable—say, myXML—it is time to
try out the DOM. Let’s say, for instance, that we’re interested in getting all the
plant nodes in a node set. Using the DOM, we could code the following:

var myNodeset = myXML.getElementsByTagName(‘plant’);

Pretty slick, isn’t it?
But there’s more to the XML Document Object Model than the

getElementsByTagName method. In fact, an entire slew of properties and methods
is available by using the XML DOM interfaces in JavaScript. However, to use
these properties and methods, it is necessary to know the various interfaces
available in JavaScript, as outlined in Table 7-2.

Table 7-2 JavaScript Interfaces Relevant to Using the XML DOM

Interface Name Description
DOMException Exception raised by a DOM method when the

requested action cannot be completed
ExceptionCode Integer that indicates the type of error raised by a

DOMException

DOMImplementation Provides methods that are independent of any
implementation of the XML Document Object Model

DocumentFragment A lightweight XML document, often used to hold
portions of an XML document

Document Used to hold an entire XML document
Node Represents a single node of an XML document
NodeList An indexed list of nodes
NamedNodeMap A collection of nodes that are accessed either by name

or by index
CharacterData Extends the Node interface by adding character-

specific properties and methods
Attr Represents the attributes for individual elements

7.4 XML Document Object Model 157

continues

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 157

Table 7-2 continued

Interface Name Description
Element Extends the Node interface by adding methods for

accessing and adding attributes
Text Represents the text content of an Element
Comment Represents an XML comment, the text between

<!-- and -->
CDATASection Interface used to escape text that would normally be

parsed as XML
DocumentType Used to define the document type
Notation Represents a notation declared in the Document Type

Definition (DTD)
Entity Interface used to represent an XML entity, which can

be either parsed or unparsed
EntityReference Interface that contains a reference to an XML entity
ProcessingInstruction Interface that contains a text-processing instruction

Each of these interfaces has a number of properties and methods that
can be used to manipulate an XML document. Table 7-3 lists the various prop-
erties and methods, along with their associated interfaces.

Table 7-3 Properties and Methods for Various Interfaces

Property/Method Interface Description
hasFeature(feature,version) DOMImplementation Returns a Boolean

indicating whether the
feature is supported.

Doctype Document The DTD associated with
this XML document.

Implementation Document The DOMImplementation
for this document.

documentElement Document The document’s root
element.

createElement(tagName) Document Creates the specified
element.

createDocumentFragment() Document Creates an empty
document fragment.

createTextNode(data) Document Creates a Text element
using the data provided.

createComment(data) Document Creates a Comment node
using the data provided.

158 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 158

Property/Method Interface Description
createCDATASection(data) Document Creates a CDATASection

node using the data
provided.

createProcessingInstruction Document Creates a
(target,data) ProcessingInstruction

node.
createAttribute(name) Document Creates an Attribute.
createEntityReference(name) Document Creates an

EntityReference.
getElementsByTagName Document Returns a node set
(tagname) Node consisting of elements

CharacterData with matching tag
Attr names.
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

nodeName Document The name of the node.
Node
CharacterData
Attr
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

nodeValue Document The value of the node.
Node
CharacterData
Attr
Element
Text
Comment
CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

7.4 XML Document Object Model 159

continues

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 159

Table 7-3 continued

Property/Method Interface Description
nodeType Document The type of the node.

Node See Table 7-4 for
CharacterData accepted values.
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

parentNode Document The parent of the
Node current node.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

childNodes Document A node set consisting of
Node the child nodes of the
CharacterData current node. Note that
Attr the node set may be
Element empty.
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

firstChild Document The first child node of
Node the current node.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

160 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 160

Property/Method Interface Description
lastChild Document The last child of the

Node current node.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

previousSibling Document The previous child of the
Node current node’s parent.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

nextSibling Document The next child of the
Node current node’s parent.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Attributes Document A collection consisting of
Node the attributes for the
CharacterData current node.
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

7.4 XML Document Object Model 161

continues

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 161

Table 7-3 continued

Property/Method Interface Description
ownerDocument Document The Document

Node associated with the
CharacterData current element.
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

insertBefore(new,reference) Document Inserts the new
Node child node before
the reference child node.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

replaceChild(new,old) Document Replaces the old
Node child node with the
CharacterData new child node.
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

removeChild(old) Document Removes the old
Node child node.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

162 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 162

Property/Method Interface Description
appendChild(new) Document Appends the new child

Node node as the last child.
CharacterData
Attr
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

hasChildNodes() Document Returns a true if child
Node nodes exist and a
CharacterData false if child nodes do
Attr not exist.
Element
Text
Comment CDATASection
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

cloneNode(deep) Document Duplicates the specified
Node node. The Boolean
CharacterData parameter deep is
Attr used to indicate a deep
Element copy, which states
Text whether the children
Comment CDATASection should be copied.
DocumentType
Notation Entity
EntityReference
ProcessingInstruction

Length NodeList The number of items
NamedNodeList in the collection or the
CharacterData length of the character

data.
item(index) NodeList Returns a single node

NamedNodeList from a collection based
upon the index.

getNamedItem(name) NamedNodeMap Returns a single node
based upon the node
name.

setNamedItem(node) NamedNodeMap Adds a single node.

7.4 XML Document Object Model 163

continues

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 163

Table 7-3 continued

Property/Method Interface Description
removeNamedItem(name) NamedNodeMap Removes a node

based upon the node
name.

Data CharacterData The character data
Text for the node.
Comment CDATASection
ProcessingInstruction

substringData(offset,length) CharacterData Extracts a substring
Text from the character
Comment CDATASection data for the node.

appendData(string) CharacterData Appends the string
Text to the end of the
Comment CDATASection node’s character

data.
insertData(offset,string) CharacterData Inserts the string

Text into the node’s
Comment CDATASection character data at

the offset.
deleteData(offset,length) CharacterData Deletes the number

Text of characters
Comment CDATASection specified by the

length, starting at
the offset.

replaceData CharacterData Replaces the
(offset,length,string) Text number of

Comment CDATASection characters specified
by the length,
starting at the offset
with the specified
string.

Name Attr The attribute name
DocumentType or the DTD name,

in the case of the
DocumentType.

Specified Attr A Boolean
indicating whether
the attribute has a
value in the original
document.

Value Attr The string value of
the attribute.

tagName Element The tag name of the
Element.

164 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 164

Property/Method Interface Description
getAttribute(name) Element Returns the value of

an attribute based
upon name.

setAttribute(name,value) Element Creates an attribute
and sets its value.

removeAttribute(name) Element Removes an attribute
by name.

getAttributeNode(name) Element Retrieves an Attr
node by name.

setAttributeNode(name) Element Adds an Attr node by
name.

removeAttributeNode(name) Element Removes an Attr node
by name.

normalize() Element Normalizes the
specified element and
children of the
specified element.

splitText(offset) Text Splits the Text node
into two Text nodes at
the specified offset.

Entities DocumentType A NamedNodeMap
containing the entities
declared in the DTD.

Notations DocumentType A NamedNodeMap
containing the
notations declared in
the DTD.

publicId Notation The public identifier
Entity for this notation, or a

null if no public
identifier is specified.

systemId Notation The system identifier
Entity for this notation, or a

null if no system
identifier is specified.

notationName Entity The name of the
notation for this entity
if the entity is
unparsed. If the entity
is parsed, the result is
null.

Target ProcessingInstruction The target for this pro-
cessing instruction.

7.4 XML Document Object Model 165

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 165

Table 7-4 The Node Types

Node Type Value Interface
ELEMENT_NODE 1 Element

ATTRIBUTE_NODE 2 Attr

TEXT_NODE 3 Text

CDATA_SECTION_NODE 4 CDATASection

ENTITY_REFERENCE_NODE 5 EntityReference

ENTITY_NODE 6 Entity

PROCESSING_INSTRUCTION_NODE 7 ProcessingInstruction

COMMENT_NODE 8 Comment

DOCUMENT_NODE 9 Document

DOCUMENT_TYPE_NODE 10 DocumentType

DOCUMENT_FRAGMENT_NODE 11 DocumentFragment

NOTATION_NODE 12 Notation

By using these interfaces, it is possible to manipulate an XML document
without really having to mess around too much. The only real issue is the vast
array of properties and methods available. They can be rather overwhelming.
But personally, I find myself using a narrow range of properties and methods
to perform any task that is needed. This narrow range includes methods such
as getElementsByTagname and attributes.

7.5 RSS

Really Simple Syndication, or RSS, is a dialect of XML that is commonly used
for providing news-related content. Things such as news headlines are the
realm of RSS. The only issue is that because RSS is XML, it doesn’t appear as
pretty as HTML does in a web browser. Consider the RSS shown in Listing 7-4
as an example.

Listing 7-4 RSS Example

<?xml version=”1.0”?>
<rss version=”2.0”>
<channel>
<title>NEWS!</title>
<link>http://overlord.gov/</link>
<description>Latest news</description>
<language>en-us</language>
<pubDate>Tue, 29 Nov 2005 03:00:00 GMT</pubDate>

166 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 166

<lastBuildDate>Tue, 29 Nov 2005 03:07:00 GMT</lastBuildDate>
<docs>http://blogs.overlord.gov/rss</docs>
<generator>My Generator</generator>
<managingEditor>Bob@gol.com</managingEditor>
<webMaster>webmaster@gol.com</webMaster>

<item>
<title>Galactic Overlord Resigns</title>
<link>http://overlord.gov/news/2005/news-resign.aspx</link>
<description>
The much despised Galactic Overlord has announced
his resignation as the Blorf fleet entered
orbit.
</description>

<pubDate>Tue, 29 Nov 2005 03:07:00 GMT</pubDate>
<guid>http://overlord.gov/news/2005/11/28.html#item1</guid>

</item>
<item>
<title>Earth’s Moon Stolen</title>
<link>http://overlord.gov/news/2005/news-moon.aspx</link>
<description>
Luna, the often photographed natural satellite of
Earth, has been reported stolen. According to a
UN spokesperson, at this moment, there are no
suspects.
</description>

<pubDate>Tue, 29 Nov 2005 05:28:00 GMT</pubDate>
<guid>http://overlord.gov/news/2005/11/28.html#item2</guid>

</item>
</channel>

</rss>

Not very pretty, is it? There are, however, ways to prettify it. (Wow, who
would have thought that prettify was a word? Oops, off the subject matter.)
Using JavaScript and the DOM methods and properties, it is possible to extract
only the headlines from the RSS shown. For example, the getElementsByTagname
or the getNamedItem properties could be used to obtain the title elements. The
content of these elements could then be displayed on the page as a hyperlink.
Clicking on the link could then fire a JavaScript handler that would display the
description element.

The purpose of this side trip into the wonderful world of Really Simple
Syndication was to merely show some of the possibilities of XML. When infor-
mation is available as XML, it can at times be treated as something like a
database. In essence, XML is not only the data itself, but also the source of
subsets of that data.

7.5 RSS 167

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 167

7.6 WEB SERVICES

Regardless of where you look, web services are a hot subject, and not just on
resumés. Something of a mystique surrounds web services; like the latest hot
video game, everybody wants one, even if nobody is quite sure what one is.
Ah, to be a kid again, wanting something just because I want it. Who am I
kidding? I’m still that way, obsessing over games such as Stargate: The
Alliance for XBox, and books such as Practical Guide to Red Hat Linux: Fedora
Core and Red Hat Enterprise Linux. However, unlike businesses, my pockets
aren’t full of much other than lint, which means that I have to wait, whereas
businesses can just whip out the checkbook.

7.6.1 What Is a Web Service?

Alright, because everybody wants a web service, there are only two questions.
The first question is, what is a web service? And the second question is, how
does a web service work? Let’s start by answering the first question: What is a
web service?

A web service is a piece of software designed to respond to requests
across either the Internet or an intranet. In essence, it is a program that exe-
cutes when a request is made of it, and it produces some kind of result that is
returned to the caller. This might sound a lot like a web page, but there is a
significant difference: With a web page, all the caller is required to know about
the page is the URI. With a web service, the caller needs to know both the URI
and at least one of the web service’s public methods. Consider, for example, the
C# web service shown in Listing 7-5. Knowing the URI, which, incidentally, is
http://localhost/AJAX4/myService.asmx, isn’t enough. It is also necessary to
know that the public method is called monster.

Listing 7-5 Web Service Example

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace AJAX4
{
public class myService : System.Web.Services.WebService
{
public myService()
{

168 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 168

InitializeComponent();
}

#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing && components != null)
{
components.Dispose();

}
base.Dispose(disposing);

}

#endregion

[WebMethod]
public string monster()
{
return “Grrr!”;

}
}

}

Great, now we have a web service—whoopee, we’re done, right? Wrong!
Having a web service is only part of the battle; it falls into the same category as
having a swimming pool and not knowing how to swim. Yeah, it is impressive,
but deep down, there is a nagging feeling of feeling stupid for the unnecessary
expense. What is needed is the knowledge of how to invoke the web service.

Impressive word, invoke; it conjures up images of smoke, candles, penta-
grams, and demons, the kind that could rip a soul from a body and torment it
for eternity—or, at least, during the annual performance evaluation. As with
invoking a demon, invoking a web service is all a matter of how things are
phrased, knowing both what to ask and how to ask. In both cases, mistakes
can lead to, um, undesirable results.

7.6 Web Services 169

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 169

7.6.2 SOAP

Unlike demonology, which requires the use of Latin (of the Roman variety, not
the swine variety), invoking a web service requires the use of a dialect of XML
called SOAP. And as with everything even remotely computer related, SOAP is
an acronym standing for Simple Object Access Protocol. Fortunately, with
SOAP, the little elves who name things didn’t lie: It is actually simple, and
who would have thought it?

The basic structure of a SOAP request is an envelope, which is also a
pretty good analogy of not only what it is, but also what it does. It serves as a
wrapper around the request and any parameters being passed to the web
service. Consider the example of SOAP shown in Listing 7-6, whose purpose is
to invoke the web service from Listing 7-5.

Listing 7-6 SOAP to Invoke the Web Service

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<monster xmlns=”http://tempuri.org/” />

</soap:Body>
</soap:Envelope>

Doesn’t look like much does it? All that the SOAP envelope does is spec-
ify the method, monster, along with a namespace—which, in this case, is the
default, basically a placeholder. If the method requires any parameters, they
would be passed as children of that method. For example, let’s add the method
shown in Listing 7-7 to the web service from Listing 7-5.

Listing 7-7 Method to Add to the Web Service

[WebMethod]
public string echo(string text)
{
return text;

}

Beyond changing the method from monster to echo, there is the little prob-
lem of the parameter named text. Because of the parameter, it is necessary to
change the body of the SOAP request to the one shown in Listing 7-8..

Listing 7-8 The New SOAP Request

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

170 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 170

7.6 Web Services 171

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<echo xmlns=”http://tempuri.org/”>
<text>Dijon Ketchup</text>

</echo>
</soap:Body>

</soap:Envelope>

Now that we’ve got the basics down of the SOAP envelope (yes, there is
more) let’s consider how to deliver it to the web service. Unfortunately, FedEx
and UPS are both out of the question, although it might be fun to call and ask
the rates for delivering a SOAP envelope to a web service—at least, until they
got a restraining order. This leaves the XMLRequest object as the best available
resource: neither rain, nor snow, and all that stuff.

Everything necessary to deliver the SOAP envelope is already in there,
so the only issue is how to send our SOAP envelope—after all, there are no
mailboxes with little red flags. Fortunately, we have a good chunk of the code
down already, including the SOAP envelope itself. Instead of beating around
the bush, Listing 7-9 shows the client-side JavaScript necessary to invoke the
monster method of our web service.

Listing 7-9 JavaScript to Invoke the monster Method

try {
objXMLHTTP = new XMLHttpRequest();

}
catch(e) {
objXMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

}

objXMLHTTP.onreadystatechange = asyncHandler;

objXMLHTTP.open(‘POST’, ‘http://localhost/AJAX4/myService.asmx’, true);
objXMLHTTP.setRequestHeader(‘SOAPAction’,’http://tempuri.org/monster’);
objXMLHTTP.setRequestHeader(‘Content-Type’,’text/xml’);
objXMLHTTP.send(soap);

function asyncHandler() {
if(objXMLHTTP.readyState == 4)
alert(objXMLHTTP.responseText);

}

The first noticeable change from the earlier asynchronous request (refer
to Listing 7-2) is that the method has been changed from GET to POST; this is
because it is necessary to post the SOAP envelope to the web service. This

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 171

leads to the second change; the URI in the open method is now the address of
the web service instead of a filename.

Perhaps the biggest changes are the addition of two setRequestHeader
methods. The first one sets the SOAPAction to the web service’s namespace and
the method to be invoked. It is important to note that it is absolutely neces-
sary for the SOAPAction header to be identical to the method in the SOAP enve-
lope. If they aren’t identical, it won’t work. Personally, I spent a lot of time
chasing my tail trying to figure out what was wrong whenever the methods
were different, but, then, I was raised by wolves and have a strong tendency to
chase my tail.

The second setRequestHeader is the easy one; all that it does is set the
Content-type to text/xml. As if we’d be doing anything else. But this raises the
question of what the response from the web service will look like, beyond being
XML.

Well, there are essentially two possible responses; either it worked or it
didn’t. If it worked, it will look a lot like the response shown in Listing 7-10.
However, there could be some differences. For instance, it could be an XML
document instead of the “Grrr!”, but this is only an example, so why strain
ourselves?

Listing 7-10 The Response

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<monsterResponse xmlns=”http://tempuri.org/”>
<monsterResult>Grrr!</monsterResult>

</monsterResponse>
</soap:Body>

</soap:Envelope>

The second possible response is broken into two parts. The first part is
called a SOAP fault. Basically, it means that something is wrong with the
request, such as the methods not being identical. Listing 7-11 shows a SOAP
fault that was created when I changed the SOAPAction in the request header to
xxxx when it should have been monster.

Listing 7-11 A SOAP Fault

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

172 XMLHttp Request Chapter 7

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 172

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<soap:Fault>
<faultcode>soap:Client</faultcode>
<faultstring>
System.Web.Services.Protocols.SoapException: Server
did not recognize the value of HTTP Header
SOAPAction: http://tempuri.org/xxxx.

at
System.Web.Services.Protocols.Soap11ServerProtocolHelper.RouteRequest()

at System.Web.Services.Protocols.SoapServerProtocol.Initialize()
at System.Web.Services.Protocols.ServerProtocol.SetContext(Type type,

HttpContext context, HttpRequest request, HttpResponse response)
at System.Web.Services.Protocols.ServerProtocolFactory.Create(Type

type, HttpContext context, HttpRequest request, HttpResponse response,
Boolean& abortProcessing)
</faultstring>

<detail/>
</soap:Fault>

</soap:Body>
</soap:Envelope>

The final two possible responses also cover errors. For example, there
could be errors that are not handled correctly in the web service. This could
result in the web service returning text concerning the error instead of either
a SOAP response or a SOAP fault. It is important to take this into considera-
tion when creating a web service.

Although the language C# was used here for writing the web services, it
is important to remember that these techniques can be applied to a whole slew
of languages. In the end, the choice of language is yours, or it belongs to the
powers-that-be, or somewhere in the hierarchy.

7.7 SUMMARY

This chapter covered the object essential to Ajax, the XMLHttpRequest object in
both Gecko-based browsers and Microsoft Internet Explorer. In addition, the
differences between synchronous and asynchronous requests were described,
along with the care and feeding of both types of requests. The question of how
to handle the XML retrieved was described through the use of the XML
Document Object Model.

The ever-present Really Simple Syndication was then covered as a poten-
tial source of XML. Finally, the ultimate source of XML (one which you might
already have), web services, was described along with SOAP.

7.7 Summary 173

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 173

07_0132272679_ch07.qxd 7/17/06 9:03 AM Page 174

C H A P T E R 8

Ajax Using XML and XMLHttpRequest

Unlike the previous chapter, which was sort of “mad scientist stuff” with train-
ing wheels, here the training wheels come off. We’re free to either fly like the
wind or remove large amounts of skin from various body parts. Based upon my
personal experience as a web developer, we’ll probably do some of both. From
this chapter forward, nobody, regardless of their personal feelings, can deny
that what we do in this chapter falls under the definition of Ajax.

Up to this point, the only part of Ajax that we’ve really seen is the
JavaScript. Feels like a rip-off, doesn’t it?

Don’t worry, we’re building up to it. It would not do to have the monster
rise off the slab in the beginning of Chapter 1, would it? Alright, I, too have a
tendency to fast-forward to the good parts. For example, I don’t care how SG-1
got to Antarctica; I just want to see the ship-to-ship battle over the pole and
the battle in space. Come to think of it, Stargate SG-1 should be required
watching for mad scientists because two of the regular characters could be
classified as mad scientists themselves.

The mad scientist stuff covered in this chapter is the basic building block
of Ajax applications, the XMLHttpRequest object and how to determine what’s
actually going on. Along with this object is XML, including how to deal with it
on the client and some of the ways to deal with it, such as SOAP (basically, a
way to package XML for transport to and from the server). The final item cov-
ered is what to do with the XML on the client, such as put it in an XML Data
Island. To skip ahead a little, because mad scientists like to describe their dia-
bolical plans, XML Data Islands are one of the methods that can be used to
both embed and bind HTML controls and data. The best part is, if you change
one, the other changes.

175

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 175

8.1 TRADITIONAL VERSUS AJAX WEBSITES

Before we go any further, this is a good time to review how the average web-
site works, if only to see the contrast between it and Ajax websites. With a tra-
ditional website, it isn’t unusual for the same page to go through the
unload/reload cycle several times before progressing to the next logical page. A
number of valid reasons explain why these unload/reload cycles occur, ranging
from HTML select objects whose contents are based on other select objects to
simply bad input caught on the server side. In the end, the result looks quite a
lot like Figure 8-1.

176 Ajax Using XML and XMLHttpRequest Chapter 8

Page
Page

Page
Page

Page
Page

Web Server

Time

Figure 8-1 The traditional unload/reload cycle

Even in the early days, when the paint wasn’t yet fully dry on the World
Wide Web, the unload/reload cycle got old pretty quick, especially at dial-up
speeds. Now with the improved bandwidth available, things are different; it is
old right from the start. For example, several years ago, I worked as a consult-
ant for a company that was trying to get a handle on the whole “web thing,” as
they referred to it. Their approach was to wave a magic wand, and, “Poof!”—a
CICS programmer was now a web developer. Although this approach worked,
after a fashion, it led to some rather interesting web development standards.

Their standard went pretty much along the lines of trying to make web
pages as much like the mainframe CICS pages as possible. These standards
were a combination of the weird and the scary. An example of the weird was
that initially all scrolling, regardless of the direction, was forbidden because it

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 176

was thought to be unprofessional. This meant that it was necessary to break
up tabular web pages into single page–sized chunks and provide the user with
some means of navigation.

On the other hand, some of the scary things were really scary. For exam-
ple, they believed that there was nothing wrong with giving scripts write per-
mission to the web server. Let’s say, for instance, that a shopping cart for the
web application was needed. Following the local standards, it was perfectly
acceptable for the “temporary” shopping cart to be written to the web server.
The rationale was that it was easier to work with flat files than to store infor-
mation either on the client side or in a database table. Time permitting, they
also could write a “batch job” to clean up the web server of abandoned shop-
ping carts.

The shopping cart was actually coded in the manner that I described,
but, thankfully, it was an absolute pig. It was both slow and temperamental,
with items both appearing and disappearing seemingly at random in the shop-
ping cart. In fact, my wife would probably say that it was like shopping with
me: “Where did those Parmesan Goldfish and Double-Stuff Oreos come from?”

I still shudder whenever I think that there was actually a chance of that
page making it into a production environment and that management thought
it was a perfectly acceptable design. Fortunately, the individual who developed
that application was needed to fix a mainframe production problem, so I was
assigned the task of making it work. I spent maybe a total of 10 minutes
attempting to determine what was going wrong before deciding to try a some-
what more modern approach.

The initial concept was to make the client work for a living and to pad
my resumé with a whole bunch of things that I had only played with in the
past, such as the XMLHttpRequest object. The result was a separation between
the presentation layer and the web server; it was easily ten times faster than
any of their existing web pages. It could have been faster yet, but, unfortu-
nately, I was unable to bypass the draconian rules that were in place regard-
ing stored procedures. Stored procedures were, in a word, forbidden, being
considered as both too confusing to write and of no use. Argh! I was one step
away from a three-tiered architecture.

Regardless of the frustration that I felt at the time, I did achieve some-
thing wonderful by stumbling upon what was years later to be named Ajax.
The shopping cart application was both similar to and different from the site’s
existing pages. The similarity to the existing applications was akin to the sim-
ilarity between a soufflé and scrambled eggs. Many of the ingredients are the
same; the real differences come from the technique used in putting the ingre-
dients together. Probably the easiest way to illustrate this difference is to use
a picture, such as the one shown in Figure 8-2.

8.1 Traditional Versus Ajax Websites 177

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 177

Figure 8-2 An Ajax application

Very different from Figure 8-1, isn’t it? Instead of a page seemingly
unloading and reloading forever, the single page communicates directly with
the web server. This greatly reduces the need for the unload/reload cycle,
which has a lot of overhead. Think of it in terms of a trip to the moon. What if
the Apollo astronauts needed to bring every necessity with them? Air, water,
food, and anything else that was required had to be trucked along with them
from the Earth to the moon. Now imagine for a moment that the moon had a
breathable atmosphere and McDonald’s. All of a sudden, a trip to the moon
becomes almost as easy as a trip to Florida.

Ajax does something similar by establishing an infrastructure on the
client side. This infrastructure can be as simple or as complex as you want. In
fact, now is a good time to see what goes into building our Ajax infrastructure.
So queue the storm sound effects and put on the lab coat, and let’s get our
hands dirty.

8.2 XML

As you’re aware, if only from the cameo appearance in Chapter 2, “Introducing
Ajax,” XML stands for eXtensible Markup Language, but other than the pur-
pose of padding resumés, you’re probably not aware of why XML is used so
much. Basically, there are three main reasons for the popularity of XML, not
including the air of mystery surrounding anything with an X in it. (Don’t
believe me about the air of mystery? What about The X-Files and X-Men?)

Literally tons has been written about XML—well, at least when hard
copy is taken into account. As for electronic editions, I can’t say because my
notebook seems to weigh the same, regardless of the free space available. For

178 Ajax Using XML and XMLHttpRequest Chapter 8

Web Server

Time

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 178

this reason, I won’t bore you with the history of XML and how it is the best
thing since sliced bread, or how it cures baldness, because it would be either
redundant or an outright lie. Anyone who has ever developed an application
that uses XML knows that there is a good chance of pulling out one’s own hair
when attempting to explain XML to fellow developers who still haven’t
grasped the software equivalent of the concept of fire. However, I should at
least hit the highlights and point out some of the more useful and obscure
topics.

8.2.1 Well Formed

Alright, the concept that XML has to be well formed is not obscure, but it does
fall well into the useful bucket. You’d be surprised at the number of times that
I’ve had to explain the concept of “well formed” to a particular project leader
with mainframe roots. Or, come to think of it, maybe you wouldn’t. Let’s just
say that, like the Creature from the Black Lagoon, the XML challenged walk
among us, and you don’t even need to travel to the now-closed Marineland in
Florida to find them. For this reason, it is time for XML 101.

An XML document is well formed when the follow conditions have
been met:

� All opening tags either have a closing tag or are self-closing.
� All attributes have values.
� All the values for the attribute are enclosed in either quotes or apostro-

phes. I should point out, however, that they need to be consistent. This
means no mixing and matching; if a quotation mark is used on the left
side of a value, a quotation mark must be used on the right side.

� Beware of entities! Wow, that sounds spooky, doesn’t it? Entities are spe-
cial characters that need to be handled with respect because, without
special handling, they can be mistaken as something other than content.

That was relatively easy, wasn’t it? I recommend quoting it verbatim
whenever it is necessary to explain the concept to a clueless project leader. But
you need to remember to make your eyes big when saying “Beware of entities!”
because they like that.

Alright, now that you’re (hopefully) open to XML, the big question is,
where does it come from? Well, that depends on both your web server and data-
base environments; some have built-in methods for producing XML directly
from the result of SQL SELECT statements or stored procedures. If your envi-
ronment doesn’t support that, there is always the possibility of “rolling” your
own XML. Because XML is human readable—essentially, text—with a little
work, it is possible to create XML, even where XML isn’t supported.

8.2 XML 179

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 179

Take, for example, MySQL. Although both Oracle and SQL Server can
produce XML directly from a stored procedure, a little more effort is required
to produce XML from MySQL. First, a stored function is required to build the
individual nodes by concatenating the node name and value, as in Listing 8-1.
Next, a function is needed that uses a cursor to step through the results of a
query and build the XML using the aforementioned stored function. Listing
8-2 contains a sample stored procedure to do just that.

Listing 8-1 Concatenating a Stored Function

DELIMITER $$

DROP FUNCTION IF EXISTS `ajax`.`f_xmlNode`$$
CREATE FUNCTION `ajax`.`f_xmlNode`(
/*
To produce the text representation of an XML node.

*/
nodeName VARCHAR(255), /* XML node name */
nodeValue LONGTEXT, /* XML node value */
escape BOOLEAN /* Apply XML entity escaping */

) RETURNS longtext
BEGIN
DECLARE xml LONGTEXT; /* XML text node/value combination */

IF nodeValue IS NULL OR LENGTH(nodeValue) = 0 THEN
SET xml = CONCAT(‘<’,nodeName,’ />’);

ELSE
IF escape THEN
SET xml =

CONCAT(‘<’,nodeName,’>’,REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(nodeValue,
’&’,’&’),’>’,’>’),’<’,’<’),’’’’,’'’),’”’,’"’),’</’,nod
eName,’>’);

ELSE
SET xml = CONCAT(‘<’,nodeName,’>’,nodeValue,’</’,nodeName,’>’);

END IF;
END IF;

RETURN xml;
END$$

DELIMITER ;

Listing 8-2 XML Producing a Stored Procedure

DELIMITER $$

DROP PROCEDURE IF EXISTS `ajax`.`itemSelectXML`$$
CREATE PROCEDURE `ajax`.`itemSelectXML`(
guildItemId INTEGER,
guildId INTEGER
)

180 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 180

BEGIN
DECLARE done BOOLEAN DEFAULT FALSE;
DECLARE xml LONGTEXT DEFAULT ‘<items>’;
DECLARE cGuildItemId INTEGER(6);
DECLARE cGuildId INTEGER(6);
DECLARE cGuildName VARCHAR(255);
DECLARE cItemName VARCHAR(255);
DECLARE cItemDescription VARCHAR(255);
DECLARE cItemPrice DECIMAL(10,2);
DECLARE itemCursor CURSOR FOR SELECT b.guild_item_id,

b.guild_id,
g.guild_name,
i.item_name,
i.item_description,
i.item_price

FROM guild_item_bridge b
INNER JOIN guild g
ON b.guild_id =

g.guild_id
INNER JOIN item i
ON b.item_id = i.item_id
WHERE (guildItemId IS NULL

OR guildItemId =
b.guild_item_id)

AND (guildId IS NULL
OR guildId =
b.guild_id);

DECLARE CONTINUE HANDLER FOR SQLSTATE ‘02000’ SET done = TRUE;

OPEN itemCursor;

FETCH itemCursor INTO cGuildItemId,
cGuildId,
cGuildName,
cItemName,
cItemDescription,
cItemPrice;

REPEAT
SET xml =

CONCAT(xml,’<item><guild_item_id>’,cGuildItemId,’</guild_item_id>’);
SET xml = CONCAT(xml,’<guild_id>’,cGuildId,’</guild_id>’);
SET xml =

CONCAT(xml,’<guild_item_name>’,REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cGu
ildName,’&’,’&’),’>’,’>’),’<’,’<’),’’’’,’'’),’”’,’"’),
’</guild_item_name>’);

SET xml = CONCAT(xml,f_xmlString(‘item_name’,cItemName));
SET xml =

CONCAT(xml,’<item_description>’,REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(cI
temDescription,’&’,’&’),’>’,’>’),’<’,’<’),’’’’,’'’),’”’,’&q
uot;’),’</item_description>’);

8.2 XML 181

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 181

Listing 8-2 continued

182 Ajax Using XML and XMLHttpRequest Chapter 8

SET xml =
CONCAT(xml,’<item_price>’,cItemPrice,’</item_price></item>’);

FETCH itemCursor INTO cGuildItemId,
cGuildId,
cGuildName,
cItemName,
cItemDescription,
cItemPrice;

UNTIL done END REPEAT;

SET xml = CONCAT(xml,’</items>’);

SELECT xml;

CLOSE itemCursor;
END$$

DELIMITER ;

Here’s how it works: The stored procedure shown in listing 8-2 retrieves
the result of a query, builds an XML string containing the opening root ele-
ment, and then performs the following steps for each row retrieved:

1. If the item is numeric, concatenate it, wrapped in the appropriate XML
tags, to the XML string.

2. If the item is alpha or alphanumeric, the stored function shown in
Listing 8-1 is invoked to handle any entities and wrap the information in
appropriate XML tags. The result of this stored function is then concate-
nated to the XML string.

After all the rows have been processed, the closing root element is
appended to the XML string and the process is complete. Now that we have a
reliable source of XML, let’s examine how we can use it in a web browser.

8.2.2 Data Islands for Internet Explorer

The official party line about XML Data Islands is that they are a “Microsoft-
only” technology and, therefore, will not work with any other browser. Yeah,
right. However, before altering the fabric of reality as only a mad scientist can,
let’s take a closer look at what XML data islands are and how they work.

As foreboding as the term XML Data Island is, according to the official
definition, it is nothing more than XML embedded somewhere in an HTML
document. Not too bad—sounds about as scary as a bowl of goldfish. In fact,
Listing 8-3 is a basic HTML page with XML embedded smack in the middle of
it, with Figure 8-3 showing what it looks like in Microsoft Internet Explorer.

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 182

Listing 8-3 HTML with Embedded XML

<html>
<head>
<title>XML Data Island Test</title>

</head>
<body>
<xml id=”di”>
<states>
<state>

<abbreviation>NJ</abbreviation>
<name>New Jersey</name>
</state>
<state>
<abbreviation>NY</abbreviation>
<name>New York</name>

</state>
<state>
<abbreviation>PA</abbreviation>
<name>Pennsylvania</name>

</state>
</states>

</xml>
XML Data Island Test

</body>
</html>

8.2 XML 183

Figure 8-3 HTML with embedded XML in Internet Explorer

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 183

Piece of cake, isn’t it? Right up to the point that somebody opens it in
Firefox, as Figure 8-4 illustrates.

184 Ajax Using XML and XMLHttpRequest Chapter 8

Figure 8-4 HTML with embedded XML in Firefox

8.2.3 Data Islands for All!

Right about now, if you’re anything like me, you’re leaning a little bit toward
despair. And why not? A bunch of ugly stuff is embedded in the middle of the
web page, but remember, just because something is there does not mean it has
to be visible. Multiple methods exist for hiding information on a web page,
such as sticking it in the value of a hidden input box or Cascading Style
Sheets (CSS), or using white-out.

Hmm, thinking about it, I’d ignore the first option because, although it
will work, it will also be extremely cumbersome. I’d also ignore the third
option as being either too permanent or just plain stupid. This leaves only the
second option, Cascading Style Sheets.

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 184

The great part about using CSS is that not only is it an elegant solution,
but it is also cross-browser friendly. So let’s make a minor modification to the
previous web page—namely, adding the style sheet shown in Listing 8-4, and
take another look at the page (see Figure 8-5).

Listing 8-4 CSS to Hide XML

xml
{
display: none;
font-size: 0px
}

8.2 XML 185

Figure 8-5 HTML with embedded XML with CSS in Firefox

Okay, now that we have both the XML Data Island and a workable cloak-
ing device for said XML Data Island, we still need a way to use it. Because
with the exception of a “Doomsday Device,” something that isn’t being used is
essentially useless, and I’m pretty sure that demanding “One million dollars
in uncut flawless diamonds or I use my XML Data Island” wouldn’t get much

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 185

of a response—unless, of course, you count the nice people with the butterfly
nets and jackets with wrap-around sleeves as a response.

The big question is, now that we have it, how do we use it? This is a good
although somewhat broad question that, unfortunately, ignores some of the
technical issues yet to be addressed. Perhaps it would be better to break the
single question into two separate questions—for instance, “Now that we have
an XML data island, how do we find it on the page?” and “How can it be incor-
porated into the page?”

The first one is easy. Remember the transverse function from Chapter 5,
“Ajax Using HTML and JavaScript”? It was the one that essentially walked
through the HTML DOM. Something similar would work. I, however, prefer
the more direct route and would use either the getElementById method or the
getElementsByName method. The getElementById method, which we’ve used in
earlier examples, has the advantage of returning a single object. However, if
for some unforeseen reason the object doesn’t exist, an error will be thrown.
On the other hand, the getElementsByName method returns an array consisting
of those nodes with a particular name. This requires a little more typing than
the other method. The syntax for both of these methods is shown here:

document.getElementById(‘xmldi’)

document.getElementsByTagName(‘xml’)

The next question is, “How can it be incorporated into the page?” As with
the previous question, there are several different means to an end. For
instance, if you’re interested in only replacing existing XHTML objects with
new XHTML objects, you can use getElementById, as the page in Listing 8-5
shows.

Listing 8-5 Using getElementById

<html>
<head>

<title>XML Data Island Test - Version 2</title>
<style type=”text/css”>

xml
{

display: none;
font-size: 0px

}
</style>
<script language=”javascript”>

/*
Replace one input textbox with another one from an XML
data island. In addition, the button that invoked this

186 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 186

function is hidden.
*/
function doReplace() {

document.getElementById(‘here’).innerHTML =
document.getElementById(‘xmldi’).innerHTML;

document.getElementById(‘replace’).style.display = ‘none’;
}

</script>
</head>
<body>

<xml id=”xmldi”>
<input type=”text” id=”new” name=”new”

value=”Hello, World!” />
</xml>
XML Data Island Test - Version 2

<div id=”here”>

<input type=”text” id=”old” name=”old”
value=”Goodbye, cruel world!” />

</div>

<input type=”button” id=”replace” name=”replace”

value=”Replace” onclick=”doReplace()” />
</body>

</html>

As neat and nifty as this is, essentially, it is only a variation on the
DHTML methods that have been used for the last several years. To turn
heads, what is needed is a way to update the page’s content dynamically.
Fortunately, a number of approaches can be taken to accomplish this task,
which we cover later. The only question is how much of a tolerance you have
for “mad scientist stuff.”

8.2.4 Binding

To those of you with impure thoughts about this heading, I’d like to say,
“Shame on you!” It simply refers to the act of binding XML to a web page’s
HTML. Get your minds out of the gutter. If you’ve never used this technique,
there are a number of reasons to consider using it. First, when you get the syn-
tax down, it is relatively easy to understand. Another reason is that, for all of
its power, it is quite compact, yet it separates content from presentation.
Finally, it sounds really kinky, and how often do we get to use something that
sounds kinky?

Binding XML to HTML is usually considered a Microsoft Internet
Explorer–only kind of thing. In Internet Explorer, each bound HTML element
identifies both the XML data island’s ID and the individual node that is being
bound, as shown in Listing 8-6.

8.2 XML 187

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 187

Listing 8 -6 XML Binding in Internet Explorer

<html>
<head>

<title>XML Data Island Test</title>
<style type=”text/css”>

xml
{

display: none;
font-size: 0px

}
</style>

</head>
<body>

<xml id=”xmlDI”>
<plugh>
<magic>xyzzy</magic>

</plugh>
</xml>
XML Data Island Test

<input type=”text” name=”test” datasrc=”#xmlDI”

datafld=”magic” value=”” />
</body>

</html>

Each HTML tag to be bound, the input tags in the example above, has
both a datasrc to identify the XML Data Island and a datafld that identifies
the specific node. It is important to realize that changes made to the contents
of the text box are reflected in the XML Data Island itself. So type plover over
xyzzy, and the text in the magic node is plover. This is a fine, although some-
what flakey, solution if the visitor is using Microsoft Internet Explorer, but
what if they’re using Firefox?

The simple answer is to fake it. Using client-side JavaScript, a number of
functions add the same functionality to Firefox, right down to using the same
tags. The interesting thing about most of these tools is that they’re usually
more stable than Internet Explorer’s own built-in binding. In an effort to work
around IE’s flakey-ness, I wrote the page shown in Listing 8-7. In addition, I
renamed the datasrc attribute xmldi and the datafld attribute xmlnode to avoid
having Internet Explorer use its own binding.

Listing 8-7 Cross-Browser XML Binding

<html>
<head>

<title>XML Data Island Test</title>
<style type=”text/css”>

xml

188 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 188

{
display: none;
font-size: 0px

}
</style>
<script language=”JavaScript”>

try {
var x = new DOMParser();
var _IE = false;

}
catch(e) { var _IE = true; };

/*
Handle the logic necessary to bind HTML elements to XML
nodes. Note that in some instances this binding is a two-way
street. For example, if the value in a text box should
change the corresponding value in the XML data island will
also change.

*/
function _bind() {
if(arguments.length == 0) {
doBind(document.body.getElementsByTagName(‘div’));
doBind(document.body.getElementsByTagName(‘input’));
doBind(document.body.getElementsByTagName(‘select’));
doBind(document.body.getElementsByTagName(‘span’));
doBind(document.body.getElementsByTagName(‘textarea’));

} else {
applyChange(arguments[0],arguments[1]);
_bind(); // Re-bind

}

/*
To handle data-binds for specific nodes based upon HTML
element type and browser type.

*/
function doBind(objects) {
var strTag; // HTML tag
var strDI; // XML data island id
var strNode; // XML node name
var strValue; // XML node value

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagName;
strDI = objects[i].getAttribute(‘xmldi’);
strNode = objects[i].getAttribute(‘xmlnode’);

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(i).text;

else

8.2 XML 189

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 189

Listing 8-7 continued

190 Ajax Using XML and XMLHttpRequest Chapter 8

strValue =
document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

switch(strTag) {
case(‘DIV’):
case(‘SPAN’):

objects[i].innerHTML = strValue;

break;
case(‘INPUT’):

switch(objects[i].type) {
case(‘text’):
case(‘hidden’):
case(‘password’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
case(‘checkbox’):

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,” +
i.toString() + “)”);

break;
case(‘radio’):

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(0).text;

else
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,0)”);

break;
}

break;
case(‘SELECT’):
case(‘TEXTAREA’):

objects[i].value = strValue;

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 190

objects[i].onchange = new Function(“_bind(this,” +
i.toString() + “)”);

break;
}

}
}

/*
To handle changes to the bound HTML elements and apply
those changes to the appropriate XML node.

*/
function applyChange(obj,index) {
var strDI = obj.getAttribute(‘xmldi’);
var strNode = obj.getAttribute(‘xmlnode’);
var strValue = obj.value;

if(obj.type == ‘checkbox’)
if(obj.checked)

strValue = obj.value;
else

strValue = ‘’;

if(_IE)
document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +

strNode).item(index).text = strValue;
else

document.getElementById(strDI).getElementsByTagName(strNode)[index].innerH
TML = strValue;
}

}
</script>

</head>
<body onload=”_bind()”>

<xml id=”xmlDI”>
<a>

<c>one</c>

<c>two</c>

<c>three</c>

</xml>
XML Data Island Test

<div xmldi=”xmlDI” xmlnode=”c”></div>

8.2 XML 191

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 191

Listing 8-7 continued

192 Ajax Using XML and XMLHttpRequest Chapter 8

<div xmldi=”xmlDI” xmlnode=”c”></div>

<div xmldi=”xmlDI” xmlnode=”c”></div>

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

<input type=”text” xmldi=”xmlDI” xmlnode=”c” value=”” />

</body>
</html>

The bind() function retrieves all the div, input, select, span, and textarea
elements using the DOM. Next, the ID of the data island and the elements’
names are retrieved from HTML using the xmldi and xmlnode attributes. The
XML node values are then copied to the HTML. Finally, an event handler is
set for each HTML element affected. The purpose of this event handler is to
update the XML when the visitor modifies the HTML value, for instance, by
changing the value in an input box.

8.3 THE XMLHTTPREQUEST OBJECT

As interesting as the previous section may have been, remember that it was
only an appetizer. Now the time has come for the entrée: the XMLHttpRequest
object. If you’ve never used the XMLHttpRequest object, it is, as described previ-
ously, an object that gives web browsers the capability to communicate
directly with the server, without the unload/reload cycle—or “blink,” as the
peasants call it.

8.3.1 Avoiding the Unload/Reload Cycle

The best analogy that I can think of to the XMLHttpRequest object is the trans-
porter from any of the various incarnations of Star Trek. With the transporter,
only the personnel essential to a particular mission need go down to the
planet’s surface. The alternative would be to either land the Starship, if it
were capable of planetary landings, or send a shuttlecraft. In either case, there
would be a lot of unnecessary equipment and personnel being moved about at
great expense, as opposed to the “move only what you need” philosophy of the
transporter.

The XMLHttpRequest object is the web equivalent of the transporter. Why
transmit an entire web page when all that is really needed is the data itself?

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 192

The HTML and JavaScript for presentation are already there, so just change
the data and we’re good to go. I should point out that although the data being
beamed from the server to the client doesn’t necessarily have to be XML, in all
these examples, it is XML.

8.3.2 Browser Differences

Before describing the actual syntax necessary to use XMLHTTP, I recommend
that you sit down because I don’t want to shock you or anything. Sitting down?
Good. The syntax used for the XMLHttpRequest object is different in Microsoft
Internet Explorer than from every other browser that supports it. In fact, from
Microsoft’s perspective, somewhere on the surface of Charon, not even the
World Wide Web Consortium got it right. As a matter of fact, they made
exactly the same mistake as Firefox. Fortunately, because the error is consis-
tent among all non–Internet Explorer browsers all that is necessary is to code
for IE and everybody else. Mmm, I wonder if maybe…nah!

The first thing is to create an instance of the XMLHttpRequest object in the
following manner:

try {

var x = new DOMParser();
var _IE = false;

}

catch(e) { var _IE = true; };
var _XMLHTTP;

if(_IE)
_XMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

else
_XMLHTTP = new XMLHttpRequest();

Before proceeding any further, a couple of decisions must be made that
involve just how we’d like the page to work.

Synchronous or asynchronous?
GET or POST?
The choice of synchronous or asynchronous is a relatively big one, but it

boils down to waiting for a response or being notified when there is a response.
As long as you remember to specify a state change handler for responses to
asynchronous requests, things should work. The GET or POST question is also
an important decision. Fortunately, it is the same decision that has been
around ever since the introduction of HTML forms, so as long as we follow the
same rules, everything will be alright.

8.3 The XMLHttpRequest Object 193

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 193

Let’s say, for instance, that we want to retrieve the XML file of states and
provinces shown in Listing 8-8 from the server. The first thing that is needed
is to determine the browser—basically, Microsoft Internet Explorer and every-
one else. The next task is to create an instance of the XMLHttpRequest object, fol-
lowed by setting the event handler, for asynchronous requests. Finally, the
XMLHttpRequest object is opened with three parameters:

� GET or POST
� The URL for the request
� Either true for asynchronous or false for synchronous

However, you must remember one thing about coding a state change han-
dler. It is a state change handler, not an “I’m finished” handler. There are other
states than “complete”; we’re interested in 4, which indicates that the request
is complete. Listing 8-9 shows a page that retrieves the XML from Listing 8-8,
storing it in an XML Data Island and binding it for display purposes.

Listing 8-8 Sample XML Document

<states>
<state>

<state_abbreviation>AB</state_abbreviation>
<state_name>Alberta</state_name>
<country_id>3</country_id>

</state>
<state>

<state_abbreviation>AK</state_abbreviation>
<state_name>Alaska</state_name>
<country_id>1</country_id>

</state>
<state>

<state_abbreviation>AL</state_abbreviation>
<state_name>Alabama</state_name>
<country_id>1</country_id>

</state>
<state>

<state_abbreviation>AR</state_abbreviation>
<state_name>Arkansas</state_name>
<country_id>1</country_id>

</state>
<state>

<state_abbreviation>AS</state_abbreviation>
<state_name>American Samoa</state_name>
<country_id>1</country_id>

</state>
<state>

<state_abbreviation>AZ</state_abbreviation>
<state_name>Arizona</state_name>
<country_id>1</country_id>

</state>
</states>

194 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 194

Listing 8-9 HTML Document Using an XML Data Island

<html>
<head>

<title>XML Data Island Test</title>
<style type=”text/css”>

xml
{

display: none;
font-size: 0px

}
</style>
<script language=”JavaScript”>

try {
var x = new DOMParser();
var _IE = false;

}
catch(e) { var _IE = true; };
var _URL = ‘http://localhost/chapter4/states.xml’;
var _XMLHTTP;

/*
Perform page initialization.

*/
function initialize() {

if(_IE)
_XMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

else
_XMLHTTP = new XMLHttpRequest();

_XMLHTTP.onreadystatechange = stateChangeHandler;

_XMLHTTP.open(‘GET’,_URL,true); // Asynchronous (true)
_XMLHTTP.send(null);

}

/*
Handle the asynchronous response to a XMLHttpRequest,
including the loading of the XML Data Island.

*/
function stateChangeHandler() {
if(_XMLHTTP.readyState == 4) {
var strHTML = ‘’;
var nodeCount;

if(_IE) {

document.getElementById(‘xmlDI’).XMLDocument.load(_XMLHTTP.responseXML);
nodeCount =

document.getElementById(‘xmlDI’).XMLDocument.getElementsByTagName(‘state_n
ame’).length;

8.3 The XMLHttpRequest Object 195

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 195

Listing 8-9 continued

196 Ajax Using XML and XMLHttpRequest Chapter 8

} else {
document.getElementById(‘xmlDI’).innerHTML = _XMLHTTP.responseText;
nodeCount = document.body.getElementsByTagName(‘state_name’).length;

}

try {
_XMLHTTP.close(); // Close XMLHttpRequest

}
catch(e) {}

for(var i=0;i < nodeCount;i++)
strHTML += ‘<div xmldi=”xmlDI” xmlnode=”state_name”></div>’;

document.getElementById(‘show’).innerHTML = strHTML;

_bind(); // Bind XML and HTML
}

}

/*
Handle the logic necessary to bind HTML elements to XML
nodes. Note that in some instances this binding is a two-way
street. For example, if the value in a text box should
change the corresponding value in the XML data island will
also change.

*/
function _bind() {
if(arguments.length == 0) {
doBind(document.body.getElementsByTagName(‘div’));
doBind(document.body.getElementsByTagName(‘input’));
doBind(document.body.getElementsByTagName(‘select’));
doBind(document.body.getElementsByTagName(‘span’));
doBind(document.body.getElementsByTagName(‘textarea’));

} else {
applyChange(arguments[0],arguments[1]);
_bind(); // Re-bind

}

/*
To handle data-binds for specific nodes based upon HTML
element type and browser type.

*/
function doBind(objects) {
var strTag; // HTML tag
var strDI; // XML data island id
var strNode; // XML node name
var strValue; // XML node value

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagName;
strDI = objects[i].getAttribute(‘xmldi’);
strNode = objects[i].getAttribute(‘xmlnode’);

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 196

if(strDI != null && strNode != null) {
if(_IE)

strValue =
document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(i).text;

else
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[i].innerHTML;

switch(strTag) {
case(‘DIV’):
case(‘SPAN’):

objects[i].innerHTML = strValue;

break;
case(‘INPUT’):

switch(objects[i].type) {
case(‘text’):
case(‘hidden’):
case(‘password’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
case(‘checkbox’):

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,” +
i.toString() + “)”);

break;
case(‘radio’):

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(0).text;

else
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new
Function(“_bind(this,0)”);

8.3 The XMLHttpRequest Object 197

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 197

Listing 8-9 continued

198 Ajax Using XML and XMLHttpRequest Chapter 8

break;
}

break;
case(‘SELECT’):
case(‘TEXTAREA’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
}

}
}

}

/*
To handle changes to the bound HTML elements and apply
those changes to the appropriate XML node.

*/
function applyChange(obj,index) {
var strDI = obj.getAttribute(‘xmldi’);
var strNode = obj.getAttribute(‘xmlnode’);
var strValue = obj.value;

if(obj.type == ‘checkbox’)
if(obj.checked)

strValue = obj.value;
else

strValue = ‘’;

if(_IE)
document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +

strNode).item(index).text = strValue;
else

document.getElementById(strDI).getElementsByTagName(strNode)[index].
innerHTML = strValue;
}

}
</script>

</head>
<body onload=”initialize()”>

<xml id=”xmlDI”>
</xml>
XML Data Island Test

<div id=”show”></div>

</body>
</html>

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 198

Essentially, the JavaScript in Listing 8-9 makes an asynchronous XML-
HTTP request. This entails, beyond the usual “which browser is it?” stuff, cre-
ating an instance of the XMLHttpRequest object, setting an event handler for the
response, and making the request using the request type, the URL, and true
for asynchronous. The state change handler, er, handles the response from the
server. If you look closely, you’ll see a condition testing the readyState property
to see if it is equal to 4, which is complete. The reason for testing the
readyState property is that this handler fires multiple times for different rea-
sons, ranging from the equivalent of “I’m sitting here” to “Hey, I’m getting a
response.”

The previous example illustrated how to use the XMLHttpRequest object to
asynchronously obtain an XML document from a file located on the server.
Think of it as something along the lines of a proof of concept because the odds
are against the XML document needed sitting in a folder on the web server.
Instead, there will probably be some script version of Igor sitting around
watching Oprah, waiting for some real work to do.

Several different methods exist for getting data to and from our virtual
Igor, ranging from a simple custom approach to slightly more complex XML-
based standards. One of the standards that can be used to get the virtual Igor
moving is called XML Remote Procedure Calling, or XML-RPC, for short. In a
nutshell, XML-RPC is a World Wide Web Consortium Recommendation that
describes a request/response protocol. A request is posted to the web server,
and the web server acts upon the request and returns a response. This entire
process might sound rather complex, but it really isn’t any more difficult than
what we’ve already accomplished. The only differences are that instead of a
GET, we’ll be doing a POST, and the request needs to be in XML, as shown in
Listing 8-10 and the response in Listing 8-11.

Listing 8-10 XML-RPC Request

<?xml version=”1.0”?>
<methodCall>

<methodName>igor.getGuildName</methodName>
<params>

<param>
<value>

<int>1</int>
</value>

</param>
</params>

</methodCall>

8.3 The XMLHttpRequest Object 199

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 199

Listing 8-11 XML-RPC Response

<?xml version=”1.0”?>
<methodResponse>

<params>
<param>

<value>
<string>Mad Scientist</string>

</value>
</param>

</params>
</methodResponse>

As you’ve probably deduced from this, the structure of the XML docu-
ment goes along the lines of methodCall, params, param, value, and, finally,
data type (integer, in this instance). The rule for the structure goes along the
lines of one methodResponse, one params, and at least one param. In addition,
each param can have only one value—no more, no less. Values, in turn, have a
single node that both describes and holds the data. Table 8-1 shows the valid
data types for XML-RPC.

Table 8-1 XML-RPC Data Types

Type Description
int 4-byte signed integer
i4 4-byte signed integer
boolean True = 1 and false = 0
sting Character string
double Double-precision floating point
dateTime.iso8601 Date/time
base64 Base 64 binary

Of course, communicating a single item of information as shown is pretty
rare. More common are more complex data structures, such as arrays or the
record-line structs. Both arrays and structs work pretty much along the same
lines as the simpler example earlier. Listing 8-12 shows an example of an
array, and Listing 8-13 shows an example of a struct.

Listing 8-12 XML-RPC Array

<?xml version=”1.0”?>
<array>

<data>
<value>

200 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 200

<int>5</i4>
</value>
<value>

<string>Lab Coat</string>
</value>
<value>

<double>29.95</double>
</value>

</data>
</array>

Listing 8-13 XML-RPC Struct

<?xml version=”1.0”?>
<struct>

<member>
<name>name_last</name>
<value>

<string>Woychowsky</>
</value>

</member>
<member>

<name>name_first</name>
<value>

<string>Edmond</string>
</value>

</member>
<member>

<name>purpose</name>
<value>

<int>42</int>
</value>

</member>
</struct>

The array example shown is merely an elaboration of the earlier simple
XML document, but the struct example is more complex. Along with specifying
the parameter type and value, it specifies the name of the parameter. This
might not seem like much, but it is useful in applications with so many
parameters that it becomes difficult to keep their relative positions straight.

This leads us to the question, what does the response look like when the
relative positions aren’t kept straight? That’s simple enough; a fault like the
one in Listing 8-14 is returned.

8.3 The XMLHttpRequest Object 201

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 201

Listing 8-14 XML-RPC Fault

<?xml version=”1.0”?>
<methodResponse>

<fault>
<value>

<struct>
<member>

<name>faultCode</name>
<value>

<int>86</int>
</value>

</member>
<member>

<name>faultString</name>
<value>

<string>
Invalid data type.

</string>
</value>

</member>
</struct>

</value>
</fault>

</methodResponse>

Now that we know what the request looks like ordinarily, the next step is
to modify the previous example, in which the XSLT was retrieved through the
XMLHttpRequest object and a GET to use XML-RPC. This time, however, we skip
the examples and progress directly to what is considered by some the protocol
of choice when creating web services: SOAP.

8.3.3 Cleaning Up with SOAP

Other than being something for cleaning, SOAP is an acronym for Simple
Object Access Protocol, a protocol used to communicate between web browsers
and web servers. SOAP is probably one of the more difficult subjects to
research on the web, if for no other reason than the multiple websites that
deal with the original SOAP. Nevertheless, when searching, you eventually
will obtain the desired results and discover that SOAP is nothing more than a
wrapper for XML.

XML-RPC was designed to provide a standard structure. However, with
SOAP, a slightly different approach was used. Instead of the strict params-
param-value used by XML-RPC, which rigidly ties the information with the
wrapper, SOAP uses a more flexible envelope method. As with a physical enve-
lope, a SOAP envelope both identifies the recipient and contains the message

202 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 202

within. The only real difference between a SOAP envelope and a physical
envelope is that the message contained by a SOAP envelope must be well
formed, like the one shown in Listing 8-15.

Listing 8-15 SOAP Request

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<getItems xmlns=”http://tempuri.org/”>
<guild_item_id>string</guild_item_id>
<guild_id>string</guild_id>

</getItems>
</soap:Body>

</soap:Envelope>

As with the XML-RPC example, there are two possible responses to a
SOAP request. Either the web service worked and returned a SOAP response,
as shown in Listing 8-16, or some kind of error occurred, and the request failed
and a SOAP fault was returned. Listing 8-17 contains an example of a SOAP
fault.

Listing 8-16 SOAP Response

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<getItemsResponse xmlns=”http://tempuri.org/”>
<getItemsResult>xml</getItemsResult>

</getItemsResponse>
</soap:Body>

</soap:Envelope>

Listing 8-17 SOAP Fault

<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”xmlns:xsd=”http://www.w3.org/2001/XMLSchema”xmlns:soap=”http://sc
hemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<soap:Fault>
<faultcode>soap:MustUnderstand</faultcode>
<faultstring>Mandatory Header error.</faultstring>
<faultactor>http://localhost/AJAX4/chapter4.asmx</faultactor>

8.3 The XMLHttpRequest Object 203

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 203

Listing 8-17 continued

204 Ajax Using XML and XMLHttpRequest Chapter 8

<detail>Web Service coffee break.</detail>
</soap:Fault>

</soap:Body>
</soap:Envelope>

8.4 A PROBLEM REVISITED

Now that we have covered some of the necessary background material for
using XML, SOAP, and XMLHTTP, let’s apply it to the e-commerce site. As you
might recall, the objective of the site is to provide materials for the often-over-
looked market of mad scientists, alchemists, and sorcerers. In Chapter 5, we
created pages using a primitive ancestor of Ajax; now let’s give it a shot using
the real thing. This doesn’t mean that it is entirely necessary to completely
abandon hidden frames. If you decide that you need them, then by all means,
use them; we abandon hidden frames from here on, however.

In addition, we change server-side languages from PHP to C#. The rea-
son for this change isn’t that PHP can’t be used to develop web services; it is
actually the fact that I’m more comfortable using C# for developing web serv-
ices. To those of you who question the presence of C# in an open source book, I
have one word for you: Mono.

No, not the Mono that everybody came down with in high school, college,
or, in my case, Bell Labs—the Mono that is the open source implementation of
the .NET Framework. You haven’t lived until you’ve seen a C# application
running under Linux. It doesn’t feel wrong; it feels more like when Lieutenant
Commander Worf said: “Assimilate this!” in Star Trek First Contact.

Listing 8-18 contains the web service that will handle the server-side
requirements for the remainder of this chapter.

Listing 8-18 A Web Service

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.IO;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml;
using MySql.Data.MySqlClient;
using MySql.Data.Types;

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 204

namespace AJAX
{
/// <summary>
/// Summary description for msas.
/// </summary>
public class msas : System.Web.Services.WebService
{
const string CONNECTION_STRING =
“Persist Security

Info=False;database=ajax;server=localhost;username=root;password=wyvern”;

public msas()
{
InitializeComponent();

}

#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing && components != null)
{
components.Dispose();

}
base.Dispose(disposing);

}

#endregion

[WebMethod]
public XmlDocument getState(string state_abbreviation)
{
MySqlConnection connection =
new MySqlConnection(CONNECTION_STRING);
MySqlDataAdapter adapter = new MySqlDataAdapter();
DataSet dataSet = new DataSet();
XmlDocument xml = new XmlDocument();

8.4 A Problem Revisited 205

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 205

Listing 8-18 continued

206 Ajax Using XML and XMLHttpRequest Chapter 8

string query = “CALL stateSelect(NULL)”;

if(state_abbreviation.Length != 0)
query = “CALL stateSelect(‘“ + state_abbreviation + “‘)”;

adapter.SelectCommand =
new MySqlCommand(query, connection);
adapter.Fill(dataSet);
xml.LoadXml(dataSet.GetXml());

connection.Close();

return(xml);
}

[WebMethod]
public XmlDocument getXML(string name)
{
XmlDocument xml = new XmlDocument();

try
{
xml.Load(Server.MapPath(name));

}
catch(Exception e)
{
StringWriter writer = new StringWriter();
Server.UrlEncode(name, writer);
String encodedName = writer.ToString();
XmlNode node =
xml.CreateNode(XmlNodeType.CDATA,”detail”,””);

node.Value = encodedName;

throw(new
SoapException(e.Message,SoapException.ClientFaultCode,””,node));

}

return(xml);
}

[WebMethod]
public XmlDocument getItems(string guild_item_id,string guild_id)
{
MySqlConnection connection =
new MySqlConnection(CONNECTION_STRING);
MySqlDataAdapter adapter = new MySqlDataAdapter();
DataSet dataSet = new DataSet();
XmlDocument xml = new XmlDocument();
string query;

if(guild_item_id.Length == 0)

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 206

if(guild_id.Length == 0)
query = “CALL itemSelect(NULL,NULL)”;

else
query = “CALL itemSelect(NULL,” + guild_id + “)”;

else
if(guild_id.Length == 0)
query = “CALL itemSelect(“ + guild_item_id + “,NULL)”;

else
query = “CALL itemSelect(“ + guild_item_id + “,” + guild_id +

“)”;

adapter.SelectCommand =
new MySqlCommand(query, connection);
adapter.Fill(dataSet);
xml.LoadXml(dataSet.GetXml());

connection.Close();

return(xml);
}

}
}

I’d like to point out that the web service shown handles several different
jobs. First, if necessary, it performs database queries against a MySQL data-
base. Immediately following the queries, it builds the XHTML required to dis-
play the page; finally, it creates a node that contains a line of JavaScript. All
this is then incorporated into a single XML document, which is then sent to
the client. Although this might seem a wee bit strange, there is a method to
my madness. As with the hidden frames example, there will be a single HTML
document that also has several different jobs to perform.

8.5 TABULAR INFORMATION AND FORMS

With the server side taken care of, there are three ways to proceed with devel-
oping on the client side. The first is to continue developing the way that we’ve
been developing, hand-coding every function. Although this would give us a
really good understanding of how the application works, it would take forever
to develop anything useful.

The second approach is to get online and find a suitable Ajax library,
download it, and proceed with developing. Currently, quite a number of them
are out there, such as Sarissa and JSON (pronounced “Jason”). (However, if
memory serves, Jason was the leader or the Argonauts, whereas Ajax was a
hero of the Trojan War.)

8.5 Tabular Information and Forms 207

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 207

The third possibility is to write our own Ajax library—or, rather, use one
that I’ve already written. This approach is useful for several reasons, the first
being that I’ll (hopefully) know exactly how the library works. The second rea-
son is that I can dissect them in a later chapter so that we’ll know exactly how
they work. The final reason is that it will help to pad the page count—eh, I
mean, to increase the depth of these examples. Table 8-2 briefly describes the
classes in the library, along with their associated methods and properties.

Table 8-2 Ajax Library Classes

Name Parent Class Type Description
XMLHttpRequest — Class Constructor
action XMLHttpRequest Property GET, POST, or HEAD
asynchronous XMLHttpRequest Property true or false
envelope XMLHttpRequest Property SOAP envelope
readyState XMLHttpRequest Method Returns the document

readyState

getResponseHeader XMLHttpRequest Method Returns a single
HTTP response
header

getAllResponseHeaders XMLHttpRequest Method Returns all HTTP
response headers

responseText XMLHttpRequest Method Returns the SOAP
response as text

responseXML XMLHttpRequest Method Returns the SOAP
response as an XML
document

stateChangeHandler XMLHttpRequest Method Dummy state change
handler

setRequestHeader XMLHttpRequest Method Sets an HTTP
response header

removeRequestHeader XMLHttpRequest Method Removes a previously
set HTTP response
header

Send XMLHttpRequest Method Sends the
XMLHttpRequest

Cache — Class Constructor
insert Cache Method Inserts a name/value

pair
retrieve Cache Method Retrieves a value
purge Cache Method Purges one or more

name/value pairs

208 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 208

Name Parent Class Type Description
names Cache Method Returns an array of

names
XMLDocument — Class Constructor
Load XMLDocument Method Loads an\ XML

document
serialize XMLDocument Method Serializes an XML

document to text
DOMDocument XMLDocument Method Returns an XML

document
readyState XMLDocument Method Returns the document

readyState

setRequestHeader XMLDocument Method Sets an HTTP
response header

getResponseHeader XMLDocument Method Returns a single
HTTP response
header

getAllResponseHeaders XMLDocument Method Returns all HTTP
response headers

setEnvelope XMLDocument Method Sets the envelope for
an XMLHttpRequest

selectNodes XMLDocument Method Returns an array of
XML nodes

SOAPEnvelope — Class Constructor
envelope SOAPEnvelope Method SOAP envelope

Now that the foundations of the application architecture have been cov-
ered, albeit lightly, this is a good time to see what the HTML page built upon
that architecture looks like. Figure 8-6 shows what it looks like in a browser,
and Listing 8-19 shows the HTML and JavaScript.

8.5 Tabular Information and Forms 209

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 209

210 Ajax Using XML and XMLHttpRequest Chapter 8

Figure 8-6 Ajax page

Listing 8-19 Ajax Page

<html>
<head>
<title>chapter4</title>
<link rel=”stylesheet” type=”text/css” href=”common.css”/>
<script language=”JavaScript” src=”Cache.js”></script>
<script language=”JavaScript” src=”XMLHTTPRequest.js”></script>
<script language=”JavaScript” src=”XMLDocument.js”></script>
<script language=”JavaScript” src=”SOAPEnvelope.js”></script>
<script language=”javascript”>

<!-- <![CDATA[
try {var x = new DOMParser(); var _IE = false; } catch(e)
{ var _IE = true; };
var xml = new XMLDocument();
var soap = new SOAPEnvelope();
var pageName = ‘Items’;
var itemsXHTMLStart = ‘<table width=”960px” border=”1” cellpadding=”2”
cellspacing=”2”><tr class=”rowHeader”>
<th width=”10%”>Guild</th><th width=”70%”>Item Name</th><th>
Item Price</th></tr>’;
var itemsXHTMLEnd = ‘</table>’;

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 210

var itemsInnerXHTML = ‘<tr class=”rowData” id=”data”>
<td align=”center”><a href=”javascript:pageLoad(\’Items\’,@guild)”
xmldi=”xmlDI” xmlnode=”guild_name”></td><td align=”left”>
<div id=”value”
xmldi=”xmlDI” xmlnode=”item_name”></div></td>
<td class=”numeric”>$<span xmldi=”xmlDI”
xmlnode=”item_price”></td></tr>’;
var detailXHTML = ‘<div><div class=”rowHeader” style=”position: absolute;
left: 50px; right: auto%; bottom: auto; width: 200px; top: 75px”> Guild
Name:</div><div class=”rowHeader” style=”position: absolute; left: 50px;
right: auto%; bottom: auto; width: 200px; top: 92px”> Item Name:</div><div
class=”rowHeader” style=”position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 110px”> Description:</div><div
class=”rowHeader” style=”position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 127px”> Price:</div><div
class=”rowHeader” style=”position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: 144px”> Quantity:</div><div
class=”rowData” style=”position: absolute; left: 255px; right: auto;
bottom: auto; width: 600px; top: 75px” xmldi=”xmlDI”
xmlnode=”guild_name”></div><div class=”rowData” style=”position: absolute;
left: 255px; right: auto; bottom: auto; width: 600px; top: 92px”
xmldi=”xmlDI” xmlnode=”item_name”></div>
<div class=”rowData” style=”position: absolute; left: 255px; right: auto;
bottom: auto; width: 600px; top: 110px” xmldi=”xmlDI”
xmlnode=”item_description”></div><div class=”rowData” style=”position:
absolute; left: 255px; right: auto; bottom: auto; width: 600px; top:
127px”>$</div><input
type=”text” id=”quantity” name=”quantity” value=””
onkeyup=”restrict(this,\’[0-9]\’,\’gi\’)” class=”rowData” style=”position:
absolute; left: 255px; right: auto; bottom: auto; width: 600px; top:
144px; text-align: right”></div>’;

function setEvents() {
pageLoad();

}

function pageLoad(name,parm) {
switch(true) {
case(arguments.length == 0):
soap.content = ‘<guild_item_id/><guild_id/>’;

case(name == ‘Items’):
if(arguments.length != 0)
soap.content =
‘<guild_item_id/><guild_id>’ + parm + ‘</guild_id>’;

soap.operator = ‘getItems’;
xml.setEnvelope(soap.envelope());
xml.setRequestHeader(‘SOAPAction’,’http://tempuri.org/getItems’);
xml.setRequestHeader(‘Content-Type’,’text/xml’);
xml.load(‘http://localhost/AJAX4/chapter4.asmx’);

8.5 Tabular Information and Forms 211

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 211

Listing 8-19 continued

212 Ajax Using XML and XMLHttpRequest Chapter 8

window.setTimeout(‘pageWait()’,10);

pageName = ‘Items’;

break;
case(name == ‘Detail’):
soap.content =
‘<guild_item_id>’ + parm + ‘</guild_item_id><guild_id/>’;

soap.operator = ‘getItems’;
xml.setEnvelope(soap.envelope());
xml.setRequestHeader(‘SOAPAction’,’http://tempuri.org/getItems’);
xml.setRequestHeader(‘Content-Type’,’text/xml’);
xml.load(‘http://localhost/AJAX4/chapter4.asmx’);

window.setTimeout(‘pageWait()’,10);

pageName = name;

break;
default:
alert(name);

}
}

function pageWait() {
if(xml.readyState() == 4) {
var xhtml = itemsXHTMLStart;
var input =

document.getElementById(‘buttons’).getElementsByTagName(‘input’);

if(_IE)

document.getElementById(‘xmlDI’).XMLDocument.loadXML(xml.selectSingleNode(
‘//NewDataSet’).serialize());

else
document.getElementById(‘xmlDI’).innerHTML =

xml.selectSingleNode(‘//NewDataSet’).serialize();

switch(pageName) {
case(‘Items’):
for(var i=0;i < xml.selectNodes(‘//Table’).length;i++) {
var reGuild = new RegExp(‘@guild’,’i’);
var reItem = new RegExp(‘@item’,’i’);
var guild =

xml.selectNodes(‘//guild_id’)[i].serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);

var item =
xml.selectNodes(‘//guild_item_id’)[i].serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);

xhtml +=
itemsInnerXHTML.replace(reGuild,guild).replace(reItem,item);

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 212

}

document.getElementById(‘formBody’).innerHTML = xhtml +
itemsXHTMLEnd;

break;
case(‘Detail’):
document.getElementById(‘formBody’).innerHTML = detailXHTML;

break;
}

window.setTimeout(‘_bind()’,10);
} else
window.setTimeout(‘pageWait()’,10);

}

function _bind() {
if(arguments.length == 0) {
doBind(document.body.getElementsByTagName(‘a’));
doBind(document.body.getElementsByTagName(‘div’));
doBind(document.body.getElementsByTagName(‘input’));
doBind(document.body.getElementsByTagName(‘select’));
doBind(document.body.getElementsByTagName(‘span’));
doBind(document.body.getElementsByTagName(‘textarea’));

} else {
applyChange(arguments[0],arguments[1]);
_bind(); // Re-bind

}

/*
Function: doBind
Programmer: Edmond Woychowsky
Purpose: To handle data-binds for specific nodes based

upon HTML element type and browser type.
*/
function doBind(objects) {
var strTag; // HTML tag
var strDI; // XML data island id
var strNode; // XML node name
var strValue; // XML node value
var index = new Object(); // Object to store information

for(var i=0;i < objects.length;i++) {
strTag = objects[i].tagName;
strDI = objects[i].getAttribute(‘xmldi’);
strNode = objects[i].getAttribute(‘xmlnode’);

if(strDI != null && strNode != null) {
if(typeof(index[strNode]) == ‘undefined’)
index[strNode] = -1;

8.5 Tabular Information and Forms 213

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 213

Listing 8-19 continued

214 Ajax Using XML and XMLHttpRequest Chapter 8

++index[strNode];

if(_IE) {
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(index[strNode]).text;

} else {
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[index[strNode
]].innerHTML;

}

switch(strTag) {
case(‘A’):
case(‘DIV’):
case(‘SPAN’):

objects[i].innerHTML = strValue;

break;
case(‘INPUT’):

switch(objects[i].type) {
case(‘text’):
case(‘hidden’):
case(‘password’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
case(‘checkbox’):

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

objects[i].onclick = new Function(“_bind(this,” +
i.toString() + “)”);

break;
case(‘radio’):

if(_IE)
strValue =

document.getElementById(strDI).XMLDocument.selectNodes(‘//’ +
strNode).item(0).text;

else
strValue =

document.getElementById(strDI).getElementsByTagName(strNode)[0].innerHTML;

if(objects[i].value == strValue)
objects[i].checked = true;

else
objects[i].checked = false;

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 214

objects[i].onclick = new
Function(“_bind(this,0)”);

break;
}

break;
case(‘SELECT’):
case(‘TEXTAREA’):

objects[i].value = strValue;
objects[i].onchange = new Function(“_bind(this,” +

i.toString() + “)”);

break;
}

}
}

}
}

/*
Function: restrict
Programmer: Edmond Woychowsky
Purpose: Restrict keyboard input for the provided object

using the passed regular expression and option.
*/
function restrict(obj,rex,opt) {
var re = new RegExp(rex,opt);
var chr = obj.value.substr(obj.value.length - 1);

if(!re.test(chr)) {
var reChr = new RegExp(chr,opt);

obj.value = obj.value.replace(reChr,’’);
}

}

/*
Function: add2Cart
Programmer: Edmond Woychowsky
Purpose: To add an item/quantity pair to an XML Data

Island that represents a shopping cart.
*/
function add2Cart() {
var item =

xml.selectSingleNode(‘//guild_item_id’).serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);
var quantity = document.getElementById(‘quantity’).value;
var re = new RegExp(‘<item><id>’ + item +

‘</id><quantity>[^<]{1,}</quantity></item>’,’g’);

if(re.test(document.getElementById(‘cart’).innerHTML))

8.5 Tabular Information and Forms 215

continues

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 215

Listing 8-19 continued

216 Ajax Using XML and XMLHttpRequest Chapter 8

document.getElementById(‘cart’).innerHTML =
document.getElementById(‘cart’).innerHTML.replace(re,’’);

document.getElementById(‘cart’).innerHTML += ‘<item><id>’ + item +
‘</id><quantity>’ + quantity + ‘</quantity></item>’;

alert(‘Item added to cart.’);
}
//]]> —>

</script>
</head>
<body onload=”setEvents()”>
<table border=”0” height=”60px” width=”975px” cellpadding=”0”

cellspacing=”0” ID=”Table1”>
<tr class=”pageHeader” height=”40px”>
<td width=”5%”> </td>
<th id=”systemName” class=”pageCell” width=”45%” align=”left”>My

System</th>
<th id=”pageName” class=”pageCell” width=”45%” align=”right”>My

Page</th>
<td width=”5%”> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>

<xml id=”cart”></xml>
<xml id=”xmlDI”></xml>
<div id=”formBody” style=”color: #000000; background-color: F0F8FF;

font-family: tahoma; font-size: 12px; border: solid 1px gray; height:
400px; width: 980px; overflow: scroll”></div>

<p />
<div id=”buttons”>
<input id=”show_all” type=”button” value=”Show All”

onclick=”javascript:pageLoad()” style=”height: 22px; width: 110px” />
<input id=”add_to_cart” type=”button” value=”Add to cart”

onclick=”add2Cart()” style=”height: 22px; width: 110px” />
<input id=”view_cart” type=”button” value=”View cart”

onclick=”javascript:pageLoad(‘displayCart’)” style=”height: 22px; width:
110px” />

<input id=”place_order” type=”button” value=”Place order” onclick=””
style=”height: 22px; width: 110px” />

</div>
</body>

</html>

Just as in the earlier HTML examples, Listing 8-19 has bound XML data
islands and an asynchronous XMLHTTP request. The biggest differences are

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 216

that the XML comes from a web service and that the request is made using
SOAP. This means that although all the code that you see here is custom for
this book, there is absolutely no reason why an Ajax front end cannot be writ-
ten for existing web services. It’s like General Patten said: “Never pay twice
for the same real estate.”

Please take note of the HTML DIV tag with the id attribute; there is
something special about it. As you’ve probably deduced from the style attrib-
ute, both its height and its width are static. This is to keep the buttons along
the bottom from moving around. In addition, it provides someplace to display
the information returned from the server, without having to worry about the
buttons. An alternative would be to put the buttons on the top of the page, but
scrolling up to find the buttons would get old really quickly. With the under-
lying architecture around 90 percent complete, let’s revisit the page that dis-
plays the items available for purchase on our site.

8.5.1 Read Only

Again, the purpose of the read-only page is to display our wares to visitors. On
the surface, it is just rows and rows of items that are available for sale. Behind
the scenes, however, is a different story. This is a web service delivering a
SOAP response to a request for information—in this instance, the information
relating to the items for sale.

Upon receiving the request, the web service obtains the necessary infor-
mation from the database, which is the same MySQL database from the previ-
ous chapters. When it has the information, it programmatically builds the
XHTML required to fill the scrollable div. Updates are not permitted on this
page, so only the XHTML is being sent to the client. Hey, conserve bandwidth
wherever you can.

Unfortunately, there is more to it than that. For instance, the page’s
onload event handler needs to send the SOAP request so that the previous
method is invoked. In addition, buttons need to be activated or deactivated,
clicks need to be handled, and, in short, there is more work to do.

Starting with the handler for the page onload event, we need to build a
SOAP request, send the request to the web service, and activate the appropri-
ate buttons. In addition, eventually the web service will get back to the page
with its response, which will have to be dealt with. Sound like enough? Let’s
break it down into a little more detail.

1. Create a global instance of XMLDocument().
2. Build a SOAP request describing the URI of the web service, the method,

the namespace, and the parameters being sent.

8.5 Tabular Information and Forms 217

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 217

3. Send the SOAP request using the XMLHttpRequest that is incorporated
into the XMLDocument class.

4. Wait for the SOAP response from the web service.
5. Active the appropriate buttons.
6. Populate the page.

Sound pretty easy? Well, it is easy, after the first time. The first time,
however, it is kind of difficult to figure out what is what and what goes where.
The first time that I did this, I stumbled a bit on steps 2 and 4. The problem
that I had with step 2 was simply a matter of what goes where; a look at the
code will explain everything. Dealing with step 4 is merely a matter of using
window.setTimeout in JavaScript to repeatedly call a function after a suitable
number of milliseconds to check the readyState of the XMLHttpRequest. If the
readyState is 4, it is complete. Table 8-3 shows the possible readyState values
and their meanings.

Table 8-3 readyState Values

readyState Description
0 Uninitialized
1 Loading
2 Loaded
3 Interactive
4 Complete

Probably the hardest thing to get used to with Ajax is the ratio of client-
side JavaScript to HTML. With traditional web development, the number of
lines of HTML far exceeds the number of lines of JavaScript. With Ajax devel-
opment, it is the other way around, with more JavaScript than HTML.
Fortunately, with a halfway decent library of objects and functions, Ajax devel-
opment doesn’t usually need a lot of custom code. For example, Listing 8-20
shows the custom JavaScript for our page listing the items available, and
Figure 8 -7 shows what it looks like in the browser.

Listing 8-20 Items Available

soap.content =

‘<guild_item_id>’ + parm + ‘</guild_item_id><guild_id/>’;

soap.operator = ‘getItems’;
xml.setEnvelope(soap.envelope());
xml.setRequestHeader(‘SOAPAction’,’http://tempuri.org/getItems’);
xml.setRequestHeader(‘Content-Type’,’text/xml’);

218 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 218

xml.load(‘http://localhost/AJAX4/chapter4.asmx’);

window.setTimeout(‘pageWait()’,10);

pageName = name;

function pageWait() {
if(xml.readyState() == 4) {
var xhtml = itemsXHTMLStart;
var input =

document.getElementById(‘buttons’).getElementsByTagName(‘input’);

if(_IE)

document.getElementById(‘xmlDI’).XMLDocument.loadXML(xml.selectSingleNode(
‘//NewDataSet’).serialize());

else
document.getElementById(‘xmlDI’).innerHTML =

xml.selectSingleNode(‘//NewDataSet’).serialize();

switch(pageName) {
case(‘Items’):
for(var i=0;i < xml.selectNodes(‘//Table’).length;i++) {
var reGuild = new RegExp(‘@guild’,’i’);
var reItem = new RegExp(‘@item’,’i’);
var guild =

xml.selectNodes(‘//guild_id’)[i].serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);

var item =
xml.selectNodes(‘//guild_item_id’)[i].serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);

xhtml +=
itemsInnerXHTML.replace(reGuild,guild).replace(reItem,item);

}

document.getElementById(‘formBody’).innerHTML = xhtml +
itemsXHTMLEnd;

break;
case(‘Detail’):
document.getElementById(‘formBody’).innerHTML =
detailXHTML;

break;
}

window.setTimeout(‘_bind()’,10);
} else
window.setTimeout(‘pageWait()’,10);

}

8.5 Tabular Information and Forms 219

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 219

Figure 8-7 Items available

The pageWait() function shown here might seem somewhat formidable,
but its sole purpose is to dynamically build the HTML necessary for the bound
table in the page. This is a somewhat slick trick, but really nothing that hasn’t
been done for the last five years, although usually for different reasons.

8.5.2 Updateable

Because we’ve worked out the underlying architecture, an updateable page is
merely a variant of the read-only page shown in the previous example. There
are essentially two differences, the first being that, instead of using SPAN or DIV
tags, the bound tags are things such as INPUT and SELECT. The second difference
is that eventually it will be necessary to send an entire XML data island to the
server. The interesting thing about this is that it doesn’t have to be the XML
Data Island that is bound to the HTML, although it could be.

Remember the shopping cart from earlier in the book? Well, instead of
using the funky item id-dash-quantity in a text box, now the shopping is itself

220 Ajax Using XML and XMLHttpRequest Chapter 8

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 220

an XML Data Island. Unfortunately, this means that I can’t be lazy and recycle
the function from Chapter 5. Alas, it was necessary to write the function shown
in Listing 8-21. It’s not anything fancy; in fact, it treats the XML as text. Not
only is that a valid option, but it also works in a cross-browser environment.

Listing 8-21 Add to Shopping Cart Function

/*
To add an item/quantity pair to an XML Data Island that
represents a shopping cart.

*/
function add2Cart() {
var item =

xml.selectSingleNode(‘//guild_item_id’).serialize().replace(new
RegExp(‘<[^<]{0,}>’,’g’),’’);
var quantity = document.getElementById(‘quantity’).value;
var re =

new RegExp(‘<item><id>’ + item +
‘</id><quantity>[^<]{1,}</quantity></item>’,’g’);

if(re.test(document.getElementById(‘cart’).innerHTML))
document.getElementById(‘cart’).innerHTML =

document.getElementById(‘cart’).innerHTML.replace(re,’’);

document.getElementById(‘cart’).innerHTML += ‘<item><id>’ + item +
‘</id><quantity>’ + quantity + ‘</quantity></item>’;

alert(‘Item added to cart.’);
}

The end result of this is the page that was shown in Listing 8-21 and
Figures 8-7 and 8-8. It works roughly the same as the pageWait() function from
Listing 8-20. The difference is that, instead of adding elements to the HTML
document based upon an XML document, elements are added to the embedded
XML document based upon the actions of the visitor. The page shown in
Figure 8-7 lists the items available for purchase, and Figure 8-8 handles the
add to the shopping cart.

8.5 Tabular Information and Forms 221

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 221

222 Ajax Using XML and XMLHttpRequest Chapter 8

Figure 8-8 Item added to the shopping cart

8.6 ADVANTAGES AND DISADVANTAGES

At the risk of repeating myself, and everyone else who has ever uttered a word
about Ajax, the advantage of Ajax is that a web application has the look and
feel of a Windows or Linux application. No more does the visitor have to click
and wait for the entire unload/reload cycle to complete. Instead, only the parts
of the page that actually change are updated, which significantly cuts down on
the time required for a page update.

On the other hand, Ajax requires additional work on the often-ignored
client side; also, this technique is extremely browser dependent. Some people
will be left out, including developers who fail to recognize that we are like
deep-water sharks; we either continuously move forward or we begin to die.
Some users will also be left behind, such as those who have not upgraded since
they purchased their computer in 1995 and those who are so paranoid that

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 222

they’ve disabled JavaScript. But from some points of view, that could be an
advantage: The first group won’t buy anything, and the second group is inter-
ested in only aluminum-foil hats.

8.7 SUMMARY

With a couple side trips into the magical worlds of XML, XML-RPC, SOAP,
and MySQL stored functions and procedures, we’ve touched upon every part of
Ajax as it stands at the time of this writing. Alright, maybe the MySQL part
doesn’t directly apply to Ajax because it would work perfectly well without it,
but it does illustrate some of the possibilities that exist. As a matter of fact,
both Oracle and SQL Server have XML support built in, so why shouldn’t we
“fake it” in MySQL?

Unarguably, what does directly apply to Ajax is the use of the
XMLHttpRequest object, without which the examples shown in this chapter
would be impossible.

8.7 Summary 223

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 223

08_0132272679_ch08.qxd 7/17/06 9:04 AM Page 224

C H A P T E R 9

XPath

Just what is XPath? Briefly stated, XPath is to XML what an SQL SELECT is to a
relational database. This might at first sound like an oversimplification, but it
is essentially true. XPath can be used to locate and navigate the various parts
of an XML document. Unfortunately, as with every other language under the
sun, a number of unique terms should be defined before you can start under-
standing it. These concepts and terms might at first seem overwhelming, but
they are essential to both querying XML and keeping us employed.

Although you can choose to fluff over these terms, I actually don’t recom-
mend it, if only for the purpose of job security. Several years ago, I used my
understanding of terms to extend a contract when the client, who is widely
known for being frugal, wanted to save money by having their employee main-
frame programmers support a web application. During the turnover process, I
described how the site worked using the precise web and XML terms. To make
a long story short, the contract was extended for another two years.

The first concept is that, even with all the hoopla surrounding all things
XML, it is essentially nothing more than data represented in a tree data struc-
ture. Looking at XML from an XPath perspective, XML consists of only seven
types of nodes:

� The root node—only one per XML document. All other nodes are child
nodes of the root node.

� Element nodes.
� Text nodes.
� Attribute nodes.
� Comment nodes.
� Processing instruction nodes.
� Namespace nodes.

225

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 225

Note that DTDs (Data Type Definitions), CDATA sections, and entity ref-
erences are not included in this list of node types, each for different reasons.
Because a DTD is not an XML document, XPath is incapable of addressing it.
CDATA, on the other hand, is a part of XML but, by design, is ignored by
XPath, as are entity references.

In addition, it is important to note that the root element and the root
node are not different terms for the same thing. Using the XML document
shown in Listing 9-1, an XML document’s root node contains both the process-
ing instruction, <?xml version=”1.0” encoding=”UTF-8”?>, and the root element,
<library>.

Listing 9-1 Example XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<book publisher=”Del Rey”>
<series/>
<title>Way Station</title>
<author>Clifford D. Simak</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Fellowship of the Ring</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>Too Many Magicians</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>Murder and Magic</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>The Napoli Express</title>
<author>Randall Garrett</author>

</book>

226 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 226

<book publisher=”Ace”>
<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<author>Randall Garrett</author>

</book>
</library>

9.1 LOCATION PATHS

For all its power and flexibility, the location path is probably the easiest type
of XPath to start with. Using the XML document in Listing 9-1 as a starting
point, let’s say that we want to get the root node. This can be accomplished by
using the following XPath:

/

That’s all there is to it. Remembering that there is a difference between
the root node and the root element, the root element can be obtained by either
of the two following XPath statements:

/library

/*

The first example implicitly specifies the root element by name. The sec-
ond example uses a wildcard (*). Wildcards can be used to increase the flexibil-
ity of the XPath by making it unnecessary to know the individual node names.
All that is required is the knowledge that we want the root element.

Before going any further, I’d like to introduce one of those pesky new con-
cepts called a node set. A node set is a collection of nodes returned by an XPath
statement; think SQL and SELECT with multiple rows returned, and you get the
idea. With this in mind, let’s say that we want the book elements from the
XML document in Listing 9-1. This can be accomplished by any of the follow-
ing XPath statements:

/library/book

/*/book

/library/*

/*/*

//book

9.1 Location Paths 227

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 227

The first four examples shown here are all a logical progression of the
basic location path covered previously. The last example, however, is some-
thing else entirely. The double forward slash (//) refers to descendants of the
root node, as well as to the root node itself. For example, //* refers to the root
element and every element node in the document.

9.2 CONTEXT NODE

A variation on the previous discussion, //*, is the single period (.), which
refers to the context node. Most often used in XSLT to refer to the value of the
currently matched node, it works equally well for all node types.

9.3 PARENT NODES

Sometimes it is necessary to obtain the parent node(s) of a particular node or
node set. This is accomplished by using a double period (..). The following
examples show how it can be used to obtain the parent of the series element
(book element).

//series/..
//book/series/..

9.4 ATTRIBUTE NODES

Attribute nodes are handled in a slightly different manner than the nodes that
we have dealt with thus far. To specify an attribute node, prefix it with an “at”
sign (@). This distinguishes attribute nodes from element nodes. The following
XPath statements obtain a node set consisting of all publisher attributes:

//@publisher
//@*

9.5 PREDICATES

Predicates are the equivalent to an SQL WHERE clause, basically a way to limit
the node set returned by XPath. The basic format is as follows:

XPath[condition]

228 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 228

Although this isn’t very difficult, most mistakes are made in the condi-
tion. This is because there is a difference between evaluating XPath in
Altova’s XMLSPY XPath Evaluator and evaluating XPath in XSLT. I’ll give
you a hint: “well formed”. XMLSPY XPath Evaluator uses the standard pro-
gramming greater than (>) and less than (<) conditional operators. In XSLT,
this would result in the document being not well formed. Table 9-1 lists the
conditional operators used in both.

Table 9-1 Conditional Operators Used in XMLSPY XPath Evaluator and XPath in XSLT

Evaluator XSLT Description
> > Greater than
< < Less than
= = Equal to
!= != Not equal to

Using the XPath Evaluator, the XPath statement to return all the books
published by Del Rey would be as follows:

//book[@publisher = ‘Del Rey’]

This statement results in a node set of five books: one by Simak and four
by Tolkien. But what if we want only the books that are not part of the Lord of
the Rings trilogy? In SQL, we use an “and” condition. Because XPath supports
both “and” and “or,” we do the same:

//book[@publisher = ‘Del Rey’ and series != ‘The Lord of the Rings’]

This results in a single XML book node, Simak’s Way Station. An alter-
nate, although more verbose, way of coding to obtain the same result shows
that multiple predicates can be on a single XPath statement:

//book[@publisher = ‘Del Rey’]/series[. != ‘The Lord of the
Rings’]/..

In addition to being able to obtain nodes and node sets based upon
Boolean conditions, it is possible to retrieve a particular instance of a node.
For example, let’s say that we want the third book in the library, The Two
Towers. The easiest method of getting it is this:

//book[3]

9.5 Predicates 229

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 229

This method also can be combined with a Boolean condition to obtain the
name of the second book in Tolkien’s trilogy:

//book[series = ‘The Lord of the Rings’][2]

Again, the result is The Two Towers.

9.6 XPATH FUNCTIONS

In addition to what we have seen so far, XPath provides functions that either
operate on or return one of the following four data types:

� Boolean
� Numeric
� Node set
� String

9.6.1 Boolean Functions

XPath has four Boolean functions: true(), false(), not(), and boolean(). The
functions true() and false() return exactly what you would expect, true or
false. The not() takes the Boolean value passed and returns the opposite. This
provides yet another roundabout method to find the book Way Station:

//book[@publisher = ‘Del Rey’ and not(series = ‘The Lord of the
Rings’)]

The boolean() function operates a little differently; it takes the argument
and evaluates it, returning either true or false. If the event of the argument is
a node set, only the first node is evaluated; the rest are ignored. Omitting the
argument results in the current context node (.) being evaluated, with either
true or false being returned.

9.6.2 Numeric Functions

Six numeric functions exist: ceiling(), count(), floor(), round(), number(), and
sum(). Each of the first three functions accepts a single argument and acts
upon that single argument. The ceiling() function returns the smallest inte-
ger that is greater than or equal to the argument. The function count()
returns the number of nodes in the argument node set. The floor() function
returns the largest integer that is less than or equal to the argument passed.

230 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 230

The function round() returns the integer closest to the argument; if the num-
ber is equidistant between two integers, the largest is returned. The number()
function evaluates the argument, or context node, and returns either the
numeric value of the node or NaN (Not a Number). The function sum() oper-
ates upon the passed node set, first working like the number() function and
then adding together the individual values and returning the sum.

9.6.3 Node Set Functions

XPath provides five node set functions: last(), position(), local-name(),
name(), and namespace-uri(). The last() function returns the number that
corresponds to the last node in a node set. For example, this is the XPath
statement to find the last book:

//book[last()]

The position() function returns the number that corresponds to the con-
text node. This provides an alternate method of retrieving the same result as
the last() function by coding either of the following two statements:

//book[position() = last()]

//book[position() = 8]

The local-name() function returns the part of a node name following the
colon (:). If there is no colon, the function works like the name() function,
returning the full node name for either the argument or the context node. The
namespace-uri() function returns the URI used in a namespace declaration,
which is the value of the xmlns or xmlns: attribute.

9.6.4 String Functions

XPath provides a plethora of string functions that can be used either singly
or in combination with one another to produce the desired results. These
functions are concat(), contains(), normalize-space(), starts-with(), string-

length(), substring(), substring-after(), substring-before(), and translate().
The concat() function converts each of the arguments to strings, concate-

nates them, and then returns the result. The arguments can be literals, nodes,
or node sets. However, with node sets, only the first node is evaluated. For
example, this produces the string “Clifford D. Simak, Way Station”:

concat(//author, ‘, ‘, //title)

9.6 XPath Functions 231

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 231

The function contains() is used to test a string to determine whether it
contains another string as a substring. This can be useful when only partial
information is available—for example, if you’re looking for a book with “Lord”
in the title:

//title[contains(., ‘Lord’)]

The normalize-space() function removes leading and trailing whitespace
from a string; in addition, any multioccurrence of whitespace is replaced with
a single space. So the string “ Post no bills! “ becomes “Post no bills!”.

The starts-with() function operates in the same manner as the con-
tains() function, with the sole exception that only the beginning of a string is
tested. So unless the string begins with the substring, the result is false.

The string-length() function returns the length of the string argument
passed, which is particularly useful when testing for elements with or without
contents. For example, to test for books that are not part of any series, the fol-
lowing XPath statement could be used:

//book[string-length(series) = 0]

The next three functions all relate to returning a substring of a string.
The substring(), substring-after() and substring-before() functions each
return a substring of the string argument. The substring() function has the
following two formats:

substring(string, start)

substring(string, start, length)

Using the XML document from Listing 9-1, the result of the following
XPath would be Station:

substring(//book[1]/title,5)

By specifying the substring function’s length argument in the following
manner, the result would be Stat:

substring(//book[1]/title,5,4)

Of course, there is an easier way to get the Station results. The sub-
string-after() function returns the entire substring immediately following

232 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 232

the specified argument substring. Using the substring-after() function, it is
not necessary to know that the second word starts in position 5; all that is nec-
essary is knowing that it follows a space, as shown in the following example:

substring-after(//book[1]/title,’ ‘)

The third substring function is substring-before(), which returns the
entire substring immediately before the argument string.

The final string function is translate(), which substitutes characters in
the first string argument based upon the characters in the second and third
strings. This is the basic format:

Translate(string, from-string, to-string)

The capabilities of this function lead to several interesting possibilities.
For example, let’s say that it is necessary to convert a string, such as the
author of the third book, to all upper case. This can be accomplished by using
the following XPath:

translate(//book[3]/author,’qwertyuiopasdfghjklzxcvbnm’,’QWERTYUIOPAS
DFGHJKLZXCVBNM’)

Another possible use for translate is to remove unwanted characters,
such as maybe vowels. The translate() function makes this possible. Just
specify the characters that you’d like to get rid of in the “from” string, and omit
them from the “to” string as shown in the following example:

translate(//book[3]/author,’aAeEiIoOuUyY’,’’)
All of a sudden, J.R.R. Tolkien becomes J.R.R. Tlkn.

9.7 XPATH EXPRESSIONS

In addition to material already covered, XPath provides some basic mathe-
matical processing. However, it is important to remember that all numbers in
XPath are floating-point double precision. In addition, there are special repre-
sentations for positive and negative infinity, as well as NaN (Not a Number).

XPath also provides the five basic arithmetic operators shown in
Table 9-2.

9.7 XPath Expressions 233

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 233

Table 9-2 XPath Arithmetic Operators

Operator Description
+ Addition
- Subtraction
* Multiplication
div Division
mod Modula, sometimes referred to as the remainder, or what’s left

over after division

9.8 XPATH UNIONS

Going back to my original comparison that XPath is to XML what an SQL
SELECT is to a relational database, there is yet another similarity: unions. In
XPath, unions return all nodes in both node sets. This can be quite useful
when you’re unsure of exactly what you’re looking for or working with. For
example, let’s say that we want either the child elements of the third book
node or the attributes. One method would be to use two separate XPath state-
ments. Although this method would work, like most programmers, I’m basi-
cally lazy and would rather do it all in one statement by using the union
operator (|), as shown here.

//book[3]/* | //book[3]/@*

9.9 AXIS

Although it’s not usually associated with evil (although cursing is a different
story), an axis is a node set starting at a particular node that is based on the
relationship between the nodes in an XML document. The basic format for
using an axis follows:

axis::context-node

Table 9-3 describes the properties of the various axes available in XPath.

234 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 234

Table 9-3 XPath Axes

Axis Description
ancestor Selects all nodes that are ancestors of the context node,

farther up the document tree, in a direct line to the docu-
ment root node. The resulting node set is in reverse
document order—in other words, moving up the tree
starting from the document’s parent node.

ancestor-or-self Selects the same nodes as the ancestor axis. However, it
starts with the context node instead of the context node’s
parent.

attribute Selects all the context node’s attributes, if any.
child Selects all the child nodes of the context node, excluding

attributes and namespace nodes.
descendant Recursively selects all children of the context node and

their children until the end of each tree branch.
descendant-or-self Selects the same nodes as the descendant axis, with the

exception of starting with the context node.
following Selects, in document order, all nodes at any level in the

document tree that follow the context node.
following-sibling Selects, in document order, all nodes at the same level and

with the same parent node in the document tree that
follow the context node.

namespace Selects the namespace nodes that are in scope for the
context node. If no namespace nodes are in scope, the
namespace axis is empty.

parent Selects the parent node of the context node. If the context
node is the root node, the parent axis will be empty.

preceding Selects all nodes, in reverse document order, excluding
ancestor nodes, in the document tree that are before the
context node.

preceding-sibling Selects all nodes, in reverse document order, that are at
the same level that have the same parent node as the
context node.

self Selects the context node.

The use of an axis is arguably the most formidable concept for developers
new to XPath, who often have difficulty trying to visualize the results of using
an axis. Fortunately, tools such as the XPath Evaluator in Altova’s XMLSPY
make it easier to see the results of specifying a particular axis. Starting with
the original XML document from Listing 9-1, the following sections present
examples of each of the various axes.

9.9 Axis 235

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 235

9.9.1 Ancestor Axis Example

XPath Statement

//book[3]/ancestor::*

Result Node Set

library

Explanation
Because the context node, the third book node, is a child of the root element,
there is only a single ancestor.

9.9.2 ancestor-or-self Axis Example

XPath Statement

//book[3]/ancestor-or-self::*

Result Node Set

book
library

Explanation
In addition to the ancestor nodes, the ancestor-or-self axis returns the con-
text node. Also, because the results are in reverse document order, the context
node is the first node in the node set, followed by the parent node and so on up
the tree.

9.9.3 attribute Axis Example

XPath Statement

//book[3]/attribute::*

236 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 236

Result Node Set

publisher

Explanation
Because the context node has only one attribute, it is the only attribute
returned in the node set.

9.9.4 child Axis Example

XPath Statement

//book[3]/child::*

Result Node Set

series “The Lord of the Rings”
title “The Two Towers”
author “J.R.R. Tolkien”

Explanation
The resulting node set consists of the three child nodes of the context node. I
have shown the contents of the individual nodes to distinguish these nodes
from similar nodes with different contents.

9.9.5 descendant Axis Example

XPath Statement

//book[3]/descendant::*

Result Node Set

series “The Lord of the Rings”
title “The Two Towers”
author “J.R.R. Tolkien”

9.9 Axis 237

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 237

Explanation
The results shown here are identical to the results from the child axis. This is
because of the structure of the XML document. For instance, if any of the child
nodes shown here had children of their own, the descendant axis would have
returned their children, and so on down the line in document order, whereas
the child axis would not.

9.9.6 descendant-or-self Axis Example

XPath Statement

//book[3]/descendant-or-self::*

Result Node Set

book
series “The Lord of the Rings”
title “The Two Towers”
author “J.R.R. Tolkien”

Explanation
As with the descendant axis, all child nodes are returned recursively. However,
instead of starting with the first child, the context node is the first node in the
node set.

9.9.7 following Axis Example

XPath Statement

//book[3]/following::*

Result Node Set

book
series “The Lord of the Rings”
title “The Return of the King”
author “J.R.R. Tolkien”
book
series “Lord Darcy”
title “Too Many Magicians”
author “Randall Garrett”
book

238 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 238

series “Lord Darcy”
title “Murder and Magic”
author “Randall Garrett”
book
series “Lord Darcy”
title “The Napoli Express”
author “Randall Garrett”
book
series “Lord Darcy”
title “Lord Darcy Investigates”
author “Randall Garrett”

Explanation
The resulting node set for the following axis is always all the nodes that occur
after the context node in document order.

9.9.8 following-sibling Axis Example

XPath Statement

//book[3]/following-sibling::*

Result Node Set

book
book
book
book
book

Explanation
These five book nodes retrieved using the following-sibling axis are the same
nodes that were retrieved by the following axis. The only difference is that the
following-sibling axis retrieves only those nodes on the same level as the con-
text node and have the same parent as the context node.

9.9.9 namespace Axis Example

XPath Statement

//book[3]/namespace::*

9.9 Axis 239

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 239

Result Node Set

Empty node set

Explanation
Because no namespace was in scope on the context node, the resulting node
set is empty. However, if one or more namespaces had been in scope, the
resulting node set would have contained those in scope.

9.9.10 parent Axis Example

XPath Statement

//book[3]/parent::*

Result Node Set

library

Explanation
The resulting node set will always consist of either an empty node set or a sin-
gle node. For example, the parent axis of the library element would have
retrieved an empty node set.

9.9.11 preceding Axis Example

XPath Statement

//book[3]/preceding::*

Result Node Set

author “J.R.R. Tolkien”
title “The Fellowship of the Ring”
series “The Lord of the Rings”
book
author “Clifford D. Simak”
title “Way Station”
series
book

240 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 240

Explanation
The resulting node set of the preceding axis is made up of those nodes that
occur in the XML document before the context node, in reverse document
order.

9.9.12 preceding-sibling Axis Example

XPath Statement

//book[3]/preceding-sibling::*

Result Node Set

book
book

Explanation
These book nodes retrieved using the preceding-sibling axis are the same
nodes that were retrieved by the preceding axis. However, the difference is
that the preceding-sibling axis retrieves only those nodes that are on the
same level as the context node and that have the same parent as the context
node.

9.9.13 self Axis Example

XPath Statement

//book[3]/self::*

Result Node Set

book

Explanation
The self axis returns the context node; essentially, the result is the same as if
the axis were omitted.

9.9 Axis 241

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 241

9.10 SUMMARY

The material presented in this chapter completely covers the basic parts of
XPath: the various types of paths, context nodes, functions, and axes. As com-
prehensive as the walkthrough was, it is important to remember that XPath
by itself is not an end. It is merely a means to an end. To make XPath shine, it
is necessary to use it in conjunction with another tool, such as XLST.

242 XPath Chapter 9

09_0132272679_ch09.qxd 7/17/06 9:05 AM Page 242

C H A P T E R 10

XSLT

The movie Star Trek: The Wrath of Khan introduced a device called the
Genesis Torpedo that rearranged matter on a subatomic level to produce life-
bearing planets. Talk about your mad scientist stuff! eXtensible Stylesheet
Language for Transformations (XSLT) is the XML equivalent to Star Trek’s
Genesis; it rearranges XML at the element level to produce the desired
results. However, unlike Genesis, the desired results are not limited to a single
type, but rather can be any conceivable XML or text-based format. In addition,
instead of the original document being modified, a new document is created in
the desired format, which could be identical to the original document or vastly
different.

An XSLT document, sometimes referred to as a style sheet, is a well-
formed XML document that uses the XSLT namespace (xmlns:xsl=http://www.
w3.org/1999/XSL/Transform) to describe the rules for transforming the source
XML document into the result XML document. XSLT is always used in con-
junction with XPath, which specifies the location of various elements within
the source document. XSLT, on the other hand, describes the structure of the
result document.

Listing 10-1 contains a simple style sheet whose purpose is to simply
copy the source XML document to the result XML document. Because no spe-
cific node names are used, this style sheet works equally well with all XML
documents.

Listing 10-1 Simple Style Sheet to Copy the Source XML Document to the Result
XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml” version=”1.0” encoding=”UTF-8”/>

243

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 243

Listing 10-1 continued

244 XSLT Chapter 10

<xsl:template match=”/”>

<xsl:copy-of select=”.”/>

</xsl:template>

</xsl:stylesheet>

The XSL style sheet shown in Listing 10-1 works like this. First, the
XML declaration describes the version of XML and the character set encoding.
The xsl:stylesheet element describes the document as a style sheet, and the
attributes specify the version of XSLT and the namespace. The xsl:output ele-
ment defines the result document’s XML declaration. The xsl:template defines
a relationship between the source XML document and the result document.
For example, the match attribute with the / specifies the source document’s
root node; all child elements of this element will be applied to the root ele-
ment. Finally, the xsl:copy-of specifies to perform a deep copy of the context
node; in other words, copy the context node and all descendants recursively.

This chapter covers the following topics:

� Recursive versus iterative style sheets
� XPath in the style sheet
� Elements
� XSLT functions
� XSLT concepts
� Client-side transformations

10.1 RECURSIVE VERSUS ITERATIVE STYLE SHEETS

One of the things about XSLT is that although the capability exists for
iteration (looping), it is strongly frowned upon by the development community.
Instead, recursive templates are considered the acceptable standard. Although
this philosophy requires some changes in the way developers think, it also
means that recursive style sheets are often far more compact and not nested
nearly as deep as their iterative counterparts. At the very least, recursive
style sheets are always far more structured, which can be a major advantage
in larger style sheets.

Let’s say that our goal is to create an XSLT table and the source XML
document shown in Listing 10-2. As a starting point, there are two distinct

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 244

courses of action: an iterative style sheet (see Listing 10-3) and a recursive
style sheet (see Listing 10-4). Each of these two approaches to coding style
sheets has its own strengths and weaknesses. For example, the iterative style
sheet is about the same length, but it is also nested much deeper than the
recursive style sheet.

Listing 10-2 Source XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<book publisher=”Del Rey”>
<series/>
<title>Way Station</title>
<author>Clifford D. Simak</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Fellowship of the Ring</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>

<series>The Lord of the Rings</series>
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>Too Many Magicians</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>Murder and Magic</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>The Napoli Express</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>

<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<author>Randall Garrett</author>

</book>
</library>

10.1 Recursive Versus Iterative Style Sheets 245

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 245

Listing 10-3 Iterative Style Sheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml” version=”1.0” encoding=”UTF-8”/>

<xsl:template match=”/”>

<xsl:element name=”table”>

<xsl:for-each select=”//book”>
<xsl:element name=”tr”>

<xsl:for-each select=”child::*”>
<xsl:element name=”td”>

<xsl:value-of select=”.”/>
</xsl:element>

</xsl:for-each>

</xsl:element>
</xsl:for-each>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Listing 10-4 Recursive Style Sheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml” version=”1.0” encoding=”UTF-8”/>

<xsl:template match=”/”>

<xsl:element name=”table”>
<xsl:apply-templates select=”//book”/>

</xsl:element>

</xsl:template>

<xsl:template match=”*”>

<xsl:if test=”count(ancestor::*) = 1”>
<xsl:element name=”tr”>

<xsl:apply-templates select=”child::*”/>
</xsl:element>

</xsl:if>
<xsl:if test=”count(ancestor::*) != 1”>

<xsl:element name=”td”>

246 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 246

<xsl:value-of select=”.”/>
</xsl:element>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

The decision to use an iterative design or a recursive design is more a
matter of personal taste and comfort than any rule imposed from on high. For
example, many developers new to XSLT start by writing iterative style sheets
and move to recursive methods only when they become more confident in their
abilities. But in the end, the result of the two style sheets is the same as
shown in Listing 10-5.

Listing 10-5 Result from Applying Either Style Sheet to the XML in Listing 10-2

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<book publisher=”Del Rey”>
<series/>
<title>Way Station</title>
<author>Clifford D. Simak</author>

</book>
<book publisher=”Del Rey”>
<series>The Lord of the Rings</series>
<title>The Fellowship of the Ring</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>
<series>The Lord of the Rings</series>
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Del Rey”>
<series>The Lord of the Rings</series>
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>

</book>
<book publisher=”Ace”>
<series>Lord Darcy</series>
<title>Too Many Magicians</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>
<series>Lord Darcy</series>
<title>Murder and Magic</title>
<author>Randall Garrett</author>

</book>

10.1 Recursive Versus Iterative Style Sheets 247

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 247

Listing 10-5 continued

248 XSLT Chapter 10

<book publisher=”Ace”>
<series>Lord Darcy</series>
<title>The Napoli Express</title>
<author>Randall Garrett</author>

</book>
<book publisher=”Ace”>
<series>Lord Darcy</series>
<title>Lord Darcy Investigates</title>
<author>Randall Garrett</author>

</book>
</library>

10.1.1 Scope

If you’re in a cubical right now, take a moment and look around; you’re the
absolute ruler of all that you survey. The desk and its contents all fall under
your benevolent influence, as do the coffee cup and its contents. However, all
that is beyond the imaginary line that separates your cubical from the corri-
dor is beyond the scope of your influence and belongs to another. This simplis-
tic description of office life is essentially the same as how the concept of scope
works in XSLT. In XSLT, scope is applied to both the context node, the current
position in the XML document, and the variables.

It is best to think of scope along the same lines as local and global vari-
ables in other programming languages. For example, if a variable is defined
within an if statement, it is accessible only inside that if statement. Or if a
variable is defined within a function (template in XSLT), it can be used only
within that function, not in any subsequent function, unless it is passed as a
parameter. Variables defined on the root level are considered global to the
entire XSLT document. Also, while we’re on the subject of variables, I should
describe the toughest issue that new developers have with learning XSLT.

10.1.2 Nonvariable Variables

As with other programming languages, XSLT provides the capability to create
variables, which can be a major stumbling block to newcomers. You see,
because of the functional nature of XSLT, variables aren’t variable, and after
they’re created, they cannot be assigned a new value within the same scope.
This might seem at first to be a problem, but it was intentional because XSLT
is not a procedural language, like JavaScript. XSLT variables function more
like variables in mathematical functions; you can create them, you can use
them, but you can never change them.

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 248

This, probably more than any other aspect of XSLT, has caused more
developers to run screaming into the night, although I’m not sure, having
never conducted any research into the subject. After all, how long can you
develop without Jonesing for a fix—er, make that needing a way to alter a
variable or something along those lines?

There is, however, a way around this issue; remember what I said about
scope? That scope can be both local and global? Imagine, if you will, a recur-
sive template. Yes, the headaches are starting already, but bear with me on
this. There is absolutely no reason why a template cannot call itself. Okay,
that’s really useful information. A template can get around this issue, and it
would be even more useful if I were to explain what a template is.

In XSLT, a template is the equivalent to a function in another language,
such as PHP or JavaScript. In fact, it isn’t all that unusual for a template to
have a name and be invoked using that name, just like a function. In addition,
templates can accept parameters, just as functions do in other languages.
However, there is a major difference between XSLT functions and, say,
JavaScript functions.

In JavaScript, functions are required to have names, whereas, in XSLT,
templates aren’t required to have names. This raises the question, if a tem-
plate doesn’t have a name, then how do you call it? The simple answer is that
you don’t call it; only named templates can be called. Instead, you apply it. The
XSLT apply-templates element has an attribute named select, which uses
XPath to specify which nodes in the source document the template is to be
applied to.

10.2 XPATH IN THE STYLE SHEET

Even though the XSLT elements in the three style sheets shown earlier are
unfamiliar, they illustrate that XPath is an indispensable part of the style
sheet. The recursive style sheet particularly shows this dependence upon
XPath because of the heavy use of template and apply-templates elements for
pattern matching, and the if elements for flow control. But because you read
the previous chapter on XPath, all this XPath stuff is already old hat. You did
read it, didn’t you? Skipping ahead to the good parts, eh? For shame, no soup
for you!

Before continuing, I’d like to take a moment to explain something to one
of my former co-workers who might be reading this (Yeah, right! Like that
would ever happen—the last technical book he read was Curious George
Builds a Web Page) before continuing. First, there is no difference in XPath,
regardless of where it is being used. The XPath in Europe is the same as the

10.2 XPath in the Style Sheet 249

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 249

XPath in Asia, which is the same as the XPath in North America, and if some-
thing on the Mars Rovers use XPath, then that is also the same. It is called a
standard, which means that it is standard throughout the solar system. Sorry
to those of you who understand the concept of standards; I just needed to exer-
cise (exorcise) that particular demon for personal reasons. Besides, it was get-
ting a little pudgy, and who wants a pudgy demon anyway?

10.3 ELEMENTS

Regardless of whether you consider XSLT to be a markup language, a script-
ing language, or just a pain in the fanny, it is, first and foremost, a dialect of
XML and, therefore, must adhere to all of XML’s rules. And I mean all of
XML’s rules because if it isn’t well formed, then end of game. Fortunately,
we’ve been there and done that already, which gives us the opportunity to look
at the various XSLT elements available to us. Table 10-1 provides a high-level
overview of these elements—not quite an orbital overview, but close. Don’t
worry; we cover some of these elements in much greater detail shortly.

Table 10-1 XSLT Elements

Element Attributes Description
apply-imports Applies external templates that have

been imported using the import
element.

apply- select optional Applies templates that were defined
templates mode optional locally.
attribute name Specifies an attribute for the

namespace optional preceding element.
attribute-set name Defines a named set of attributes

use-attribute-sets that can be used to specify a list of
optional attributes en mass instead of

individually.
call-template name Used to invoke a named template.
choose Indicates the beginning of a case

structure.
comment Used to create comments in the

output document.
copy use-attribute-sets Copies the current node and

optional namespaces to the output document.
However, it does not copy the
children of the current node.

250 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 250

Element Attributes Description
copy-of select Copies the node or nodes specified

by the select attribute to the
output document.

decimal-format decimal-separator Defines the appearance of numbers
optional formatted using the
digit optional format-number() function.
grouping-separator
optional
infinity optional
minus-sign optional
name optional
NaN optional
pattern-separator
optional
per-mille optional
percent optional
zero-digit optional

element name Used to create an element in the
namespace output document.
use-attribute-sets
optional

fallback Specifies to the XSL processor
alternative code to run in case an
XSL element is not supported.

for-each select Loops through the node set
specified by the select attribute.

if test Executes the enclosed XSL when
the result of the test is true. It is
important to remember that no
else clause exists for the if
element. In these instances, the
choose, when, and otherwise
elements should be used.

import href Imports an external style sheet,
which is the same as including a
style sheet.

include href Includes an external style sheet,
which is the same as importing a
style sheet.

key name Defines a search key that is used to
match locate specific nodes based upon
use their value or the value of another

node.

10.3 Elements 251

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 251

Table 10-1 continued

Element Attributes Description
message terminate optional Writes a programmer-defined

message to the output document.
namespace-alias stylesheet-prefix Replaces the namespace specified

result-prefix with the stylesheet-prefix
attribute on the input stylesheet
with the namespace specified
with the result-prefix attribute
on the output document.

number level optional Used to write a formatted
count optional number to the output document.
from optional
value optional
format optional
lang optional
letter-value optional
group-separator optional
grouping-size optional

otherwise Defines the default action for a
case structure (choose).

output method optional Defines the format of the output
version optional document.
encoding optional
omit-xml-declaration
optional
standalone optional
doctype-public optional
doctype-system optional
cdata-section-elements
optional
indent optional
media-type optional

param name Used to specify template,
select optional stylesheet, and transform input

parameters.
preserve-space elements Defines the elements for which

whitespace is to be preserved on
the output document.

processing- name Writes an XML processing
instruction instruction to the output

document.
sort select optional Sorts a node set.

lang optional
data-type optional
order optional
case-order optional

252 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 252

Element Attributes Description
strip-space elements Defines the elements for which

whitespace is not to be preserved
on the output document.

stylesheet id optional Defines the XSL document as a
extension-element- style sheet to the XSLT
prefixes optional processor.
exclude-result-
prefixes optional
version

template match optional Defines a template, which is
name optional essentially an XSL function.
priority optional
mode optional

text disable-output- Indicates that the enclosed is
escaping optional text.

transform id optional Defines the XSL document as a
extension-element- style sheet to the XSLT
prefixes optional processor, identical to the
exclude-result- stylesheet element.
prefixes optional
version

value-of select Writes the information specified
disable-output- by the select attribute to the
escaping optional output document.

variable name Defines either a local or global
select optional variable to the XSLT processor.

when test Defines the individual cases of a
case structure (choose).

with-param name Defines the parameters to a
select optional template.

10.3.1 In the Beginning

In the beginning, all your data was painted on the wall of a cave somewhere,
and it was good. Depending on the available light, it was human readable, self-
describing, colorful, and even pretty. Unfortunately, civilization has advanced
to the point that cave paintings just can’t express the sheer volume of infor-
mation available to us today. Enter XML, which, like its distant ancestor, is
also human readable, self-describing, and, if you’re using an XML editor such
as Stylus Studio, both colorful and pretty.

Although it might seem to some people that we’ve come full circle in our
data storage, from cave paintings to XML, there is a distinct advantage to
XML. Unlike a cave painting, which pretty much just sits there on the wall

10.3 Elements 253

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 253

looking about the same as it did 40,000 years ago, XML is a bit more portable.
With the addition of XSLT, XML is also elastic and flexible. I’m sold on the con-
cept, how about you? Good. The only issue remaining is how to start develop-
ing an XSL style sheet.

All XSL style sheets begin with one of two elements, either the
stylesheet element or the transform element. They are interchangeable
because both do exactly the same thing, although I recommend not using the
transform element during months with r’s. Wait, maybe that was oysters—I
have a tendency to confuse the two.

The next part of the style sheet is the output element, which essentially
describes the format of the output. This is where you make the commitment of
whether the output document will be XML, HTML, text, or, gasp, even XSLT.
Not big on commitment? Not a problem. Just leave out the output element, and
the output defaults to XML. Of course, come to think of it, that, too, is a form of
commitment.

The next “standard” part of an XSL style sheet is the first template, the
one that starts the whole ball rolling. However, before we get there, I should
point out that between the first element and the first template is where some
really useful elements go. Parameters from the outside world and global vari-
ables are just two examples. In fact, let’s take a look at Table 10-2, which indi-
cates where elements can be defined in a style sheet and what effect location
can have on their behavior.

Table 10-2 XSL Style Sheet Elements and Where They Can Be Defined

Element Defined Where
apply-imports Either root or element level
apply-templates Either root or element level
attribute Element level
attribute-set Root level
call-template Element level
choose Element level
comment Either root or element level
copy Element level
copy-of Element level
decimal-format Root level
element Element level
fallback Element level
if Element level
import Root level
include Root level

254 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 254

Element Defined Where
key Root level
message Element level
namespace-alias Root level
number Root level
otherwise Element level
output Root level
preserve-space Root level
processing-instruction Root level
sort Element level
strip-space Root level
stylesheet Root level
template Root level
text Element level
transform Root level
value-of Element level
variable Element level
when Element level
with-param Element level

At last we’ve come to the first template of the style sheet. Unfortunately,
it is kind of anticlimatic because 99 percent of all style sheets start with a
template element that looks just like this:

<xsl:template match=”/”>

Boring, isn’t it? Yes, you can make it more specific and have it look for a
particular element that should be in the input document. I don’t recommend
it, though, because it will only cause problems someday when, for some rea-
son, that specific element is not in the input document. Then comes the
inevitable yelling, the finger pointing, and the peasants with pitchforks and
torches again. Not a pretty picture.

10.3.2 Templates and How to Use Them

After the initial template, the one that establishes the current location as the
root, what are some of the other ways to use templates?

Earlier I stated that templates could have names, although it wasn’t
required. In XSLT, these named templates fill pretty much the same niche
that functions do in a language such as JavaScript or PHP. They can accept
parameters and return results. In my opinion, if it looks like a duck and walks

10.3 Elements 255

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 255

like a duck, the odds are, it is a duck. Unless it is a goose, but that is kind of
like duckzilla, so it isn’t a problem.

Let’s take a look at what a typical, although useless, named function
looks like. Shown in Listing 10-6, its purpose is to accept two numbers, add
them, and return the result.

Listing 10-6 Named Template

<xsl:template name=”add”>
<xsl:param name=”a” />
<xsl:param name=”b” />

<xsl:value-of select=”number($a) + number($b)” />
</xsl:template>

Thankfully, this is one of those times when something both seems simple
and actually is simple, as long as you remember that dollar signs aren’t
required at definition but are required when used. However, the same thing
can’t always be said for templates invoked using XPath—but before we go
there, perhaps it would be better to take a look at two more mundane tem-
plates. Using the XML shown way back in Listing 10-4, the style sheets shown
in Listings 10-7 and 10-8 do exactly the same thing in a slightly different
manner.

Listing 10-7 A Pure XSLT Example

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:preserve-space elements=”text”/>

<xsl:template match=”/”>

<xsl:element name=”div”>
<xsl:apply-templates select=”//library”/>

</xsl:element>

</xsl:template>

<xsl:template match=”library”>

<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:for-each select=”book”>
<xsl:element name=”tr”>

<xsl:for-each select=”*”>

256 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 256

<xsl:element name=”td”>
<xsl:attribute name=”width”>33%</xsl:attribute>

<xsl:value-of select=”.”/>

<xsl:if test=”string-length(.) = 0”>
<xsl:text> </xsl:text>

</xsl:if>
</xsl:element>

</xsl:for-each>
</xsl:element>
</xsl:for-each>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Listing 10-8 An XSLT/XHTML Hybrid Example

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:preserve-space elements=”text”/>

<xsl:template match=”/”>

<xsl:element name=”div”>
<xsl:apply-templates select=”//library”/>

</xsl:element>

</xsl:template>

<xsl:template match=”library”>

<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:for-each select=”book”>
<tr>
<xsl:for-each select=”*”>
<td width=”33%”>
<xsl:value-of select=”.”/>

<xsl:if test=”string-length(.) = 0”>
<xsl:text> </xsl:text>

</xsl:if>
</td>

</xsl:for-each>
</tr>

</xsl:for-each>

10.3 Elements 257

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 257

Listing 10-8 continued

258 XSLT Chapter 10

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Confused? Don’t be. Because XSLT and XHTML are both dialects of
XML, there is absolutely nothing wrong with mixing the two. At first glance,
the style sheet shown in Listing 10-8 might seem to be a little like a mutt, part
this and part that. But as weird as it seems, it is much more common than the
purebred solution from Listing 10-7.

Earlier I stated that templates invoked using XPath aren’t always simple
because, at times, more than one template matches. If you don’t expect this, it
could, at the very least, be an embarrassment. However, there is a way to spec-
ify which template to use when more than one matches the criteria.

The mode attribute, which is on both the template and apply-templates ele-
ments, is used to specify which template to use when a particular select could
result in more than one match. Listing 10-9, a merging of Listings 10-7 and
10-8, has an example of this. The only difference, other than the merging,
is the addition of a mode attribute for the mutt template and a new apply-
templates element, also with a mode attribute.

Listing 10-9 Distinguishing Template Matches Using Mode

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:preserve-space elements=”text”/>

<xsl:template match=”/”>

<xsl:element name=”div”>
<xsl:apply-templates select=”//library” />
<xsl:apply-templates select=”//library” mode=”mutt” />

</xsl:element>

</xsl:template>

<xsl:template match=”library”>

<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 258

<xsl:for-each select=”book”>
<xsl:element name=”tr”>

<xsl:for-each select=”*”>
<xsl:element name=”td”>
<xsl:attribute name=”width”>33%</xsl:attribute>

<xsl:value-of select=”.” />

<xsl:if test=”string-length(.) = 0”>
<xsl:text> </xsl:text>

</xsl:if>
</xsl:element>

</xsl:for-each>
</xsl:element>

</xsl:for-each>
</xsl:element>

</xsl:template>

<xsl:template match=”library” mode=”mutt”>

<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:for-each select=”book”>
<tr>
<xsl:for-each select=”*”>
<td width=”33%”>
<xsl:value-of select=”.” />

<xsl:if test=”string-length(.) = 0”>
<xsl:text> </xsl:text>

</xsl:if>
</td>

</xsl:for-each>
</tr>

</xsl:for-each>
</xsl:element>

</xsl:template>

</xsl:stylesheet>

The mode attribute provides additional criteria for the match. Instead of
the XPath being the only criteria, the mode is also used. So a simple XPath
match alone is not enough; there also has to be a match to the mode. This
leads to some interesting possibilities, such as when the mode name is
unknown. Just use an asterisk as the mode name and use the mode to indicate
the depth, or something along those lines.

10.3 Elements 259

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 259

10.3.3 Decisions, Decisions

As in the majority of programming languages, XSLT provides flow control in
the way of decision structures. Excluding apply-templates, which can be used
for some similar functionality, there is the if element and a case structure,
called choose. Basically, it is all easy stuff, but two issues with XSLT decisions
can cause many developers problems.

The first of these issues is how to test for greater than and less than, and
still keep the document well formed. Fortunately, the previous chapter covered
this problem when discussing XPath. The only remaining issue is one that
causes quite a number of headaches: a lack of an else for the if element.

Lack of an else might seem like, if not an insurmountable problem, at
least an annoying problem. Because of this lack, the choose element is used
more often in languages with an else. Listing 10-10 is an example of a
workaround for this lack of an else statement.

Listing 10-10 A Workaround

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<xsl:variable name=”value” select=”7” />

<xsl:element name=”div”>
<xsl:choose>
<xsl:when test=”($value mod 2) = 0”>Even</xsl:when>
<xsl:otherwise>Not even</xsl:otherwise>

</xsl:choose>
</xsl:element>

</xsl:template>

</xsl:stylesheet>

10.3.4 Sorting Out Looping

XSL style sheets have a built-in mechanism for sorting node sets, which can
be rather useful when information needs to be arranged in a specific sequence.
As with everything in XSL, sorting is accomplished through the use of an ele-
ment, which, appropriately, is called sort. Interesting how these things work
out, isn’t it?

Listings 10-11 and 10-12 both show examples of the use of the sort ele-
ment, with a couple minor differences. For example, Listing 10-11 uses a
for-each element to navigate through the node set, which is sorted into

260 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 260

ascending sequence. In Listing 10-12, an apply-templates is used, and the node
set is sorted into descending sequence.

Listing 10-11 A for-each Sort Example

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:for-each select=”//book”>
<xsl:sort select=”title” order=”ascending” />

<xsl:element name=”tr”>
<xsl:for-each select=”*”>
<xsl:element name=”td”>
<xsl:value-of select=”.” />

</xsl:element>
</xsl:for-each>

</xsl:element>
</xsl:for-each>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Listing 10-12 A template sort Example

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:apply-templates select=”//book”>
<xsl:sort select=”title” order=”descending” />
</xsl:apply-templates>

</xsl:element>

</xsl:template>

<xsl:template match=”*”>

<xsl:element name=”tr”>
<xsl:for-each select=”*”>
<xsl:element name=”td”>

10.3 Elements 261

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 261

Listing 10-12 continued

262 XSLT Chapter 10

<xsl:value-of select=”.” />
</xsl:element>
</xsl:for-each>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

10.4 XSLT FUNCTIONS

Unlike XPath, which has a plethora of functions, the number of XSL functions
is significantly lower. Mostly, the reason for this is that the XPath functions
are fully available to supplement the few functions shown in Table 10-3.

Table 10-3 XSL Functions

Function Description
Current() Returns only the current node in a node set
document() Used to access an XML document other than the

source document
element-available() Returns a true condition if the passed string is a

supported XSL element
Format-number() Returns a formatted numeric string using a number

and a pattern as input
function-available() Returns a true condition if the passed string is a

supported XSL or XPath function
generate-id(node) Returns an ID that is unique to the node passed,

regardless of how the node was obtained
key() Returns a node set that was previously indexed using

the key element
System-property() Returns a value for a specific system property
unparsed-entity-uri() Returns the URI of an unparsed entity

10.5 XSLT CONCEPTS

When developing an XSL style sheet, I usually find myself using only two of
the XSL functions shown earlier: the key() function and the generate-id()

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 262

function, both of which are indispensable when doing something unique to
XSL style sheets. I am referring to something called Muenchian grouping.

Muenchian grouping, invented by Steve Muench, the XML Evangelist of
the Oracle Corporation, is a method of grouping nodes based upon their val-
ues. Although I can describe how it works, it is probably a better idea to take a
look at the example of Muenchian grouping shown in Listing 10-13. After that,
we take it apart to see how it works.

Listing 10-13 A Muenchian Grouping Example

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” version=”1.0” encoding=”UTF-8” indent=”yes” />
<xsl:key name=”keyBook” match=”book” use=”series” />

<xsl:template match=”/”>

<xsl:element name=”table”>
<xsl:attribute name=”width”>100%</xsl:attribute>

<xsl:apply-templates select=”//book[1]” mode=”header” />
<xsl:apply-templates select=”//book[generate-id(.) = generate-

id(key(‘keyBook’,series)[1])]” />
<xsl:apply-templates select=”//book[string-length(series) =

0]/series” />
</xsl:element>

</xsl:template>

<xsl:template match=”book”>

<xsl:variable name=”key”>
<xsl:value-of select=”series” />

</xsl:variable>

<xsl:apply-templates select=”//series[node() = $key]” />

</xsl:template>

<xsl:template match=”series”>

<xsl:element name=”tr”>
<xsl:apply-templates select=”parent::node()/*” mode=”cell” />

</xsl:element>

</xsl:template>

<xsl:template match=”*” mode=”cell”>

<xsl:element name=”td”>

10.5 XSLT Concepts 263

continues

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 263

Listing 10-13 continued

264 XSLT Chapter 10

<xsl:attribute name=”align”>left</xsl:attribute>

<xsl:value-of select=”.” />
</xsl:element>

</xsl:template>

<xsl:template match=”book” mode=”header”>

<xsl:element name=”tr”>
<xsl:apply-templates select=”./*” mode=”columnHeader” />

</xsl:element>

</xsl:template>

<xsl:template match=”*” mode=”columnHeader”>

<xsl:variable
name=”lowerCase”>qwertyuiopasdfghjklzxcvbnm</xsl:variable>

<xsl:variable
name=”upperCase”>QWERTYUIOPASDFGHJKLZXCVBNM</xsl:variable>

<xsl:element name=”th”>
<xsl:attribute name=”width”>33%</xsl:attribute>

<xsl:value-of select=”translate(name(.),$lowerCase,$upperCase)” />
</xsl:element>

</xsl:template>

</xsl:stylesheet>

The element that starts the whole ball rolling is the key element, which
creates a cross-reference based upon the node specified by the use attribute.
Using the series element as the key results in an index consisting of The Lord
of the Rings and Lord Darcy, with the book The Way Station left out because
its series element is null. This cross-reference is accessed using the key func-
tion, which accepts two parameters: the name from the key element and the
node.

Another function that plays an integral part in Muenchian grouping is the
generate-id function. This function, well, generates a unique ID for every node
in an XML document every time that the document is processed. So the XPath
statement //book[generate-id(.) = generate-id(key(‘keyBook’,series)[1])]

locates the first element with each unique key from the cross-reference and
applies the matching template. The matching template then uses the unique
series to select the matching elements.

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 264

It is all pretty basic XSLT and XPath stuff, although it does have a ten-
dency to make grown men whimper like little scared puppies. If it doesn’t,
here is one that will put someone over the edge: Imagine trying to group based
upon multiple criteria, such as author and series. Although it isn’t done very
often, and you’ll probably never have to do it, I’ll give you a hint: Concatenate
the elements using the concat function.

10.6 CLIENT-SIDE TRANSFORMATIONS

Now that we’ve got an idea of what an XSL style sheet is and what effect it
has on XML, I’m thinking that it might be a good idea to see how to apply XSL
in the browser. Although browsers that support XSLT all use JavaScript to
create the necessary objects, this is yet another one of those instances in which
there is Microsoft Internet Explorer and everybody else. Despite this, the flow
is essentially the same, regardless of the client’s browser.

When setting out to perform client-side transformations, the first tasks
are always to obtain the XML and the XSL style sheet. A number of ways exist
for doing this, ranging from having the document embedded in the web page,
to loading it directly from the web server, to requesting it from a web service.
How the document is obtained isn’t nearly as important as just obtaining it.

The next task it to create an XSLT processor, pass the style sheet and the
XML document, and then get the resulting document and use it. This whole
process sounds relatively easy, doesn’t it? And my question is loaded, isn’t it?
The answers to the questions are “yes” and “no.” Applying an XSL style sheet
in the browser is actually as easy as it sounds.

With client-side transformations, the only “gotcha” is being aware of the
browser. ActiveX won’t work in Firefox, Flock, Mozilla, or Netscape, and noth-
ing but ActiveX will work in Internet Explorer. Yes, it is an annoyance, but it is
nothing that we haven’t lived with for the better part of a decade. Besides, this
is one of those things that, once coded, can be cloned again and again. In short,
it is a nice addition to our bag of tricks.

10.6.1 XSLT in Microsoft Internet Explorer

When working with Internet Explorer, if something isn’t part of HTML, or
part of CSS, or part of JavaScript, the odds are, it is part of ActiveX. Think of
ActiveX as the bilge of Internet Explorer; a lot of stuff is down there, and some
of it is scary, but that is another story. In reality, ActiveX is the Internet
descendant of Microsoft’s original object-based framework, Object Linking and
Embedding, or OLE.

10.6 Client-Side Transformations 265

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 265

ActiveX objects are instantiated using the JavaScript new operator in the
following manner:

var XSLTemplate = new ActiveXObject(‘MSXML2.XSLTemplate.3.0’);

The previous statement is merely the first step in applying an XSL style
sheet on the client side using JavaScript. In Internet Explorer, the next step is
to specify the XSL style sheet, in the form of an XML document, to the tem-
plate, like this:

XSLTemplate.stylesheet = XSL;

The next step is to create an XSLT processor using the instance of the
XSL template:

var XSLTProcessor = XSLTemplate.createProcessor;

Now it is time to specify the XML document to the XSLT processor in the
following manner:

XSLTProcessor.input = XML;

Hang in there; the end is in sight. So far, we’ve created an XSL template,
specified the XSL style sheet, created an XSLT processor, and specified the
XML document. This leaves just two steps, the first of which is applying the
style sheet:

XSLTProcessor.transform();

The final step is simply to use the output from the processor, which, inci-
dentally, is text:

document.getElementById(‘example’).innerHTML = XSLTProcessor.output;

Put together as one routine, the entire sequence of JavaScript is shown
in Listing 10-14.

266 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 266

Listing 10-14 Internet Explorer

var XSLTemplate = new ActiveXObject(‘MSXML2.XSLTemplate.3.0’);

XSLTemplate.stylesheet = XSL;

var XSLTProcessor = XSLTemplate.createProcessor;

XSLTProcessor.input = XML;

XSLTProcessor.transform();

document.getElementById(‘example’).innerHTML =

XSLTProcessor.output;

If you’re a big fan of complicated procedures, such as the one necessary
with Microsoft Internet Explorer shown earlier, be ready to be disappointed.
Unlike Internet Explorer, the other browsers that support XSLT, including
open source browsers such as Firefox, Mozilla, and Flock, require a simple
three-step process:

1. Create an XSLT processor.
2. Import the style sheet as an XML document.
3. Apply the style sheet and use the resulting XML document or document

fragment.

The only oddities, from an Internet Explorer point of view, are the fact
that the result is an XML document or document fragment. This means
that there are two methods for applying an XSL style sheet: one for documents,
transformToDocument, and a second for document fragments, transformToFragment.
Listing 10-15 shows how it works using the transformToFragment method.

Listing 10-15 Non-IE

var XSLTProcessor = new XSLTProcessor();

XSLTProcessor.importStylesheet(xslt);

document.getElementById(‘example’).appendChild(objXSLTProcessor.transform
ToFragment(xml, document));

In my opinion, unless the application is an intranet application, the way
to go is to code to use both types of browsers. But that is a personal decision;
just remember that sometimes an intranet application doesn’t stay an
intranet application.

10.6 Client-Side Transformations 267

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 267

10.7 SUMMARY

XSLT is one of my favorite parts of programming; however, it can be difficult to
grasp. To combat this problem, we started at the beginning with iterative and
recursive style sheets. Next I covered scope and the issues with nonvariable
variables. We then took a little step backward to cover XPath and its relation-
ship to XSLT before rolling up our sleeves and getting down to some serious
XSLT.

The basics of templates were discussed, including named templates and
the use of the mode attribute. Following that, we covered how to handle deci-
sions using if and choose, along with sorting. The built-in XSLT functions
were then described, along with how some of them are used in grouping.
Finally, we covered the subject of client-side transformations.

268 XSLT Chapter 10

10_0132272679_ch10.qxd 7/17/06 9:06 AM Page 268

C H A P T E R 11

Ajax Using XSLT

“But wait, there’s more ….”
I do so feel like someone hawking my wares on a late-night infomercial,

but hey, it’s true. There is actually more to Ajax than what we’ve already cov-
ered. In fact, we’re about to get to one of my favorite parts. I’ve jokingly
referred to the material covered up to this point as “mad scientist stuff,” but
the material that we’re about to cover transcends everything that we’ve cov-
ered up till now. It is called eXtensible Stylesheet Language for Trans-
formations, or XSLT, and I like to think of it as magic. Think of XSLT as the
part of a spell that says what to do. The second part of the spell is XPath,
which acts as the targeting device for the spell. Tightly intertwined, XSLT and
XPath work together to modify or, if you prefer, transform XML.

11.1 XSLT

Transformations are an idea as old as human thought. Primitive societies had
werewolves, werebears, and weretigers. The Greeks had warnings against see-
ing goddesses bathe, unless one was interested in going to parties stag, liter-
ally. During the renaissance, there was Shakespeare’s A Midsummer’s Night
Dream, in which Bottom was made an Ass of. Today we have Jack Chalker’s
Midnight at the Well of Souls and the Borg from Star Trek. And although the
transformations in each of these stories dealt with the physical world and
XSLT can affect only XML, they all share many of the same characteristics:
Without change, the story can progress no further.

As one who has been working in the programming field for a number of
years, I can attest to one thing: About 40 percent of the time, the data is in the
wrong format. In ancient times, when great beasts with names such as System
370 or PDP-11 roamed the landscape, data being in the wrong format was a

269

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 269

major problem. Programs had to be changed or written from scratch to mas-
sage the data to make it usable. Changing programs and creating programs
has always been a costly undertaking in any day and age.

Now things are different, as time seems to be speeding up. The great
beasts are all either dead or behind glass in museums, where people can stare
in awe, never realizing that the old 486 machine that they gave to their kids
had more power.

Today much of the information that we deal with is in the form of XML,
which, interestingly enough, can be transformed by XSLT in much the same
manner as Lon Chaney was by the full moon. Thankfully, however, the XML
doesn’t get hairy—unless, of course, we want it to.

11.1.1 XML Magic

Here’s the quandary: On the client side, we have XML and we want HTML.
It’s a real pain in the gluteus, isn’t it?

Yes, we can write a script to perform the conversion, but it is a time-
consuming task accomplished with ill-suited tools. Face it: The majority of
scripting languages aren’t really built to handle XML. Although it works just
fine, when messing around with individual nodes, JavaScript’s XML support
comes across like a Bose sound system in a Ford Pinto. I’m not saying that it
doesn’t work—it works just fine, but, unfortunately, six months later it has a
tendency to cause questions like, “I wrote this?”

XSLT, as opposed to JavaScript, was designed from the ground up to han-
dle XML. Come to think of it, XSLT is itself a dialect of XML. This has a ten-
dency to lead to some really interesting style sheets when working with XSLT,
but that is a topic for another day. Another interesting thing is that although
the input has to be XML, nothing says that the output needs to be XML. This
means that if you want to transform XML into HTML as opposed to XHTML,
by all means do it, but just remember that if you’re using SOAP, the package
must be well formed.

11.1.2 How Microsoft Shot Itself in the Foot

Back in the old days, during the first browser wars, Microsoft released
Internet Explorer version 5.0, the first web browser with XSLT support. It
would have been a major victory for Microsoft , if it had not been for one little
detail. In their haste, they forgot one little thing about the World Wide Web
Consortium’s recommendations. You see, recommendations are often vastly
different from drafts. In an effort to produce the first browser with XSLT sup-
port, Microsoft used a draft as a guide.

For this reason, you sometimes see references to the namespace http://
www.w3.org/TR/WD-xsl instead of http://www.w3.org/1999/XSL/Transform.

270 Ajax Using XSLT Chapter 11

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 270

It was only with the advent of Microsoft Internet Explorer 6 that Internet
Explorer started following the recommendation instead of the draft. Per-
sonally, I believe that it is a good idea to ignore the old namespace entirely; I
think that Microsoft would like to. And although they’re currently considered
the third most popular browser, at most, individuals using versions 5.0, 5.01,
and 5.5 of Internet Explorer comprise only a fraction of the general popula-
tion. It is a pretty safe bet that you can ignore these web browsers entirely
without alienating anyone but technophobes, the White House, and project
leaders who use the term blink.

11.1.3 XPath, or I Left It Around Here Someplace

Earlier I stated that XPath was the targeting device for XSLT, which is essen-
tially true. XPath is used to describe the XML node or nodes that we’re looking
for. As the name suggests, XPath describes the path to the node that we’re
looking for. For example, let’s say that we want the state_name node in the
XML document shown in Listing 11-1. A number of different ways exist for
locating it, some of which are shown in Listing 11-2.

Listing 11-1 A Sample XML Document

<states>
<state>

<state_abbreviation>AB</state_abbreviation>
<state_name>Alberta</state_name>

</state>
<state>

<state_abbreviation>AK</state_abbreviation>
<state_name>Alaska</state_name>

</state>
<state>

<state_abbreviation>AL</state_abbreviation>
<state_name>Alabama</state_name>

</state>
<state>

<state_abbreviation>AR</state_abbreviation>
<state_name>Arkansas</state_name>

</state>
</states>

Listing 11-2 Sample XPath

/states/state/state_name
/*/*/state_name
/*/*/*[name(.) = ‘state_name’]
/states/state/*[2]
//state_name

11.1 XSLT 271

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 271

Why so many? With XPath, it is possible to describe complete paths,
paths with wildcards, and paths based upon its location, or to describe only
the node itself. From a high level, such as an orbital view, it works as shown in
Table 11-1.

Table 11-1 High-Level View of XPath

XPath Notation Description
/ Either the root node, in the case of the first slash, or

a separator between nodes
// Anywhere in the document that meets the criteria
* Wildcard (I know that there is a node here, but I

don’t know its name)
. The context node (where we are at this point)
[2] A predicate stating that the second node is the one

we want
states Qualified node name
state Qualified node name
state_name Qualified node name
name() A function that returns the name of passed node
[name(.) = ‘state_name’] A predicate stating that the desired node name is

state_name

Alright, that should be enough XPath to get started. Now let’s take a gan-
der at the XSLT shown in Listing 11-3, whose purpose is to build an HTML
select object using the XML from Listing 11-1.

Listing 11-3 Sample XSL Style Sheet

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” indent=”yes” media-type=”text/html”/>

<xsl:template match=”/”>

<select id=”myselect” name=”myselect”>
<xsl:for-each select=”/states/state”>

<xsl:element name=”option”>
<xsl:attribute name=”value”>

<xsl:value-of
select=”state_abbreviation” />

</xsl:attribute>

272 Ajax Using XSLT Chapter 11

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 272

<xsl:value-of select=”state_name” />
</xsl:element>

</xsl:for-each>
</select>

</xsl:template>

</xsl:stylesheet>

Pretty cool, isn’t it? At first glance, not only is it nicely indented, but it
also has the advantage of being one of the most obscure things that you’ve
ever laid your eyes upon. A second glance reveals some details that you might
have missed the first time; for example, the select statement looks remark-
ably like HTML. There is a very good reason for the resemblance: It is HTML.
In fact, the xsl:output statement even says that it is HTML, and you can take
it from me, xsl:output statements don’t lie.

Upon closer examination, some other details might pop out, such as the
xsl:template with match=”/”. From what we covered earlier, the slash means
that we’re looking for the root node. And while we’re examining XPath, you’ll
find xsl:for-each with select=”/states/state”. Just in case you’re wondering,
for-each means exactly what you think it does: Iterate once for every node
that matches the predicate.

Another thing that might jump out is the xsl:element node with
name=”option”. This is an alternate method of specifying an output element.
The xsl:attribute also does exactly what you’d expect from its name; it defines
an attribute of the previous xsl:element. Finally, the xsl:value-of simply
copies the node’s content from the source document to the output document. In
a nutshell, that’s pretty much the basics of XSLT and XPath. The next ques-
tion, of course, is, “So, what does the output HTML look like?” For the answer,
check out Listing 11-4.

Listing 11-4 HTML Output

<select id=”myselect” name=”myselect”>
<option value=”AB”>Alberta</option>
<option value=”AK”>Alaska</option>
<option value=”AL”>Alabama</option>
<option value=”AR”>Arkansas</option>

</select>

Later, both in this chapter and in others, you’ll find more detailed exam-
ples of client-side XSLT.

11.1 XSLT 273

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 273

11.1.4 What I Learned from the Gecko

Back when I was first learning XSLT, I was developing with the bare mini-
mum, a text editor and a copy of Microsoft Internet Explorer version 5.01—
and I was happy! Well, at least for about 20 minutes or so, right up to the point
I read the World Wide Web Consortium’s XSLT recommendation. But we’ve
already covered that, and after I downloaded a copy of Internet Explorer ver-
sion 6, I was happy again—at least, until I found Mozilla and then Firefox.

My first impression was that there was something wrong with the Gecko
XSLT processor, but there was a gnawing doubt. The reason for this was that
I’d never personally found an error in a Gecko-based browser, and I had found
several in Internet Explorer. So with a critical eye and a hard copy of the rec-
ommendation, I began to examine the “bugs” that I had found in the Gecko
XSLT processor.

The results came as no surprise to me. Gecko strictly followed the pub-
lished recommendation, whereas IE seemed somewhat looser around the
edges. My problem was that I had developed some bad habits developing in a
microcosm and had a tendency to tailor my code to that microcosm. Because of
this, I now try out my style sheets in at least two different XSLT processors
before I consider them even partially tested.

Let’s take a look at how to create an instance of the XSLT processor in
Microsoft Internet Explorer and every other web browser on the planet—er, I
mean Firefox, yeah, Firefox. Listing 11-5 shows a little cross-browser web
page that uses one XML Data Island, the first containing the XML while the
XSLT is loaded from the server via the XMLHttpRequest object. This is nothing
flashy, merely a “proof of concept.” It just creates an HTML select object and
plops it on a page.

Listing 11-5 XSLT Cross-Browser Web Page Example

<html>
<head>

<title>XML Data Island Test</title>
<style type=”text/css”>

xml
{

display: none;
font-size: 0px

}
</style>
<script language=”JavaScript”>

var _IE = (new RegExp(‘internet explorer’,’gi’)).test(navigator.appName);
var _XMLHTTP; //
XMLHttpRequest object
var _objXML; // XML DOM document
var _objXSL; //
Stylesheet

274 Ajax Using XSLT Chapter 11

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 274

var _objXSLTProcessor; // XSL Processor
var _xslt = ‘stateSelect.xsl’; // Path to style sheet

/*
Function: initialize
Programmer: Edmond Woychowsky
Purpose: Perform page initialization.

*/
function initialize() {
if(_IE) {
_XMLHTTP = new ActiveXObject(‘Microsoft.XMLHTTP’);

_objXML =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);
_objXSL =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

_objXML.async = false;
_objXSL.async = false;

_objXML.load(document.getElementById(‘xmlDI’).XMLDocument);
} else {

var _objParser = new DOMParser();

_XMLHTTP = new XMLHttpRequest();

_objXSLTProcessor = new XSLTProcessor();
_objXML =

_objParser.parseFromString(document.getElementById(‘xmlDI’).innerHTML,
”text/xml”);

}

_XMLHTTP.onreadystatechange = stateChangeHandler;

_XMLHTTP.open(‘GET’,_xslt,true);
_XMLHTTP.send(null);

}

/*
Function: stateChangeHandler
Programmer: Edmond Woychowsky
Purpose: Handle the asynchronous response to an

XMLHttpRequest, transform the XML Data Island and
display the resulting XHTML.

*/
function stateChangeHandler() {
var strXHTML;

if(_XMLHTTP.readyState == 4) {
if(_IE) {

var _objXSLTemplate =

11.1 XSLT 275

continues

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 275

Listing 11-5 continued

276 Ajax Using XSLT Chapter 11

new ActiveXObject(‘MSXML2.XSLTemplate.3.0’);

_objXSL.loadXML(_XMLHTTP.responseText);
_objXSLTemplate.stylesheet = _objXSL;
_objXSLTProcessor = _objXSLTemplate.createProcessor;
_objXSLTProcessor.input = _objXML;

_objXSLTProcessor.transform();

strXHTML = _objXSLTProcessor.output;
} else {

var _objSerializer = new XMLSerializer();

_objXSL = _XMLHTTP.responseXML;

_objXSLTProcessor.importStylesheet(_objXSL);

strXHTML =
_objSerializer.serializeToString(_objXSLTProcessor.transformToFragment
(_objXML, document));

}

document.getElementById(‘target’).innerHTML = strXHTML;
}

}
</script>

</head>
<body onload=”initialize()”>

<xml id=”xmlDI”>
<states>

<state>
<state_abbreviation>AB</state_abbreviation>
<state_name>Alberta</state_name>

</state>
<state>

<state_abbreviation>AK</state_abbreviation>
<state_name>Alaska</state_name>

</state>
<state>

<state_abbreviation>AL</state_abbreviation>
<state_name>Alabama</state_name>

</state>
<state>

<state_abbreviation>AR</state_abbreviation>
<state_name>Arkansas</state_name>

</state>
</states>

</xml>
XML client-side transformation test

<div id=”target”></div>
</body>

</html>

11_0132272679_ch11.qxd 7/17/06 2:48 PM Page 276

Alright, now that the proof of concept has been successfully completed,
all that remains is to see how it can be applied to our e-commerce website.

A Problem Revisited

Now that we have some of the basics down, let’s take a look at how XSLT can be
used to provide additional functionality to our e-commerce website. I should point
out, however, that when I originally proposed this idea to a client, I was called
insane. The comments were that it would be unworkable and that nobody in their
right mind would have even suggested it. In my defense, this was the client that
used terms such as blink and was “looking into” converting all web applications
into COBOL so that developers other than the consultants could understand it.

That’s enough introductions; without further ado, allow me to describe what I
consider the ultimate “mad scientist” website.

Excluding pop-ups, the site would be a single web page, with all communication
between the server and the client taking place using the XMLHttpRequest object.
Instead of subjecting the visitor to an endless cycle of unloads and reloads, the
page would simply request whatever it needed directly. In addition, when a partic-
ular XSLT was obtained from the server, the client would cache it, meaning that
the next time it was needed, it would already be there. It was within the realm of
possibility that eventually the client would have all the XSLT cached on the web
browser. The more the visitor did, the better the shopping experience would
become.

Needless to say, the website was never created, alas, and my contract was ter-
minated because they felt that resources could be better used supporting their
mainframe applications. Personally, I think that they lacked foresight, and if they
had pursued the concept to its logical conclusion, they’d now be mentioned in the
same breath as Google. Instead, they decided to regress into the future of the
1960s as opposed to the future of the twenty-first century. But I’m hardly an objec-
tive observer.

11.2 TABULAR INFORMATION

The previous chapter introduced several JavaScript class constructors in an
effort to keep the client-side code manageable. Now is a good time to introduce
another, a wrapper around the XSLT processor to handle the browser-specific
details involving exactly what is required for XSL transformations. Displaying
my usual lack of imagination, the class constructor is named appropriately
enough: XSLTProcessor. Table 11-2 shows the properties and methods for this
class.

11.2 Tabular Information 277

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 277

Table 11-2 XSLTProcessor

Name Parent Class Type Description
XSLTProcessor — Class Constructor
importStylesheet XSLTProcessor Method Loads the XSL document for

the transformation.
load XSLTProcessor Method Loads the XML document to

be transformed.
output XSLTProcessor Method The serialized result of the

previous transformation.
readyState XSLTProcessor Method Either the ready state for the

XML document or the XSL
document, whichever is lower.
When they are equal, the
appropriate ready state value
is returned.

setParameter XSLTProcessor Method Set a parameter for the XSLT
processor.

transform XSLTProcessor Method Performs the transformation
and returns the serialized
result.

With the creation of the XSLTProcessor constructor, the only items
remaining are those that are absolutely essential to the website. The essential
items are the XSL style sheets themselves, three in total. The first style sheet
creates the HTML for the Items page. The purpose of the second style sheet is
to create/render the Details page. The final style sheet renders the shopping
cart in a slightly different manner than you’d expect. Each of these three
items is covered as needed.

11.2.1 Read Only

Please bear with me; what I’m about to say deals only with read-only pages
and, to some, might seem to be heresy. When using XSL for read-only pages,
data binding isn’t necessary; in fact, it is unnecessary overhead. Think about it
for a moment: First, the information isn’t going to change on the client side. In
addition, the transformation process has already taken care of the display of
the information. For the aforementioned reasons, it is perfectly acceptable to
skip the bind when dealing with read-only information, as the style sheet in
Listing 11-6 illustrates.

278 Ajax Using XSLT Chapter 11

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 278

Listing 11-6 XSL Style Sheet to Produce a Nonbound Table

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” indent=”yes” media-type=”text/html”/>

<xsl:template match=”/”>
<xsl:element name=”div”>

<xsl:call-template name=”row”>
<xsl:with-param name=”string” select=”’Guild

Name:’” />
<xsl:with-param name=”top” select=”’75px’” />

</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string” select=”’Item
Name:’” />

<xsl:with-param name=”top” select=”’92px’” />
</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string”
select=”’Description:’” />

<xsl:with-param name=”top” select=”’110px’” />
</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string” select=”’Price:’” />
<xsl:with-param name=”top” select=”’127px’” />

</xsl:call-template>

<xsl:call-template name=”row”>
<xsl:with-param name=”string”

select=”’guild_name’” />
<xsl:with-param name=”type” select=”’data’” />
<xsl:with-param name=”top” select=”’75px’” />

</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string” select=”’item_name’”
/>

<xsl:with-param name=”type” select=”’data’” />
<xsl:with-param name=”top” select=”’92px’” />

</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string”
select=”’item_description’” />

<xsl:with-param name=”type” select=”’data’” />
<xsl:with-param name=”top” select=”’110px’” />

</xsl:call-template>
<xsl:call-template name=”row”>

<xsl:with-param name=”string”
select=”’item_price:’” />

<xsl:with-param name=”type” select=”’data’” />
<xsl:with-param name=”top” select=”’127px’” />

</xsl:call-template>

11.2 Tabular Information 279

continues

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 279

Listing 11-6 continued

280 Ajax Using XSLT Chapter 11

</xsl:element>
</xsl:template>

<xsl:template name=”row”>
<xsl:param name=”dataisland” select=”’ ‘“ />
<xsl:param name=”string” />
<xsl:param name=”type” select=”’header’” />
<xsl:param name=”top” />

<xsl:variable name=”apostrophe”>’</xsl:variable>
<xsl:variable name=”nbsp”>&nbsp;</xsl:variable>

<xsl:element name=”div”>
<xsl:attribute name=”class”>rowHeader</xsl:attribute>
<xsl:attribute name=”style”>

<xsl:choose>
<xsl:when test=”$type = ‘header’”>

<xsl:value-of
select=”concat($apostrophe,’position: absolute; left: 50px; right: auto%;
bottom: auto; width: 200px; top: ‘,$top,$apostrophe)” />

</xsl:when>
<xsl:otherwise>

<xsl:value-of
select=”concat($apostrophe,’position: absolute; left: 255px; right: auto%;
bottom: auto; width: 600px; top: ‘,$top,$apostrophe)” />

</xsl:otherwise>
</xsl:choose>

</xsl:attribute>

<xsl:choose>
<xsl:when test=”$type = ‘header’”>

<xsl:value-of disable-output-escaping=”yes”
select=”concat($nbsp,$string)” />

</xsl:when>
<xsl:otherwise>

<xsl:attribute name=”xmlDI”>
<xsl:value-of select=”$dataisland” />

</xsl:attribute>
<xsl:attribute name=”xmlNode”>

<xsl:value-of select=”$string” />
</xsl:attribute>

</xsl:otherwise>
</xsl:choose>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

This style sheet first creates an HTML Table element with the required
attributes to give the site a common look and feel. Next, the column headers

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 280

are rendered and a template is invoked to create the individual rows, which is
the Table element in the source XML document. If there are no Table elements,
only the HTML table headers will be produced. The individual cells are pro-
duced based upon the node name, and we’re done.

Before proceeding any further, however, I want to explain two statements
in the style sheet. The first of these is the one that defines the apostrophe
variable:

<xsl:variable name=”apostrophe”>’</xsl:variable>

The second statement is the one that uses the apostrophe variable:

<xsl:value-of select=”concat(‘javascript:pageLoad
(‘,$apostrophe,’itemsDisplay.xsl’,$apostrophe,’,
’,guild_id,’,null)’)” />

These two statements might seem somewhat odd because if you’re even
slightly familiar with XSL, you know that there is a perfectly acceptable entity
that can be used to render apostrophes. The entity that I refer to is ',
which, unfortunately, would cause quite a few headaches if used here. The
entity would be treated as if it were, in fact, an apostrophe. The XSLT processor
would then consider the previous statement to be equivalent to the following.

<xsl:value-of select=”concat(‘javascript:pageLoad
(‘,’,’itemsDisplay.xsl’,’,’,’,guild_id,’,null)’)” />

As you can see, this would lead to an error and a nasty error message
instead of the page shown in Figure 11-1.

11.2.2 Updateable

Unlike the previous read-only example, binding cannot be ignored when using
XSLT to create updateable web pages. Even so, several advantages exist that
were unavailable in earlier chapters. For example, there are the funky looping
and concatenating strings to build the HTML with the correct number of rows.
XSL takes care of those annoying details for us.

11.2 Tabular Information 281

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 281

Figure 11-1 The properly rendered page

11.3 ADVANTAGES AND DISADVANTAGES

A number of advantages exist for designing a site that uses client-side XSLT.
The first is that it really looks good on the old resumé—strike that. The first is
that it becomes possible to design more dynamic websites that can take
advantage of the client’s machine. In addition, the amount of information can
be reduced by caching the XSL style sheets on the client machine. However, if
the resources available on the client become something of an issue, there are
always alternatives.

The first alternative that comes to mind is to not cache the XSL at all;
instead, it could be sent back and forth along with the XML. For large sites,
another possibility is to cache only a certain number of pages. This could be
handled in sort of a stack: first in, first out.

Concerning caching, one additional idea comes to mind: Forgo the pre-
load entirely. Instead, style sheets could be loaded on an as-needed basis. After

282 Ajax Using XSLT Chapter 11

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 282

being loaded, they could then be cached. The interesting thing about this idea
is that, from the client’s perspective, performance would improve over time—
almost as if the site got better with practice. Talk about mad scientist stuff!

Alas, all of this is for naught if the client’s browser doesn’t support trans-
formations. Not all of them do. I suppose that an alternative should be made
available for those that, for some reason, are still running Microsoft Internet
Explorer version 3.0. No, I don’t mean server-side transformations to accommo-
date luddites; I’m thinking more along the lines of a link to www.mozilla.org,
where they can join everyone else in the twenty-first century.

11.4 SUMMARY

In this chapter, I covered why the idea of performing transformations on the
client side is scary, mostly because of the actions of Microsoft. Additionally, I
covered the reason why using XSLT on the client side now makes sense, with
the advent of Gecko-based browsers and Microsoft Internet Explorer.

11.4 Summary 283

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 283

11_0132272679_ch11.qxd 7/17/06 2:49 PM Page 284

C H A P T E R 12

Better Living Through Code Reuse

At one time in my career, I was a consultant, or, if you prefer, a hired gun. My
job was to ride into town, clean up things, and then ride off into the sunset. It
was like being a Wild West hero, just me and my horse—alright, just me and
my little blue car. Please believe me when I say that I ride like the late movie
star Lee Marvin; have you ever seen Cat Balloo? If you haven’t, let’s just say
that my posture in the saddle isn’t the best.

The reason that I bring this up is that, like those heroes of old, I lived by
my wits, or approximately half of my wits, and what I could carry with me.
However, instead of a Colt Dragoon, I carried a laptop loaded with every little
tool I had ever written or downloaded. Some of the tools were useful and some
of them were not so useful, but nevertheless, it contained everything that I
could possibly need, not counting the games. I suppose another way to look at
it is that I’m a packrat, but once I code something, I’d rather not code it again.

Of course, it wasn’t that I was avoiding coding; actually, I was avoiding
the debugging. The act of debugging isn’t distasteful, but the act of debugging
the same thing again and again gets old really fast. Ever hear the phrase
“don’t reinvent the wheel”? Well, I wholeheartedly agree with it. Although,
maybe if I could make it better ….

The best part of these Ajax tools is that they aren’t carved in stone; they
are actually more scribbled in crayon. Because of this, they are fluid, meant to
be more of a guide than gospel. However, even if you choose not to use these, I
recommend that you at least look at them. Most of these functions work pretty
much the same.

Why?
The reason is pretty simple. You see, Ajax applications are just like

lemonade. In other words, there are a few basic ingredients, as with lemons,
sugar, and water. Of course, not all lemonades are created equal. This is mostly
because of the amounts of each ingredient and the little extras, such as vodka
or checking an object’s readyState property.

285

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 285

12.1 REUSE = LAZINESS

I’m not really sure whether it is a character flaw or a skill, but I have a ten-
dency to code some routines twice. The first time is to solve the particular prob-
lem at hand; the second time is so that I have a generic solution if the problem
crops up somewhere else. Sometimes it does and sometimes it doesn’t, but it is
nice to be able to accept an assignment and have at least part of the solution
coded. It is also a great way to make sure that there is always time to read
User Friendly.

Unfortunately, when I started my career, this wasn’t the case, mostly
because I encountered managers who believed in the puritan work ethic: Work
constantly until you die, or quit before the age of 33, a burnt-out husk.
Basically, the more lines of code, the better, although they sometimes cloaked
their philosophy behind the words “I need it so that everyone can understand
it” or avoid “mad scientist stuff.” However, during the years, this type of man-
ager has largely either died off or retired. I suppose that, on some level, I will
miss them, in much the same way as a headache that has gone away. Yes, I
will sorely miss the threats of nonpayment for reusing code to create new
applications.

“Hello, my name is Ed. I reuse code to death and I am not lazy!”

12.1.1 Paid by the Line

Several years ago, as a consultant, I was assigned the responsibility to write
client-side JavaScript whose sole purpose was to speed up the client’s website.
The problem was that they had a vision of what they wanted, but they didn’t
quite know how to implement it. For example, let’s say that a web page con-
sisted of 20 rows in an HTML table, each of which had a select created from a
database query, and that each select had the same options. They saw nothing
wrong with executing the same query 20 times and using VBScript 20 times to
create the 20 selects. Oh, there were two other things: With the exception of
looping through the results of the query, there were no loops, and there wasn’t
even a function that was called 20 times. The code was one straight run.
Because it had been written by the lead developer only about six months
before and I was only a consultant, I never asked the burning question: Why?

It didn’t take me more than a couple of days to figure out the answer. In
fact, all it took was one glance at their JavaScript library. The entire library
consisted of a single function whose purpose was to determine whether a
parameter was numeric, not that it was used anywhere. It was almost like I
had stepped through a rift in the fabric of space-time and found myself in an
alternate reality. The more I examined the site, the more I kept looking around
expecting to see Rod Serling. To give you an idea, it was after Y2K and they

286 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 286

were still using HTML FONT tags. There was not a single example of Cascading
Style Sheets anywhere. The word deprecated didn’t exist in their world.

There were classic ASP pages that were in excess of 30,000 lines of mixed
script and HTML. I was a stranger in a strange land where developers were
paid by the line. It was a new application, not yet in production, so it couldn’t
have been maintained into incomprehensibility. What else could explain the
way that things were?

12.1.2 Paid by the Page

Fortunately, I was paid by the page—alright, actually, it was by the hour, but I
had a limited number of hours to produce each page. Couple this with the fact
that I’m a hunt-and-peck typist, and you’ll quickly understand why I’m a big
believer in code reuse. The odd thing was that, with one exception, nobody ever
noticed that code was being reused left and right.

On one of my last consulting assignments I met an intern who was fresh
out of school yet was one of the sharpest developers I ever met. After working
together for about six months, he asked me why it seemed that whenever possi-
ble I wrote reusable code that often used reusable code that I had written pre-
viously. There was only one way to answer: “I like writing tools to make tools.”

A simple enough phrase, “tools to make tools,” but what does it mean?
Ask me what I mean, and I’ll say that it means that there is an underly-

ing architecture that can be built upon. But to me personally, it goes much
deeper than that. Take a moment and look around you; what do you see?
You’re surrounded by tools—tools that shelter us, tools that entertain us, tools
that preserve our images and thoughts beyond our individual lifespan.

Where did these tools that have become so important come from?
Somebody created them, another person used them, and yet another person
improved them. In essence, the Internet is merely an improvement of a cave
painting taken to the nth degree. There’s a long history of our species creating
“tools to make tools.” Therefore, it is only natural to create tools, share those
tools, every once in a while wonder who will improve them, and lament the
fact that you can’t get a good mastodon sandwich anymore.

12.2 JAVASCRIPT OBJECTS

Although it’s not an object-oriented language, JavaScript is an object-based
language. This means that, although it might not be as powerful as PHP,
Ruby, or Java, it is still pretty darn powerful. Add the fact that it is currently
the best/only choice available, and you’ll quickly understand why objects are
important.

12.2 JavaScript Objects 287

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 287

Although there are several ways to create objects in JavaScript, I usually
use only two. The first method of creating an object in JavaScript is simply a
matter of writing a function and assigning it to a variable using the new opera-
tor to create an instance, as shown in Listing 12-1.

Listing 12-1 Example function Class Constructor

function word() {
var _setCount = 0; // Protected variable

this.theWord; // Public property
this.setWord = _setWord; // Public method setWord
this.getWord = _getWord; // Public method getWord
this.count = _getSetCount; // Public method count

function _setWord(theWord) {
// Public exposed as getWord

this.theWord = theWord;
_incrementCount();

}
function _getWord() { // Public exposed as setWord

return(this.theWord);
}
function _getSetCount() { // Public exposed as count

return(_setCount);
}
function _incrementCount() { // Private method

++_setCount;
}

}

var myInstance = new word();

Now we have an instance of the property word assigned to the variable
myInstance, and the only question is, how do we use it? Thankfully, the
notation for addressing properties and methods is a relatively standard
instancename.property or instancename.method(). If you’re looking at the con-
structor, the way to distinguish them is that they are all preceded by the this
keyword. The way to tell which are properties and which are methods is that
methods always are equal to a function. It is important to point out that the
parentheses are omitted because including them would cause the method to
be invoked as well as exposed.

Although the previous class constructor is essentially useless, it does
show the details of how to create a constructor. It has private members,
_setCount, and private methods, _incrementCount. Also, as explained previously,
it has both public properties, as in theWord, and public methods, as in setWord,
getWord, and getSetCount. Of course, an example that is actually useful might
not have all of these.

288 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 288

12.2.1 Collections

I might be wrong, but I am of the opinion that the most useful type of data
structure that has ever been conceived, excluding the DOM, is perhaps an
associative array. If you’re unfamiliar with this type of data structure, infor-
mation is stored in name/value pairs. If you know the name, you can find the
value. And the value isn’t limited to any particular data type; come to think of
it, neither is the name. A good use would be to cache XSL style sheets because
they usually don’t change very often. After they’re cached, it is no longer nec-
essary to bother the web server to get them; all that is necessary is to retrieve
them from the cache. However, there is one danger, and that danger is caching
information that shouldn’t be cached because someone else might change it, as
in the results of database queries.

Listing 12-2 is an example of a constructor for a lightweight cache/asso-
ciative array. The single private property, _cache, is a JavaScript object that is
the cache itself. There are three public methods to handle inserting
name/value pairs, retrieving values, and purging either selected name/value
pairs or the entire contents of the cache.

Listing 12-2 Cache Class Constructor (Associative Array)

<!-- <![CDATA[
/*

Class: Cache
Function: Cache
Purpose: To act as a client-side cache(associative array).

Data are stored as name/value pairs.
*/
function Cache() {
var _cache = new Object();

// Object to store information
var _namesArray = new Array(); // Array for names

this.insert = _insert; // Method: cache an object
this.retrieve = _retrieve; // Method: retrieve object
this.purge = _purge; // Method: purge object(s)
this.names = _names; // Method: return names

/*
Function: _insert
Method: insert
Purpose: Inserts a name/value pair into the cache.

*/
function _insert(name,value) {
_cache[name] = value; // Cache object

_namesArray.push(name); // Store name
}

12.2 JavaScript Objects 289

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 289

Listing 12-2 continued

290 Better Living Through Code Reuse Chapter 12

/*
Function: _retrieve
Method: retrieve
Purpose: Retrieves a value from the cache using a name.

*/
function _retrieve(name) {
if(typeof(_cache[name]) == ‘undefined’)
return(null); // Object not cached

else
return(_cache[name]); // Return object

}

/*
Function: _purge
Method: purge
Purpose: Purges one or more name/value pairs from

the cache.
*/
function _purge() {
if(arguments.length == 0) {
_cache = new Object(); // Create new cache object
_namesArray = new Array(); // Create new names array

} else {
var singleName;

_namesArray = new Array(); // Create new names array

for(var i=0;i < arguments.length;i++)
_cache[arguments[i]] = null;

for(singleName in _cache)
if(_cache[singleName] != null)
_namesArray.push(singleName);

}
}

/*
Function: _names
Method: names
Purpose: Returns an array consisting of the names from the

cache.
*/
function _names() {
return(_namesArray);

}
}
//]]> -->

As with the previous example, it is necessary to create an instance of the
object before using it. Listing 12-3 shows the object being put through its
paces, along with the expected results shown in the comments.

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 290

Listing 12-3 Listing Head Here

var magicWords = new Cache();

magicWords.insert(1,’xyzzy’); // Insert key = 1, value = ‘xyzzy’
magicWords.insert(2,’plugh’); // Insert key = 2, value = ‘plugh’
magicWords.insert(3,’plover’);
// Insert key = 3, value = ‘plover’

alert(magicWords.names()); // 1,2,3
alert(magicWords.retrieve(1)); // ‘xyzzy’
alert(magicWords.retrieve(2)); // ‘plugh’

magicWords.purge(3);
// Purge key/value pair - key = 3

alert(magicWords.retrieve(3)); // null
alert(magicWords.names()); // 1,2

magicWords.purge(); // Purge all key/value pairs

alert(magicWords.retrieve(1)); // null

The caching class is pretty straightforward; it is only a wrapper around a
JavaScript object that has public methods that allow for changes to the object
and retrieval from the object.

12.2.2 XML

Without a doubt, my biggest complaint concerning client-side XML is the lack
of a single cross-browser way to create an XML document. This is one of those
areas in which cross-browser coding can be a real drag because I have a
tendency to create a page using a single browser. Only when I get it working in
my browser of choice do I go back and try to make it work for Internet
Explorer. In case you are wondering, this makes for some really ugly
JavaScript, all sewn together from various mismatched parts. I may be a mad
scientist, but there is something to be said for reusability.

That’s the reason I cobbled together a few class constructors to neaten
things up around the old lab. It’s not like I’m using coasters or anything. I’m just
trying to make sure that I can understand what I wrote six months from now.
They say that the memory is the first thing to go—or is it the hair? Whatever, I
can’t even remember who “they” are anyway, so it can’t be important.

The first of these class constructors is to handle the details involved with
using the XMLHttpRequest object. It deals with whether the browser is Microsoft
Internet Explorer or any other browser, and then it creates the XMLHTTPRequest
object using the syntax appropriate to the specific browser. In addition, it
handles readyState changes for asynchronous requests. Unlike the previous

12.2 JavaScript Objects 291

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 291

example, which was created in much the same manner as a regular JavaScript
class, this time a prototype object is created. Although they’re not used for
these constructors, prototypes offer the advantage of allowing for the possibil-
ity of inheritance if it is deemed necessary in the future. Listing 12-4 shows
what the constructor looks like.

Listing 12-4 Cross-Browser (Gecko and IE) XMLHttp Class Constructor

<!-- <![CDATA[
XMLHttpRequest.prototype = new XMLHttpRequest;
XMLHttpRequest.prototype.constructor = XMLHttpRequest;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest
Method: n/a
Description: Constructor for this class.

*/
function XMLHttpRequest() {
try {
var x = new DOMParser();
this._IE = false;

}
catch(e) { this._IE = true; };
this._XMLHttp; // XMLHttp request object
this._requestHeader = new Cache();

if(this._IE)
this._XMLHttp = new ActiveXObject(‘Microsoft.XMLHttp’);

else
this._XMLHttp = new XMLHttpRequest();

}

// Property: GET, POST or HEAD
XMLHttpRequest.prototype.action = ‘GET’;

// Property: true/false
XMLHttpRequest.prototype.asynchronous = true;

// Property: package to send
XMLHttpRequest.prototype.envelope = null

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_readyState
Method: readyState
Description: Returns the readyState for the XMLHttpRequest

object.
*/
function XMLHttpRequest_readyState() {
return(this._XMLHttp.readyState);

}
XMLHttpRequest.prototype.readyState = XMLHttpRequest_readyState;

292 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 292

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_getResponseHeader
Method: getResponseHeader
Description: Returns a single response header from the last

XMLHttpRequest.
*/
function XMLHttpRequest_getResponseHeader(name) {
return(this._XMLHttp.getResponseHeader(name));

}
XMLHttpRequest.prototype.getResponseHeader =
XMLHttpRequest_getResponseHeader;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_getAllResponseHeaders
Method: getAllResponseHeaders
Description: Returns all of the response headers from

the last XMLHttpRequest.
*/
function XMLHttpRequest_getAllResponseHeaders() {
return(this._XMLHttp.getAllResponseHeaders());

}
XMLHttpRequest.prototype.getAllResponseHeaders =
XMLHttpRequest_getAllResponseHeaders;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_responseText
Method: responseText
Description: Returns the text response from the last

XMLHttpRequest.
*/
function XMLHttpRequest_responseText() {
return(this._XMLHttp.responseText);

}
XMLHttpRequest.prototype.responseText =
XMLHttpRequest_responseText;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_responseXML
Method: responseXML
Description: Returns the XML DOM document response from

the last XMLHttpRequest.
*/
function XMLHttpRequest_responseXML() {
if(this._IE) {
var xml =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

12.2 JavaScript Objects 293

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 293

Listing 12-4 continued

294 Better Living Through Code Reuse Chapter 12

xml.async = true;

xml.loadXML(this._XMLHttp.responseText);

return(xml);
} else
return(this._XMLHttp.responseXML);

}
XMLHttpRequest.prototype.responseXML =
XMLHttpRequest_responseXML;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_stateChangeHandler
Method: n/a
Description: Dummy state change handler for

asynchronous requests.
*/
function XMLHttpRequest_stateChangeHandler() { }
XMLHttpRequest.prototype.stateChangeHandler =
XMLHttpRequest_stateChangeHandler;

/*
Class: setRequestHeader
Function: XMLHttpRequest_setRequestHeader
Method: setRequestHeader
Description: Inserts to the cache of HTTP request headers.

*/
function XMLHttpRequest_setRequestHeader(name,value) {
this.removeRequestHeader(name);
this._requestHeader.insert(name,value);

}
XMLHttpRequest.prototype.setRequestHeader =
XMLHttpRequest_setRequestHeader;

/*
Class: setRequestHeader
Function: XMLHttpRequest_removeRequestHeader
Method: n/a
Description: Removes from the cache of HTTP

request headers.
*/
function XMLHttpRequest_removeRequestHeader(name) {
this._requestHeader.purge(name);

}
XMLHttpRequest.prototype.removeRequestHeader =
XMLHttpRequest_removeRequestHeader;

/*
Class: XMLHttpRequest
Function: XMLHttpRequest_send

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 294

Method: send
Description: Sends XMLHttpRequest.

*/
function XMLHttpRequest_send() {
var successful = false;

if(arguments.length != 0)
this.envelope = arguments[0];

switch(this._XMLHttp.readyState) {
case(4):
case(0):
try {
if(this._IE)

this._XMLHttp.onreadystatechange =
this.stateChangeHandler;

else
this._XMLHttp.stateChangeHandler =

this.XMLHttpRequest_stateChangeHandler;

this._XMLHttp.open(this.action,this.uri,this.asynchronous);

var names = this._requestHeader.names();

for(var i=0;i < names.length;i++)

this._XMLHttp.setRequestHeader(names[i],this._requestHeader.retrieve(names
[i]));

this._XMLHttp.send(this.envelope);

successful = true;
}
catch(e) { }

break;
default:

break;
}

return(successful);
}
XMLHttpRequest.prototype.send = XMLHttpRequest_send;
//]]> -->

The constructor shown does exactly what the handwritten code from the
beginning of Chapter 8, “AJAX Using XML and XMLHttpRequest,” does. In a
nutshell, it sends an XMLHttpRequest to the server, waits for the response, and
then acts upon the response. This is not a big deal; just create an instance, and
it takes care of everything—unless, of course, you’re paid by the line.

12.2 JavaScript Objects 295

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 295

Now that we’ve got a constructor to handle the getting of XML, it might
be a good idea to figure out a place to put it. What’s needed, as if you didn’t
already know, is a generic XML document object. It doesn’t have to be perfect;
it only has to work—and by “work,” I mean offer a single set of properties and
methods. From the previous chapters, you’re already aware that this is writ-
ten, so let’s take a gander at it in Listing 12-5.

Listing 12-5 Cross-Browser XML Document Class Constructor

<!-- <![CDATA[
XMLDocument.prototype = new XMLDocument;
XMLDocument.prototype.constructor = XMLDocument;

/*
Class: XMLDocument
Function: XMLDocument
Method: n/a
Description: Constructor for this class.

*/
function XMLDocument() {
try {
var x = new DOMParser();
this._IE = false;

}
catch(e) { this._IE = true; };
this._XMLHttpRequest = new XMLHttpRequest();
this._XML; // XML DOM document
this._DOMParser; // XML DOM parser (Gecko only)
this._XMLSerializer; // XML serializer (Gecko only)
this._state = 0; // Pseudo readyState

if(!this._IE) {
this._DOMParser = new DOMParser();
this._XMLSerializer = new XMLSerializer();

this._XML =
document.implementation.createDocument(“”, “”, null);

}
}

/*
Class: XMLDocument
Function: XMLDocument_load
Method: load
Description: Loads the specified XML document.

*/
function XMLDocument_load(xml) {
var isXMLText = false;
var isXMLDocument = (typeof(xml) == ‘object’);

try { // Test for elements
isXMLText = (new RegExp(‘<’,’g’)).test(xml);

296 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 296

}
catch(e) { }

switch(true) {
case(this._IE && isXMLText): // Internet Explorer & text
this._XML =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

this._XML.async = true;

this._XML.loadXML(xml);
this._state = 4; // Ready state complete

break;
case(!this._IE && isXMLText): // Not IE & text
this._XML =
this._DOMParser.parseFromString(xml,”text/xml”);
this._state = 4; // Ready state is complete

break;
case(this._IE && isXMLDocument):
// Internet Explorer & XML DOM
this._XML =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

this._XML.async = true;

try {
this._XML.loadXML(xml.serialize());

}
catch(e) {
this._XML = xml;

}

this._state = 4; // Ready state complete

break;
case(!this._IE && isXMLDocument): // Not IE & XML DOM
try {
this._XML = xml.DOMDocument();

}
catch(e) {
this._XML = xml;

}

this._state = 4; // Ready state is complete

break;
default:
this._XMLHttpRequest.uri = xml;

try {

12.2 JavaScript Objects 297

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 297

Listing 12-5 continued

298 Better Living Through Code Reuse Chapter 12

this._XMLHttpRequest.send();

this._state = 1;
}
catch(e) {
if(this._IE) {
this._XML =
new ActiveXObject(‘MSXML2.FreeThreadedDOMDocument.3.0’);

this._XML.async = true;
} else
this._XML =
this._DOMParser.parseFromString(‘ ‘,’text/xml’);

this._state = 4; // Error - force complete
}

}

if(this._state == 4)
this._XMLHttpRequest = new XMLHttpRequest();

}
XMLDocument.prototype.load = XMLDocument_load;

/*
Class: XMLDocument
Function: XMLDocument_serialize
Method: serialize
Description: Returns the result of the prior transformation

as a serialize XML DOM document (text).
*/
function XMLDocument_serialize() {
try {
if(this.readyState() == 4) {

if(this._XMLHttpRequest.readyState() == 4)
this.load(this._XMLHttpRequest.responseXML());

if(this._IE)
return(this._XML.xml)

else
return(this._XMLSerializer.serializeToString(this._XML));

} else
return(null); // Not loaded

}
catch(e) {
return(null); // Invalid document

}
}
XMLDocument.prototype.serialize = XMLDocument_serialize;

/*
Class: XMLDocument

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 298

Function: XMLDocument_DOMDocument
Method: DOMDocument
Description: Returns the result of the prior transformation

as a Browser-native XML DOM document.
*/
function XMLDocument_DOMDocument() {
try {
if(this.readyState() == 4) {
if(this._XMLHttpRequest.readyState() == 4)
this.load(this._XMLHttpRequest.responseXML());

return(this._XML);
} else
return(null); // Document not loaded

}
catch(e) {
return(null); // Invalid document

}
}
XMLDocument.prototype.DOMDocument = XMLDocument_DOMDocument;

/*
Class: XMLDocument
Function: XMLDocument_readyState
Method: readyState
Description: Returns the readyState for the XML document.

*/
function XMLDocument_readyState() {
if(this._XMLHttpRequest.readyState() == 0)
return(4);

else
return(this._XMLHttpRequest.readyState());

}
XMLDocument.prototype.readyState = XMLDocument_readyState;

/*
Class: XMLDocument
Function: XMLHttpRequest_setRequestHeader
Method: n/a
Description: Inserts to the cache of HTTP request headers.

*/
function XMLDocument_setRequestHeader(name,value) {

this._XMLHttpRequest.setRequestHeader(name,value);
}
XMLDocument.prototype.setRequestHeader =
XMLDocument_setRequestHeader;

/*
Class: XMLDocument
Function: XMLDocument_getResponseHeader
Method: getResponseHeader
Description: Returns a single response header from the last

12.2 JavaScript Objects 299

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 299

Listing 12-5 continued

300 Better Living Through Code Reuse Chapter 12

XMLHttpRequest.
*/
function XMLDocument_getResponseHeader(name) {
return(this._XMLHttpRequest.getResponseHeader(name));

}
XMLDocument.prototype.getResponseHeader =
XMLDocument_getResponseHeader;

/*
Class: XMLDocument
Function: XMLDocument_getAllResponseHeaders
Method: getAllResponseHeaders
Description: Returns all of the response headers from

the last XMLHttpRequest.
*/
function XMLDocument_getAllResponseHeaders() {
return(this._XMLHttpRequest.getAllResponseHeaders());

}
XMLDocument.prototype.getAllResponseHeaders =
XMLDocument_getAllResponseHeaders;

/*
Class: XMLDocument
Function: XMLDocument_setEnvelope
Method: setEnvelope
Description: Sets the envelope for an XMLHttpRequest.

*/
function XMLDocument_setEnvelope(value) {
this._XMLHttpRequest.envelope = value;
this._XMLHttpRequest.action = ‘POST’;

}
XMLDocument.prototype.setEnvelope = XMLDocument_setEnvelope;

/*
Class: XMLDocument
Function: XMLDocument_selectNodes
Method: selectNodes
Description: Returns an array of XMLDocument based upon

an XPath statement.
*/
function XMLDocument_selectNodes(xpath) {
var results;
var resultArray = new Array(); // XML Document result array

if(this.readyState() == 4)
if(this._XMLHttpRequest.readyState() == 4)
this.load(this._XMLHttpRequest.responseXML());

if(_IE) {
results = this._XML.selectNodes(xpath);

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 300

for(var i=0;i < results.length;i++) {
resultArray.push(new XMLDocument());
resultArray[i].load(results[i].xml);

}
} else { // XPath evaluator
var evaluator = new XPathEvaluator();
var resolver =

evaluator.createNSResolver(this._XML.documentElement);
var result; // Single XPath result
var xml;
var i = 0; // Counter

results =
evaluator.evaluate(xpath,this._XML,resolver,XPathResult.ANY_TYPE,null);

while(result = results.iterateNext()) {
xml = document.implementation.createDocument(“”, “”,null);

xml.appendChild(xml.importNode(result,true));
resultArray.push(new XMLDocument());
resultArray[i].load(this._XMLSerializer.serializeToString(xml));

++i;
}

}

return(resultArray);
}
XMLDocument.prototype.selectNodes = XMLDocument_selectNodes;

/*
Class: XMLDocument
Function: XMLDocument_selectSingleNode
Method: selectSingleNode
Description: Returns a single XML document based upon an

XPath statement.
*/
function XMLDocument_selectSingleNode(xpath) {
return(this.selectNodes(xpath)[0]);

}
XMLDocument.prototype.selectSingleNode =
XMLDocument_selectSingleNode;
//]]> -->

Now that there is a generic constructor for XML documents and a con-
structor for the XSLT Request object, the next task is to ask the nice web serv-
ice for an XML document. To do this, a quick and easy way of producing a
SOAP envelope is required. In writing this constructor, I learned something
about SOAP that I hadn’t realized in the past: SOAP is, in some ways, like a
car. With a car, there is a base model, and, regardless of the options, the base

12.2 JavaScript Objects 301

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 301

model remains the same. Oh, sure, some cars have better sound systems and
some have bigger engines, but underneath all the little extras, the cars are
essentially the same. Take my car, for example; with the exception of the dirt
and the dent on the hood from a flower pot, when you get past the options, it is
just like the other car from that model year.

This same approach was used when writing the SOAPEnvelope constructor.
A basic template serves as a starting point, and all of the other options are
then added on. These options consist of things such as the operator, content,
and namespace—all required, but very often different from request to request.
Listing 12-6 shows the inner workings of this constructor.

Listing 12-6 Cross-Browser SOAPEnvelope Class Constructor That Uses
Regular Expressions

<!-- <![CDATA[
SOAPEnvelope.prototype = new SOAPEnvelope;
SOAPEnvelope.prototype.constructor = SOAPEnvelope;

/*
Class: SOAPEnvelope
Function: SOAPEnvelope
Method: n/a
Description: Constructor for this class.

*/
<!-- <![CDATA[
function SOAPEnvelope() {
this._template = ‘<?xml version=”1.0” encoding=”utf-8”?>’;

this._template += ‘<soap:Envelope
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>’;
this._template += ‘<soap:Body>’;
this._template += ‘<_operator xmlns=”_namespace”>’;
this._template += ‘_package’;
this._template += ‘</_operator>’;
this._template += ‘</soap:Body>’;
this._template += ‘</soap:Envelope>’;

}

SOAPEnvelope.prototype.operator = null;
SOAPEnvelope.prototype.namespace = ‘http://tempuri.org/’;
SOAPEnvelope.prototype.content = null;

/*
Class: SOAPEnvelope
Function: SOAPEnvelope_envelope
Method: envelope
Description: Returns the readyState for the XMLHttpRequest

object.
*/

302 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 302

function SOAPEnvelope_envelope() {
var work;

work = this._template.replace(/_operator/g,this.operator);
work = work.replace(/_namespace/g,this.namespace);
work = work.replace(/_package/g,this.content);

return(work);
}
SOAPEnvelope.prototype.envelope = SOAPEnvelope_envelope;
//]]> -->

12.2.3 XSLT

The final constructor that was used in the examples was the XSLTProcessor
constructor, which serves as the poster child for code reuse. It has two
instances of XMLDocument objects, one for the XML document and one for the
XSL style sheet. It also serves fairly well to show some of the difference
between Gecko-based browsers such as Firefox, Mozilla, and Netscape, and
Microsoft Internet Explorer.

These differences range from Internet Explorer needing a template to
create a processor to something as simple as Firefox needing a serializer to
obtain the text representation of an XML document. Listing 12-7 shows the
constructor for the XSLTProcessor.

Listing 12-7 Cross-Browser XSLTProcessor Class, Used for Transformations

<!-- <![CDATA[
XsltProcessor.prototype = new XsltProcessor;
XsltProcessor.prototype.constructor = XsltProcessor;

/*
Class: XsltProcessor
Function: XsltProcessor
Method: n/a
Description: Constructor for this class.

*/
function XsltProcessor() {
try {
var x = new DOMParser();
this._IE = false;

}
catch(e) { this._IE = true; };
this._xsl = new XMLDocument(); // Input XSL style sheet
this._xml = new XMLDocument(); // Input XML document
this._output; // Output (text)

12.2 JavaScript Objects 303

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 303

Listing 12-7 continued

304 Better Living Through Code Reuse Chapter 12

this._XMLSerializer; // XML serializer (Gecko only)
this._XSLTemplate; // XSLT template (IE only)
this._XsltProcessor; // XSLT processor

if(!this._IE)
this._XMLSerializer = new XMLSerializer();

}

/*
Class: XsltProcessor
Function: XsltProcessor_initialize
Method: _initialize
Description: Initializes/re-initializes the XSLT processor.

*/
function XsltProcessor_initialize() {
if(this._IE) {
this._XSLTemplate =
new ActiveXObject(‘MSXML2.XSLTemplate.3.0’);

this._XSLTemplate.stylesheet = this._xsl.DOMDocument();

this._XsltProcessor = this._XSLTemplate.createProcessor;
} else
this._XsltProcessor = new XSLTProcessor();

}
XsltProcessor.prototype._initialize = XsltProcessor_initialize;

/*
Class: XsltProcessor
Function: XsltProcessor_setParameter
Method: setParameter
Description: Inserts an XSLT parameter to the parameter

cache.
*/
function XsltProcessor_setParameter(name,value) {
try {
if(this._IE)
this._XsltProcessor.addParameter(name,value);

else
this._XsltProcessor.setParameter(null,name,value);

}
catch(e) {
this._initialize();
this.setParameter(name,value);

}
}
XsltProcessor.prototype.setParameter =
XsltProcessor_setParameter;

/*
Class: XsltProcessor
Function: XsltProcessor_load

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 304

Method: load
Description: Loads the XML document to be transformed.

*/
function XsltProcessor_load(xml) {
try {
this._xml.load(xml);

}
catch(e) {
this._initialize();

}
}
XsltProcessor.prototype.load = XsltProcessor_load;

/*
Class: XsltProcessor
Function: XsltProcessor_importStylesheet
Method: importStylesheet
Description: Loads the XSL style sheet for the

transformation.
*/
function XsltProcessor_importStylesheet(xsl) {
try {
this._xsl.load(xsl);

}
catch(e) {
this._initialize();

}
}
XsltProcessor.prototype.importStylesheet =
XsltProcessor_importStylesheet;

/*
Class: XsltProcessor
Function: XsltProcessor_readyState
Method: readyState
Description: Returns the readyState for a combination of

the XML document and the XSL style sheet.
*/
function XsltProcessor_readyState() {
switch(true) {
case((this._xsl.readyState() == 0) && (this._xsl.readyState() == 0)):
return(this._xsl.readyState());

break;
case((this._xsl.readyState() > 0) && (this._xsl.readyState() < 4)):
return(this._xsl.readyState());

break;
case((this._xml.readyState() > 0) && (this._xml.readyState() < 4)):
return(this._xml.readyState());

break;

12.2 JavaScript Objects 305

continues

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 305

Listing 12-7 continued

306 Better Living Through Code Reuse Chapter 12

default:
return(4);

break;
}

}
XsltProcessor.prototype.readyState = XsltProcessor_readyState;

/*
Class: XsltProcessor
Function: XsltProcessor_transform
Method: transform
Description: Performs the XSL transformation using the

supplied XML document and XSL style sheet.
Returns the result as an XML document.

*/
function XsltProcessor_transform() {
if(this._IE) {
this._XsltProcessor.input = this._xml.DOMDocument();

this._XsltProcessor.transform();

this._output = this._XsltProcessor.output;
} else {
this._XsltProcessor.importStylesheet(this._xsl.DOMDocument());

this._output =
this._XMLSerializer.serializeToString(this._XsltProcessor.transformToDocum
ent(this._xml.DOMDocument(),document));
}

this._initialize();

return(this._output);
}
XsltProcessor.prototype.transform = XsltProcessor_transform;

/*
Class: XsltProcessor
Function: XsltProcessor_serialize
Method: serialize
Description: Returns the result of the prior transformation

as a serialize XML document (text).
*/
function XsltProcessor_serialize() {
return(this._output);

}
XsltProcessor.prototype.serialize = XsltProcessor_serialize;
//]]> -->

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 306

12.2.4 Serialization Without Berries

One common item that you’ll notice throughout each of the previous construc-
tors is that serialization plays a big part in handling XML. Several reasons
account for this, the first being that XML was designed to be human readable,
and humans read text, not binary. For example, when was the last time you
heard, “ASCII 65, uppercase ‘A’”? I’m the one who was called a mad scientist,
and I don’t deal with that stuff, so I can’t imagine the more mundane members
of humanity doing things like that.

The second reason for serialization is the underlying architecture of the
web, the Hypertext Transfer Protocol, or HTTP, for short. The HTML, XHTML,
JavaScript, CSS, XML, and XSL travel back and forth from the server to the
client as text. Without serialization, all of the “X-stuff,” as an old supervisor of
mine put it, wouldn’t be going anywhere.

Another reason for serialization is that, unlike an XML object, very little
overhead is associated with text. An XML DOM document requires between
three and ten times the memory of the equivalent text document. This over-
head could cause some issues in the client’s browser on older machines. Of
course, the issue of overhead has to be weighted against parsing the text to
load a document.

My final reason for serialization is that it is just so easy to load an XML
document from a text document. In Microsoft Internet Explorer, it is simply a
matter of using the loadXML method. With Firefox, a little more work is neces-
sary, but not too much. Just use the DOMParser’s parseFromString method and
reconstituted XML, just like freeze-dried coffee or freeze-dried minions.

12.3 GENERIC XSLT

Whenever I’m creating an XSL style sheet, unless I’m very, very careful, my
style sheets are basically a one-trick pony. Yeah, they do that one trick well,
but as I said before, I’m paid by the page, not by the line. Maybe this is the rea-
son the style sheets that I create are—hmm, how to put it nicely?—weird. Yes,
that’s the word, weird.

It isn’t that they don’t work—they work perfectly well. It is more along
the lines that I use a lot of relative positioning. Although this approach might
seem somewhat dangerous, there are several ways to decrease the danger to
tolerable levels. More simply put, take cautions to prevent the style sheets
from blowing up and taking the web page out with them. One of these meth-
ods is to always make sure that the XML document has the same basic struc-
ture, /root/row/node. This makes it far less likely that you will encounter any
surprises.

12.3 Generic XSLT 307

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 307

Remember back to Chapter 9, “XPath,” to the brief introduction to XPath
with all the slashes and asterisks? Well, the asterisks are wildcards, used
when the node name is unknown. This means that /*/*/* is the equivalent to
/root/row/node—at least, when we want all the nodes that are the second
descendant of the root node.

12.3.1 Forms

As long as the structure of the XML document is known, it isn’t very difficult
to create generic XSL style sheets. Knowing the names of the individual nodes
isn’t important, either, although, for the extremely lazy, like myself, the names
can be important when creating either labels or column headers. To show
what I mean, it is necessary to introduce two XSLT functions.

The first of these functions is the name function. It provides the name of
the node passed, which, in these cases, is the context node “.”. It returns the
actual node name, so if the node name is item_price, then item_price is
returned. Yes, I am aware that a label or header with item_price isn’t much bet-
ter than no label at all, which is where the second function, translate, comes in.

The translate function, well, translates. It replaces one character with
another, so instead of having a label or a header of item_price, it can be ITEM
PRICE. For me, the latter is a lot more like what I expect when visiting a web-
site. Accepting three parameters—the source string, the from string, and the to
string—it returns a string consisting of one-for-one replacements of characters.

I should cover a couple things before we use the translate function. The
first of these is that in instances when the from string doesn’t contain a partic-
ular character, that character is copied unchanged. The second thing is that it
is a good idea to verify that characters in the from string and characters in the
to string are in the same position in their respective strings. Or, more simply
stated, using a from string of qwerty and a to string of wertyu will result in a
Caesar Cipher. And although a Caesar Cipher might have been state-of-the-
art in 40 B.C., I’m reasonably sure that it isn’t the result that you’ve hoped for.

With that out of the way, let’s take a look at Listing 12-8, which is an XSL
style sheet that creates a basic form.

Listing 12-8 Generic XSL Style Sheet to Produce an HTML Table

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” indent=”yes” media-type=”text/html”/>

<xsl:template match=”/”>

<xsl:element name=”table”>

308 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 308

<xsl:apply-templates select=”/*/*/*” />
</xsl:element>

</xsl:template>

<xsl:template match=”*”>

<xsl:element name=”tr”>
<xsl:element name=”td”>

<xsl:value-of
select=”translate(name(.),’qwertyuiopasdfghjklzxcvbnm_’,’QWERTYUIOPASDFGHJ
KLZXCVBNM ‘)” />

</xsl:element>
<xsl:element name=”td”>

<xsl:element name=”input”>
<xsl:attribute

name=”type”>text</xsl:attribute>
<xsl:attribute name=”name”>

<xsl:value-of select=”name(.)” />
</xsl:attribute>
<xsl:attribute name=”value”>

<xsl:value-of select=”.” />
</xsl:attribute>

</xsl:element>
</xsl:element>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

This is nothing fancy, but it is a proof of concept that can be taken further
to show that it is, in fact, possible to create a generic XSL style sheet that pro-
duces HTML forms. Although it is rather simple—primitive, even—it is easy
to imagine some possibilities, such as specifying input types via parameters.

12.3.2 Tabular

Applying a generic XSL style sheet to tabular information isn’t very different
from applying it to create a form. Really only a couple differences arise when
working with tabular information instead of a form. The first difference is
that, instead of labels at the side, they’re column headers on the top. All that is
required to do this is to create two templates; the first deals with creating a
table row, and the second creates a table header. Other than that, the only real
difference is the addition of a predicate, [1], to ensure that the header is cre-
ated only once. We then have an XSL style sheet that looks like the one in
Listing 12-9.

12.3 Generic XSLT 309

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 309

Listing 12-9 Generic XSL Style Sheet to Produce an HTML Table with Headers Based
upon the Node Name

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” indent=”yes” media-type=”text/html”/>

<xsl:template match=”/”>
<xsl:element name=”table”>

<xsl:apply-templates select=”/*/*[1]” mode=”header” />
<xsl:apply-templates select=”/*/*” mode=”row” />

</xsl:element>
</xsl:template>

<xsl:template match=”*” mode=”header”>
<xsl:element name=”tr”>

<xsl:apply-templates select=”./*” mode=”column” />
</xsl:element>

</xsl:template>

<xsl:template match=”*” mode=”row”>
<xsl:element name=”tr”>

<xsl:apply-templates select=”./*” mode=”node” />
</xsl:element>

</xsl:template>

<xsl:template match=”*” mode=”column”>
<xsl:element name=”th”>

<xsl:value-of
select=”translate(name(.),’qwertyuiopasdfghjklzxcvbnm_’,’QWERTYUIOPASDFGHJ
KLZXCVBNM ‘)” />

</xsl:element>
</xsl:template>

<xsl:template match=”*” mode=”node”>
<xsl:element name=”td”>

<xsl:value-of select=”.” />
</xsl:element>

</xsl:template>

</xsl:stylesheet>

Of course, the examples shown here are rather simple, and there are a
number of ways to improve them. One of these ways to dress up the generic
style sheets is to write the header template with xsl:when to output more
meaningful headers. Another possibility is to use Cascading Style Sheets to
give a more polished look and feel. Finally, right-justifying numbers wouldn’t
hurt.

310 Better Living Through Code Reuse Chapter 12

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 310

12.4 SUMMARY

The advantages of code reuse are obvious; large pieces of code need only be
designed, coded, tested, and documented once. Whether it is a class construc-
tor, a function, or an XSL style sheet, if at least part of a solution is already
written, you’re that much closer to delivery of the final application.

Another issue is that developers can be insulated from the ins and outs of
the various web browsers. No longer is there a sharp learning curve ahead or
the feeling of hopelessness associated with trying to make something work in
Internet Explorer while trying not to break it in Firefox. I have to admit that
at times I’ve fixed a web page in one browser only to find that in the other
browser it was fixed in the same way that the vet fixed my cat, Moreta.

The important thing to remember is that if you can complete three web
pages in the time that it takes for Igor to complete one, who do you think will
be shown the door the next time that the layoff fairy pays a visit?

Unfortunately, some development shops still cling to the outmoded idea
that the better programmer writes more lines of code. Thankfully, this idea is
going the way of the three-martini lunch. Gin, yuck! When you get down to it,
the biggest possible problem is that if one of the constructors has a bug, every
page that uses that constructor either directly or indirectly has the same bug.

12.4 Summary 311

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 311

12_0132272679_ch12.qxd 7/17/06 9:07 AM Page 312

C H A P T E R 13

Traveling with Ruby on Rails

Mention the subject of Ajax, and within five minutes somebody will bring
up Ruby on Rails. Just as with Ajax, Ruby on Rails has become a winning
phrase in corporate buzzword bingo. It is kind of sad that both topics have
been relegated to buzzwords, with managers wielding them interchangeably,
like they’re some kind of weapons. Unfortunately, managers are just as likely
to hurt themselves as somebody else, which just goes to show that it is a good
idea to know what the tools are before attempting to use them.

In this chapter, we cover some of the history of Ruby on Rails, followed by
what it is and how to install it on a system running Windows XP. From there,
we examine how to start developing, using Ruby on Rails, and how to solve a
simple problem using it.

Unfortunately, it is beyond the scope of this book to do more than intro-
duce Ruby on Rails. There is actually a logical reason for this, beyond the fact
that I’m more of a JavaScript guy than a Ruby guy. The reason for this is
college.

Huh?
When I was in college, some students, well, complained about how the

professors taught. The problem is that the professors didn’t give them the code
required for every assignment. We were taught, for example, how to create a
data structure, but not the particular data structure for Question 6 on the
midterm. The professors pointed us in a direction and expected us to reach the
destination on our own. Gee, the nerve of those professors—they pointed us in
a particular direction and expected us to find the way ourselves.

Seriously, this is merely an example, not the answer to Question 6. So if
you choose to seriously examine Ruby on Rails, allow me to point the way.

313

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 313

13.1 WHAT IS RUBY ON RAILS?

A single word in the English language, in my opinion, sums up what Ruby on
Rails is: synergy. Just in case you’re unaware of the meaning of the word
synergy, it roughly means that the whole is greater than the sum of its parts.
Need a few examples of synergy? How about chocolate and peanut butter?
Individually, either ingredient is good, but put them together and, well, yum!

With Ruby on Rails, instead of chocolate and peanut butter, there is Ruby
and Rails. This realization leads me to two additional questions. The first is
“Beyond being a deep-red corundum crystal, just what is Ruby?” There is, after
all one thing that I am certain of, and it is that Ruby is a language and not a
mineral, although it is possible to create a laser using a ruby, and lasers are
the meat and potatoes of most mad scientists.

13.1.1 Ruby

The Ruby that is referred to in this chapter is an object-oriented programming
language created by Yukihiro Matsumoto of Japan in 1993. In Japan, not sur-
prisingly, Ruby quickly became quite popular, with home-field advantage and
all that kind of stuff. However, because of its price tag of zero (it is, after all, an
open source language), Ruby began to catch on outside of Japan. Yes, against
all odds, Ruby become something of a phenomenon.

Although some might consider it odd that an open source language from
a land far away from our little piece of the universe planted the seed of the
idea of Ajax, I do not. I, for one, am open to ideas, regardless of the source.
Alright, I’m a little more open to the ideas that relate to food, but, then, I’m
one of those developers who eats anything that doesn’t try to eat me first.

The interesting thing is that, even with people like me, mad scientists
without enough time who like sushi and green tea ice cream, Ruby’s popular-
ity was growing only slowly—faster than a bonsai tree, but slower than
Godzilla, Pokemon, or Yu-gi-oh. Fortunately, something changed back in 2004.
No, radiation was not involved, but what happened is that Ruby got Rails.

13.1.2 Ruby on Rails

The word Rails is rather interesting; it brings up connotations of a sleek,
silent, fast electric train moving into the future. That’s a pretty nice connota-
tion, especially when tied to web development, which, in my opinion, more
often resembles a runaway steam train with no brakes on a downgrade, going
into a hairpin curve during a snowstorm on Monday. In short, the average

314 Traveling with Ruby on Rails Chapter 13

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 314

project is an accident waiting to happen. The accident might never happen,
but the potential is there regardless. Rails is a full-stack programming frame-
work implemented in Ruby whose purpose is to smooth the development of
web applications.

Created by a Danish college student, David Heinemeier Hansson, Rails
is open source and is based upon two simple principles. The first is that fewer
lines of code equal fewer coding errors. This is a sensible idea because smaller,
tighter code requires less time to write and debug. This remaining time could
then be put toward testing or toward the inevitable feature creep that rises
like a monster from a slab.

The second principle of Rails is configuration. Unlike many environ-
ments, Rails doesn’t use configuration files. Instead, Rails uses information in
application code itself to determine its configuration. This eliminates the
“Doh!” factor that occurs whenever an application is moved to another envi-
ronment, even when the environment is merely another developer’s laptop.
Although I can’t speak for anyone else, I do know from personal experience
that configuration files are one of those things that fall through the cracks
about 20 percent of the time.

13.2 INSTALLATION

This entire preamble leads to the two important questions of where to get
Ruby and where to get Rails. That’s easy. A simple Google search for “ruby
rails” is enough to answer both questions simultaneously. I do recommend a
single search instead of individual searches, unless, of course, you are also
interested in jewelry and traveling by train.

The process of installing Ruby is dependent upon which operating sys-
tem your machine is running. For wimps like me who happen to be running
Windows XP Professional, listening to Jethro Tull, and writing a book, instal-
lation is simply a matter of downloading an .exe and double-clicking it to get
the ball rolling. It installs just like the shrink-wrapped software that you pur-
chase, minus the autorun CD and price tag, as Figures 13-1 and 13-2 show.

If the lack of an autorun CD makes you nervous, then, by all means, cre-
ate your own autorun CD. However, if the lack of a price tag makes you nerv-
ous, I recommend that you buy a second copy of this book and give it to a
friend as a gift. In this manner, you’ve got a bill and you’ve also given the nice
people at Prentice Hall a reason to send me a check. In short, everyone is
happy all around.

13.2 Installation 315

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 315

Figure 13-2 Choosing components in the Windows wizard

In a Windows environment, the installation of Ruby on Rails requires a
couple additional steps. The first of these steps is to install Rails itself. If you
have an Internet connection, this is just a single line; it is at the command
prompt, but, nevertheless, it is a single line (see Figure 13-3).

However, if you are a real web developer and not a quiche-eating
Windows user, installation will be a little more complex. Don’t worry, it isn’t a
“Windows is superior” thing—in fact, it is more of a “Windows has training
wheels” thing. Now that I’ve thoroughly confused you, the fact is that the

316 Traveling with Ruby on Rails Chapter 13

Figure 13-1 Windows installation wizard

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 316

RubyGems package manager is part of the Windows installer, which isn’t the
case with Linux. However, because Linux isn’t a stagnant environment, I rec-
ommend checking the Ruby website for the latest installation procedures.

Now that you’ve (hopefully), installed Ruby and Rails, it is time to kick
the steel wheels (ouch) and take it out for a little spin. Woo-hoo!

13.3 A Little Ruby on Rails Warm-Up 317

Figure 13-3 Installing Rails at the command prompt

13.3 A LITTLE RUBY ON RAILS WARM-UP

As stated previously, Ruby is the object-oriented programming language, and
Rails is the framework used to develop applications. Let’s say, for example,
that I want to create a mad scientist application using Ruby on Rails. The
steps would be something like the following:

1. If it doesn’t exist, create a folder/directory to hold each of my Ruby on
Rails applications. In this example, I created a folder called rails on my
C: drive.

2. Using the command prompt, enter cd rails. This changes the current
directory to C:\rails.

3. Create an empty web application by running the command rails

madscientist, as shown in Figure 13-4.

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 317

Figure 13-4 Creating an empty project at the command prompt

4. Start the web server WEBrick, which is included with Ruby, as shown in
Figure 13-5.

318 Traveling with Ruby on Rails Chapter 13

Figure 13-5 Starting the WEBrick web server at the command prompt

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 318

5. Check out what is out on the web server in the browser of your choice
(see Figure 13-6).

13.3 A Little Ruby on Rails Warm-Up 319

Figure 13-6 The default start page

Not very impressive, is it?
6. Now is a good time to type Ctrl+C in the command prompt window to

shut down WEBrick, as shown in Figure 13-7, before falling back and
regrouping.

Figure 13-7 Shutting down the WEBrick web server at the command prompt

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 319

Well, we’re only partway there; in fact, we should consider ourselves lucky
that there is anything at all to show. Satisfied? Neither am I, so to progress fur-
ther, we need to understand where things go in a Rails application.

The rails madscientist command created a number of folders and files
that perform various functions. Take, for example, the database.yml file in the
config folder; its purpose is to provide the application with details regarding
the database to be used by the application. This is an example of the Rails
“place for everything and everything in its place” approach. Personally, I wish
this idea was more widespread. It would have gotten me out of some embar-
rassing moments in the past.

Another folder that is of interest is the public folder. Along with its three
child folders, images, javascripts, and stylesheets, it provides a standard loca-
tion for stashing the aforementioned. In most other environments, locating
these types of files is more akin to a treasure hunt than web development.

The final folders that I’ll cover are the app folder, along with the child
folders called: controllers, helpers, models, and views. Still feel like you’re in
the dark? Give me a moment to illuminate. The first directory, controllers,
contains classes that handle web requests from the visitor. The helpers direc-
tory holds helper classes, which are used by other classes, such as controller
classes. Model classes, contained in the models subdirectory, are used to wrap
the data stored in a database. Personally, I think that this is where application
development can get really messy and often goes wrong. Finally, there is the
views subdirectory, which holds the views. Views are the templates that are
converted to HTML and returned to the visitor’s web browsers.

Although at first glance it might seem that the application is spread
around a bit, that really isn’t the case. Instead of the normal “I know it is
around here somewhere” approach usually associated with web development,
Rails provides a consistent location for each class. If only this approach could
be applied to the real world, I would spend a lot less time looking for my
watch.

13.4 A PROBLEM REVISITED

Now that I’ve got some kind of idea (yeah, right) of what I’m doing with Ruby
on Rails, the next question is how to use it in an application. The first task is
to identify exactly what I want to do. For example, let’s say that I want to dis-
play the items contained in the item table. The first necessary task is to gener-
ate a data model using the command console, as shown in Figure 13-8.

320 Traveling with Ruby on Rails Chapter 13

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 320

Figure 13-8 Generating a data model at the command prompt

The next step is to update the database.yml in the config directory to use
the MySQL database from the previous chapters. The following is a snippet of
the necessary code.

development:
adapter: mysql
host: localhost
database: ajax
username: root
password: wyvern

These are the subsequent steps:

1. Generate a controller for the item data model (see Figure 13-9).

13.4 A Problem Revisited 321

Figure 13-9 Generating a controller for the data model at the command prompt

2. Add a single line to the generated controller (See Listing 13-1).

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 321

Listing 13-1

class ItemController < ApplicationController
scaffold :item

end

3. Fire up WEBrick to see what happens (see Figure 13-10).

322 Traveling with Ruby on Rails Chapter 13

Figure 13-10 A “Doh!” moment accessing a database

Hmm, not exactly what I expected. It seems that Rails changed the table
name item to items. Not good. Being among the lazy, I decided to go into the
MySQL Query Browser and change the table name from item to items (see
Figure 13-11) and try again (see Figure 13-12).

That is a little closer to what I am looking for. The trick is that, by
default, Rails generates a query assuming that item is the row and items is the
table. This isn’t a big deal; it is just something to keep in mind when creating
tables and using the defaults.

But what if you don’t want to use the stuff generated by default, and
where does Ajax fit into things?

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 322

Figure 13-11 Changing the database name in MySQL

13.4 A Problem Revisited 323

Figure 13-12 A working example

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 323

The answer to the first question is simple enough: Just generate a scaf-
fold, as Figure 13-13 shows.

324 Traveling with Ruby on Rails Chapter 13

Figure 13-13 Generating a scaffold at the command prompt

It is then necessary to add the logic to the controller, the view, the layout,
and the various templates.

This leaves only one question unanswered: Ajax? Remember the
javascripts folder under the public folder? Well, in there is a file named
prototypes.js that has all the logic required for asynchronous JavaScript and
XML in Ruby on Rails. If you’re interested, I’ll offer a hint: Look at the
xml_http_request? method. There’s a lot to it, and I recommend playing.

13.5 WHITHER AJAX?

Considering the number of goodies built into the Rails API, finding exactly
where the Ajax functionality is hidden could take a little work. However,
because I’m really crumby at keeping secrets, I’ll spill the beans; everything
that we’re interested in is in the JavaScriptHelper module, as Table 13-1 shows.

Table 13-1 JavaScriptHelper Methods

Method Description
define_javascript_functions() Includes all the JavaScriptHelper’s

JavaScript functions in the page.
draggable_element Makes the element with the corresponding
(element_id, options = {}) ID draggable.
drop_receiving_element Forces the dropping (drag and drop) of an
(element_id, options = {}) element. Also makes an Ajax call.

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 324

Method Description
escape_javascript(javascript) Escapes the provided JavaScript.
evaluate_remote_response() Creates a JavaScript function that can

evaluate a document returned from the
server.

form_remote_tag(options = {}) Creates an HTML form that will be
submitted using the XMLHttpRequest object.

javascript_tag(content) Creates a JavaScript HTML tag/end tag that
contains the provided content.

link_to_function(name, Creates a hyperlink that links to a client-
function, html_options = {}) side JavaScript function.
link_to_remote(name, options = Creates a hyperlink that links to the server
{}, html_options = {}) via an asynchronous XMLHttpRequest

request.
observe_field(field_id, Watches a field with the provided ID for
options = {}) user changes.
observe_form(form_id, Watches the form with the provided ID for
options = {}) user changes.
periodically_call_remote Calls a provided URL whenever the interval
(options = {}) elapses. If no interval is provided, a default

of 10 seconds is used.
remote_function(options) Returns a JavaScript snippet necessary for a

remote function.
sortable_element(element_id, Alters the HTML element with the
options = {}) corresponding element_id so that the

element is sortable via an Ajax call.
submit_to_remote(name, value, Displays a button that submits a form using
options = {}) the XMLHttpRequest object asynchronously.
update_element_function Updates the browser’s DOM using the
(element_id, options passed arguments.
= {}, &block)

visual_effect(name, Returns JavaScript code that uses Ajax
element_id = false, callbacks for visual effects.
js_options = {})

Because I find myself in pretty much the same situation as one of
the professors when I went to college—at least, as far as Ruby on Rails is
concerned—I’m putting off an example of Ajax using Ruby on Rails until
Chapter 14, “Traveling Farther with Ruby.” The reason for this is that I’m a
little out of my comfort zone here; like the professor, I’m essentially taking a
class during the day and teaching it at night.

13.5 Whither Ajax? 325

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 325

13.6 SUMMARY

In this chapter, we covered some of the history of Ruby on Rails, including the
fact that Ruby on Rails is separated into Ruby and Rails. From there, we cov-
ered the process of installing Ruby and then installing Rails and viewing the
default page. Then we covered how to create an empty project and fire up the
included WEBrick web server and access a MySQL database, albeit with a lit-
tle difficulty. In essence, the purpose of this chapter is to point the reader in
the right direction when in search of an environment that supports Ajax.

326 Traveling with Ruby on Rails Chapter 13

13_0132272679_ch13.qxd 7/17/06 9:08 AM Page 326

C H A P T E R 14

Traveling Farther with Ruby

If you’re one of those developers who has never ventured outside the world of
shrink-wrapped software, you’ve probably never heard of Ruby, the program-
ming language I introduced in Chapter 13, “Traveling with Ruby on Rails,” not
the gem. As I noted in the last chapter Ruby, the language, is an object-
oriented language that was created by Yukihiro Matsumoto of Japan and
released into the wild in 1995. Ruby has many advantages over other pro-
gramming languages that fill the same niche.

The first of these advantages is that Ruby is interpreted instead of com-
piled. On the surface, this might sound like a disadvantage, but it really isn’t.
Because I’m currently running only Windows XP, at times there has been a
binary version of a program that only works on another operating system,
such as Linux. However, with a scripted language such as Ruby, as long as I’ve
installed it, I am good to go. Now all I need is to find a Ruby version of Hunt
the Wumpus, and I’m all set.

Like Godzilla, it has expanded beyond its humble roots as a glimmer in
its creator’s eye to become something of a cult phenomenon. Oh, I mean cult in
the good sense—no chanting or wearing funny clothes like those strange peo-
ple who get dressed up to go to Renaissance festivals.

Seriously, Ruby is an object-oriented language that has capabilities and
features that today’s fast-paced development environment needs. And did I
mention that Ruby is open source? Yes, when you get past the cost of the hard-
ware, all that’s required is the cost of an Internet connection and the time that
it takes to download and install. I’d do the math for you, but fractions are not
really my strong suit.

Instead, you can take a closer look at Ruby’s data types while I take off
the sword belt. Because there are unwritten rules that grapefruit must be
served in halves and all introductions to programming languages must start
with data types, we start there.

327

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 327

The layout of this chapter goes pretty much like this:

� Data types
� Operators
� Flow-control statements
� Threads
� Ajax

There is that word again, Ajax. You knew that it would pop up again
somewhere. There is, however, a minor difference; basically, we take a quick
look at the generated code to see how it works. I don’t know about you, but I’ve
always paid attention to the man behind the curtain.

14.1 DATA TYPES

Data types in Ruby aren’t the data types that you’re used to from the more
traditional languages, such as C, COBOL, or Pascal. Because Ruby is purely
object-oriented, you won’t even find the primitive data types available in Java,
for instance. In Ruby, you see, all data types are based upon classes.

This doesn’t mean that there is no such thing as an integer or a string in
Ruby; it means only that they are instances of the Integer and String classes.
To some, this “everything is a class” approach might sound like overkill, but it
also makes a lot of sense. Personally, I think it would be easier to code without
having to change gears all the time. Just put my mind in OOP gear and go.
This leaves the question, go where? I’m thinking of an island.

14.1.1 Numeric

“I am not a number, I’m a free man!” is the somewhat well-known quote from
the British television series The Prisoner. I really don’t see what Number Six
was complaining about—it could have been worse. He could, for example, have
had a job that he hated in a nuclear power plant, like Number Five did.
Number Six does, however, share something in common with Homer—er,
Number Five. You see, they were both integers.

Integer, with a capital I, is the base class from which all things integer
are derived. Examples of classes derived from Integer are Bignum and Fixnum.
Although each has its own characteristics, they both inherit from the Integer
base class, whose properties and methods appear in Table 14-1.

328 Traveling Farther with Ruby Chapter 14

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 328

Table 14-1 Integer Properties and Methods

Method Class Description
chr Integer Returns a string containing the character equiva-

lent to the number value.
downto Integer Iterates a block of code.
integer? Integer Returns true.
next Integer Increments the value by 1.
size Bignum Returns the number of bytes used to store the value.
size Fixnum Returns the number of bytes used to store the value.
step Integer Increments the value to an ending value in

increments of a set value.
succ Integer Increments the value by 1. Essentially, the same as

the next method.
times Integer Executes a block of code a preset number of times.
to_f Bignum Converts the value to a float. When the value is too

large to be contained in a float, infinity is returned.
to_f Fixnum Converts the value to a float.
to_i Bignum Returns a Bignum.
to_i Fixnum Returns a Bignum.
to_s Bignum Returns a String.
to_s Fixnum Returns a String.
upto Integer Executes a block of code, incrementing the value by

1 until the indicated value is reached.

However, with the exception of those poor souls trapped on the island,
there is more to life than integers; there’s floating point, called Float in Ruby.
In case you’ve forgotten, floating-point numbers are those numbers with frac-
tions, like when the statisticians say that the average American family has 2.6
children. The number 2.6 is a floating-point number and, depending on my
mood, is either of my two half-brothers.

As with the Integer class, the Float class has a number of properties and
methods, which are described in Table 14-2.

Table 14-2 Float Properties and Methods

Method Description
ceil Returns the closest integer, either equal to or greater than the float’s

value.
finite? A Boolean indicating whether the value is a valid floating-point

number.
floor Returns the largest integer that is less than or equal to the value.

14.1 Data Types 329

continues

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 329

Table 14-2 continued

Method Description
infinite? Returns true or false, indicating whether the value is infinite.
nan? Returns true or false, indicating whether the value is Not A Number.
round Rounds the value to the nearest integer.
to_f Returns a Float.
to_i Converts the value to an integer.
to_s Returns a String.

14.1.2 String

For people who program in more than one language, there is a major advan-
tage to strings being instances of the String class. Think of it as one-stop shop-
ping; if something needs to be done, there’s a really good chance that there is a
method to do it. In fact, there are so many that I recommend going to the Ruby
home page (www.ruby-lang.org/en/) to see them all.

14.1.3 Boolean

In programming, there are always two possible answers to any question: true
and false. Maybe that is why there are two classes, Trueclass and Falseclass.
Actually, with the dynamic nature of variables in Ruby, that is the truth. The
Trueclass represents a logically true value, and the Falseclass represents a
logically false class.

14.1.4 Objects

Possibly because of the total lack of primitives, the built-in objects in Ruby are
incredibly rich and varied. There are objects for hashing, objects for file access,
and even an object for arrays. In many instances, if you can imagine it, an
object probably already is available for what is necessary, as the following list
of built-in classes shows:

330 Traveling Farther with Ruby Chapter 14

Array

Bignum

Binding

Class

Continuation

Dir

Exception

FalseClass

File::Stat

File

Fixnum

Float

Hash

Integer

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 330

IO

MatchData

Method

Module

NilClass

Numeric

Object

Proc

Range

Regexp

String

Struct

Struct::Tms

ThreadGroup

Thread

Time

TrueClass

14.2 Variables 331

With all those built-in properties and methods, it might be a little while
before it is necessary to write an object of our own, but it might be a good idea
to give it a try. Let’s say, for example, that we want to add a math class that
would have two methods: add and subtract. Through diligent work and clean
living, we would create the code shown in Listing 14-1.

Listing 14-1 myMath Class

class MyMath
def add(a, b)
puts a + b

end

def subtract(a, b)
puts a - b

end
end

m = MyMath.new
m.add(1, 1)
m.subtract(4,2)

That’s all there is to creating and using a class in Ruby. Unfortunately, I
was evil and skipped ahead a little by using variables and operators. Thinking
about it, this is a little like a college class I had. After an unusually difficult
test, the professor announced that no one got Question 10 correct, and perhaps
the reason was that he had forgotten to teach that. Hmm ….

14.2 VARIABLES

Ruby supports a couple different types of variables, instance variables and
class variables. Instead of making you guess whether their names actually

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 331

mean what they say, I’ll just come out and say it. The names mean what they
say. Instance variables are created for each instance of the class. With class
variables, on the other hand, all instances of the class share one variable.
Although instance variables are common, class variables are somewhat less
so. This does not mean that they aren’t as useful; in fact, many times there is
simply no substitute for a class variable.

The only question concerning variables is how to distinguish between
instance variables and class variables. Are there little signs hanging off them
that say “instance variable” and “class variable”? In a word, yes.

Instance variables and class variables are distinguished by the prefix.
Instance variables are prefixed by a single @, whereas class variables are pre-
fixed by two @. So @Bob is an instance variable, and @@Paul is a class variable.

Now that we have someplace to put our information, let’s do something
to it.

14.3 OPERATORS

Regardless of the language, there is usually some commonality. There’s addi-
tion, subtraction, multiplication, division, and assignment. In some languages,
including Ruby and JavaScript, the addition operator does double duty as the
concatenation operator. This means that examples such as the following are
pretty much the same, regardless of the language:

X = 1 + 1
X = 1 – 1
X = 1 * 1
X = 1 / 1

However, occasionally will you see something a little out of the ordinary,
usually in languages that borrow some of their syntax from C. In Ruby, they’re
called multiple assignments; I like to think of them as less typing. Consider,
for a moment, the following line of code:

X = X + 5

All that it does is increment the variable X by 5, so wouldn’t it be easier to
type this instead?

X += 5

Yeah, all that I’m saving is two keystrokes, the second X and a space, but
it adds up. Imagine for a moment the variable name was my last name,
Woychowsky instead of X. Having to type it only once would greatly extend the

332 Traveling Farther with Ruby Chapter 14

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 332

life of the W key. The same shortcut is available for subtraction, multiplica-
tion, and division.

14.4 FLOW-CONTROL STATEMENTS

In any type of nontrivial program, flow control is possibly the most important
factor in programming. Without some kind of flow control in programming
languages, computers would essentially be very expensive desktop ornaments.
Come to think of it, when you got past the forwarding of every e-mail received
each day to his team, I once had a manager whose computer was a very expen-
sive desktop ornament. He actually once forwarded the same message 14
times before realizing that he had somehow been added to his address list for
the team. But I’m wandering, so let’s get back to flow control, starting with
conditions.

14.4.1 Conditions

In your average run-of-the-mill language, there is the if statement, and that
is pretty much all there is to it. Ruby has an if that looks something like this:

if x == 1
b = 2

end

Pretty easy. Let’s add a layer of complexity with an else:

if x == 1
b = 2

else
b = 3

end

In Ruby, it is also possible to take it to a higher degree of complexity by
using the elsif statement:

if x == 1
b = 2

elsif x == 2
b = 4

else
b = 3

end

14.4 Flow-Control Statements 333

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 333

Before I forget, for the purpose of clarity, Ruby permits the addition of a
then to the if statement:

if x == 1 then
b = 2

end

Remember all the way back to Chapter 4, “JavaScript”? Remember condi-
tional operators? Well, they’re back! In fact, here is an example:

b = (x == 1 ? 2 : 3)

A few years ago, I grew a goatee, which I have since shaved off. At the
time, my reason for growing it was strictly personal and strange. You see, I
wanted to pass myself off as the evil Ed from a parallel dimension. My plan for
work domination failed, but it gave me the opportunity to appreciate the evil
things from parallel dimensions. For example, did you know that Ruby has an
evil if called unless?

The unless statement executes the code within only when the condition is
false. If this doesn’t fit the textbook, or, at least Star Trek, example of some-
thing from a parallel dimension, I don’t know what does.

14.4.2 Looping

Some days I feel like I’m going around in circles, usually in the morning while
I’m getting ready for work. The problem probably stems from a deep-seated
need for coffee to get moving in the morning. This wasn’t always the case, but
back in high school, I worked in a pancake house and got hooked. The free cof-
fee just seemed to help—that is, until I drank fifteen 20-ounce cups in the
course of a day. I could have threaded a sewing machine needle while the
machine was running. It hasn’t been that bad in a while, but my morning rit-
ual still requires coffee, as Ruby, shown in Listing 14-2, illustrates.

Listing 14-2 My Morning in Ruby: while Loop

cupsofcoffee = 0

while cupsofcoffee < 4
puts “hurry...”
cupsofcoffee += 1

end

The great thing about describing one’s morning programmatically is that
there are always alternative ways of expressing one’s self. For example, some

334 Traveling Farther with Ruby Chapter 14

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 334

mornings the blanket monster is holding me back and I just can’t seem to get
moving until there is a certain level of coffee in my system. Mornings like
these are better expressed by the code shown in Listing 14-3.

Listing 14-3 My Morning in Ruby: until Loop

cupsofcoffee = 0

until cupsofcoffee >= 4
puts “hurry...”
cupsofcoffee += 1

end

A while back, I used to have one of those coffee pots that had a timer. On
those mornings when I had programmed it the night before, coffee was already
going. Ah, a set number of cups of coffee just waiting for cream and sugar. I
suppose Listing 14-4 best sums it up.

Listing 14-4 My Morning in Ruby: for/in Loop

puts “for-in loop”
for x in [“hurry...”, “hurry...”, “hurry...”, “hurry...”]

puts x
end

Nowadays, I have one of those coffee makers that takes a Pod. Just drop
in the Pod and hit the button, and 90 seconds later there’s coffee. This takes
making coffee from being an art to being more of a science, a feeling that is
best conveyed by the example shown in Listing 14-5.

Listing 14-5 My Morning in Ruby: for/in Loop

puts “Iterators”
1.step(4,1) do |x|
puts “hurry...”

end

14.5 THREADS

Ruby has a feature that every language should have: the capability to multi-
thread. Personally, I’m fond of forking a thread whenever something that I’m
about to do is time consuming. For instance, any kind of input/output opera-
tion or attempt to obtain information from another server deserves another
thread.

14.5 Threads 335

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 335

In Ruby, threads are compatible across all platforms, which is quite an
accomplishment. However, I recommend further reading on the subject of mul-
tithreading. From personal experience, I know that multithreading is truly a
dark art and is not meant to be undertaken lightly.

14.6 AJAX

All this discussion of Ruby leaves us with only one question: Where the (fill-in-
the-blank) does Ajax fit in? Well, remember Rails from Chapter 13? That is
where Ajax fits in, but for me to prove it, we have to generate another con-
troller (see Figure 14-1).

336 Traveling Farther with Ruby Chapter 14

Figure 14-1 Generating a controller

We’re interested in two files: sample_controller.rb under madscientist\
app\controllers, and index.rhtml under madscientist\app\views\sample. The
first file is the Ruby application controller that defines the sample class. This
class, shown in Listing 14-6, will do all our server-side dirty work. The purpose
of the second file (see Listing 14-7), on the other hand, is to handle the client-
side part of the Ajax demo.

Listing 14-6 controller.rb

class SampleController < ApplicationController
def index
end

def echo_data
render_text “<i>” + params[:textinformation] + “</i>”

end
end

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 336

Listing 14-7 index.rhtml

<html>
<head>
<title>link_to_remote Demo</title>
<%= javascript_include_tag “prototype” %>

</head>
<body>
<%= form_remote_tag(:update => “form”, :url => { :action => :echo_data

}) %>
Text
<%= text_field_tag :textinformation %>
<%= submit_tag “Echo” %>
<%= end_form_tag %>

<div id=”form”>
</div>

</body>
</html>

After these two files have been modified, in the case of controller.rb, or
created, as index.rhtml needs to be, we’re ready to start WEBrick (see Figure
14-2) and bring up the page (see Figure 14-3).

14.6 Ajax 337

Figure 14-2 WEBrick

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 337

Figure 14-3 Generated page

This leaves just trying out the page, whose sole purpose is to echo back
from the server anything entered in the text box when the button is clicked.
Figure 14-4 shows the result.

Because I’m one of those people who needs to know how something
works, I’ve included Listing 14-8 showing the generated HTML.

Listing 14-8 Generated HTML
<html>

<head>
<title>link_to_remote Demo</title>
<script src=”/javascripts/prototype.js”

type=”text/javascript”></script>
</head>
<body>
<form action=”/sample/echo_data” method=”post” onsubmit=”new

Ajax.Updater(‘form’, ‘/sample/echo_data’, {asynchronous:true,
evalScripts:true, parameters:Form.serialize(this)}); return false;”>

Text
<input id=”textinformation” name=”textinformation” type=”text” />

338 Traveling Farther with Ruby Chapter 14

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 338

<input name=”commit” type=”submit” value=”Echo” />
</form>

<div id=”form”></div>
</body>

</html>

14.6 Ajax 339

Figure 14-4 Echoed text

Interesting isn’t it? The source from index.rhtml transmogrifies into
some pretty neat HTML, with all the Ajax goodies built right in. The
j a v a s c r i p t _

include_tag includes prototype.js, in which resides all the necessary client-
side JavaScript, while the rest of the tags describe an HTML form. Personally,
I am beginning to feel like I have found the Promised Land, and I’m not leav-
ing. In roughly 24 lines of code, we’ve got a simple Ajax application. Of course,
there is more to it than that; this example only touches upon some of the fea-
tures available in the Rails API. But Ruby on Rails shows some definite prom-
ise.

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 339

14.7 SUMMARY

In this chapter, we lightly touched upon the Ruby programming language, a
subject that could take an entire book in itself. We pointed out the fact that
Ruby has no primitives and that all variables are, in fact, objects. The numeric
objects were covered in some detail, and we lightly touched upon strings and
Booleans. An example of creating a custom class was shown to illustrate just
how easy it actually is.

We discussed operators, including the more unusual multiple assignment
operators, before we covered loops of various types. Next, we touched upon the
possibility of using threads in Ruby. Finally, the chapter closed with an exam-
ple of how Ruby on Rails can be used to create an Ajax application with very
little typing.

340 Traveling Farther with Ruby Chapter 14

14_0132272679_ch14.qxd 7/17/06 9:08 AM Page 340

C H A P T E R 15

The Essential Cross-Browser HTML DOM

Whether or not the average web developer is aware of it, it is out there, unseen
and unnoticed, but nevertheless out there. Allow me to explain before you
decide that I’ve popped a gasket and need to be taken to a nice soft room, the
kind with padded walls. I am referring to the HTML Document Object
Model—yes, that often ignored application programming interface that can be
both a blessing and a curse.

Yes, the average web developer uses the HTML DOM only to the extent
that is absolutely necessary to perform the job, and no further. The reasons for
this are many, ranging from the fact that in the early days of web browsers,
everybody did their own thing, to the fact that client-side code is often consid-
ered unreliable because some people are using web browsers that belong more
fittingly in a museum than in a computer that was manufactured in the
twenty-first century.

I suppose that this could be considered a major issue, the idea that web
applications need to work on every browser released since the beginning of
time. You might consider me something of a snob for saying this, but why
should everyone who is willing to advance beyond the mid-1990s be penalized?
You don’t see electrical power being looked down upon because some groups
don’t approve of it. Regardless of the reason for ignoring the HTML DOM,
unless they’re fond of web applications that behave like mainframe applica-
tions from the 1970s, people will have to either get with the program or be left
behind.

This chapter is organized along the following lines:

� Interfaces
� Document
� Frames
� Collections

341

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 341

15.1 INTERFACES

The HTML Document Object Model is an application programming interface
(API) that defines the structure of an HTML document in the browser. In addi-
tion, it defines how that document can be accessed and manipulated through
the use of JavaScript, sometimes embedded within the very same HTML docu-
ment that is being manipulated.

This sounds a little scary doesn’t it? The idea that a JavaScript routine
could essentially modify the very fabric of its own universe can be terrifying.
Just one oops, and it is over—it modified itself right out of existence. For all
intents and purposes, as far as the browser was concerned, it would have
never existed. Fortunately, this takes a little work to accomplish, and only the
JavaScript function and possibly the associated page would cease to exist.
Believe me, if this wasn’t the case, I would have winked out long ago.

Table 15-1 shows the various HTML Document Object Model interfaces
available through JavaScript. I would like to point out that the majority of
these interfaces correspond to actual HTML elements. Yes, name an HTML
element, and there is a corresponding interface; remember, though, that just
because an interface exists for a deprecated element, you don’t have to use it.
It is still deprecated.

Table 15-1 HTML Document Object Model Interfaces Available Through JavaScript

Interface Name Description
HTMLCollection A collection of HTML nodes
HTMLDocument The root element of the HTML document
HTMLElement The base class for all HTML elements
HTMLHtmlElement Corresponds to the html element
HTMLHeadElement Corresponds to the head element
HTMLLinkElement Corresponds to the link element
HTMLTitleElement Corresponds to the title element
HTMLMetaElement Corresponds to the meta element
HTMLBaseElement Corresponds to the base element
HTMLIsIndexElement Corresponds to the isindex element
HTMLStyleElement Corresponds to the style element
HTMLBodyElement Corresponds to the body element
HTMLFormElement Corresponds to the form element
HTMLSelectElement Corresponds to the select element.
HTMLOptGroupElement Corresponds to the option group element
HTMLOptionElement Corresponds to the option element
HTMLInputElement Corresponds to the input element

342 The Essential Cross-Browser HTML DOM Chapter 15

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 342

Interface Name Description
HTMLTextAreaElement Corresponds to the text area element
HTMLButtonElement Corresponds to the button element
HTMLLabelElement Corresponds to the label element
HTMLFieldSetElement Corresponds to the field set element
HTMLLegendElement Corresponds to the legend element
HTMLUListElement Corresponds to the unordered list element
HTMLOListElement Corresponds to the ordered list element
HTMLDListElement Corresponds to the dash list element
HTMLDirectoryElement Corresponds to the directory element
HTMLMenuElement Corresponds to the menu element
HTMLLIElement Corresponds to the list element
HTMLBlockquoteElement Corresponds to the block quote element
HTMLDivElement Corresponds to the div element
HTMLParagraphElement Corresponds to the paragraph element
HTMLHeadingElement Corresponds to the heading elements
HTMLQuoteElement Corresponds to the quote element
HTMLPreElement Corresponds to the preformatted element
HTMLBRElement Corresponds to the break element
HTMLBaseFontElement Corresponds to the base font element
HTMLFontElement Corresponds to the font element
HTMLHRElement Corresponds to the horizontal rule element
HTMLModElement Corresponds to the modification elements
HTMLAnchorElement Corresponds to the anchor element
HTMLImageElement Corresponds to the image element
HTMLObjectElement Corresponds to the object element
HTMLParamElement Corresponds to the parameter element
HTMLAppletElement Corresponds to the applet element
HTMLMapElement Corresponds to the map element
HTMLAreaElement Corresponds to the area element
HTMLScriptElement Corresponds to the script element
HTMLTableElement Corresponds to the table element
HTMLTableCaptionElement Corresponds to the table caption element
HTMLTableColElement Corresponds to the table column element
HTMLTableSectionElement Corresponds to the table section element
HTMLTableRowElement Corresponds to the table row element
HTMLTableCellElement Corresponds to the table cell element
HTMLFrameSetElement Corresponds to the frame set element
HTMLFrameElement Corresponds to the frame element
HTMLIFrameElement Corresponds to the iframe element

15.1 Interfaces 343

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 343

15.1.1 Window

Although it’s not officially part of the HTML Document Object Model, the
window object is the big kahuna, the big cheese, or, in web development terms,
top of the hierarchy. Many web developers don’t realize it, but all HTML docu-
ments are actually children of the window object. This means that it is as valid
to code window.document as it is to code document. You will probably see only the
latter as opposed to the former, but I think it’s a good idea to point out the pos-
sibility of the former, if only to avoid those Homer Simpson moments: Doh!

15.2 DOCUMENT

Alright, now we are officially dealing with the HTML Document Object Model
in all its hierarchical glory. The only question is, what does the word hierarchi-
cal mean in reference to the HTML DOM?

To me, it means that I envision the structure as a tree, but not the binary
kind or the kind growing outside. It has a single root and branches (elements),
and sometimes those branches have branches (more elements). In my mind,
the only difference from the growing kind of tree is that the root is at the top,
but since I’m in Pennsylvania, I think of trees in China and everything is
alright. If you happen to be in China, just envision trees in Pennsylvania, and
you’ll be fine. Ex-mainframe programmers should think IMS DB to get them-
selves through this section.

Seriously, as weird as it sounds, the concept of hierarchical data has been
around for a long time. Consider the HTML document shown in Listing 15-1
for a moment.

Listing 15-1 An HTML Document

<html>
<head>
<title>Test</title>
<script language=”JavaScript”></script>

</head>
<body>
<h1>Test 1</h1>
<h2>Test 2</h2>
<h3>Test 3</h3>

</body>
</html>

This document could alternatively be depicted graphically as shown in
Figure 15-1.

344 The Essential Cross-Browser HTML DOM Chapter 15

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 344

Figure 15-1 Graphic depiction of HTML document in Listing 15-1

See, it’s hierarchical. There is a single root, the html element, which has
two children, the head and body elements. The head and body elements are sib-
lings because they both share the same parent. The head element has two chil-
dren, and the title and script elements and the body element have three
children: the H1, H2, and H3 elements. The title and script elements are sib-
lings, and the H1, H2, and H3 elements are siblings, but the two groups of ele-
ments are not siblings because they have different parents.

So far, this has pretty much been an intellectual exercise, so how excited
can someone get about a picture? Um, I mean, a picture that doesn’t come with
a rating!

What I mean is, maybe it would help if there were a convenient table
that covered the various properties and methods available through the docu-
ment interface. Fortunately, Igor has put together Table 15-2 to give you some
idea of what is available.

Table 15-2 HTML DOM Properties/Methods

Property/Method Description
anchors A collection consisting of the anchors in the current

document.
applets A collection consisting of the applets in the current

document.
attributes A collection consisting of the attributes for the current node.
body The body element of the page.
childNodes A nodeset consisting of the child nodes of the current node.

Please note that the nodeset can be empty.
cookie A collection consisting of the cookies associated with the

current document.
doctype The Document Type Declaration associated with this XML

document.
documentElement The document’s root element.
domain The server’s domain name.
firstChild The first child node of the current node.

15.2 Document 345

library

head

title script

html

body

h1 h2 h3

continues

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 345

Table 15-2 continued

Property/Method Description
forms A collection consisting of the forms in the current

document.
frames A collection consisting of the frames in the

current document.
images A collection consisting of the images in the

current document.
implementation The DOMImplementation for this document.
lastChild The last child of the current node.
links A collection consisting of the links in the current

document.
nextSibling The next child of the current node’s parent.
nodeName The name of the node.
nodeType The type of the node.
nodeValue The value of the node.
ownerDocument The Document associated with the current

element.
parentNode The parent of the current node.
previousSibling The previous child of the current node’s parent.
referrer The URI of the page that linked to this page.
title The title of the HTML document.
URL The current page’s URL.
appendChild(new) Appends the new child node as the last child.
cloneNode(deep) Duplicates the specified node. The Boolean

parameter deep is used to indicate a deep copy,
whether or not the children should be copied.

close() Closes the document stream and also causes the
document to be rendered.

createAttribute(name) Creates an attribute.
createCDATASection(data) Creates a CDATASection node using the data

provided.
createComment(data) Creates a comment node using the data

provided.
createDocumentFragment() Creates an empty document fragment.
createElement(tagName) Creates the specified element.
createEntityReference(name) Creates an EntityReference.
createProcessingInstruction Creates a ProcessingInstruction node.
(target,data)

createTextNode(data) Creates a Text element using the data provided.

346 The Essential Cross-Browser HTML DOM Chapter 15

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 346

Property/Method Description
getElementById(elementId) Returns a single element based upon that

element’s id attribute. When there is more
than one element with the same id, only the
first is returned.

getElementByName(elementName) Returns a collection of elements based upon
the element’s name.

getElementsByTagName(tagname) Returns a nodeset consisting of elements with
matching tag names.

hasChildNodes() Returns true if child nodes exist and false if
child nodes do not exist.

insertBefore(new,reference) Inserts the new child node before the
reference child node.

open() Opens the document stream for writing.
removeChild(old) Removes the old child node.
replaceChild(new,old) Replaces the old child node with the new child

node.
write() Writes a text string to the document.
writeln() Writes a text string to the document and

appends a newline character.

Before moving on, I want to remind you that the document is hierarchi-
cal. This means that each element has properties and methods of its own.
Rather than go crazy trying to create some kind of uber table with every possi-
ble property and method for the interfaces shown in Table 15-1, I decided to
create Table 15-3. Table 15-3 covers the properties and methods common to
the various elements.

Table 15-3 Properties/Methods Common to the Various HTML DOM Interfaces

Property/Method Description
attributes A collection consisting of the attributes for the current

node.
childNodes A nodeset consisting of the child nodes of the current

node. Please note that the nodeset can be empty.
className The element’s class attribute.
dir The element’s text direction.
firstChild The first child node of the current node.
id The element’s identifier.
lang The element’s language code.
lastChild The last child of the current node.

15.2 Document 347

continues

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 347

Table 15-3 continued

Property/Method Description
nextSibling The next child of the current node’s parent.
nodeName The name of the node.
nodeType The type of the node. See Table 15-2 for

accepted values.
nodeValue The value of the node.
ownerDocument The document associated with the current

element.
parentNode The parent of the current node.
previousSibling The previous child of the current node’s parent.
tagName The tag name of the element.
title The element’s title.
appendChild(new) Appends the new child node as the last child.
cloneNode(deep) Duplicates the specified node. The Boolean

parameter deep is used to indicate a deep copy,
whether or not the children should be copied.

getAttribute(name) Returns the value of an attribute based upon
name.

getAttributeNode(name) Retrieves an Attr node by name.
getElementsByTagName(tagname) Returns a nodeset consisting of elements with

matching tag names.
hasChildNodes() Returns true if child nodes exist and false if

child nodes do not exist.
insertBefore(new,reference) Inserts the new child node before the reference

child node.
normalize() Normalizes the specified element and children

of the specified element.
removeAttribute(name) Removes an attribute by name.
removeAttributeNode(name) Removes an Attr node by name.
removeChild(old) Removes the old child node.
replaceChild(new,old) Replaces the old child node with the new child

node.
setAttribute(name,value) Creates an attribute and sets its value.
setAttributeNode(name) Adds an Attr node by name.

I want to add a little hint on how to find some of the remaining proper-
ties or methods for the various interfaces. Basically, it goes like this: If it is a
property or method of the element, there is a really good chance that it is also
a property or method of the interface. It might sound strange that this has to

348 The Essential Cross-Browser HTML DOM Chapter 15

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 348

be mentioned, but I’ve found that everyone has a blind spot concerning some-
thing in their career. In case you were wondering, mine is peasants with pitch-
forks and torches.

15.3 FRAMES

From an HTML Document Object Model point of view, frames are rather odd
creatures because they are essentially HTML documents within HTML docu-
ments. Consider for a moment the fact that it is possible to have more than
one document at a time. For example, the following is perfectly legal:

document.frames[1].document.body

It refers to the body of the document in the frame with an index of 1. This
has a tendency to throw off quite a number of people, probably because it is a
“wheels within wheels” kind of relationship, a bit tough to grasp the first time
around. There is also the added complexity that if the script is executing in a
frame itself, it could quite be playing with either the parent document or a sib-
ling document, or even the child of a sibling. The important thing to remember
is that anything that can be done with the current document can also be done
with another document.

15.4 COLLECTIONS

As you probably noticed in Table 15-1, there is an interface whose sole purpose
is to deal with collections. Add to this the various collections defined in Tables
15-2 and 15-3, and it becomes apparent very quickly that somebody really
likes collections. Who can blame them?

Collections make for very compact code that can be stepped through in a
sequential manner. Table 15-4 details the single property and two methods
available through the collection interface.

Table 15-4 The Property and the Methods Available Through the Collection Interface

Property/Method Description
length The number of items in the collection
item() Retrieves an individual item from a collection based upon

that item’s index
namedItem() Retrieves an individual item from a collection based upon

that item’s identifier

15.4 Collections 349

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 349

15.5 SUMMARY

This chapter is by no means a complete explanation of the HTML Document
Object Model, but it was never intended to be. Rather than be an encyclopedic
rendition of the HTML DOM, its purpose is to be more of an overview, with the
good parts underlined. I’d like to think that there is a slight possibility that I
hit the mark, but then, maybe I’m delusional.

350 The Essential Cross-Browser HTML DOM Chapter 15

15_0132272679_ch15.qxd 7/17/06 9:10 AM Page 350

C H A P T E R 16

Other Items of Interest

Although I do have a rather loose grip on reality, my grip isn’t so loose that I
think that the information contained within these pages is the be all and end
all concerning asynchronous JavaScript and XML. Ajax is nearly unique in
having both the excitement associated with a new topic and the maturity that
is associated with only a well-established technique. In fact, the last topic that
I can think of that had the same dual nature was NASA’s Apollo program. On
one hand, the idea of sending people to the Moon and returning them safely to
Earth was the stuff of science fiction. On the other hand, humanity has been
playing with rockets for centuries, occasionally with disastrous results.

Come to think of it, Ajax and the Apollo program have a great deal in
common. On one hand, the idea of web applications that have the look and feel
of Linux and Windows applications is the stuff of science fiction. On the other
hand, humanity has been creating web applications for the last several years,
occasionally with disastrous results. Hmm, there seems to be some kind of
pattern going on here.

In this chapter, I address some technologies that are complementary to
Ajax, one that is similar or is a kind of proprietary approach to Ajax, and then
finish with some further/final thoughts on browsers. Essentially, the purpose
of this chapter is not only to sum up everything that has been covered in this
book, but also to provide a starting point on where to look for other possible
ways of doing things. For example, about two months ago, I spoke with a devel-
oper who did Ajax. However, his technique was to use a Java applet for com-
munications instead of the XMLHttpRequest object. What I am trying to convey
is that there are multiple answers to every question, all of them equally cor-
rect. So here are some of the answers, with my personal opinions sprinkled
about.

351

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 351

16.1 SARISSA

Although it’s officially only an open source cross-browser JavaScript XML
library, Sarissa is one of those libraries whose capabilities extend far beyond
the basic XML support that I expected. This is a rare occurrence in today’s
world, where we can all remember being disappointed by movies, jobs, and
most members of Congress. Sarissa wraps the browser’s native XML applica-
tion programming interfaces with common interfaces. This makes life much
easier for the client-side developer than it would otherwise be.

Unlike my home-grown library, which supports only Microsoft Internet
Explorer and Gecko-based browsers such as Firefox, Flock, Mozilla, and
Netscape, Sarissa supports a wide range of browsers on multiple platforms.
This serves as a really good example of what a number of dedicated developers
can accomplish when they put their minds to it, as opposed to the lone mad
scientist or even the bloated corporation. Sarissa supports, at least partially,
the following web browsers:

� Firefox
� Konqueror (KDE 3.3)
� Microsoft Internet Explorer (MSXML 3.0)
� Mozilla
� Opera
� Safari

That’s quite an impressive list of web browsers; I don’t even have a
machine capable of running Safari. I normally just press my nose to the win-
dow of the Apple Store and wish. Come to think of it, I usually do that with
most stores that sell computers, including online ones. Well, at least now my
wife knows how the monitor on her computer got the nose prints on it and who
the nose prints belong to.

16.1.1 A Brief Overview of Sarissa

Table 16-1 briefly examines the goodies available in Sarissa, which read like a
Who’s Who of Ajax features.

352 Other Items of Interest Chapter 16

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 352

Table 16-1 Sarissa Features

Action Description
DOM Document Object (create) Creates a new instance of an XML DOM

document
DOM Document Object (load) Loads an XML DOM document from either a

remote source, such as the server, or a string
either synchronously or asynchronously

Parse Parses an XML DOM document for errors
Serialize Serializes an XML DOM document to a text

string
XMLHttpRequest Communicates with the web server via the

XMLHttpRequest object
XPath Provides the capability to apply an XPath

statement with JavaScript

The overall syntax for Sarissa is both logical and consistent. By logical, I
mean that if a particular parameter is necessary for a certain object, it is
there. The consistency that I’m referring to is the capability to write a script
once and be able to run it on any of the supported web browsers, without hav-
ing to monkey around with the code too much. What a concept!

To see what I mean, let’s take a look at how to create an XML DOM docu-
ment using Sarissa:

var myXMLDocument = Sarissa.getDomDocument();

Relatively simple and painless, isn’t it?
Loading the XML document from a remote source is only slightly more

complex, unless you’re indecisive, in which case you’ve got real problems in
deciding between synchronous and asynchronous. Never mind, I’ll go out on a
limb and show how it is done synchronously in Listing 16-1 and asynchro-
nously in Listing 16-2.

Listing 16-1 Loading Synchronously

var myXMLDocument = Sarissa.getDomDocument();

myXMLDocument.async = false;
myXMLDocument.load(“duckzilla.xml”);

16.1 Sarissa 353

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 353

Listing 16-2 Loading Asynchronously

var myXMLDocument = Sarissa.getDomDocument();

myXMLDocument.async = true;
myXMLDocument.onreadystatechange = readyStateHandler;
myXMLDocument.load(“duckzilla.xml”);

function readyStateHandler() {
if(myXMLDocument.readyState == 4)
alert(‘Loaded.’);

}

But what if the XML isn’t remote? Say, for example, that it is already
on the page in a JavaScript string. In that case, Listing 16-3 is the example
for you.

Listing 16-3 Loading an XML Document Already on the Page

var myXMLDocument = Sarissa.getDomDocument();
var myDOMParser = new DOMParser();
var myXMLString = ‘<xyzzy>plugh</xyzzy>’;

myXMLDocument = myDOMParser.parseFromString(myXMLString,’text/xml’);

Alright, now through one means or another, we have an XML document
loaded. This leaves only the question of what to do with it. That’s a minor
detail; it isn’t like it’s leftover Thanksgiving turkey or anything like that. We
are not going to run out of ideas. Nobody has ever considered making XML
enchiladas or XML stroganoff. XML gives us two possible options; we can
either transform it or send it somewhere.

We start with the option to transform it because I consider myself some-
thing of an XSLT geek, especially when performing dangerous acts such as
client-side transformations. I’m always up for playing with anything that
could possibly make my job easier, and it doesn’t get much easier than this.
There are only a couple simple rules to remember when using XSLT with
Sarissa: The XML is an XML document, and the XSL style sheet is also an
XML document. That’s all there is to it, and Listing 16-4 presents an example.

Listing 16-4 XSLT with Sarissa

var myXMLDocument = Sarissa.getDomDocument();
var myXSLDocument = Sarissa.getDomDocument();
var myXSLTProcessor = new XSLTProcessor();
var myXMLTransformed;

// Synchronous load of XML document

354 Other Items of Interest Chapter 16

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 354

myXMLDocument.async = false;
myXMLDocument.load(“jeckle.xml”);

// Synchronous load of XSL stylesheet
myXSLDocument.async = false;
myXSLDocument.load(“hyde.xsl”);

// Import stylesheet
myXSLTProcessor.importStylesheet(myXSLDocument);

// Add a parameter ‘take’ value ‘formula’
myXSLTProcessor.setParameter(null, ‘take’, ‘formula’);

// Transform, result in myXMLTransformed
myXMLTransformed = myXSLTProcessor.transformToDocument(myXMLDocument);

With XSLT out of the way, this leaves Sarissa’s implementation of the
XMLHttpRequest object as the last piece that I cover here. This implementation
of the XMLHttpRequest object offers no surprises, unless you’ve jumped ahead to
this chapter just to read about Sarissa. If this is the case, allow me to explain
that XMLHttpRequest is available in two distinct flavors: synchronous and asyn-
chronous. Synchronous is the one that waits quietly in line for its response,
and asynchronous is the one that does other things and expects a callback
with periodic updates. Listing 16-5 shows an example of a synchronous
request, and Listing 16-6 shows an asynchronous request.

Listing 16-5 Synchronous Request

var myXMLHttpRequest = new XMLHttpRequest();

myXMLHttpRequest.open(‘GET’,’manticore.xml’,false);
myXMLHttpRequest.send(null);

Listing 16-6 Asynchronous Request

var myXMLHttpRequest = new XMLHttpRequest();

myXMLHttpRequest.open(‘GET’,’ELP.xml’,true);

myXMLHttpRequest.onreadystatechange = function() {
if(myXMLHHttpRequest.readyState == 4)
alert(‘Done.’);

}

myXMLHttpRequest.send(null);

16.1 Sarissa 355

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 355

If you’re interested in using Sarissa for an Ajax application or any web
application of your own, I heartily recommend it. The source code for Sarissa
is available for download from SourceForge.net, whose URL is, coincidentally,
www.sourceforge.net. If you’re unfamiliar with SourceForge.net, I recommend
that you put aside an afternoon, and about 30 blank CDs, and peruse their
selections of open source goodies. In addition to a vast array of software, there
is, amazingly enough, documentation to go along with the software. It, like
Sarissa, is well worth the time.

16.2 JSON AND JSON-RPC

There’s definitely a Greek theme with many of the names involved with using
the XMLHttpRequest object. First there is Ajax itself, a legendary hero, followed
by Microsoft’s version called ATLAS, one of the Titans. Finally, there is JSON,
pronounced “Jason,” which stands for JavaScript Object Notation.

16.2.1 JavaScript Object Notation

Although I am by no means an expert on the subject, JavaScript Object
Notation (JSON) works as a kind of replacement for XML. This might sound a
little weird, but it makes perfect sense when viewed from a cross-browser
point of view. The reason for this is that more web browsers support
JavaScript than XML. This is just another way to distribute applications to as
many people as possible.

JSON appears to work something along the lines of children’s building
blocks. With blocks, a few basic shapes are used in conjunction with imagina-
tion to create complex structures. The same can be said of JSON: A few basic
“shapes” are used in conjunction with imagination to create complex struc-
tures. The only difference is that whereas children’s blocks result in physical
structures, JSON results in logical structures.

Let’s take a look at the two basic data structures (blocks) that are used to
create more complex structures in JSON. The first of these basic data struc-
tures is the name-value pair, which really isn’t anything that we have not
already seen in earlier chapters. Just think along the lines of a JavaScript col-
lection or associative array, and you’ll be fine.

The second basic data structure in JSON has the formidable description
of “an ordered list of values.” Ooh, sounds scary. In fact, it sounds a lot scarier
than its actual name, array. Say “an ordered list of values,” and people will pay
attention; say “array,” and unless you’re talking about an array of missile silos,
nobody cares.

356 Other Items of Interest Chapter 16

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 356

These structures, in turn, are used to create somewhat more complex
structures. The first of these more complex structures is an object; such objects
consist of an unordered list of name-value pairs, with the following syntax for
an empty object:

object_name { }

Of course, an empty object isn’t very useful, so it is necessary to add
members as string-value pairs. Of course, sometimes saying nothing is
enough.

That is a high-level (as in, orbital) view of the concepts behind JSON. All
we need to look at now is the actual syntax. After all, because the information
going back and forth from the web server and the web browser has to be text,
an internal representation of a JavaScript array would probably cause some
problems when trying to send it to and fro.

16.3 ATLAS

ATLAS is Microsoft’s answer to Ajax. Talk about a group that suffers from the
“not invented here” syndrome. For those of you who are unfamiliar with this
syndrome, it goes something along the lines of this:

1. If we didn’t invent it, then it is evil.
2. If we can sell a knock-off, then the original is evil and ours is innovative.
3. In a product this innovative, there are bound to be some bugs, but we’re

not at fault.

The first time that I encountered this syndrome was in a computer ter-
minal that was manufactured by the company I worked at. It had a detached
keyboard that must have weighed 20 kilos or so, but it was considered supe-
rior to those terminals with keyboards that could be placed on one’s lap, which
is, in my opinion, the purpose of a detached keyboard.

Over the years, I’ve encountered the syndrome in various locations, usu-
ally associated with some kind of kludge. Usually it was a software kludge,
either a homegrown procedure or utility that might have filled some kind of
need, probably back during the Pliocene. Nevertheless, whatever it was, it was
created locally and was, therefore, better than anything from any other source.

Of course, there is an alternative reason for Microsoft creating ATLAS
beyond the “not invented here” syndrome. Perhaps Microsoft intends to either
Balkanize the technology by creating incompatible alternatives or attempt to

16.3 ATLAS 357

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 357

seize control by having their own flavor. There is, however, the additional pos-
sibility that they have allowed themselves to be blindsided again. Personally, I
am most fond of the last possibility because it is kind of reassuring to think
that the company that some consider to be “The Evil Empire” has once again
missed the bus.

16.3.1 A Picture of ATLAS

Unfortunately, to use Microsoft’s ATLAS technologies, it is necessary to have a
machine running Windows and a copy of Visual Studio 2005. Although my lap-
top does run Windows XP Professional, I don’t have a copy of Visual Studio
2005, and with a price tag of $549 for the Professional version, it isn’t some-
thing that I will be purchasing in the near future. After all, $549 will buy a
large number of seasons of Stargate SG1, Gummi Lab Rats, and turkey club
sandwiches. For mad scientists, it is all a matter of priorities.

16.4 THE WORLD WIDE WEB CONSORTIUM

As I stated earlier, the World Wide Web Consortium is, in most instances, the
source of all things Web related. For this reason, I recommend that you occa-
sionally visit its website, www.w3.org, to peruse the home page and see if
there is anything new. In fact, this is one of those great spots to determine
which skill to learn next. After all, unless we keep our skills current, or even a
little more than current, it is quite possible that we could go the way of the
dinosaur—or, at least, the way of the majority of American steel workers.

The World Wide Web Consortium is also one of those websites, like
SourceForge, where it is possible to find some free goodies. However, unlike
SourceForge, most people think of only documentation when they think of the
World Wide Web Consortium. Fortunately, there is much more to the World
Wide Web Consortium than a mere collection of HTML pages and PDF files.
Many people don’t realize that, in addition to the all the documents describing
various technologies, there are quite often documents describing support for
those various technologies—such as which web browsers support CSS Level 1,
information that can be of some use when shopping for a new web browser.

16.5 WEB BROWSERS

The scary part about this section is that I had to actually look to see which
web browsers are installed on my Toshiba notebook. Over the last several
months, my collection has grown beyond my usual two browsers to include the
following (in alphabetical order):

358 Other Items of Interest Chapter 16

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 358

� Firefox (www.mozilla.org)
� Flock (www.flock.com)
� Microsoft Internet Explorer (www.microsoft.com)
� Netscape (http://browser.netscape.com)
� Opera (www.opera.com)

In addition to adding browsers beyond the original two, several Firefox
upgrades were installed during the same timeframe.

All in all, I discovered several interesting things about these browsers
and myself. The first is that, as annoying as Microsoft Internet Explorer is, it
pales in comparison to Opera. Opera is closed as tight as an oyster. In addi-
tion, some versions of Opera lie, claiming to be Microsoft Internet Explorer.
This wouldn’t be a problem if it behaved the same way as Microsoft Internet
Explorer, but, unfortunately, it doesn’t. In the end, I was forced to abandon
Opera.

Of the remaining browsers, Firefox, Flock, and Netscape are all based
upon Gecko, which means that if something works in one, it should work in all.
In fact, I wasn’t surprised to find this to be the case. Talk about consistency!

However, I want to point out one item concerning these browsers.
Because they are open source, they have a tendency to change more often than
Microsoft Internet Explorer—but, then, years change more often than
Microsoft Internet Explorer. This could be an issue in testing to keep in mind.

Finally, there is Microsoft Internet Explorer, which, at this time, is still
the number one web browser in use. Unlike the other browsers, unless you’re
running Windows or have an Apple computer, you’re pretty much hosed if you
want to run Internet Explorer. But there’s always Firefox or Flock or
Netscape.

16.6 SUMMARY

This chapter served as something of a wrap-up for the entire book—a weird
wrap-up because, although Ajax has been around for several years, it is still
evolving. Examples of this are Sarissa, JSON, and Microsoft’s ATLAS, differ-
ent approaches to solving what is basically the same problem. I also made
mention of both the World Wide Web Consortium and SourceForge, with the
former being useful for documentation and the latter being useful for develop-
ment tools. For those of us whose spouses insist upon wasting money on the
mortgage instead of development tools, those SourceForge tools come in
handy. Finally, I gave the web addresses for the web browsers available at the
time of this writing.

16.6 Summary 359

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 359

16_0132272679_ch16.qxd 7/17/06 9:12 AM Page 360

I N D E X

Symbols

* (asterisk), 66, 227
@ (at sign), 228
\ (backslash), 66
^ (caret), 66
$ (dollar sign), 66
.. (double period), 228
// (double slash), 141, 228
() (parentheses), 66
. (period), 66, 228
+ (plus sign), 66
? (question mark), 66
/ (slash), 227
| (union operator), 234
[0-9] pattern (regular expressions), 67
[^0-9] pattern (regular expressions), 67

A

a element (XHTML), 45
abbr element (XHTML), 45
abort() method, 152
action property (XMLHttpRequest

class), 208
ActiveX, XMLHttpRequest object,

155-156
add2Cart() function, 219
address element (XHTML), 45
addressSelect stored procedure, 124-125

Ajax (Asynchronous JavaScript And
XML)

advantages of, 221
automated request system example,

22-23
definition of, 21
development of, 19
hidden frames method of

implementation, 23
hidden.htm, 25-26
HTMLfs.htm, 24, 27
submitForm() function, 27
visible.htm, 24

library classes, 207-209
origin of name, 20-21
philosophy of, 21-22
Ruby on Rails and, 324-339

Altova XMLSPY XPath Evaluator, 229
ancestor axes (XPath), 236
ancestor() function, 101
ancestor-or-self axes (XPath), 236
Apache web server, 14
app folder, 320
appendChild() method, 163
appendData() method, 164
Apple Safari, 10-11
applet element (XHTML), 45
apply-import element (XSLT), 250
apply-template element (XSLT), 250
applying CSS (Cascading Style

Sheets), 58

361

17_0132272679_index.qxd 7/17/06 9:14 AM Page 361

area element (XHTML), 45
arithmetic operators, 71, 234
arraylength() method, 69
arrays, 69-70

adding elements to, 70
array methods, 69
associative, 289-291
concatenating, 69
defining, 69
in JSON (JavaScript Object

Notation), 356
joining, 70
removing elements from, 70
reversing order of, 69
slicing, 69
sorting, 69
XML-RPC arrays, 200

assignment operators, 72
associative arrays, 289-291
asterisk (*), 66, 227
asyncHandler() function, 154
Asynchronous JavaScript And XML. See

Ajax
asynchronous loading with Sarissa, 354
asynchronous pages, 193
asynchronous property

(XMLHttpRequest class), 208
asynchronous requests, 355
asynchronous XMLHttpRequest

applications, 153-155
at sign (@), 228
ATLAS, 357-358
Attr interface, 157
attribute axes (XPath), 236-237
attribute element (XSLT), 250
attribute nodes, 228
attribute-set element (XSLT), 250
attributes (XML), 138-139. See also spe-

cific attributes
Attributes property, 161

automated request system example,
22-23

axes (XPath)
ancestor axes, 236
ancestor-or-self axes, 236
attribute axes, 236-237
child axes, 237
descendant axes, 237-238
descendant-or-self axes, 238
following axes, 238-239
following-sibling axes, 239
namespace axes, 239-240
parent axes, 240
preceding axes, 240-241
preceding-sibling axes, 241
self axes, 241
table of, 234-235

B

b element (XHTML), 45
\b pattern (regular expressions), 67
background element (CSS), 59
background-attachment element (CSS),

59
background-color element (CSS), 58
background-image element (CSS), 58
background-position element (CSS), 59
background-repeat element (CSS), 59
backslash (\), 66
base element (XHTML), 46
basefont element (XHTML), 46
Berns-Lee, Tim, 1
big element (XHTML), 46
binding XML, 187-192

cross-browser XML binding, 188-192
Internet Explorer, 188

blockquote element (XHTML), 46
blur event handler, 84
body element (XHTML), 46

362 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 362

Boolean data types, 68, 330
Boolean functions, 230
boolean() function, 230
border element (CSS), 60
border-bottom element (CSS), 60
border-bottom-width element (CSS), 60
border-color element (CSS), 60
border-left element (CSS), 60
border-left-width element (CSS), 60
border-right element (CSS), 60
border-right-width element (CSS), 60
border-style element (CSS), 60
border-top element (CSS), 60
border-top-width element (CSS), 60
border-width element (CSS), 60
br element (XHTML), 46
break statement, 76
brochure-ware, 2
browsers

cross-browser development, 11-12
compatibility issues, 12
market share, 12-13
SOAPEnvelope class constructor,

302-303
XML document class constructor,

296-301
XMLHttpRequest class constructor,

292-295
XSLTProcessor class, 303-306
World Wide Web Consortium, 13

cross-browser DOM (Document Object
Model), 91

Firefox, 94
Microsoft Internet Explorer, 93
Opera, 95
sample HTML document, 92-96

Firefox, 145-149
Linux browsers, 10
list of, 358-359

Microsoft Internet Explorer, 8-9
client-side transformations,

265-267
XML Data Islands, 145, 182-184

Mozilla-based browsers, 9-10
Opera, 10-11
Safari, 10-11
Sarissa support for, 352
XML binding

cross-browser XML binding,
188-192

Internet Explorer, 188
XMLHttpRequest object syntax, 193
XSLT support

cross-browser web page example,
274-276

Internet Explorer 5.0, 270-271
buildSOAP() function, 37
button element (XHTML), 46

C

Cache() function, 289, 291
caching, 282
call-template element (XSLT), 250
caption element (XHTML), 46
caret (^), 66
Cascading Style Sheets. See CSS
case statement, 74
CDATASection interface, 158
CDATAsections (XML), 140
ceiling() function, 230
center element (XHTML), 46
CERNServer, 14
change event handler, 85
changeEvent() function, 105, 108-109
CharacterData interface, 157
charAt() method, 64
charCodeAt() method, 64
child axes (XPath), 237

Index 363

17_0132272679_index.qxd 7/17/06 9:14 AM Page 363

child nodes, 29, 136
childNodes property, 160
childWindow class, 97-100
choose element (XSLT), 250
class variables, 331-332
classes

Ajax library classes, 207-209
childWindow, 97-100
constructors, 80-84
function class constructor, 288
Ruby classes, creating, 331
SOAPEnvelope, 209, 302-303
XMLHttpRequest, 208
XSLTProcessor, 303-306

clear element (CSS), 60
client side, 4

client-side transformations, 265-267
cloneNode() method, 163
close() method, 112
code element (XHTML), 46
code reuse, 285

advantages of, 286-287
JavaScript objects

associative arrays, 289-291
collections, 289-291
creating, 287-288
cross-browser (Gecko and IE)

XMLHttpRequest class
constructor, 292-295

cross-browser SOAPEnvelope class
constructor, 302-303

cross-browser XML document class
constructor, 296-301

cross-browser XSLTProcessor class,
303-306

serialization, 307
XML, 291-292

XSLT, 307-308
forms, 308-309
tabular information, 309-310

coding by hand, 15-16
col element (XHTML), 47
colgroup element (XHTML), 47
collections, 289-291, 349
color element (CSS), 58
comment element (XSLT), 250
Comment interface, 158
comments (XML), 140-141
comparison operators, 72
concat() method, 64, 69, 231
concatenating

arrays, 69
stored functions, 180

conditional operators, 229-230, 334
conditional statements, 73-75

if, 73-74
switch, 74

conditions in Ruby, 333-334
config folder, 320
connect_errno property (mysqli), 112
constructors, 80-84
contains() function, 232
context nodes, 228
continue statement, 77
controller.rb, 336
controllers folder, 320
copy element (XSLT), 250
copy-of element (XSLT), 251
count() function, 230
CP/M, 12
createAttribute() method, 159
createCDATASection() method, 159
createComment() method, 158
createDocumentFragment() method, 158
createElement() method, 158
createEntityReference() method, 159

364 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 364

createProcessingInstruction() method,
159

createTextNode() method, 158
cross-browser (Gecko and IE)

XMLHttpRequest class constructor,
292-295

cross-browser binding XML, 145-149
cross-browser development, 11-12

compatibility issues, 12
cross-browser DOM, 91

Firefox, 94
JavaScript, 96-102
Microsoft Internet Explorer, 93
Opera, 95
sample HTML document, 92-93, 96
server-side environment, 103-104
stored procedures, 103-104
tree structure, 92

market share, 12-13
SOAPEnvelope class constructor,

302-303
World Wide Web Consortium, 13
XML binding, 188-192
XML document class constructor,

296-301
XSLT web page, 274-276
XSLTProcessor class, 303-306

CSS (Cascading Style Sheets), 5-6, 57
applying, 58
elements, 58-61
hiding XML with, 145, 185
tabular information, 112-113

Current() function, 262
custom elements (XHTML), 56-57
customer display page, 130-133
customerInsert stored procedure,

129-130

D

\D pattern (regular expressions), 67
Data Islands (XML), 144

cross-browser solutions, 184-187
CSS to hide XML, 185
getElementById() method, 186-187

Firefox, 145-149
Internet Explorer, 145, 182-184
sample HTML page with embedded

XML, 182
Data property, 164
data types

JavaScript data types
Boolean data types, 68
null data types, 69
numeric data types, 64
object, 70
overview of, 63-64
strings, 64-68
undefined data types, 69

Ruby data types
Boolean, 330
numeric, 328-330
objects, 330-331
string, 330

XML-RPC data types, 200-201
database access example, 320-324
dblclick event handler, 85
dd element (XHTML), 47
decimal-format element (XSLT), 251
decision structures (XSLT), 260
declarations (XML), 144
deep copies, 244
defining arrays, 69
del element (XHTML), 47
deleteData() method, 164
descendant axes (XPath), 237-238
descendant-or-self axes (XPath), 238

Index 365

17_0132272679_index.qxd 7/17/06 9:14 AM Page 365

dfn element (XHTML), 47
DHTML (Dynamic HTML), 3-4, 89
Digital Research, CP/M, 12
dir element (XHTML), 47
directory structure, 317-320
disadvantages of Ajax, 221
display element (CSS), 60
displayCart() function, 118
div element (XHTML), 47
dl element (XHTML), 47
do/while loops, 76
Doctype property (Document interface),

158
Document interface, 157
Document Object Model. See DOM
Document Type Definitions (DTDs), 142
document() function, 262
documentElement property (Document

interface), 158
DocumentFragment interface, 157
documents (HTML)

hierarchical structure, 344-345
HTML DOM

cross-browser issues, 91-96
JavaScript, 96-102
server-side environment, 103-104
stored procedures, 103-104
tree structure, 92

DocumentType interface, 158
dollar sign ($), 66
DOM (Document Object Model)

HTML DOM
cross-browser issues, 91-96
JavaScript, 96-102
server-side environment, 103-104
stored procedures, 103-104
tree structure, 92

XML DOM
JavaScript interfaces, 157-158
node types, 166
properties and() methods, 158-165
sample XML document, 156-157

DOMDocument() method, 209
DOMException interface, 157
DOMImplementation interface, 157
doPOST() function, 37
double period (..), 228
double slash (//), 228
dt element (XHTML), 48
DTDs (Document Type Definitions), 142
dumb terminals, 2
Dynamic HTML. See DHTML
dynamic web pages, 3-4

E

element element (XSLT), 251
Element interface, 158
element-availability() function, 262
elements

CSS, 58-61
HTML/XHTML, 44

a, 45
abbr, 45
address, 45
applet, 45
area, 45
b, 45
base, 46
basefont, 46
big, 46
blockquote, 46
body, 46
br, 46
button, 46
caption, 46
center, 46
code, 46
col, 47
colgroup, 47
custom elements, 56-57
dd, 47
definition of, 29
del, 47

366 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 366

dfn, 47
dir, 47
div, 47
dl, 47
dt, 48
em, 48
fieldset, 48
font, 48
form, 48
frame, 48
frameset, 48
h1, 48
h2, 48
h3, 48
h4, 49
h5, 49
h6, 49
head, 49
hr, 49
html, 49
i, 49
iframe, 49
img, 50
input, 50
ins, 50
isindex, 50
kbd, 50
label, 50
legend, 50
li, 50
link, 50
map, 51
menu, 51
meta, 51
noframes, 51
noscript, 51
object, 51
ol, 52
optgroup, 52
option, 52

p, 52
param, 52
pre, 52
q, 52
s, 52
samp, 52
script, 53
select, 53
small, 53
span, 53
strike, 53
strong, 53
sub, 53
sup, 53
table, 54
tbody, 54
td, 54
textarea, 54
tfoot, 54
th, 54
thread, 55
title, 55
tr, 55
tt, 55
u, 55
ul, 55
var, 55

XML
attributes, 138-139
forbidden/restricted characters,

139-140
naming conventions, 138
structure of, 136-138

XSLT
defining in style sheets, 253-255
output, 254
sort, 260-262
stylesheet, 254
table of, 250-253
transform, 254

Index 367

17_0132272679_index.qxd 7/17/06 9:14 AM Page 367

else statement (Ruby), 333
elsif statement (Ruby), 333
em element (XHTML), 48
entities (XML), 139-140
Entities property (DocumentType

interface), 165
Entity interface, 158
EntityReference interface, 158
envelope property (XMLHttpRequest

class), 208
envelope() method, 209
Epiphany, 10
error property (mysqli), 112
escape() method, 64
Euclidean algorithm

iterative implementation, 80
recursive implementation, 79

event handlers (JavaScript), 84-86
ExceptionCode interface, 157
exiting loops, 77
expressions

regular expressions, 66-68
XPath, 233-234

Extensible Markup Language. See XML
eXtensible Stylesheet Language for

Transformations. See XSLT

F

\f pattern (regular expressions), 67
fallback element (XSLT), 251
false() function, 230
Falseclass class (Ruby), 330
faults

SOAP faults, 172-173, 203
XML-RPC faults, 201-202

fetch_array() method, 112
fieldset element (XHTML), 48
files, retrieving synchronously, 153

Firefox, 9-10, 359
cross-browser DOM (Document Object

Model), 94
XML Data Islands, 145-149

firstChild property, 160
Float class (Ruby), 329-330
float element (CSS), 60
Flock, 359
floor() function, 230
flow-control

conditionals, 73-75
case, 74
if, 73-74
switch, 74

loops, 75-76
do/while, 76
exiting, 77
for/in, 75
while, 76

overview of, 72-73
in Ruby

conditions, 333-334
loops, 334-335

focus event handler, 84
following axes (XPath), 238-239
following-sibling axes (XPath), 239
font element

CSS, 58
HTML, 57
XHTML, 48
HTML, 58

font-family element (CSS), 58
font-size element (CSS), 58
font-style element (CSS), 58
font-variant element (CSS), 58
font-weight element (CSS), 58
for-each element (XSLT), 251, 261
for/in loops, 75, 335
forbidden characters (XML), 139-140
form element (XHTML), 48

368 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 368

Format-number() function, 262
forms

code reuse, 308-309
read-only, 122

addressSelect stored procedure,
124-125

customer display, 125-127
MySQL database tables, creating,

123-124
updateable

customer display page, 130-133
customerInsert stored procedure,

129-130
nameInsert stored procedure,

127-128
forward() function, 106
frame element (XHTML), 48
frames, 56, 90-91

hidden frames method of Ajax
implementation, 23

hidden.htm, 25-26
HTMLfs.htm, 24, 27
submitForm() function, 27
visible.htm, 24

HTML DOM, 349
frameset element, 27, 48
framesets, 105
fromCharCode() method, 65
function class constructor, 288
function-available() function, 262
functions, 77-78, See also methods

add2Cart(), 219
ancestor(), 101
asyncHandler(), 154
buildSOAP, 37
Cache(), 289, 291
changeEvent(), 105, 108-109
Current(), 262
displayCart(), 118
document(), 262

doPOST(), 37
element-availability(), 262
Format-number(), 262
forward(), 106
function-available(), 262
gcd(), 79
generate-id(), 262
initialize(), 37, 106-108
key(), 262
name(), 308
pageWait(), 219
restrict(), 108
selectSingleNode(), 37
stateChangeHandler(), 37
stored functions, concatenating, 180
submitForm(), 27, 108-109
substringAfter(), 119
substringBefore(), 120
system-property(), 262
translate(), 308
transverse(), 101
unparsed-entity-uri(), 262
xmlNode(), 180
XPath functions

Boolean functions, 230
node set functions, 231
numeric functions, 230-231
string functions, 231-233

XSLT functions, 262

G

Galeon, 10
Garrett, Jesse James, 19-20
gcd() function, 79
generate-id() function, 262
GET method, 193
getAllResponseHeaders() method, 152,

208-209
getAttribute() method, 165

Index 369

17_0132272679_index.qxd 7/17/06 9:14 AM Page 369

getAttributeNode() method, 165
getElementById() method, 186-187
getElementByName() method, 186
getElementsByTagName() method, 159
getNamedItem() method, 163
getResponseHeader() method, 152, 209
getResponseHeadere() method, 208
Google, 19

H

h1 element (XHTML), 48
h2 element (XHTML), 48
h3 element (XHTML), 48
h4 element (XHTML), 49
h5 element (XHTML), 49
h6 element (XHTML), 49
hasChildNodes() method, 163
hasFeature() method, 158
head element (XHTML), 49
height element (CSS), 60
helpers folder, 320
hidden frames() method of Ajax

implementation, 23
hidden.htm, 25-26
HTMLfs.htm, 24, 27
submitForm() function, 27
visible.htm, 24

hidden.htm, 25-26
hiding XML, 145
hierarchical structure of HTMLDOM,

344-345
history of Ruby on Rails, 314-315
hr element (XHTML), 49
HTML, 4-5, 41. See also DHTML;

XHTML
compared to XHTML, 42-44
HTML DOM (Document Object

Model)
collections, 349
frames, 349

hierarchical structure, 344-345
interfaces, 342-343
properties/methods, 345-348
window object, 344

elements. See elements
frames, 56, 90-91
framesets, 105
iframes, 90-91

html element (XHTML), 49
HTMLfs.htm, 24, 27
hybrid XSLT/XHTML template example,

257-258
Hypertext Markup Language. See

HTML

I

i element (XHTML), 49
if element (XSLT), 251
if statement, 333

example, 73-74
nesting, 74

iframe element (XHTML), 49
iframes, 90-91
IIS (Internet Information Server), 14
img element (XHTML), 50
Implementation property

(Document interface), 158
import element (XSLT), 251
in-line frames, 90-91
include element (XSLT), 251
index.rthml, 337
indexOf() method, 65
initialize() function, 37, 106-108
input element (XHTML), 50
ins element (XHTML), 50
insert() method, 208
insertBefore() method, 162
insertData() method, 164
installing Ruby on Rails, 315-317

370 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 370

instance variables, 331-332
Integer class (Ruby), 328-329
interfaces

Attr, 157
CDATASection, 158
CharacterData, 157
Comment, 158
Document, 157
DocumentFragment, 157
DocumentType, 158
DOMException, 157
DOMImplementation, 157
Element, 158
Entity, 158
EntityReference, 158
ExceptionCode, 157
HTMLDOM, 342-343
NamedNodeMap, 157
Node, 157
NodeList, 157
Notation, 158
ProcessingInstruction, 158
properties and methods of, 158-165
Text, 158

Internet Explorer, 8-9, 359
client-side transformations, 265-267
cross-browser DOM (Document Object

Model), 93
XML binding, 188
XML Data Islands, 145, 182-184

Internet Information Server (IIS), 14
invoking web services, 169
isindex element (XHTML), 50
item() method, 163
Items Available web page code listing,

218-219
itemSelectXML stored procedure,

180-182
iterative style sheets (XSLT), 244-248

J

JavaScript, 6-7, 63, 96
arrays, 69-70

adding elements to, 70
array methods, 69
concatenating, 69
defining, 69
joining, 70
removing elements from, 70
reversing order of, 69
slicing, 69
sorting, 69

childWindow class, 97-100
conditional statements, 73-75

case, 74
if, 73-74
switch, 74

constructors, 80-84
data types

Boolean data types, 68
null data types, 69
numeric data types, 64
objects, 70
overview of, 63-64
strings, 64-68
undefined data types, 69

event handlers, 84-86
functions. See functions
HTML DOM interfaces, 342-343
loops, 75-76

do/while, 76
exiting, 77
for/in, 75
while, 76

objects
collections, 289-291
creating, 287-288

Index 371

17_0132272679_index.qxd 7/17/06 9:14 AM Page 371

cross-browser (Gecko and IE)
XMLHttpRequest class
constructor, 292-295

cross-browser SOAPEnvelope class
constructor, 302-303

cross-browser XML document class
constructor, 296-301

cross-browser XSLTProcessor class,
303-306

serialization, 307
operators, 71-72
recursion, 78-79, 100-102
regular expressions, 66-68
variables, 70-71

JavaScript Object Notation (JSON),
356-357

JavaScriptHelper module (Ruby on
Rails), 324-325

join() method, 70
joining arrays, 70
JSON (JavaScript Object Notation),

356-357

K

kbd element (XHTML), 50
key element (XSLT), 251
key() function, 262
keydown event handler, 85
keypress event handler, 85
keyup event handler, 85
Konqueror, 10

L

label element (XHTML), 50
last() function, 231
lastChild property, 161
lastIndexOf() method, 65
legend element (XHTML), 50
length() method, 65

Length property, 163
letter-spacing element (CSS), 59
li element (XHTML), 50
line-height element (CSS), 59
link element (XHTML), 50
Linux browsers, 10
list-style element (CSS), 60
list-style-image element (CSS), 60
list-style-position element (CSS), 60
list-style-type element (CSS), 60
load event handler, 85
Load() method, 208
local-name() function, 231
location paths (XPath), 227-228
logical operators, 72
loops, 75-76

do/while, 76
exiting, 77
for/in, 75
in Ruby, 334-335
while, 76

M

map element (XHTML), 51
margin element (CSS), 59
margin-bottom element (CSS), 59
margin-left element (CSS), 59
margin-right element (CSS), 59
margin-top element (CSS), 59
market share of web browsers, 12-13
match() method, 65
math operators, 71
menu element (XHTML), 51
message element (XSLT), 252
meta element (XHTML), 51
methods. See also functions

abort(), 152
appendChild(), 163
appendData(), 164
arraylength(), 69

372 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 372

charAt(), 64
charCodeAt(), 64
cloneNode(), 163
close(), 112
collections, 349
concat(), 64, 69
createAttribute(), 159
createCDATASection(), 159
createComment(), 158
createDocumentFragment(), 158
createElement(), 158
createEntityReference(), 159
createProcessingInstruction(), 159
createTextNode(), 158
deleteData(), 164
DOMDocument(), 209
envelope(), 209
escape(), 64
fetch_array(), 112
Float class, 329-330
fromCharCode(), 65
getAllResponseHeaders(), 152,

208-209
getAttribute(), 165
getAttributeNode(), 165
getElementById(), 186-187
getElementByName(), 186
getElementsByTagName(), 159
getNamedItem(), 163
getResponseHeader(), 152, 208-209
hasChildNodes(), 163
hasFeature(), 158
HTML DOM, 345-348
indexOf(), 65
insert(), 208
insertBefore(), 162
insertData(), 164
Integer class, 329
item(), 163
JavaSciptHelper module, 324-325

join(), 70
lastIndexOf(), 65
length(), 65
Load(), 208
match(), 65
names(), 208
normalize(), 165
open(), 152
pop(), 70
purge(), 208
push(), 70
query(), 112
readyState(), 208-209
removeAttribute(), 165
removeAttributeNode(), 165
removeChild(), 162
removeNamedItem(), 164
removeRequestHeader(), 208
replace(), 65
replaceChild(), 162
replaceData(), 164
responseText(), 208
responseXML(), 208
retrieve(), 208
reverse(), 69
rSend(), 208
search(), 65
selectNodes(), 209
send(), 152
serialize(), 208
setAttribute(), 165
setAttributeNode(), 165
setEnvelope(), 209
setInterval(), 86
setNamedItem(), 163
setRequestHeader(), 152, 208-209
setTimeout(), 86, 155
shift(), 70
slice(), 65, 69
sort(), 69

Index 373

17_0132272679_index.qxd 7/17/06 9:14 AM Page 373

splice(), 70
split(), 65
splitText(), 165
stateChangeHandler(), 208
substr(), 65
substring(), 66
substringData(), 164
toLowerCase(), 66
toString(), 66
toUpperCase(), 66
transformToDocument(), 267
transformToFragment(), 267
unescape(), 66
unshift(), 70
valueOf(), 66

Microsoft Internet Explorer, 8-9, 359
client-side transformations, 265-267
cross-browser DOM (Document Object

Model), 93
XML binding, 188
XML Data Islands, 145, 182-184

mode attribute (template element),
258-259

models folder, 320
mousedown event handler, 85
mousemove event handler, 85
mouseout event handler, 85
mouseover event handler, 85
mouseup event handler, 85
Mozilla, 9-10
Mozilla-based browsers, 9-10
Muench, Steve, 263
Muenchian grouping, 263-265
multiple assignments (Ruby), 332-333
multithreading in Ruby, 335-336
MySQL database tables, creating,

110-111, 123-124
MySQL stored procedures, 103-104

addressSelect, 124-125
customerInsert, 129-130

itemSelectXML, 180, 182
lineSelect, 111
nameInsert, 127-128
producing XML from, 180-182
shoppingCartSelect, 118

mysqli() methods and properties, 111

N

\n pattern (regular expressions), 67
{n,} pattern (regular expressions), 67
{n} pattern (regular expressions), 67
{n,m} pattern (regular expressions), 67
Name property, 164
name() function, 231, 308
name-value pairs in JSON (JavaScript

Object Notation), 356
named XSLT template example, 256
NamedNodeMap interface, 157
nameInsert stored procedure, 127-128
names() method, 208
namespace axes (XPath), 239-240
namespace-alias element (XSLT), 252
namespace-uri() function, 231
namespaces (XML), 141
naming conventions (XML), 138
NaN special value, 64
NCSA HTTPd, 14
nesting if statements, 74
Netscape, 9-10, 359
nextSibling property, 161
Node interface, 157
node set functions, 231
NodeList interface, 157
nodeName property, 159
nodes, 166

child nodes, 136
attribute nodes, 228
context nodes, 228
parent nodes, 136, 228
root nodes, 136

374 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 374

nodeType property, 160
nodeValue property, 159
noframes element (XHTML), 51
nonbound tables, creating with XSL

style sheets, 278-281
normalize() method, 165
normalize-space() function, 232
noscript element (XHTML), 51
not() function, 230
Notation interface, 158
notationName property, 165
Notations property (DocumentType

interface), 165
null data types, 69
number element (XSLT), 252
number() function, 231
numeric data types, 64, 328-330
numeric() functions, 230-231

O

Object data type, 70
object element (XHTML), 51
objects. See also DOM (Document Object

Model)
JavaScript objects

collections, 289-291
creating, 287-288
cross-browser (Gecko and IE)

XMLHttpRequest class
constructor, 292-295

cross-browser SOAPEnvelope class
constructor, 302-303

cross-browser XML document class
constructor, 296-301

cross-browser XSLTProcessor class,
303-306

serialization, 307
Ruby objects, 330-331

XML DOM (Document Object Model)
JavaScript interfaces, 157-158
node types, 166
properties and() methods, 158-165
sample XML document, 156-157

XMLHttpRequest, 31-33, 151-152, 192
ActiveX, 155-156
asynchronous applications,

153-155, 193
browser differences, 193
creating instances of, 193
cross-browser (Gecko and IE)

XMLHttpRequest class con-
structor, 292-295

GET versus POST() methods, 193
properties and() methods, 152-153
readyState values, 217
RSS (Really Simple Syndication),

166-167
sample XML document, 194-198
SOAP(Simple Object Access

Protocol), 202-203
synchronous applications, 152-153,

193
web services, 168-173
XML-RPC data types, 200-201
XML-RPC faults, 201-202
XML-RPC requests, 199
XML-RPC responses, 199

ol element (XHTML), 52
onclick event handler, 85
onreadystatechange event handler,

153-154
open() method, 152
Opera, 10-11, 95, 359
operators

arithmetic operators, 234
conditional operators, 229-230
JavaScript operators, 71-72

Index 375

17_0132272679_index.qxd 7/17/06 9:14 AM Page 375

in Ruby, 332-333
union operator (|), 234

optgroup element (XHTML), 52
option element (XHTML), 52
otherwise element (XSLT), 252
output element (XSLT), 252, 254
ownerDocument property, 162

P

p element (XHTML), 52
padding element (CSS), 59
padding-bottom element (CSS), 59
padding-left element (CSS), 59
padding-right element (CSS), 59
padding-top element (CSS), 59
pageWait() function, 219
param element

XHTML, 52
XSLT, 252

parent axes (XPath), 240
parent nodes, 29, 136, 228
parentheses (), 66
parentNode property, 160
paths (XPath), 227-228
period (.), 228
philosophy of Ajax, 21-22
PHP tabular information, 116-117
plus sign (+), 66
pop() method, 70
position() function, 231
POST method, 193
pre element (XHTML), 52
preceding axes (XPath), 240-241
preceding-sibling axes (XPath), 241
predicates (XPath), 228-230
preserve-space element (XSLT), 252
previousSibling property, 161
procedures, stored, 103-104

addressSelect, 124-125
customerInsert, 129-130

itemSelectXML, 180-182
lineSelect, 111
nameInsert, 127-128
producing XML from, 180-182
shoppingCartSelect, 118

processing instructions (XML), 144
processing-instruction element (XSLT),

252
ProcessingInstruction interface, 158
properties. See also specific properties

collections, 349
Float class (Ruby), 329-330
HTMLDOM, 345-348
Integer class (Ruby), 329
XMLHttpRequest object, 152-153

prototype property, 82-83
public folder, 320
publicid property, 165
purge() method, 208
push() method, 70

Q

q element (XHTML), 52
query() method, 112
question mark (?), 66

R

\r pattern (regular expressions), 67
Rails. See Ruby on Rails
read-only forms, 122

addressSelect stored procedure,
124-125

customer display, 125-127
MySQL database tables, creating,

123-124
read-only tabular information, 109, 216

CSS, 112-113
items available page, 218-219
lineSelect stored procedure, 111

376 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 376

MySQL database tables, creating,
110-111

mysqli() methods and properties, 111
PHP variables and routines, 116-117
readyState values, 217
web page code listing, 114-116

readState property (XMLHttpRequest
object), 153, 217

readyState() method, 208-209
Really Simple Syndication (RSS),

166-167
recursion, 78-79

JavaScript, 100-102
recursive style sheets (XSLT), 244-248

regular expressions, 66-68
removeAttribute() method, 165
removeAttributeNode() method, 165
removeChild() method, 162
removeNamedItem() method, 164
removeRequestHeader() method, 208
removing array elements, 70
replace() method, 65
replaceChild() method, 162
replaceData() method, 164
requests

SOAP requests, 170, 202-203
XML-RPC requests, 199
XMLHttpRequest object, 31-33

reset event handler, 85
resize event handler, 85
responses

SOAP responses, 172, 203
XML-RPC responses, 199

responseText property
(XMLHttpRequest object), 153

responseText() method, 208
responseXML property

(XMLHttpRequest object), 153
responseXML() method, 208
restrict() function, 108

restricted characters (XML), 139-140
retrieve() method, 208
reusing code. See code reuse
reverse() method, 69
reversing arrays, 69
root nodes, 29, 136
round() function, 230
RSS (Really Simple Syndication),

166-167
Ruby

advantages of, 327
classes, 331
data types

Boolean, 330
numeric, 328-330
objects, 330-331
string, 330

flow control
conditions, 333-334
loops, 334-335

history of, 314
operators, 332-333
threads, 335-336
variables, 331-332

Ruby on Rails
Ajax and, 324-325, 336-339
database access example, 320-324
directory structure, 317-320
history of, 314-315
installation, 315-317

S

s element (XHTML), 52
\S pattern (regular expressions), 67
Safari, 10-11
samp element (XHTML), 52
Sarissa

asynchronous loading, 354
browser support, 352

Index 377

17_0132272679_index.qxd 7/17/06 9:14 AM Page 377

features, 353
synchronous loading, 353
syntax, 353
XMLHttpRequest implementation,

355
XSLT with, 354

schemas (XML), 142-144
scope

variables, 70
XSLT, 248

script element (XHTML), 53
scroll event handler, 85
search() method, 65
select element (XHTML), 53
select event handler, 85
selectNodes() method, 209
selectSingleNode() function, 37
self axes (XPath), 241
send() method, 152, 208
serialization, 307
serialize() method, 208
server-side environment, 103-104
servers, web, 13-14
services, web, 204-207

definition of, 168
example of, 168-169
invoking, 169
SOAP (Simple Object Access

Protocol), 170-173
setAttribute() method, 165
setAttributeNode() method, 165
setEnvelope() method, 209
setInterval() method, 86
setNamedItem() method, 163
setRequestHeader() method, 152,

208-209
setTimeout() method, 86, 155
shift() method, 70
shopping cart application

add2Cart() function, 219
displayCart() function, 118

Items Available web page code listing,
218-219

shopping cart page code listing,
120-122

shoppingCartSelect stored procedure,
118

substringAfter() function, 119
substringBefore() function, 120

shoppingCartSelect stored procedure,
118

Simple Object Access Protocol. See
SOAP

slash (/), 141, 227
slice() method, 65, 69
slicing arrays, 69
small element (XHTML), 53
SOAP (Simple Object Access Protocol),

170-173, 202
faults, 172-173, 203
invoking web services with, 170
requests, 170, 202-203
responses, 172, 203

SOAPEnvelope class, 209, 302-303
sort element (XSLT), 252, 260-262
sort() method, 69
sorting

arrays, 69
node sets (XSLT), 260-262

span element (XHTML), 53
Specified property (Attr interface), 164
splice() method, 70
split() method, 65
splitText() method, 165
start-with() function, 232
stateChangeHandler() function, 37, 208
statements

break, 76
conditional statements, 73-75

case, 74
if, 73-74
switch, 74

378 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 378

continue, 77
loops, 75-76

do/while, 76
exiting, 77
for/in, 75
while, 76

static web pages, 2-3
status property (XMLHttpRequest

object), 153
statusText property (XMLHttpRequest

object), 153
stored() functions, concatenating, 180
stored procedures, 103-104

addressSelect, 124-125
customerInsert, 129-130
itemSelectXML, 180-182
lineSelect, 111
nameInsert, 127-128
producing XML from, 180-182
shoppingCartSelect, 118

strike element (XHTML), 53
String class (Ruby), 330
string functions, 231-233
string-length() function, 232
strings

regular expressions, 66-68
in Ruby, 330
string functions, 64-66
substitution, 67-68

strip-space element (XSLT), 253
strong element (XHTML), 53
structs, XML-RPC, 201
style sheets. See CSS; XSLT
stylesheet element (XSLT), 253-254
sub element (XHTML), 53
submit event handler, 85
submitForm() function, 27, 108-109
substituting strings, 67-68
substr() method, 65
substring() method, 66, 232
substring-after() function, 232

substring-before() function, 232-233
substringAfter() function, 119
substringBefore() function, 120
substringData() method, 164
sum() function, 231
sup element (XHTML), 53
switch statement, 74
synchronous loading with Sarissa, 353
synchronous pages, 193
synchronous requests, 355
synchronous XMLHttpRequest

applications, 152-153
system-property() function, 262
systemid property, 165

T

\t pattern (regular expressions), 67
table element (XHTML), 54
tabular information, 105-108, 207

Ajax library classes, 207-209
Boolean global variables, 106
code reuse, 309-310
framesets, 105
JavaScript() functions

changeEvent(), 105, 108-109
forward(), 106
initialize(), 106-108
restrict(), 108
submitForm(), 108-109

nonbound tables, creating with
XSLstyle sheets, 278-281

read-only, 109
CSS, 112-113
items available page, 218-219
lineSelect stored procedure, 111
MySQL database tables, creating,

110-111
mysqli() methods and properties,

111

Index 379

17_0132272679_index.qxd 7/17/06 9:14 AM Page 379

PHPvariables and routines,
116-117

readyState values, 217
web page code listing, 114-116

sample Ajax page, 209-216
updateable (shopping cart

application), 117-120, 219-221
add2Cart() function, 219
displayCart() function, 118
shopping cart page code listing,

120-122
shoppingCartSelect stored

procedure, 118
substringAfter() function, 119
substringBefore() function, 120

XSLT, 277-278
tags. See elements
Target property (ProcessingInstruction

interface), 165
tbody element (XHTML), 54
td element (XHTML), 54
template element (XSLT), 253
templates (XSLT), 255-260

distinguishing template matches with
mode attribute, 258-259

named template example, 256
pure XSLT template example,

256-257
XSLT/XHTML hybrid template

example, 257-258
text element (XSLT), 253
Text interface, 158
text-align element (CSS), 59
text-decoration element (CSS), 59
text-indent element (CSS), 59
text-transform element (CSS), 59
textarea element (XHTML), 54
tfoot element (XHTML), 54
th element (XHTML), 54
then statement (Ruby), 334

thread element (XHTML), 55
threads in Ruby, 335-336
title element (XHTML), 55
toLowerCase() method, 66
tools, 16
toString() method, 66
toUpperCase() method, 66
tr element (XHTML), 55
traditional versus Ajax websites,

176-178
training

coding by hand, 15-16
guidelines for, 15
tools, 16

transform element (XSLT), 253-254
transformations. See XSLT (eXtensible

Stylesheet Language for
Transformations)

transformToDocument() method, 267
transformToFragment() method, 267
translate() function, 233, 308
transverse() function, 101
tree data structures, 29, 135
true() function, 230
Trueclass class (Ruby), 330
tt element (XHTML), 55

U

u element (XHTML), 55
ul element (XHTML), 55
undefined data types, 69
unescape() method, 66
union operator (|), 234
unions (XPath), 234
unless statement (Ruby), 334
unload event handler, 85
unparsed-entity-uri() function, 262
unshift() method, 70
until loops, 335

380 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 380

updateable forms, 127
customer display page, 130-133
customerInsert stored procedure,

129-130
nameInsert stored procedure, 127-128

updateable tabular information
(shopping cart application),
117-221

add2Cart() function, 219
displayCart() function, 118
shopping cart page code listing,

120-122
shoppingCartSelect stored procedure,

118
substringAfter() function, 119
substringBefore() function, 120

updateable web pages, creating with
XSLT, 281

V

\v pattern (regular expressions), 67
Value property (Attr interface), 164
value-of element (XSLT), 253
valueOf() method, 66
var element (XHTML), 55
variable element (XSLT), 253
variables

JavaScript, 70-71
Ruby, 331-332
XSLT, 248-249

vertical-align element (CSS), 59
views folder, 320
visible.htm, 24

W

\W pattern (regular expressions), 67
Web, history of, 1-2
web browsers. See browsers
web servers, 13-14

web services, 204-207
definition of, 168
example of, 168-169
invoking, 169
SOAP (Simple Object Access

Protocol), 170-173
faults, 172-173
invoking web services with, 170
requests, 170
responses, 172

web sites
brochure-ware, 2
traditional versus Ajax websites,

176-178
WEBrick, 14
well-formed XHTML documents, 42-44
well-formed XML documents, 30, 137,

179
when element (XSLT), 253
while loops, 76, 334
white-space element (CSS), 60
width element (CSS), 60
window object, 344
with-param element (XSLT), 253
word-spacing element (CSS), 59
World Wide Web Consortium, 5, 13, 358

X-Y-Z

XHTML, 41. See also HTML
compared to HTML, 42-44
elements. See elements
well-formed documents, 42-44
XSLT/XHTML hybrid template

example, 257-258
XML (Extensible Markup Language),

28-30, 135-136, 178-179, 225-226,
291-292. See also XMLHttpRequest
object

asynchronous loading with Sarissa,
354

Index 381

17_0132272679_index.qxd 7/17/06 9:14 AM Page 381

binding, 187-192
cross-browser XMLbinding,

188-192
Internet Explorer, 188

CDATA sections, 140
comments, 140-141
cross-browser XMLdocument class

constructor, 296-301
cross-browser binding XML, 145-149
DTDs (Document Type Definitions),

142
elements. See elements
entities, 139-140
forbidden/restricted characters,

139-140
hiding with CSS, 145, 185
namespaces, 141
naming conventions, 138
non-well-formed documents, 30
processing instructions, 144
producing from stored procedures,

180-182
sample documents, 136, 226-227
schemas, 142-144
serialization, 307
stored functions, concatenating, 180
synchronous loading with Sarissa,

353
tree data structure, 29, 135
well-formed documents, 30, 137, 179
XML Data Islands, 144

cross-browser solutions, 184-187
Firefox, 145-149
Internet Explorer, 145, 182-184
sample HTML page with embedded

XML, 182
XML declarations, 144
XML DOM (Document Object Model)

JavaScript interfaces, 157-158
node types, 166

properties and methods, 158-165
sample XML document, 156-157

XML-RPC data types, 200-201
XML-RPC faults, 201-202
XML-RPC requests, 199
XML-RPC responses, 199
XMLHttpRequest object, 31-33, 151-152,

192, 208
ActiveX, 155-156
asynchronous applications, 153-155,

193
browser differences, 193
creating instances of, 193
cross-browser (Gecko and IE)

XMLHttpRequest class
constructor, 292-295

GET versus POST methods, 193
implementation with Sarissa, 355
properties and methods, 152-153
readyState values, 217
RSS (Really Simple Syndication),

166-167
sample XMLdocument, 194-198
SOAP(Simple Object Access Protocol)

faults, 203
requests, 202-203
responses, 203

synchronous applications, 152-153,
193

web services
definition of, 168
example of, 168-169
invoking, 169
SOAP (Simple Object Access

Protocol), 170-173
XML DOM (Document Object Model)

JavaScript interfaces, 157-158
node types, 166
properties and methods, 158-165
sample XML document, 156-157

382 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 382

XML-RPC data types, 200-201
XML-RPC faults, 201-202
XML-RPC requests, 199
XML-RPC responses, 199

xmlNode() function, 180
XMLSPY XPath Evaluator, 229
\xn pattern (regular expressions), 67
XPath, 225-250, 271-273

arithmetic operators, 234
attribute nodes, 228
axes

ancestor axes, 236
ancestor-or-self axes, 236
attribute axes, 236-237
child axes, 237
descendant axes, 237-238
descendant-or-self axes, 238
following axes, 238-239
following-sibling axes, 239
namespace axes, 239-240
parent axes, 240
preceding axes, 240-241
preceding-sibling axes, 241
self axes, 241
table of, 234-235

conditional operators, 229-230
context nodes, 228
expressions, 233-234
functions

Boolean functions, 230
node set functions, 231
numeric functions, 230-231
string functions, 231-233

location paths, 227-228
parent nodes, 228
predicates, 228-230
unions, 234
XMLSPY XPath Evaluator, 229

XSLT (eXtensible Stylesheet Language
for Transformations), 33, 243,
269-270, 307-308. See also XPath

advantages/disadvantages, 281-282
benefits of, 277
browser support

cross-browser web page example,
274-276

Internet Explorer 5.0, 270-271
caching, 282
client-side transformations

Microsoft Internet Explorer,
265-267

overview of, 265
decision structures, 260
elements

defining in style sheets, 253-255
output, 254
sort, 260-262
stylesheet, 254
table of, 250-253
transform, 254

flow control, 260
forms, 308-309
functions, 262
goals of, 270
HTML output, 273
iterative style sheets, 244-248
Muenchian grouping, 263-265
nonbound tables, creating, 278-281
read-only web pages, 278-281
recursive style sheets, 244-248
sample XSL style sheet, 272-273
with Sarissa, 354
scope, 248
simple IE-only web page example,

33-37
simple style sheet example, 243-244
sorting node sets, 260-262
tabular information, 277-278, 309-310
templates, 255-259

distinguishing template matches
with mode attribute, 258-259

named template example, 256

Index 383

17_0132272679_index.qxd 7/17/06 9:14 AM Page 383

pure XSLT template example,
256-257

XSLT/XHTML hybrid template
example, 257-258

updateable web pages, 281
variables, 248-249
XSLTProcessor, 277-278

XSLTProcessor, 277-278, 303-306
[xyz] pattern (regular expressions), 67
[^xyz] pattern (regular expressions), 67

384 Index

17_0132272679_index.qxd 7/17/06 9:14 AM Page 384

17_0132272679_index.qxd 7/17/06 9:14 AM Page 385

17_0132272679_index.qxd 7/17/06 9:14 AM Page 386

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

