CHAPTER 1

Fundamentals of Digital
Communications Systems

Marcus Miiller

A\ —» BitPeriod (T¢,q.) @

Data V \/

TX UX'l UXZ /\ UXo /\
—». 4= Data Propagation Delay (T paumxex)
Data
RX OX1 V)4 /\ 0) &)
—> «4—TX Data/Clock Delay (Tpaacikrx)
Clock \ / \
X \ / \
> 4= Clock Ptopagation Delay (T gryzx)
Clock \
RX \ \ [.
y { [
To TData TSampIe TData+TCycIe

During the last ten years, most major communications and broadcast systems and many other
systems were converted from analog to digital. Examples of digital systems that we use
every day include mobile phones, television, radio, and of course the Internet. CDs and MP3s
are replacing records and tapes, and the number of digital cameras sold this year exceeded the
number of analog cameras by a factor of three. In this chapter, you will see some of the basic
building blocks that make all of these digital systems work.

The material in this chapter is intended to provide a background that will be useful when
studying digital communications test and measurement techniques described in later chapters.

Chapter 1 * Fundamentals of Digital Communications Systems

We start with a discussion of a basic digital communications link, cover the most commonly
used clocking architectures, discuss line-coding methods, and conclude with special techniques
for high-speed serial transmission systems.

1.1 Introduction

The most important aspect of any digital communications system is the required transmission
speed. Just how much data needs to be transmitted, and how fast? The variability is huge, even
within a single system: The keyboard interface of a typical PC, for example, runs at several kilo-
bits per second, which is still significantly faster than anyone can type. However, the fastest
interface available for graphics adapters is not nearly fast enough for the newest games, even at
40 Gbit/s (which is the accumulated bandwidth of a PCle x16 link, the current standard for
graphics adapters).

The second, equally important aspect is the link distance. How far apart are sender and
receiver? Again, there is huge variability: The main processor of a computer communicates with
its main memory over a distance that’s usually less than 10 cm. But when you type a URL into a
Web browser, you communicate with a server that’s potentially on a different continent.

Generally, digital transmission becomes harder when the transmission speed and link dis-
tance increase. A measure for the effort required to make a digital communications link work is
the bandwidth-distance product. An old telegraph, for example, transmitted about 100 bit/s, over
a maximum distance of 20 km. The radio downlink from the Voyager spacecraft transmits data
slightly faster, at 160 bit/s, but over an incredible distance of 14.821 billion km. The much larger
bandwidth-distance product of the spacecraft link can be achieved only with incredible effort.

Every digital link consists of three components: a sender, a transport medium, and a
receiver. Usually, the medium is defined first, depending on the required link bandwidth, the dis-
tance between transmitter and receiver, and economic considerations. Electrical links are still the
most common type; they come in a great variety, ranging from bond wires within an integrated
circuit package to printed circuit board traces on a motherboard to Ethernet cables connecting
office computers. Fiber-optic cables are used for very high bandwidth connections in network
and storage environments, but it seems as if “fiber to the home” might be replaced by wireless
links in the near future.

1.2 System Architectures
1.2.1 Synchronous Systems

The basic synchronous digital transmission system uses a central clock that is distributed to both
the transmitter (TX) and the receiver (RX) (Figure 1-1). On every clock edge, the transmitter
latches the incoming data, which then travels down the transmission line toward the receiver.
The receiver samples the data on the next clock edge. Short-distance synchronous systems, for
example between a processor and its memory, are often parallel: Multiple data lines are clocked
together.

1.2 System Architectures

Data
TX -~ °°< RX
—p - ~“J» =
Latch Latch

T_= Clock =_T

TX Clock Source RX Clock

Figure 1-1 Block diagram of a synchronous system with a common clock source

Figure 1-2 shows the timing diagram for such a synchronous system, with all the relevant
delays: the propagation delay of the clock signal from the clock source to the TX latch (Tqpy)
and the RX latch (Tq,,y). the time it takes the TX to latch the data (T p,u00)> and the propaga-
tion delay of the data path (T, ;xzx). For the sake of simplicity, we will not include timing
uncertainties in our analysis. From these delays, we can calculate T the time when the data

arrives at the receiver latch:

Data?

T,

Data

=T

CIKTX

+T

ClkDataOut

+T,

DataTXRX (Equation 1-1)

and also T the time when the receiver latch will sample the data:

Sample?

T,

Sample

=T

CIkRX

+T,

Cycle (Equation 1—2)

A\ —» Bit Period (T¢,) €=

Clock \ \ / \ /
Source \ \ / \ /

—» < TX Clock Propagation Delay (T gy

Clock \ / \ / \ /
X \ / \ / \ /
— €—Clock to Data Out (T gupaou)

Data o%1 /\< O%2 >/\ UX3 >/\
TX

—» 4= Data Propagation Delay (T paumxrx)

Data UX:l UXZ /\ UXs5
RX X X X

> <4 RX Clock Propagation Delay (TC|_|5R><)
Clock \ \ / \ /
RX \ \ / \ /

/ 1

TO TDaLa TSampIe TData+TCycle

A\

Figure 1-2 Timing diagram for a synchronous system with a common clock

Chapter 1 * Fundamentals of Digital Communications Systems

An additional requirement of the receiver latch is that the incoming data is stable for some
time before and after the sampling clock edge; it requires a positive setup time (Tj,,,,) and hold
time (T,,,,,). How long the data at the receiver latch is stable before sampling is equal to the time
difference between Tg,, . and T,,,. In order to maintain the setup time requirement, this value
has to be larger than the setup time:

TSample - TData > TSelup (Equation 1—3)
Then the setup time margin is
MSelup = TSampIe - TDala - TSelup
= Tc1ka + TCyclc - Tc1ka - TClkDataOut - TDataTXRX - TSCtup (Equation 1-4)

From this, we can calculate the minimum cycle time, by setting the setup margin to zero:

T =-T,

Cycle,min CIkRX

+T

CIKTX

+ Tewpaaou T Toaurxex + TSelup (Equation 1-5)

If a system has insufficient setup margin, we can increase either the cycle time (make the system
slower) or the RX clock propagation delay, or we can decrease either the TX clock propagation
delay or the data propagation delay.

How long the data at the receiver latch is stable after sampling is equal to the time differ-
ence between T, plus one cycle, minus T This value has to be larger than the hold time:

Sample*
TDala + TCyc]e - TSamp]e > THo]d (Equation 1—6)
Then the hold time margin is
My = Towa + TCycle - TSample — T
= Towrx + Tewawou + Towarxrx ~ Towrx — Thiola (Equation 1-7)

Note that the hold time margin is independent of the cycle time; the hold time requirement
doesn’t relax if the system runs at a slower speed. In order to gain hold time margin, we can
decrease the RX clock propagation delay, or we can increase either the TX clock propagation
delay or the data propagation delay.

Let’s consider an example: an 8-bit parallel synchronous system with 74ACT646 regis-
tered transceivers (Figure 1-3). The distance between the transmitter and receiver is 6 inches,
which is equivalent to a propagation delay of approximately 1.0 ns on an FR4 printed circuit
board. For simplicity, we assume that the clock source is exactly in the middle between transmit-
ter and receiver, so that both T and Tz are 0.5 ns. The 74ACT646 has a specified worst-
case setup time of 5.0 ns, a hold time of 0.0 ns, and a clock-to-data-out time of 12.0 ns. From
Equation 1-5, we calculate the minimum cycle time as 18.0 ns, which gives us a maximum oper-
ating frequency of 55.55 MHz; the hold time margin for this setup is 13.0 ns. If we place the
clock source at the transmitter (so that T, equals 0.0 ns and Ty equals 1.0 ns), the mini-

1.2 System Architectures

74ACT646 74ACT646
A0 BO A0 BO
A1 B1 A1 B1
A2 B2 A2 B2
A3 B3 A3 B3
A4 B4 A4 B4
A5 B5 A5 BS
A6 B6 A6 B6
A7 B7 A7 B7
CPAB CPAB
Clock
Source

Figure 1-3 Example of a parallel synchronous system with 74ACT646 octal registered transceiv-
ers. Both devices are set to latch data from port A (A0—A7) to port B (B0—B7) on a positive edge
on the AB clock pulse input (CPAB).

mum cycle time is only 17.0 ns, so we can operate at frequencies up to 58.82 MHz, still without
violating the hold time requirement: The hold time margin for this configuration is 12.0 ns.

One of the most widely used parallel synchronous systems is the Peripheral Component
Interconnect (PCI) bus, designed to attach peripherals to computers. PCI is a multidrop configu-
ration, where multiple receivers are connected to the same transmitter. And in multipoint appli-
cations, bidirectional transceivers are attached to a common data bus (Figure 1-4). A bus master
is responsible for maintaining bus integrity; for example, it ensures that no two systems send
data at the same time. Setup and hold time requirements need to be fulfilled for all combinations
of send and receive, which is a further limitation on the speed that is achievable with such a con-
figuration. Different variants of PCI run at 33 MHz and 66 MHz, with 32 or 64 parallel data
lines. PCI-X increased the signaling rate even further (to 133 MHz, 266 MHz, and even 533
MHz) but never became widely used in consumer products because of costs associated with the
complicated signal routing.

Data

Master Slave A Slave B Slave C

Clock | | | |

Figure 1-4 Block diagram of a bidirectional multipoint parallel bus (e.g., PCI)

Chapter 1 * Fundamentals of Digital Communications Systems

1.2.2 Source Synchronous Systems

In source synchronous systems, the sampling clock is sent along with the data by the transmitter,
rather than a central clock source as in synchronous systems. Figure 1-5 shows a generic block
diagram. The transmitter has its own clock source, which generates edges for the TX data latch
and the clock that is sent to the receiver for sampling. The delay element in the TX clock path
ensures that the clock edge arrives at the receiver later than the data, which is required for cor-
rect sampling.

X Data RX
—P»| Data PP Latch —>
r—>p Latch

Clock
Source Clock

Figure 1-5 Block diagram of a source synchronous system

Source synchronous systems can operate at significantly higher speeds than synchronous
systems. The reason for this becomes clear when we look at the timing diagram for the system
(Figure 1-6). The relevant delays are the propagation delay of the data (T, ;vzx) and clock (T¢yrxrx)
and the delay between data and clock at the transmitter (T},). The two latches at the trans-
mitter do have clock-to-data-out times, but we simply included them in the propagation delays;
we’ve done the same for the clock distribution within the transmitter. The time when the data
becomes valid at the receiver is

Data = LDataTXRX (Equation 1-8)

and the sample time is
TSample = Tpaaowrx + Tewrxrx (Equation 1-9)

Note that the cycle time disappeared from the two equations; source synchronous systems don’t
have a theoretical frequency limit. Setup and hold time requirements still need to be satisfied,
however. From the setup time and hold time requirements (Equations 1-3 and 1-6), we calculate
the setup time margin:

MSetup = TSample - TDala - TSelup = TDalaClkTX + TlClkTXRX - TDataTXRX - TSelup
(Equation 1-10)
and the hold time margin:
MHold = TData + TCycle - TSample - THold = TDalaTXRX + TCycle - TDataClkTX - TClkTXRX - THold

(Equation 1-11)

1.2 System Architectures

A\ —» Bit Period (T¢y) €=

Data V \/

TX Ux1 0x2 /\ oS /\
> 4~ Data Propagation Delay (T, urxax)

Data \/

RX 0] 0%2 /\ UXx3
- «~TX Data/Clock Delay (Tpaackrx)

Clock |\ A [\ [
LA A Y A
. / \ 00\ opagam/m elay (Teuaxgy) /
RX / \ \ _
1 1 1 1

To TData TSampIe TDa|a+TCycIe

V

Figure 1-6 Timing diagram for a source synchronous system

Because the data-to-clock delay at the transmitter is controlled by the delay element, we
can make every source synchronous system work, provided that the sum of the setup and hold
times doesn’t exceed the cycle time. At very high speeds, however, it becomes increasingly diffi-
cult to control the skew between the data path and the clock path, especially if data is transmitted
in parallel. Practical source synchronous systems operate at data rates up to 1 GHz.

1.2.3 Source Synchronous Systems with Double Data Rate

A variant of source synchronous transmission uses a half-rate clock and latches data at both the
rising and the falling edges. Because the data is transmitted at double the speed relative to a nor-
mal clock, this variant is called double data rate (DDR) signaling. Figure 1-7 shows an example
of a timing diagram for such a system. The timing relationships are almost the same as before,
with one difference: Both positive and negative clock edges can be used as sampling references.

Because of the reduced clock speed, signal routing is simplified, and lower bandwidth
connectors can be used. This is one of the reasons why DDR is used, for example, in high-speed
memory interfaces such as DDR-2 SDRAM, with clock speeds up to 400 MHz and correspond-
ing data transfer rates up to 800 Mbit/s.

1.2.4 Forwarded Clock Systems

Forwarded clock systems are very similar to source synchronous systems (Figure 1-8). The
main idea of the forwarded clock is that the clock path from the transmitter to the receiver expe-
riences the exact same noise and jitter as the data path.

The first major difference of the forwarded clock architecture compared to the source syn-
chronous architecture is that the delay element in the clock path resides in the receiver rather

Chapter 1 * Fundamentals of Digital Communications Systems

A\ —» Bit Period (T¢,) €=

Data V \/

TX 0x1 0x2 /\ 0X3 /\
-» 4~ Data Propagation Delay (T, urxax)
Data
RX OX1) o4 /\ OX3
—> <4—TX Data/Clock Delay (T paacirx)
Clock \ i \
X \ / \
> 4= Clock Propagation Delay (T crxry)
Clock \ \ /
RX \ \ [.
1 1 1 1 -
To TData TSampIe TDa|a+TCycIe

Figure 1-7 Timing diagram for a source synchronous system with a double data rate clock

X Data
——P| Data FYm——> RX —>

—»p_Latch Latch
ClOCk r DLL
Source X Clock

Clock
Latch

Figure 1-8 Block diagram of a forwarded clock system

than in the transmitter. This is to make sure that any jitter that occurs during the transmission
impacts both data and clock and hence cancels out. The delay element on the receiver is a delay
locked loop (DLL) in most cases, which increases the flexibility of the system because it auto-
matically adjusts the delay between the data path and the clock path.

The second major difference is that there are now two latches on the transmitter side: one
for the data and one for the clock. The exact same type of latch and driver are used for the clock
and the data. This is to ensure that any negative effects that the driver may have on the signal
(e.g., thermal drift) affect both the data path and the clock path and cancel out.

1.2.5 Embedded Clock Serial Systems

Embedded clock systems transmit only the serial data stream, and the receiver extracts the sam-
pling clock automatically from the data (Figure 1-9). The main advantage of this architecture is

1.2 System Architectures

X Data RX
—»| Data ———— Latch —>
|—>> Latch
Clock
Source CDR

Figure 1-9 Block diagram of an embedded clock system

that propagation delays and skew are nonissues. The clock data recovery (CDR) circuit at the
receiver takes care of the correct phase alignment between data and clock. This enables serial
data signaling at very high rates, up to 10 Gbit/s and beyond. Also, the CDR circuit can track
some variations in clock speed and other low-frequency and time variations, which makes
embedded clock systems very robust.

Because the link between the transmitter and the receiver consists of only one transmis-
sion line, the possible routing density is greatly increased over parallel source synchronous sys-
tems. Serial data can be easily transmitted over thin and flexible cables. Long-distance optical
communications systems use this clocking scheme almost exclusively.

However, the price to pay for the flexibility and the high data rates is increased complexity
of the transmitter and especially the receiver. The main building blocks of a serial embedded
clock system are the parallel-to-serial conversion at the transmitter and receiver, the reference
clock generation, and the clock data recovery. Integrated circuit designs are commonly available,
though, so designs of this type can be inexpensive and straightforward. We will look at these
building blocks in more detail in the following subsections.

1.2.5.1 Serializer and Deserializer
In most cases, the data within both the transmitter and the receiver is kept parallel and converted
to and from serial format only for the data transmission over the serial link. The components that
perform this conversion from parallel to serial and back are called serializer and deserializer
(SERDES) components. SERDES components often integrate the TX and RX latches shown in
Figure 1-9.

In Figure 1-10, we show an example implementation of a 4:1 parallel-to-serial converter.
The heart of the serializer is a shift register, consisting of the latches L0 to L3. The shift register
is clocked by the serial clock, at the serial data rate. The inputs into the latches are multiplexed,
and the control input for the multiplexers selects either the shift register chain or the parallel data
bits DO to D3 from the parallel input latch. The clock for the parallel latch is the serial clock
divided by four. The control signal needs to select the parallel input for one cycle of the serial
clock, and the shift register chain for the next three cycles.

Figure 1-11 shows the corresponding deserializer. The serial data is clocked through the
shift register (LO to L3) and latched into the parallel output latch (DO to D3) every four cycles of
the serial clock.

Chapter 1 * Fundamentals of Digital Communications Systems

Ctrl
_:67 _:67 _:67 Serial Data OutI
LO L1 L2 L3
A 4 4 4 Serial Clock In
DO D1 D2 D3 (¢ quck
* * * * Divider

Parallel Data In

Figure 1-10 Implementation example for a 4:1 shift register serializer

Parallel Data Out

4 4 4 4
DO D1 D2 D3 e
A A A
Serial Data In , . o - J
LO 1w 1 L2 | L3
Serial Clock In 4 [4 4 Clock

Divider

Figure 1-11 Implementation example for a 1:4 shift register deserializer

The drawback of this rather simplistic SERDES design is that the phase of the incoming
data is not known. If the serializer and deserializer operate back to back, the parallel data is not
guaranteed to be recovered with the same phase. Figure 1-12 shows an example of this behavior:
The parallel data at the output is rotated by one bit relative to the parallel input data. More
advanced SERDES architectures provide word synchronization features that ensure that the par-
allel data phase is correct.

12 8 4 0 139 51
o e
139 51
oo 4 9876543210‘1_4M>
ERLELEN g Serial Data | = | 151173 >
1511 7 3 1612 8 4
T o
Parallel Data In Parallel Data Out

Figure 1-12 Serializer and deserializer (represented by the trapezoids) in back-to-back mode.
Deserializer is out of phase.

1.2 System Architectures

1.2.5.2 Reference Clock Generation

Both the serializer and deserializer require an at-speed clock signal. At the receiver, this clock is
supplied by the clock data recovery circuit, but to avoid the routing of a high-speed clock signal
across the system, the transmitter needs to create its own high-speed reference. It is usually gen-
erated from a lower-speed system reference clock with the help of a multiplying phase locked
loop (PLL) circuit.

1.2.5.3 Clock Data Recovery

The CDR circuit extracts the sampling clock from the serial data stream, adjusting both the
phase and frequency in the process to ensure proper sampling. There are two types of CDR cir-
cuits: analog and digital.

Analog CDR circuits (Figure 1-13) consist of a phase detector, a loop filter, and a voltage-
controlled oscillator (VCO). The phase detector compares the phase of the serial data with the
phase of the VCO output. The phase detector output is then low-pass filtered and passed on to
the control input of the VCO and therefore tracks the incoming data. The dynamic properties of
an analog CDR circuit depend on all three components, but the loop filter certainly has the larg-
est impact; its characteristics determine how fast the CDR circuit locks on the data at start-up
(lock time), how much frequency and phase variation can be tracked (tracking range), and how
quickly the CDR circuit responds to frequency and phase changes at the input (loop bandwidth).
The quality of the output clock depends mainly on the properties of the VCO and its support cir-
cuitry (e.g., the power supply): The lower the phase noise of the VCO, the cleaner the clock.

Serial Data . Sample Clock_
—— P Phase Loop Oscillator >

p»| Detector Filter (VCO)

Figure 1-13 Block diagram of an analog CDR circuit

Digital CDR circuits (Figure 1-14) don’t have their own oscillator and therefore require a
reference clock. The high-speed sample clock is generated from the lower-speed reference clock
with a multiplying PLL, using the exact same circuit used in the transmitter. The phase interpo-
lator adjusts the relative phase between the serial data and the clock such that the deserializer
can properly sample the data. Because there is no VCO needed, digital CDR circuits are rela-
tively cheap and therefore preferred in many applications. Once the distance between transmitter

Serial Data Sample Clock
Phase >

Ref ClockI PLL > Interpolator

Figure 1-14 Block diagram of a digital CDR circuit

11

12

Chapter 1 * Fundamentals of Digital Communications Systems

and receiver is too long, however, the effort for the distribution of the reference clock exceeds
the cost of the VCO.

1.2.5.4 Special Topics in Embedded Clock Systems

Both analog and digital clock data recoveries require a minimum number of transitions in the
incoming data stream, or they will lose frequency and phase lock. Since random binary data can
contain long streams of consecutive one or zero bits, the data has to be altered to guarantee the
minimum transition density. But too many transitions can be problematic, too, because the loop
filter characteristic and thus the CDR bandwidth can change. For this reason, data for embedded
clock transmission usually is encoded. We will discuss the most important coding schemes in
Section 1.3.

Since both the transmitter and receiver in an embedded clock system create their own
high-speed clocks, the two ends of the transmission system will often run with a slight frequency
offset. If the transmitter is faster than the receiver, data can get lost; if the transmitter is slower, it
runs out of data to pass to the parallel side. There are several methods to introduce elasticity to
compensate for these frequency offsets. One option is to use first-in-first-out type buffers on
both ends; however, that’s possible only if both TX and RX operate on the exact same average
frequency, for example, because they derive their high-speed clocks from the same reference. An
alternative is to add comma characters to the data; these are special short bit sequences that do not
carry any payload, and can therefore be discarded or inserted as required by the frequency offset.

1.2.6 Spread Spectrum Clocking

Most digital transmission systems operate at frequencies that are regulated, for example,
because they are used for TV and radio broadcasting, mobile phone systems, or other radio fre-
quency applications. In order to limit interference, agencies such as the Federal Communications
Commission in the United States have put strict limits on the energy that a device may emit.

Shielding a digital communications system is often not practical, either because it is too
difficult mechanically or because of cost considerations. Many systems therefore use a spread
spectrum PLL, which adds a small amount of low-frequency modulation to the central clock
source. The modulation reduces the peak emissions by spreading the emitted energy over a
wider frequency band; however, it does not reduce the total emissions of the system.

If the modulation parameters are chosen carefully such that all parts of the system can
track the spread spectrum clock, the system performance is not affected; typical values are 0.5%
and 30 kHz. Many systems (e.g., PCI express) use an asymmetric approach: The frequency is
modulated only downward, in order to keep the maximum frequency below the design limit.

1.3 Line Coding of Digital Signals

When binary data is sent through a link, it is represented by a physical quantity in the transport
medium. In electrical links, that’s usually a voltage or current; optical systems use the intensity
of light; and wireless radio links often use the phase and frequency of a signal carrier. Line cod-
ing determines how the binary data is represented on the link.

1.3 Line Coding of Digital Signals

Numerous coding schemes are available, and which one is best for any given application
depends on many factors. Coding can influence the frequency spectrum, the direct current con-
tent, and the transition density of the resulting data stream. Coding efficiency determines the
required link bandwidth, and the cost of implementation depends on the complexity of the code.

1.3.1 Properties of Binary Data

1.3.1.1 Mark Density
The mark density (MD) of a binary data pattern is defined as the number of one bits in the pat-
tern, divided by the length of the pattern:

N
MD — One

Ny, +N (Equation 1-12)

Zero

where N, is the number of ones in the pattern, and N, is the number of zeros. The mark den-
sity ranges from 0.0 to 1.0, where the extremes are marked by all-zeros (N, equals 0) and all-
ones data (N, equals 0). Random data is exactly at the middle of the range: It contains as many
one bits as zero bits, and its long-term mark density is therefore 0.5. If we look only at a subsec-
tion of the random data pattern, however, its mark density can be very different.

If we represent a zero bit by 0.0 and a one bit by 1.0, the mark density is equal to the time
average over the pattern. It is therefore a direct measure for the DC content of the signal. A pat-
tern with a mark density of 0.5 is therefore also called a DC-balanced pattern. DC balance is an
important property in some applications; if it is required to maintain a DC level in the link, then
amplifiers and other system components need to be DC coupled, often leading to a more compli-
cated and problematic design.

1.3.1.2 Transition Density
The transition density (TD) of a data pattern is defined as the number of transitions in the pat-
tern, divided by the length of the pattern:

NT
+N

TD =

NOne Zero (Equation 1-1 3)

where N, is the number of transitions in the pattern, N . is the number of ones, and N, is the
number of zeros. The transition density ranges from 0.0 to 1.0, where the extremes are marked
by static patterns (all-zeros or all-ones) and toggle patterns. Random data is again exactly at the
middle of the range: Because the probability that two consecutive bits are identical is 0.5, the
transition density is 0.5, too.

1.3.1.3 Run Length Distribution

The run length distribution of a data pattern gives the relative probabilities for runs of identical
consecutive bits. Longer runs create stress in many applications, because of either excessive
intersymbol interference (ISI) or baseline wander due to local disparity.

13

14

Chapter 1 * Fundamentals of Digital Communications Systems

1.3.2 Binary Line Codes

1.3.2.1 Non-Return-to-Zero Code
The non-return-to-zero (NRZ) format is the prototypical representation of binary data: A logical
zero state is transmitted as one signal level, and a logical one state as another level. Levels
change at bit boundaries only if the bit value changes and remain stable for the entire duration of
the bit period. If the level representing the zero logical bit state is lower than the level for the one
state, we call this positive logic, and the respective levels are then called low level and high level.
NRZ coding is essentially free because binary data is already stored in this format in CPUs and
other digital devices. It is therefore the most commonly used coding scheme and the reference
for all other coding schemes in terms of signal properties, efficiency, and implementation effort.
NRZ signals always have a clock signal associated with them, even if it is not transmitted
along with the data. Figure 1-15 shows the NRZ representation of a short data sequence,
together with a clock signal. Note how the data signal changes on the falling edge of the clock;
the receiver samples it on the rising edge. There are also systems that work with an inverted
clock. The data then changes on the rising edge, and the receiver samples at the falling clock
edge. The clock signal for NRZ transmission usually runs at the base frequency of the data: for a
10 Gbit/s signal, the clock rate is 10 GHz (single data rate, SDR). A variant of NRZ transmission
uses a clock signal at half rate (5 GHz for 10 Gbit/s), and the receiver samples the data both at
the rising and falling edges of the clock. This is called double data rate (DDR) transmission.

N\
1
NRZ
0
~
7
N
1
Clock
0
~
rd
Data i1:i1{1i1:0i1i0i{1i1i0i0i1i0i01i0 i1
N\
1
NRZ
0
~
7
N
1
Clock
0
~
rd
Data i1:i1{1i1:0i1i0i{1i1i0i0i1i0i01i0 i1

Figure 1-15 NRZ coding of a short data sequence (PRBS 2*-1). Top: single data rate clock.
Bottom: double data rate clock.

1.3 Line Coding of Digital Signals

The properties of NRZ-formatted data depend entirely on the data itself. The drawback of
NRZ coding is that the DC content, frequency spectrum, and transition density depend on the
data sequence. Long runs of zeros or ones cause problems in some applications because of
effects such as baseline wander and ISI or because there are not enough transitions for clock data
recovery.

Figure 1-16 shows the power spectral densities of two short NRZ-formatted data
sequences. Note how both spectra have zero power at multiples of the signal base rate (e.g., 1
GHz, 2 GHz, 3 GHz). The PRBS spectrum follows the typical sinc envelope, with nulls at multi-
ples of the data rate. Because of the very fast rise times that we used to create the spectrum, there
is significant spectral content at very high frequencies. The spectrum for the toggle pattern
equals that of a 500 MHz square wave. The spectra of all-zeros or all-ones patterns are zero,
with the exception of a DC value.

1 1f
£ g
508 508
£ £
= =
£ <
Eo0e Eosl
& a
B I
S04 Boal
j=3 j=3
117] [57]
Fy B
202 Zoal
o o
0 u |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Frequency [GHz] Frequency [GHz]

Figure 1-16 Power spectral density for NRZ-formatted data at 1 Gbit/s. Left: PRBS 2*-1. Right:
Toggle pattern (101010 . . .). Power density is normalized to a maximum power of 1.0.

1.3.2.2 Return-to-Zero Code

The return-to-zero (RZ) code represents the zero logical state as a static low level and the one
state as a short high-level pulse. The signal always returns to the level representing a zero state
immediately after the high level, hence the name. RZ signals can be easily created from NRZ
signals, by a binary AND of the NRZ and a clock. The width of the pulses depends on the duty
cycle of the clock. Figure 1-17 shows the RZ representation of a short data sequence, with 50%
and 25% duty cycles.

RZ coding is used primarily in optical transmission systems because it minimizes power
consumption and the effects of system dispersion on optical signal distortion. Consecutive one
bits carry one transition each, so that clock data recovery is fairly easy with this coding, pro-
vided the signal doesn’t consist of all zeros. The signals also carry significant DC content, which
is not a factor in optics, though.

15

16

Chapter 1 * Fundamentals of Digital Communications Systems

N\
1
NRZ
0
>
N
1
Clock
0
>
N
1
RZ
0
>
Data 1:1:1:1:0:1:0:1:1:0:0:1:0:0:0:1
N\
1
NRZ
0
>
N\
1
Clock
0
>
N
1
RZ
0
>
Data 1:1:1:1:0:{1:0:1:1:0:0:1:0:0:0:1

Figure 1-17 RZ coding of a short data sequence (PRBS 2-1). Top: 50% duty cycle. Bottom:
25% duty cycle.

The signal bandwidth of RZ-coded data is significantly higher than that of NRZ data, by at
least a factor of two (for a 50% duty cycle). The spectral densities for the RZ-coded signals from
Figure 1-17 are shown in Figure 1-18. The signal with a 50% duty cycle has significantly less
energy at lower frequencies than the NRZ signal and very distinct spikes at the data rate and its
even harmonics. The 25% duty cycle signal has even less low-frequency content but distinct
spikes at all integer multiples of the data rate.

1.3.2.3 Return-to-One Code

Return-to-one (R1) code uses a static high level for the logical one state and a short low-level
pulse for a zero. Creating an R1-formatted signal from NRZ data is a bit more complicated than
using the RZ format: It’s a binary AND of the inverted NRZ data with the clock, and the result

1.3 Line Coding of Digital Signals

= e o
a 2] ®
T T T

Power Spectral Density (norm.)

=
o

3
Frequency [GHz]

e
™

Power Spectral Density (norm.)
o
Y

o
o
.

o
=
T

Frequency [GHz]

Figure 1-18 Power spectral density for a short RZ-formatted data sequence (PRBS 2*-1), at 1
Gbit/s. Left: 50% duty cycle. Right: 25% duty cycle. Power density is normalized for comparison

with NRZ format (dotted line).

inverted again. Figure 1-19 shows an example. The properties of R1-coded data are very similar
to those of RZ-coded data, with the exception of the DC content, which is significantly higher

than for RZ-coded signals.

N
1
NRZ
0
~
7
N
I
Clock
0
~
7
N\
1
R1 0
N~
7
N
1
R1
0
>
Data 1 :1:i1:1:0:1:0:1:1:0i0:1:0:0:i0 i1

Figure 1-19 R1 coding of a short data sequence (PRBS 2*-1)

17

18

Chapter 1 * Fundamentals of Digital Communications Systems

1.3.2.4 Manchester Code

Manchester code is generated from NRZ data by a binary XOR with a clock signal. Since there
are two possible clock phases, there are also two variants of Manchester code. The coded data
has a transition in the middle of every bit, and the direction of this transition indicates a binary
zero or one. The original Manchester variant uses a falling edge for a one and a rising edge for a
zero; the other variant (which is used in IEEE 802.3 10Base-T Ethernet, for example) is the
exact inverse. Figure 1-20 shows both variants.

Manchester code is very attractive for embedded clock applications because it forces at
least one transition per bit, even if the data is a constant zero or one. It is also a DC-balanced
code. However, the price for this is a significantly higher bandwidth relative to NRZ data. Figure
1-21 shows the spectral densities for two short data sequences. Compared to the NRZ spectrum

N\
1
NRZ
0
>
N\
1
Clock
0
>
N\
1
MC0
>
Data 1:1:1:i1:0:i1:0:i1{1:0:0:i1:i0:0:i0 i1
N\
1
NRZ
0
>
N\
1
Clock
0
>
N
1
MCO
>
Data 1:i1:1:1:0:i1:i0i1:1:0:0:1:;0:0i0 i1

Figure 1-20 Manchester code representation of a short data sequence (PRBS 2°-1). Top: “10”
variant. Bottom: “01” variant.

1.3 Line Coding of Digital Signals

ot

w
:

o

w
.

o
»
.
o
»
.

o
R
T
o
gy
T

Power Spectral Density (norm.)

o
k3
T

Power Spectral Density (norm.)

o
X
T

0 1) 2 3 4 5 6 0 1 2 3 4] 5
Frequency [GHz] Frequency [GHz]

Figure 1-21 Power spectral density for Manchester-coded data at 1 Gbit/s. Left: PRBS 2*-1.
Right: Constant one (111111 . . .). Power density is normalized for comparison with NRZ format
(dotted line, left plot only).

(dotted line), the PRBS spectrum has significantly less spectral content at low frequencies but
more at higher frequencies. Spectral nulls are at even harmonics. The spectrum for the constant
one pattern is equal to a 1 GHz square wave.

1.3.2.5 Non-Return-to-Zero Inverted Code
Non-return-to-zero inverted (NRZI) code is not, as the name suggests, the mere inversion of an
NRZ-coded signal; it is an example of a differential code, where the state of the signal depends
on both the current and the previous bit. An NRZI-coded signal changes its state when the cur-
rent bit is a logic one bit but stays constant if the current bit is a logic zero (Figure 1-22). Using
transitions rather than levels makes detection less error-prone in noise environments, and the sig-
nal polarity is insignificant. NRZI coding is used, for example, in USB.

The signal properties of NRZI-coded data are similar to those of NRZ data: The transition
density can be between 0.0 (for a constant zero pattern) and 1.0 (for a constant one pattern), and

AN
1
NRZ
0
~
7
N
1
NRZI
0
~
7
Data 1:i1:1:1i0i1:0i1i{1:i0i0i1:0:0:0 i1

Figure 1-22 NRZI coding of a short data sequence (PRBS 2*-1)

19

20

Chapter 1 * Fundamentals of Digital Communications Systems

the spectral content for random data is exactly the same as for NRZ. The NRZI code is therefore
not sufficient to enable data transmission with clock recovery, or to limit the amount of IST.

1.3.2.6 Differential Manchester Code
Differential Manchester code (DMC) is a combination of Manchester and NRZI: It uses transi-
tions in the middle of the bit, but the transition direction changes with every one in the data
stream (Figure 1-23). This coding can be generated by an XOR function of NRZI-coded data
and a clock signal. DMC is also known as conditional de-phase (CDP) code and used in token
ring LANs (IEEE 802.5).

The properties of data that is coded with DMC are very similar to those of pure Manchester
code: The signal is DC balanced, there is at least one transition per bit, and the spectrum has low
content at lower frequencies but significantly more high-frequency content than NRZ data has.

N\
1
NRZI
0
>
N\
1
Clock
0
>
N\
1
DMCO
>
Data 1:i1:1:i1:0:i1:0:1:{1:0:0:1:0:0:0 i1

Figure 1-23 Differential Manchester coding of a short data sequence (PRBS 2°-1)

1.3.3 Multilevel Line Codes

1.3.3.1 Bipolar Return-to-Zero Code

A variant of the RZ code is bipolar return-to-zero (BPRZ) coding, where the signal returns to an
intermediate zero level after both zero and one bits (Figure 1-24). There are two transitions per
bit, which makes synchronization of the receiver fairly easy. The drawback is the fairly compli-
cated circuitry and an even higher bandwidth requirement than for RZ and R1 data. Figure 1-25
shows the power spectral density for a BPRZ-formatted data sequence.

1.3.3.2 Pulse Amplitude Modulation

Pulse amplitude modulation (PAM) is a class of multilevel codes that encodes several consecu-
tive bits into one of several levels. PAM-4, for example, encodes two bits into one out of four
levels (Figure 1-26). Demodulation is performed by detecting the signal level once per symbol

1.3 Line Coding of Digital Signals

N

1
NRZ

° =

T T T T |
BPRZ

° T T T

=

Data 1i1:1i1i0i1i0i1i1i0:i0:i1:i0:i0:i0 i1

Figure 1-24 BPRZ coding of a short data sequence (PRBS 2*-1)

o

™
o
™

o

o
o
o

=

E
=]
k=

Power Spectral Density (norm.)

bt

i
bt
o

Power Spectral Density (norm.)

0 1 2 3 4 5 6
Frequency [GHZ] Frequency [GHzZ]

Figure 1-25 Power spectral density for a short BPRZ-formatted data sequence (PRBS 2*-1), at
1 Gbit/s. Left: 50% duty cycle. Right: 25% duty cycle. Power density is normalized for comparison
with NRZ format (dotted line).

A
1
NRZ
0
~
7
A
3
2
PAM-4
0
~
”
Data 11.1/1/1/0/1 0 1/1/0i0/1i0i01/01i1

Figure 1-26 PAM-4 coding of a short data sequence (PRBS 2°-1)

22

Chapter 1 * Fundamentals of Digital Communications Systems

period. PAM-4-encoded data has much less high-frequency content than, for example, NRZ data
because the signal level changes only for every other bit. However, the cost is increased trans-
mitter and especially receiver complexity, and a lower signal-to-noise ratio if the same levels are
used. PAM-4 alone is not sufficient for embedded clock systems, as it does not guarantee transi-
tion density: Constant zero or one patterns are encoded as DC levels. Figure 1-27 shows the
power spectral density for a PAM-4-coded data sequence.

o
w
o
w

e
®
e
®

e
S
b
Y

o
]
o
k3

Power Spectral Density (norm.)

Power Spectral Density (norm.)

Frequency [GHz] Frequency [GHz]

Figure 1-27 Power spectral density for PAM-4-coded data at 1 Gbit/s. Left: PRBS 2*-1. Right:
Half-rate toggle (11001100 . . .). Power density is normalized for comparison with NRZ format
(dotted line).

1.3.4 Block Codes

1.3.4.1 mBnB Block Codes

Block codes of type mBnB take m bits of the original data and encode them into n bits, follow-
ing very specific rules. Several of the coding schemes from the previous sections can be
expressed as 1B2B codes; RZ coding, for example, encodes every one bit as a one, followed by
a zero, and every zero bit as two zeros. Widely used in serial high-speed applications are 4B5B
and in particular 8B10B coding. The dominant encoding scheme in computing applications,
8B10B seems to hit a sweet spot with relatively low overhead (25%), ease of implementation,
coding properties such as maximum run length, and so on. Chapter 3 describes 4B5B and
8B10B coding in greater detail.

1.3.4.2 Error Detection and Forward Error Correction

Some of the block codes from Section 1.3.4.1 enable the receiver to detect some transmission
errors, either from calculating disparity or by detecting invalid code words. A system that is
based on such coding techniques can issue a packet resend command and transmit the packet
again, this time hopefully without an error. Ideally, however, the receiver would be able to not
only detect errors (all errors, not just a few) but also correct them.

1.4 Electrical Signaling

The process of adding redundancy to the data stream and analyzing and correcting errors
in real time is called forward error correction (FEC). Systems that use FEC can operate with less
margin in transmission than non-FEC systems. In practical applications, this means a longer
range between sender and receiver or reduced transmission power. Especially under difficult
transmission conditions, FEC systems are more effective than non-FEC systems because fewer
packets need to be retransmitted.

1.4 Electrical Signaling
1.4.1 Single-Ended Signaling

Single-ended systems use a shared reference rail for both the transmitter and the receiver that
provides the reference level for zero/one bit decisions and also carries the return current (Figure
1-28). The reference rail (or ground) needs to be sufficiently low in impedance; otherwise, the
return currents will cause a voltage drop that reduces the signal across the receiver inputs. Other
concerns are noise coupling and electromagnetic interference.

X RX

Vref
Figure 1-28 Single-ended system. The receiver makes bit decisions based on the difference
between the signal and a reference voltage.
1.4.2 Differential Signaling

Differential signaling uses pairs of wires: One of the wires carries the signal, while the other
wire carries the inverse of the signal (Figure 1-29). The receiver makes its bit decisions based on

Pl +
TX> RX

Vref

Figure 1-29 Differential system. The receiver makes bit decisions based on the difference
between two signals; the reference voltage is irrelevant.

23

24

Chapter 1 * Fundamentals of Digital Communications Systems

the difference between the two wires and thereby removes the dependency on the signal ground;
a differential signal essentially carries its own reference.

We call the two signals signal A and signal B. The differential signal is then the difference
between the two signals:

Vi (0 =V, (©) = V5 (D) (Equation 1-14)

The common signal is the average of the two signals:

v IACEAAC!

common () 2 (Equation 1-15)

Figure 1-30 shows an example. The two single-ended signals with 400 mV amplitude
(peak to peak) and an offset of 1.0 V can be decomposed into an 800 mV peak-to-peak differen-
tial signal and a 1.0 V constant common signal.

=
[T

a
[T

Dl i bk chn S]

B

Correran kiods Sigral |']

o
]

Tora |mx]

Figure 1-30 Differential signaling example: 100 MHz digital clock signal, single-ended amplitude
of 400 mV (peak to peak) with a 1.0 V offset. Top to bottom: Signal A, signal B, differential signal,
common signal.

1.4 Electrical Signaling

A differential system is fully described either by the two signals A and B or by the differ-
ential and common signals. If the differential and common signals are known, the signals on the
two lines can be recovered as the sum (for V,) and difference (for V;) of the common signal and
half the differential signal:

V.=V _ () +75 Ve () (Equation 1-16)

Vo) =V, (1) =3V (D (Equation 1-17)

If the two wires are routed in parallel, they receive nearly the same interference; this
makes the system almost immune to most types of common mode noise coupling and electro-
magnetic interference. Figure 1-31 shows an example. Note how the sinusoidal interference signal
shows up in the common mode of the signal, while the differential signal is not affected at all.

2

Sigmal & %]
T
1

Send O]

-] a =
M 8 K e

Ol i el ok e Sl [¥]

o
n
=

114 20
Toras [rax]

Comman kiods Signal ']

1]] [
1= {1]
Toras [rux]

o
n
=

Figure 1-31 Differential signaling example: 100 MHz digital clock signal, single-ended amplitude
of 400 mV (peak to peak) with a 1.0 V offset. Interference signal is a 5 GHz sinusoidal, with ampli-
tude of 200 mV peak to peak. Top to bottom: Signal A, signal B, differential signal, common signal.

25

26

Chapter 1 * Fundamentals of Digital Communications Systems

Because of its noise immunity, differential signaling is the method of choice for almost all
high-speed serial data transmission systems. There are associated costs, however: Two wires per
signal require twice as many pins and double the routing space. Because differential pairs need
to be routed close together, and ideally with low skew, the routing complexity increases. How-
ever, this additional complexity is offset because we don’t need nearly as many ground signals as
for single-ended signaling.

1.4.3 Preemphasis and Receiver Equalization

High-speed serial signaling suffers from bandwidth limitations in transmission channels. Espe-
cially in cost-sensitive applications, where less expensive board materials are used, signal distor-
tions introduced by the channel can render a signal unusable.

Signal distortions due to high-frequency cutoff can be moderated to some degree by sig-
nal-processing techniques in the transmitter. Two options are available: We can either amplify
the higher-frequency spectral components of the signal or attenuate the low-frequency content of
the signal. The former is called preemphasis, the latter deemphasis. Signal-processing methods
can also be applied to the receiver. Several types of receiver equalization can extract a meaning-
ful signal out of an apparently random signal.

1.5 Summary

In this chapter, we’ve introduced the basic concepts of high-speed serial transmission systems:
clock architectures, line coding, and differential electrical signaling with preemphasis or
receiver equalization.

The remainder of this book describes how we can characterize such a system, either as a
whole or individually for its components. Transmitter tests verify the electrical performance of
the signal before it enters the channel, while receiver tests verify that the worst-case realistic sig-
nals can be understood by the receiver. Channel tests finally determine the quality of the trans-
mission medium.

1.6 References

1.6.1 General References

1. C. E. Shannon. “A Mathematical Theory of Communication.” Bell System Technical Journal
27 (July, October 1948): 379423, 623—656. [This classic paper is available from the Bell
Web site at http://plan9.bell-labs.com/cm/ms/what/shannonday/paper.html.]

2. Hubert Zimmermann. “OSI Reference Model: The ISO Model of Architecture for Open Sys-
tems Interconnection.” IEEE Transactions on Communications 28, no. 4 (1980): 425-432.

3. SDRAM Specification, JESD79-2B. Arlington, VA: JEDEC Solid State Technology Associ-
ation, January 2005.

1.6

4.

References

Peripheral Component Interconnect (PCI) Specification, Revision 3.0. Beaverton, OR: PCI
Special Interest Group, 2004.

1.6.2 Digital Design

5.

Stephen Hall, Garrett Hall, and James McCall. High-Speed Digital System Design. New
York: Wiley, 2000.

. Howard Johnson and Martin Graham. High-Speed Digital Design: A Handbook of Black

Magic. Englewood Cliffs, NJ: Prentice Hall, 1993.

. Howard Johnson and Martin Graham. High-Speed Signal Propagation: Advanced Black

Magic. Upper Saddle River, NJ: Prentice Hall, 2003.

. Eric Bogatin. Signal Integrity: Simplified. Upper Saddle River, NJ: Prentice Hall, 2004.
. Yoshitaka Takasaki. Digital Transmission Design and Jitter Analysis. Norwood, MA: Artech

House, 1991.

1.6.3 Line Coding

10.

11.

12.

13.

14.

15.

A. Lender. “The Duobinary Technique for High Speed Data Transmission.” IEEE Transac-
tions on Communication and Electronics 82 (May 1963): 214-218.

Andrew Sekey. “An Analysis of the Duobinary Technique.” IEEE Transactions on Commu-
nication Technology Com-14, no. 2 (1966): 126—-130.

Jeffrey H. Sinsky, Marcus Duelk, and Andrew Adamiecki. “High-Speed Electrical Back-
plane Transmission Using Duobinary Signaling.” IEEE Transactions on Microwave Theory
and Techniques 53, no. 1 (2005): 152-160.

R. Forster. “Manchester Encoding: Opposing Definitions Resolved.” IEEE Engineering Sci-
ence and Education Journal 9, no. 6 (2000): 278-280.

X. Widmer and P. A. Franaszek. “A DC-Balanced, Partitioned-Block, 8B/10B Transmission
Code.” IBM Journal of Research and Development 27, no. 5 (1983): 440-451.

Alex Deas, David R. Stauffer, and Anthony Sanders. “No ‘Magic Bullet’ for Signaling
Schemes.” EE Times, April 19, 2004.

1.6.4 Forward Error Correction

16.

17.
18.

Irving S. Reed and Gustave Solomon. “Polynomial Codes Over Certain Finite Fields.” Jour-
nal of the Society for Industrial and Applied Mathematics 8, no. 2 (1960): 300-304.

S. Lin and D. J. Costello. Error Control Coding. Englewood Cliffs, NJ: Prentice Hall, 1982.

A. M. Michelson and A. H. Levesque. Error Control Techniques for Digital Communication.
New York: Wiley, 1985.

27

28

Chapter 1 * Fundamentals of Digital Communications Systems

19. W. W. Peterson and E. J. Weldon, Jr. Error Correcting Codes, 2nd ed. Cambridge, MA: The
MIT Press, 1972.

20. V. Pless. Introduction to the Theory of Error-Correcting Codes, 3rd ed. New York: Wiley,
1998.

21. C. Schlegel and L. Perez. Trellis Coding. Piscataway, NJ: IEEE Press, 1997.

22. S. B. Wicker. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, NJ: Prentice Hall, 1995.

1.6.5 Equalization and Preemphasis

23. Jin Liu and Xiaofeng Lin. “Equalization in High-Speed Communications Systems.” [EEE
Circuits and Systems Magazine 4, no. 2 (2004): 4-17.

24. A. Sanders, M. Resso, and J. D’Ambrosia. “Channel Compliance Testing, Utilizing Novel
Statistical Eye Methodology.” DesignCon, Santa Clara, CA, January 2004.

