
An Introduction to Design
Patterns in C++ with Qt 4

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page i



Perens_Series_7x9_25.qxd  5/22/06  1:15 PM  Page 1



Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

An Introduction to 

Design Patterns
in C++ with Qt 4

Alan Ezust
Paul Ezust

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page iii



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the des-
ignations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the online
edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code
samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.prenhallprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code 1AMQ-56YL-KJ1A-LXLU-GGLT

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail 
customer-service@safaribooksonline.com.

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Ezust, Alan.
An introduction to design patterns in C++ with Qt 4 / Alan Ezust, Paul Ezust.

p. cm.
Includes bibliographical references and index.
ISBN 0-13-187905-7 (pbk. : alk. paper)

1. C++ (Computer program language) 2. Software patterns. 3. Computer software—Reusability.
I. Ezust, Paul. II. Title.

QA76.73.C153E94 2006
005.13�3—dc22

2006011947
Copyright © 2007 Pearson Education, Inc.

This material may only be distributed subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later. (The latest version is presently available at http://www.opencontent.org/openpub/.)

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-187905-7

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, August 2006

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page iv



This book is dedicated to Miriam Ezust,
without whom none of our work 

would have been possible.

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page v



ezus_138004_fm.qxd  8/3/06  4:25 PM  Page vi



Contents

Preface   xix

Acknowledgments   xxiii

Rationale for the Book   xxv

About the Authors   xxvii

PART I Introduction to C++ and Qt 4 2

1 C++ Introduction 5
1.1 Overview of C++ 6

1.2 A Brief History of C++ 6

1.3 Setup: Open-Source Platforms 7

1.3.1 *nix 7

1.3.2 Downloading from Source 9

1.4 Setup: Win32 12

1.5 C++ First Example 12

1.6 Input and Output 16

1.7 Identifiers, Types, and Literals 19

1.8 C++ Simple Types 22

1.8.1 main and Command Line Arguments   24

1.8.2 Arithmetic 25

1.9 C++ Standard Library Strings 30

1.10 Streams 31

1.11 The Keyword const 34

1.12 Pointers and Memory Access 36

1.12.1 The Unary Operators & and * 36

1.12.2 Operators new and delete 38

vii

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page vii



1.13 const* and *const 40

1.14 Reference Variables 43

Points of Departure   44

Review Questions   45

2 Classes 47
2.1 Structs 48

2.2 Class Definitions 49

2.3 Member Access Specifiers 51

2.4 Encapsulation 54

2.5 Introduction to UML 54

2.5.1 UML Relationships 55

2.6 Friends of a Class 55

2.7 Constructors 56

2.8 Subobjects 58

2.9 Destructors 60

2.10 The Keyword static 61

2.11 Copy Constructors and Assignment Operators 64

2.12 Conversions 67

2.13 const Member Functions 68

Review Questions   79

3 Introduction to Qt   81
3.1 Example Project: Using QApplication 

and QLabel 82

3.2 Makefile, qmake, and Project Files 83

3.2.1 #include: Finding Header Files 85

3.2.2 The make Command 86

3.2.3 Cleaning Up Files 88

3.3 Getting Help Online 89

3.4 Style Guidelines and Naming Conventions 90

3.5 The Qt Core Module 91

3.6 Streams and Dates 91

Points of Departure   93

Review Questions   94

viii

C O N T E N T S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page viii



4 Lists 95
4.1 Introduction to Containers 96

4.2 Iterators 97

4.2.1 QStringList and Iteration 97

4.3 Relationships 99

Points of Departure   102

Review Questions   103

5 Functions 105
5.1 Function Declarations 106

5.2 Overloading Functions 107

5.3 Optional Arguments 109

5.4 Operator Overloading 111

5.5 Parameter Passing by Value 116

5.6 Parameter Passing by Reference 118

5.7 References to const 121

5.8 Function Return Values 122

5.9 Returning References from Functions 122

5.10 Overloading on const-ness 124

5.11 Inline Functions 126

5.12 Inlining versus Macro Expansion 127

Review Questions   133

6 Inheritance and Polymorphism 135
6.1 Simple Derivation 136

6.1.1 Inheritance Client Code Example 141

6.2 Derivation with Polymorphism 142

6.3 Derivation from an Abstract Base Class 148

6.4 Inheritance Design 152

6.5 Overloading, Hiding, and Overriding 154

6.6 Constructors, Destructors, and Copy Assignment Operators 155

6.7 Processing Command-Line Arguments 158

6.7.1 Derivation and ArgumentList 159

Points of Departure   164

Review Questions   165

C O N T E N T S

ix

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page ix



PART II Higher-Level Programming 166

7 Libraries 169
7.1 Code Containers 170

7.2 Reusing Other Libraries 171

7.3 Organizing Libraries: Dependency Management 173

7.3.1 Installing Libraries 176

7.4 Installing Libraries: A Lab Exercise 176

7.4.1 Fixing the Linker Path 177

7.5 Frameworks and Components 178

Review Questions   180

8 Introduction to Design Patterns 181
8.1 Iteration and the Visitor Pattern 182

8.1.1 Directories and Files: QDir and QFileInfo 183

8.1.2 Visitor Pattern 184

8.1.3 Customizing the Visitor Using Inheritance 186

Review Questions   190

9 QObject 191
9.1 QObject’s Child Managment 194

9.2 Composite Pattern: Parents and Children 196

9.2.1 Finding Children 199

9.3 QApplication and the Event Loop 200

9.3.1 Layouts: A First Look 202

9.3.2 Connecting to Slots 203

9.3.3 Signals and Slots 204

9.4 Q_OBJECT and moc: A Checklist 209

9.5 Values and Objects 210

9.6 tr() and Internationalization 211

Point of Departure   211

Review Questions   212

x

C O N T E N T S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page x



10 Generics and Containers 213
10.1 Generics and Templates 214

10.1.1 Function Templates 214

10.1.2 Class Templates 216

10.2 Containers 219

10.3 Managed Containers, Composites,

and Aggregates 221

10.4 Implicitly Shared Classes 224

10.5 Generics, Algorithms, and Operators 225

10.6 Serializer Pattern 227

10.6.1 Benefits of the Serializer 229

10.7 Sorted Map Example 229

Review Questions   235

11 Qt GUI Widgets 237
11.1 Widget Categories 239

11.2 QMainWindow and QSettings 240

11.2.1 QSettings: Saving and Restoring 

Application State 242

11.3 Dialogs 244

11.3.1 Input Dialogs and Widgets 246

11.4 Images and Resources 248

11.5 Layout of Widgets 251

11.5.1 Spacing, Stretching, and Struts 254

11.5.2 Moving Widgets across Layouts 256

11.6 QActions, QMenus, and QMenuBars 260

11.7 QActions, QToolbars, and QActionGroups 262

11.7.1 The Command Pattern 262

11.8 Regions and QDockWidgets 270

11.9 Views of a QStringList 272

Points of Departure   274

Review Questions   275

C O N T E N T S

xi

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xi



12 Concurrency 277
12.1 QProcess and Process Control 278

12.1.1 Processes and Environment 280

12.1.2 Qonsole: Writing an Xterm in Qt 284

12.1.3 Qonsole with Keyboard Events 286

12.2 Threads and QThread 290

12.2.1 QPixmap and QThread Animation 

Example: Movie Player 290

12.2.2 Movie Player with QTimer 294

12.2.3 Multiple Threads, Queues, and Loggers 

Example: Giant 296

12.2.4 Thread Safety and QObjects 302

12.3 Summary: QProcess and QThread 303

Review Questions   305

13 Validation and Regular Expressions 307
13.1 Validators 308

13.2 Regular Expressions 310

13.2.1 Regular Expression Syntax 311

13.2.2 Regular Expressions: Phone 

Number Recognition 313

13.3 Regular Expression Validation 316

Review Questions   319

14 Parsing XML 321
14.1 The Qt XML Module 325

14.2 Event-Driven Parsing 325

14.3 XML, Tree Structures, and DOM 329

14.3.1 Visitor Pattern: DOM Tree Walking 331

14.3.2 Generation of XML with DOM 335

Review Questions   340

15 Meta Objects, Properties, and Reflective Programming 341
15.1 Anti-patterns 342

15.2 QMetaObject: The MetaObject Pattern 344

xii

C O N T E N T S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xii



15.3 Type Identification and qobject_cast 345

15.4 Q_PROPERTY Macro: Describing QObject Properties 347

15.5 QVariant Class: Accessing Properties 350

15.6 DataObject: An Extension of QObject 353

15.7 Property Containers: PropsMap 355

Review Questions   357

16 More Design Patterns 359
16.1 Creational Patterns 360

16.1.1 Abstract Factory 361

16.1.2 Abstract Factories and Libraries 363

16.1.3 qApp and Singleton Pattern 365

16.1.4 Creation Rules and friend Functions

(What Friends Are Really For) 366

16.1.5 Benefits of Using Factories 369

16.2 Serializer Pattern Revisited 373

16.2.1 Exporting to XML 375

16.2.2 Importing Objects with an Abstract Factory 376

16.3 The Façade Pattern 381

16.3.1 Functional Façade 384

16.3.2 Smart Pointers: auto_ptr 384

16.3.3 FileTagger: Façade Example 385

Points of Departure   389

Review Questions   390

17 Models and Views 391
17.1 M-V-C: What about the Controller? 392

17.2 Dynamic Form Models 393

17.2.1 Form Models 397

17.2.2 Form Views 400

17.2.3 Unforseen Types 403

17.2.4 Controlling Actions 404

17.2.5 DataObject Form Model 405

17.3 Qt 4 Models and Views 409

17.4 Table Models 411

C O N T E N T S

xiii

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xiii



17.5 Tree Models 417

17.5.1 Extended Tree Widget Items 418

Review Questions   421

18 Qt SQL Classes 423
18.1 Introduction to MySQL 424

18.2 Queries and Result Sets 427

18.3 Database Models 429

Review Questions   433

PART III C++ Language Reference 434

19 Types and Expressions 437
19.1 Operators 438

19.2 Evaluation of Logical Expressions 443

19.3 Enumerations 443

19.4 Signed and Unsigned Integral Types 445

19.5 Standard Expression Conversions 447

19.6 Explicit Conversions 449

19.7 Safer Typecasting Using ANSI C++ Typecasts 450

19.7.1 static_cast and const_cast 450

19.7.2 reinterpret_cast 453

19.7.3 Why Not Use C-style Casts? 454

19.8 Run-Time Type Identification (RTTI) 454

19.8.1 typeid Operator 456

19.9 Member Selection Operators 457

Point of Departure   458

Review Questions   461

20 Scope and Storage Class 463
20.1 Declarations and Definitions 464

20.2 Identifier Scope 465

20.2.1 Default Scope of Identifiers: A Summary 466

20.2.2 File Scope versus Block Scope and operator:: 468

20.3 Storage Class 470

20.3.1 Globals, statics, and QObject 471

xiv

C O N T E N T S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xiv



20.4 Namespaces 473

20.4.1 Anonymous Namespaces 476

20.4.2 Open Namespaces 476

20.4.3 Namespace, static Objects and extern 476

Review Questions   478

21 Statements and Control Structures 479
21.1 Statements 480

21.2 Selection Statements 480

21.3 Iteration 483

21.4 Exceptions 485

21.4.1 Exception Handling 486

21.4.2 Exception Types 486

21.4.3 throwing Things Around 487

21.4.4 try and catch 490

21.4.5 More about throw 494

21.4.6 Rethrown Exceptions 496

21.4.7 Exception Expressions 497

Review Questions   502

22 Memory Access 503
22.1 Pointer Pathology 504

22.2 Further Pointer Pathology with Heap Memory 506

22.3 Memory Access Summary 509

22.4 Introduction to Arrays 509

22.5 Pointer Arithmetic 510

22.6 Arrays, Functions, and Return Values 511

22.7 Different Kinds of Arrays 513

22.8 Valid Pointer Operations 513

22.9 What Happens If new Fails? 515

22.9.1 set_new_handler(): Another Approach to New Failures 516

22.9.2 Using set_new_handler and bad_alloc 517

22.9.3 Checking for null: The Updated Way to Test for New Failures 518

22.10 Chapter Summary 519

Review Questions   521

C O N T E N T S

xv

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xv



23 Inheritance in Detail 523
23.1 Virtual Pointers and Virtual Tables 524

23.2 Polymorphism and virtual Destructors 526

23.3 Multiple Inheritance 528

23.3.1 Multiple Inheritance Syntax 529

23.3.2 Multiple Inheritance with Abstract Interfaces 531

Point of Departure   532

23.3.3 Resolving Multiple Inheritance Conflicts 532

23.4 public, protected, and private Derivation 536

Review Questions   539

24 Miscellaneous Topics 541
24.1 Functions with Variable-Length Argument Lists 542

24.2 Resource Sharing 543

PART IV Programming Assignments 548

25 MP3 Jukebox Assignments 551
25.1 Data Model: Mp3File 553

25.2 Visitor: Generating Playlists 555

25.3 Preference: An Enumerated Type 556

25.4 Reusing id3lib 559

25.5 PlayListModel Serialization 560

25.6 Testing Mp3File Related Classes 561

25.7 Simple Queries and Filters 561

25.8 Mp3PlayerView 563

25.9 Models and Views: PlayList 565

25.10 Source Selector 566

25.11 Persistent Settings 567

25.12 Edit Form View for FileTagger 568

25.13 Database View 569

Points of Departure   571

xvi

C O N T E N T S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xvi



PART V Appendices   572

Appendix A: C++ Reserved Keywords 575

Appendix B: Standard Headers 577

Appendix C: The Development Environment 579
C.1 The Preprocessor: For #including Files 579

C.2 Understanding the Linker 582

C.2.1 Common Linker Error Messages 584

C.3 Debugging 587

C.3.1 Building a Debuggable Target 588

C.3.2 gdb Quickstart 589

C.3.3 Finding Memory Errors 590

C.4 Qt Assistant and Designer 593

C.5 Open-Source IDEs and Development Tools 594

C.5.1 UML Modeling Tools 597

C.5.2 jEdit 598

Bibliography   601

Index   603

C O N T E N T S

xvii

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xvii



ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xviii



Preface

C++ had been in use for many years before it was standardized in 1989, which

makes it a relatively mature language compared to others that are in popular use

today. It is a very important language for building fast, efficient, mission-critical

systems. C++ is also one of the most flexible languages around, giving developers

many choices of programming styles for use in high-level GUI code as well as low-

level device drivers.

For a few years in the early ’90s, C++ was the most popular object-oriented

(OO) language in use, and many computer science (CS) students were introduced

to object-oriented programming (OOP) via C++. This was because C++ provided

a relatively easy transition to OOP for C programmers, and many CS professors had

been teaching C previously.

Starting around 1996, Java gained favor over C++ as the first OO language

for students to learn. There are a number of reasons that Java gained so much

popularity.

■ The language itself is simpler than C++.

■ The language has built-in garbage collection, so programmers do not

need to concern themselves with memory de-allocation.

■ A standard set of GUI classes is included in the development kit.

■ The built-in String class supports Unicode.

■ Multithreading is built into the language.

■ It is easier to build and “plug in” Java Archives (JARs) than it is to recom-

pile and relink libraries.

■ Many Web servers provide Java APIs for easy integration.

■ Java programs are platform independent (Wintel, Solaris, MacOS, Linux,

*nix, etc.).

xix

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xix



Many of Java’s benefits listed above can be achieved with C++ used in conjunction

with Qt 4.

■ Qt provides a comprehensive set of GUI classes that run faster, look bet-

ter, and are more flexible than Java’s Swing classes.

■ Signals and slots are easier to use than (Action|Event|Key)Listener

interfaces in Java.

■ Qt 4 has a plugin architecture that makes it possible to load code into an

application without recompiling or relinking.

■ Qt 4 provides foreach, which makes iteration through collections sim-

pler to read and write.

Although Qt does not provide garbage collection, there are a variety of alternatives

one can use to avoid the need to delete heap objects directly.

1. Containers (see Section 10.2)

2. Parents and children (see Section 9.2)

3. auto_ptr (see Section 16.3.2)

4. QPointer (see Section 19.9).

5. Subobjects (see Section 2.8)

6. Stack objects (see Section 20.3)

Using C++ with Qt comes very close to Java in ease of use, comprehensiveness,

and convenience. It significantly exceeds Java in the areas of speed and efficiency,

making everything from processing-intensive server applications to high-speed

graphics-intensive games possible.

Another benefit of learning C++ with Qt comes from Qt’s widespread use in

open-source projects. There is already a great wealth of free open-source code that

you can learn from, reuse, and perhaps help to improve.

How to Use This Book
Part I contains an introduction to C++, UML, and the Qt core. This part is

designed to avoid forward referencing as much as possible, and it presents the top-

ics in an order and a level of detail that should not overwhelm someone who is

new to C/C++.

In Part II, you will find higher-level programming ideas, Qt modules, and

design patterns. Here we present paradigm-shifting ways of writing code and

organizing objects in a modular fashion.

xx

P R E F A C E

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xx



For completeness and for reference, Part III covers in more depth some of the

“dry” but important C++ features that were introduced in Part I. By the time the

reader has reached this point, these ideas should be a lot easier to understand.

At the end of each chapter, you will find exercises and review questions. Most

of the programming exercises have solutions available on our Web site. For the

questions, if the answers are not in the preceding chapter, then often there are

pointers on where to find them. If this book is used for a course, these questions

could be asked by the student or by the teacher, in the classroom or on an exam.

Source code files for all the examples in this book are contained in the file

src.tar.gz, which can be downloaded from http://oop.mcs.suffolk.edu/dist.

A Note about Formats and Book Production

What you are reading now is only one of a number of possible versions of this text

available. Because the document was originally written in XML, using a “literal

programming” style, we can generate a variety of different versions (bulleted

slides, paragraphed textbook, with or without solutions, etc.) in a variety of dif-

ferent formats (html, pdf, ps, htmlhelp).

Each programming example is extracted from working source code. The Web

version provides a hyperlink from each code excerpt to its full source file. This

makes it very easy to try the examples yourself. The text and listings in the Web

version also contain hyperlinks from each library ClassName to its class docu-

mentation page.

We wrote the original manuscript using jEdit and gnu-emacs, marking it up

with a modified DocBook/XML syntax that we converted into pure DocBook/XML

using a custom XML processor called Slacker’s DocBook written in Python. Most

of the original diagrams were produced with Umbrello or Dia, but a couple were

produced with Doxygen and Dot. The final book was typeset in QuarkXPress. We

generate many different versions (overhead slides, textbooks, labs, and solutions) of

this text for our own use, some in HTML, some in PostScript, and some in PDF.

The XML and image processors we used were Apache Ant, Xerces, FOP, Gnu

xsltproc, ReportLab pyRXP, ImageMagick, JAI, JINI, and XEP. We did all of the

editing and processing of the original manuscript on GNU/Linux systems under

KDE. The example programs all compile and run under Linux.

The cover photo is of the Panama Canal. Before there was a Panama Canal,

ships had to travel down and then up the entire length of South America to get

from one coast of the United States to the other. The canal provided a much

shorter and more direct path. The aim of this book is to provide a shorter and

P R E F A C E

xxi

ezus_138004_fm.qxd  8/3/06  6:52 PM  Page xxi



xxii

P R E F A C E

more direct path for programmers who don’t have a lot of extra time and who

need to obtain working mastery of C++ OOP and design patterns. Qt 4 makes this

possible.

Style Conventions

■ Monospace—used for any literal symbol that appears in the code

listings

■ Bold—used the first time a term appears (key terms, defined terms, etc.)

■ Italic—used for emphasis, and also used for wildcards (terms that need

to be replaced by “real types” when they are actually used). In monospace

text, these terms are set italic and monospace.

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxii



Acknowledgments 

Thanks to the many authors and contributors involved in following open-source

projects, for making the free tools, for answering questions, and for writing good

docs. We used all of these programs to make this book:

■ jEdit (http://jedit.sourceforge.net)

■ Umbrello (http://uml.sourceforge.net/index.php)

■ Firefox (http://www.mozilla.org/products/firefox/),

Mozilla (http://www.mozilla.org/)

■ Doxygen (http://www.stack.nl/~dimitri/doxygen/)

■ dia (http://www.gnome.org/projects/dia/)

■ imagemagick (http://www.imagemagick.org/script/index.php)

■ graphviz (http://www.research.att.com/sw/tools/graphviz/)

■ KDE (http://www.kde.org/), kdevelop (http://www.kdevelop.org/),

kdbg (http://members.nextra.at/johsixt/kdbg.html)

■ docbook (http://www.docbook.org/),

docbook-xsl (http://docbook.sourceforge.net/projects/xsl/)

■ xsltproc, xmllint, gnu xml libs (http://xmlsoft.org/XSLT/xsltproc2.html)

■ cvs (http://www.nongnu.org/cvs/),

subversion (http://subversion.tigris.org/)

■ MoinMoin (http://moinmoin.wikiwikiweb.de/)

■ Bugzilla (http://www.bugzilla.org/)

■ Apache httpd (http://httpd.apache.org/), ant (http://ant.apache.org/),

fop (http://xmlgraphics.apache.org/fop/)

■ gaim (http://gaim.sourceforge.net)

■ Python (http://www.python.org)

xxiii

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxiii



xxiv

A C K N O W L E D G M E N T S

■ ReportLab PyRXP (http://www.reportlab.org/pyrxp.html)

■ pyQt (http://www.riverbankcomputing.co.uk/pyqt/index.php),

pyKDE (http://www.riverbankcomputing.co.uk/pykde/index.php),

qscintilla (http://www.riverbankcomputing.co.uk/qscintilla/index.php),

eric3 (http://www.die-offenbachs.de/detlev/eric3.html)

■ mysql (http://www.mysql.com/)

■ GNU Emacs (http://www.gnu.org/software/emacs/emacs.html)

■ Linux (http://www.kernel.org/), gcc (http://gcc.gnu.org/),

gdb (http://www.gnu.org/software/gdb/gdb.html)

■ valgrind (http://valgrind.org/)

Thanks to Norman Walsh [docbook] and Bob Stayton [docbookxsl] for develop-

ing and documenting a superb system of publishing tools. Thanks to the rest of

the docbook community for help and guidance.

Thanks to the volunteers at debian.org for keeping Sid up to date and still sta-

ble enough to be a productive development platform. Thanks to irc.freenode.net

for bringing together a lot of good brains.

Thanks to Emily Ezust for wordsmithing skills and for getting us started with

Qt in the first place. Thanks to the reviewers who provided input and valuable

feedback on the text: Mark Summerfield, Johan Thelin, Stephen Dewhurst, Hal

Fulton, David Boddie, Andy Shaw, and Jasmin Blanchette [Blanchette04], who also

taught us the Qt 4 dance! 

Thanks to Matthias Ettrich for the vision and motivation. Thanks to the rest of

the team at Trolltech for writing good docs, answering questions on the mailing

lists, and being so “open” with the open-source community.

Thanks to the editorial and production staff at Prentice Hall for their meticu-

lous reading of our book and for helping us to find the many errors that were dis-

tributed throughout the text.

Finally, thanks to Suffolk University, a source of great support throughout this

project. In particular, thanks to Andrew Teixeira for his tireless help in maintain-

ing the servers that we used heavily for the past two years and for his invaluable

technical advice. Thanks also to the students who took CMPSC 331/608 using the

evolving preliminary versions of this book since the fall of 2003 and who provided

us with a stream of valuable feedback.

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxiv



Rationale for the Book 

At Suffolk University, we buck the popular trend and continue teaching object-

oriented programming using C++. For many years we taught a standard one-

semester OOP/C++ course that followed a CS1-CS2 sequence based on the C

programming language. Students developed substantial mastery of the core C++

language and an understanding of some OO concepts such as encapsulation, refac-

toring, and tool development. However, we found that STL is a library that often

overwhelms students and causes them to spend too much time on low-level pro-

gramming constructs and template issues. STL is not enough to write applications

with graphical interfaces, and another framework would have to be used anyway.

During the summer of 2003 we got together and decided to develop a book

that would approach OOP/C++ at a higher level. We wanted to provide a sub-

stantial introduction to GUI programming using the multi-platform Qt frame-

work, as well as touch upon some important design patterns that are used.

We designed this first as a textbook to be used in a university class, but it is

designed in an extensible way and crammed with information that will make it use-

ful for readers with a wide range of backgrounds: from those who already program

in C or another procedural language and wish to learn OO and GUI programming,

to those who have no C background but are familiar with Basic, Java, Python, or

another programming language and wish to learn C++. The first part of the book

is aimed at familiarizing all audiences with basic C++ elements, OO concepts,

UML, and the core Qt classes.

We believe that readers will understand ideas best when they apply them, and

we found this to be especially true with design patterns. Many of the Qt classes or

code examples are concrete implementations of some of the more popular design

patterns described in Design Patterns [Gamma95]. For each design pattern that we

discuss, we make available the source code for our example and include exercises

that challenge readers to reuse, refine, and extend that code.

xxv

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxv



xxvi

R A T I O N A L E  F O R  T H E  B O O K

Reuse of libraries requires an understanding not only of libraries but also of

modular software, the linker, and library design. We have included a substantial

amount of advice distilled from experience (ours and our students’) and from

online discussion communities. We found that this helped our students to cope

with most of the problems they encountered in courses based on early versions of

this book.

We used preliminary versions of this book in Suffolk University’s OOP/C++

course each semester during the academic years 2003–2004 through 2005–2006,

with increasingly promising results and with much valuable feedback from our

students. In the earlier version of this course, students typically would write thou-

sands of lines of code for their programming projects. By contrast, with the

emphasis now on code reuse and the exploitation of robust tool libraries, student

programming projects have fewer lines of student code, but are much more inter-

esting and, we feel, much more valuable learning experiences.

There are many C++ books out there that either teach C++ or teach Qt, but

we found that the C++ books use a variety of different programming styles, and

they emphasize some topics that we do not use very often with Qt. The Qt books

we have seen all assume prior C++ knowledge. This book, by contrast, assumes no

C or C++ programming experience, and it covers the language features of C++

that you need to know in order to use Qt 4 classes as early as possible in the exam-

ples and assignments. It can be used as a textbook for teaching C++ and design

patterns, with an emphasis on open-source code reuse.

As far as we know, there are no university-level C++ textbooks that contain Qt

examples and also provide review questions, exercises, solutions, and lecture slides

for instructors.

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxvi



About the Authors

Paul Ezust started teaching mathematics at Suffolk University in 1967. Soon after

completing his Ph.D. in mathematics from Tufts University in 1975, he was

appointed chair of the Suffolk University Department of Mathematics, a position

that he still holds. Over the next few years he led a successful departmental effort

to develop courses and curricula in computer science based on guidelines pub-

lished by the Association for Computing Machinery (ACM). In 1982 the depart-

ment was renamed Mathematics and Computer Science. Today the department

has very successful undergraduate and graduate programs in computer science

and is continuing to grow and develop. Paul has taught computer science courses

for nearly 30 years, focusing for the past ten years on object-oriented program-

ming. Over the years he has also done extensive outside consulting, contract pro-

gramming, and research in computational mathematics. This book, which was

originally going to be an extrapolation of a course that he had developed and

refined for about eight years, has evolved into one that represents a complete par-

adigm shift for him and a totally different approach to teaching object-oriented

programming, thanks to gentle but persistent pressure from his son Alan.

If you ignore shovelling snow, Alan Ezust’s first paying job was as a teaching

assistant when he was 13. The class was an introduction to Logo on the Apple II,

and the students were primary and secondary school teachers, many of whom

were using a computer for the first time. Computer language training has been one

of his passions ever since. Alan studied computer science at McGill University,

receiving his M.Sc. in 1995. He gained more than ten years experience writing

course material and teaching programming languages at McGill University,

Suffolk University, Learnix Limited, Nortel, Objectivity, Corel, and Hewlett

xxvii

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxvii



Packard. While at Learnix, he had the unique experience of getting paid to teach

his father C++ in a classroom setting. Little did he know at the time, this would be

the start of a long-term professional collaboration. Alan now lives in Victoria,

British Columbia. He is working toward a Ph.D. and contributing to the develop-

ment of open-source software (jEdit, Umbrello, KDE) in his spare time.

xxviii

A B O U T  T H E  A U T H O R S

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page xxviii



An Introduction to Design
Patterns in C++ with Qt 4

ezus_138004_fm.qxd  8/3/06  4:25 PM  Page 1



P A R T  I  

Introduction to
C++ and Qt 4

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 2



Chapter 1. C++ Introduction . . . . . . . . . . . . . . . . . 5

Chapter 2. Classes . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 3. Introduction to Qt . . . . . . . . . . . . . . . 81

Chapter 4. Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 5. Functions . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 6. Inheritance and Polymorphism. . . 135

3

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 3



ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 4



1C H A P T E R  1

C++ Introduction

In this chapter the language is introduced. Basic con-

cepts such as keywords, literals, identifiers, declara-

tions, native types, and type conversions are defined.

Some history and evolution are discussed, along with

the relationship between C++ and the C language.

5

1.1 Overview of C++ . . . . . . . . . . . . . . . . . . . . . . 6

1.2 A Brief History of C++ . . . . . . . . . . . . . . . . . 6

1.3 Setup: Open-Source Platforms. . . . . . . . . . 7

1.4 Setup: Win32 . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 C++ First Example . . . . . . . . . . . . . . . . . . . 12

1.6 Input and Output . . . . . . . . . . . . . . . . . . . . 16

1.7 Identifiers, Types, and Literals . . . . . . . . . 19

1.8 C++ Simple Types . . . . . . . . . . . . . . . . . . . . 22

1.9 C++ Standard Library Strings . . . . . . . . . 30

1.10 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.11 The Keyword const . . . . . . . . . . . . . . . . . . 34

1.12 Pointers and Memory Access . . . . . . . . . 36

1.13 const* and *const . . . . . . . . . . . . . . . . . . . . 40

1.14 Reference Variables . . . . . . . . . . . . . . . . . . 43

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 5



1.1 Overview of C++
C++ was originally an extension to C, also known as “C with Objects.” It enhances

C by adding several higher-level features such as strong typing, data abstraction, ref-

erences, operator and function overloading, and considerable support for object-

oriented programming.

C++ retains the key features that have made C such a popular and successful

language: speed, efficiency, and a wide range of expressiveness that allows pro-

gramming at many levels, from the lowest (such as direct operating system calls or

bitwise operations) to the highest level (manipulating large complex objects or

graphs of objects).

A fundamental design decision was made at the beginning for C++: Any fea-

tures added to C++ should not cause a run-time penalty on C code that does not

use them.1 Certainly, there are added burdens on the compiler, and some features

have a run-time cost if they are used, but a C program that is compiled by a C++

compiler should run just as fast as it would if compiled by a C compiler.

1.2 A Brief History of C++
C++ was designed by Bjarne Stroustrup while he was working for AT&T Bell Labs,

which eventually packaged and marketed it. Initial versions of the language were

made available internally at AT&T beginning in 1981. C++ steadily evolved in

response to user feedback.

The first edition of Stroustrup’s book, The C++ Programming Language, was

published in early 1986. In 1989 with the release of Version 2.0, C++ was rapidly

acknowledged as a serious, useful language. In that year, work began on establish-

ing an internationally recognized language standard for C++.

Standardization under the control of ANSI (American National Standards

Institute) Committee X3J16 began in 1989 and was completed and published inter-

nally in 1997 by the X3 Secretariat under the title Draft Standard—The

C++ Language, X3J16/97-14882, Information Technology Council (NSITC),

1 Unfortunately, exception handling broke this rule and does cause a bit of overhead if enabled. This
is why many libraries still do not use exceptions.

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 6



Washington, DC. In June 1998, the draft standard was unanimously accepted by the

representatives of the 20 principal nations that participated in the nine-year

ANSI/ISO (International Standards Organization) effort.

The third edition of Stroustrup’s book [Stroustrup97], was published in 1997.

It is widely regarded as the definitive C++ reference.

You can view an HTML version of the ANSI/ISO Draft Standard at http://

oop.mcs.suffolk.edu/draftstandard

1.3 Setup: Open-Source Platforms
Open-source development tools (ssh, bash, gcc) are available natively on UNIX

and their related platforms. This includes Mac OS/X, which is a BSD-based

distribution.2

1.3.1 *nix

When we discuss something that’s specific to UNIX-derived platforms (Linux,

BSD, Solaris, etc.), we will use the shorthand *nix for “most flavors of UNIX.”

Another important acronym is POSIX, which stands for Portable Operating

System Interface for UNIX. The development of this family of standards was spon-

sored by the IEEE (Institute of Electrical and Electronics Engineers), an organiza-

tion for engineers, scientists, and students that is best known for developing

standards for the computer and electronics industry.3

This section is for readers who are using a computer with some flavor of *nix

installed.

The examples in this book were tested with Qt 4.1. We recommend that you

use the same version or a later one. The first step in setting up your computer for

this book is to make sure that the full installation of Qt 4 is available to you. This

includes, in addition to the source and compiled library code, the Qt Assistant

documentation system, program examples, and the Qt Designer program.

If your system has KDE 3.x (the K Desktop Environment) installed, then
there is already a run-time version of Qt 3.x installed. Qt 4 needs to be
installed separately. Our examples do not compile under Qt 3.

1 . 3 S E T U P : O P E N - S O U R C E  P L A T F O R M S

7

2 BSD stands for Berkeley Software Distribution, a facility of the Computer Systems Research Group
(CSRG) of the University of California at Berkeley. CSRG has been an important center of develop-
ment for UNIX and for various basic protocols (e.g., TCP/IP) since the 1980s.
3 If we wanted to write a POSIX regular expression (see Section 13.2) for *nix, it might look like this:
(lin|mac-os|un|solar|ir|ultr|ai|hp)[iu]?[sx].

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 7



To see which (if any) version of Qt has already been installed on your system,

start with the following commands:

which qmake
qmake -v

The output of the first command tells you where the qmake executable is located.

If that output looks like this: bash: qmake: command not found, it is possible

that

1. The “full” Qt (including development tools) is not installed

2. It is installed, but your PATH does not include /path/to/qt4/bin

If you can run it, qmake -v provides version information. If it reports

Using Qt version 4.x.y 

then, check whether these other Qt tools are available:

which moc
which uic
which assistant
which designer

If these executables are all found, and from the same place as qmake, Qt 4 is

installed and ready to use.

If the tests outlined above indicate that you have an earlier version or no Qt

installed, or that you are missing some components of Qt 4, then you will need to

install the latest release of Qt 4.

Installing Qt 4 from Packages

On some *nix systems it is possible to install Qt 4 from a package that con-

tains compiled code.

Using your *nix package manager (e.g., apt, urpmi, aptitude,

kpackage, synaptic, rpmdrake, etc.), you can easily and quickly install

the packages that comprise Qt 4. Here is a list of packages available on

Debian systems (the lists will differ on other distros).

[ROOT@lazarus]# apt-cache search qt4
libqt4-core - Qt 4 core non-GUI functionality run-time library
libqt4-debug - Qt 4 debugging run-time libraries
libqt4-dev - Qt 4 development files
libqt4-gui - Qt 4 core GUI functionality run-time library

C H A P T E R  1 : C + +  I N T R O D U C T I O N

8

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 8



libqt4-qt3support - Qt 3 compatibility library for Qt 4
libqt4-sql - Qt 4 SQL database module
qt4-designer - Qt 4 Designer
qt4-dev-tools - Qt 4 development tools
qt4-doc - Qt 4 API documentation
libqt4-designer - Qt 4 Designer libraries
[ROOT@lazarus]#

As you can see, in Debian, Qt 4 has been split into many separate packages

to give package maintainers more flexibility when they deploy. When devel-

oping, you need the full Qt 4 package with developers’ tools, full headers,

docs, designer, assistant, and examples.

1 . 3 S E T U P : O P E N - S O U R C E  P L A T F O R M S

9

1.3.2 Downloading from Source

You can download, unpack, and compile the latest open-source tarball from

Trolltech.4 Two typical places to unpack the tarball are /usr/local/ (if you are

root) or $HOME/qt (if you are not).

A tarball is a file produced by the tar command (tape archive) that can
combine many files, as specified in the command line, into one file
(which is generally given the extension .tar) for ease of storage or
transfer. The combined file is generally compressed using a utility like
gzip or bzip2, which appends the extension .gz or .bz to the tar file.

The command line for unpacking a tarball depends on how it was
created.You can usually determine this from its extension.

tar -vxf whatever.tar      // uses the "verbose" switch
tar -zxf whatever.tar.gz  // compressed with gzip
tar -zxf whatever.tgz      // also compressed with gzip
tar -jxf whatever.tar.bz2  // compressed with bzip2

A tar file can preserve directory structures and has many options and
switches. You can read the online documentation for these utilities by
typing:

info tar
info gzip
info bzip

4 http://www.troltech.com/download/opensource.html

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 9



The Qt source tarball contains the complete source code of the Qt library, plus

numerous examples, tutorials, and extensions with full reference documentation.

The tarball contains simple installation instructions (in the README and

INSTALL files) and a configure --help message. Be sure to read the README

file before you attempt to install software from any open-source tarball.

Compiling from source can take 2 to 3 hours (depending on the speed of your

system), but it is worth the time. Example 1.1 shows the options we use to config-

ure qt:4.

E X A M P L E  1 . 1 ../bin/qtconfigure

#!/bin/sh
# This is a script which I use to configure and
# make qt4 - it includes extra options I use for working with mysql.
# 
# Before you run this, be sure you have at least the
# mysql client header files :

# apt-get install libmysqlclient-dev mysql-server mysql-client

INSTALLDIR=/usr/local/qt4
./configure -prefix $INSTALLDIR -fast -qt-gif \
#          for mysql:

-I/usr/include/mysql -qt-sql-mysql
#          for odbc:

-plugin-sql-odbc -qt-sql-odbc
make

You can run this as a regular user as long as you have write permissions in that

directory. Notice that this script runs make right after it is finished with

configure, so it will run for quite a while.

In the final step, make install copies the executables and headers into

another location from the unzipped tarball source tree. If you are installing in a

common location, you need to be root to do this.

After installation, try qmake -v to determine which version of qmake is
found by your shell. For systems that have more than one version
installed, this is especially important to do.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

10

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 10



> which qmake
/usr/local/qt-x11-opensource-src-4.1/bin/qmake
> qmake -v
QMake version: 2.00a
Using Qt version 4.1 in /usr/local/qt-x11-opensource-
src-4.1/lib
>

After installing, check your environment variables and make sure that

■ QTDIR contains the path to the main directory of the Qt 4 installation.5

■ PATH contains $QTDIR/bin (the path to the Qt executables).

■ MANPATH contains $QTDIR/doc (the path to the Qt documentation).

■ LD_LIBRARY_PATH contains $QTDIR/lib (the path to the Qt

libraries).

The bash command env will display the current values of all your
environment variables.

The shell script in Example 1.2 shows how we set the values with bash, but the

actual values depend on where the files are located on your system.

E X A M P L E  1 . 2 src/libs/utils/qt.sh

# Typical user specific environment and startup values for QT
# depending on how and where qt was installed on your system
export QTDIR=/usr/local/qt4
export PATH=$QTDIR/bin:$PATH
export MANPATH=$QTDIR/doc/man:$MANPATH

# Location of your own libraries - source and target.
export CPPLIBS=~/projects/libs

# LD Library path - where to search for shared object libraries
# at runtime.
export LD_LIBRARY_PATH=$CPPLIBS:$QTDIR/lib:$LD_LIBRARY_PATH

1 . 3 S E T U P : O P E N - S O U R C E  P L A T F O R M S

11

5 Qt 4 does not require the use of this environment variable, but we use this variable to refer to the
“Qt install” directory in our examples.

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 11



1.4 Setup: Win32
There are two versions of Qt available on Win32 platforms.

1. The open-source edition, which supports MinGW6 (the Minimalist Gnu

for Windows), can be downloaded and used for free with open-source

projects.

2. The Qt 4 Commercial Edition can be used with Microsoft compilers,

such as Microsoft Visual C++ 6, and later versions of Developer’s Studio.

Installing either edition is a snap: The Win32 installer guides you through the

process, registers extensions, and sets environment variables for you. The open-

source edition can even download and install MinGW for you.

After Qt is installed, you should click

Start -> Programs -> Qt by Trolltech -> Build debug symbols

This may take a couple of hours.

Next, open a shell window by clicking

Start -> Programs -> Qt by Trolltech -> Command Prompt

Now you can run qmake -v from the command prompt to see the currently

installed version of Qt. qmake, assistant, designer, qtdemo, qtconfig,

g++, and make should all be findable in your search path now.

Try the qtdemo that is also available from the Start menu.

MSYS (from MinGW) and Cygwin7 both offer bash and xterm-like shell
windows to simulate a *nix system in Win32 environments.

For building the Qt debug symbols, we found that the configure
and make scripts did not work. However, for building our own apps, we
have been able to run qmake and make inside a bash shell from Cygwin.

1.5 C++ First Example
Throughout this book we will use code examples to explain and illustrate impor-

tant programming and OOP issues. Our aim in each case is to use a minimal

example that will illustrate the ideas and techniques briefly and efficiently.

Example 1.3 provides a quick overview of some elementary C++ syntax.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

12

6 http://www.mingw.org/
7 http://www.cygwin.com

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 12



E X A M P L E  1 . 3 src/early-examples/fac.cpp

// Computes and prints n! for a given n. 
// Uses several basic elements of C++.

#include <iostream>

int main() {
using namespace std;
/* Declarations of variables */
int factArg = 0 ;
int fact (1) ;
do {

cout << "Factorial of: ";
cin >> factArg;
if( factArg < 0 ) {

cout << "No negative values, please!" << endl;
}

} while(factArg < 0) ;
int i = 2;
while( i <= factArg ) {

fact = fact * i;
i = i + 1;

}
cout << "The Factorial of " << factArg << " is: " << fact << endl;
return 0; 13

12

11

10

9

8

7

6

5

4

3

2

1

1 . 5 C + +  F I R S T  E X A M P L E

13

start of function “main,” which returns int
Permits us to use the symbols cin, cout, and endl without prefixing each name with std::
C style initialization syntax
C++ style initialization syntax
start of “do..while” loop
write to standard output
read from standard input and convert to int
end of if block
if false, break out of do loop
start of while loop
end of while block
When main returns 0, that normally means “no errors.”
end of main block

On most platforms it is simple to compile and run this program using the ubiqui-

tous GNU C compiler, gcc. The command to compile a C++ program is g++, but

this is simply an alias to gcc with some C++ options switched on.

When invoking the compiler, we recommend always maximizing the amount of

diagnostic information that is available from the compilation process. Accordingly,

we include three switches on the command line: (1) -ansi (which turns off GNU

14

13

12

11

10

9

8

7

6

5

4

3

2

}

Standard c++ library. In older versions of C++, you might find <iostream.h> instead, but that ver-
sion is regarded as obsolete or ”deprecated.”

1

14

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 13



extensions that conflict with ISO C++), (2) -pedantic (which issues all the warnings

that are demanded by strict ISO C++ and rejects any program that uses forbidden

extensions), and (3) -Wall (which enables all possible warnings about constructions

that might be considered questionable even if they conform to the standard).

src/early-examples> g++ -ansi -pedantic -Wall fac.cpp

or

src/early-examples> g++ -ansi -pedantic -Wall  -o execFile fac.cpp

In the second version shown above, -o execFile is an optional switch that tells

the compiler to name the executable result of the compilation “execFile.” If we

omit that switch, as in the first version, the compiler will produce an executable file

named a.out. In either case, if there already exists a file in the same directory

with the name of our target executable, then the compiler will quietly and auto-

matically overwrite it.

We have mentioned here just a few of the most commonly used compiler

switches. On a *nix system you can view the manual pages, a summary of the g++

command options and how they are used, by typing the command

man g++

The command

info g++

often displays more readable documentation. One advantage is that the info

command allows you to do an incremental search for a word in the documenta-

tion by typing ctrl-s. On most systems these commands allow you to browse the

online documentation for g++ one screen at a time. For more complete gcc doc-

umentation, visit the GNU online document center.8

After it has been compiled successfully, our program can be run by typing the

name of the executable file. Here is an example done on a *nix platform:

src/early-examples> ./a.out
Factorial of: -3
No negative values, please!
Factorial of: 5
The Factorial of 5 is: 120
src/early-examples>

C H A P T E R  1 : C + +  I N T R O D U C T I O N

14

8 http://www.gnu.org/software/gcc/onlinedocs/

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 14



This short program has several of the language elements that show up in most

C++ programs. Some interesting differences between C++ and other languages

(especially C) can be seen in this example.

Comments

C++ has single-line comments as in Java. Any text between the // and the end of

the line is a comment. C-style comment delimiters for multiline comments can

also be used: The text between  /* and */ is a comment.

#include

To reuse functions, types, or identifiers from libraries, we use the preprocessor

directive #include (see Section C.1). As in C, all preprocessor directives begin

with the pound sign character, #, and are evaluated just before the compiler com-

piles your code. In this example, the included header <iostream> contains the

Standard Library definitions for input/output.

The Using Namespace Directive

Symbols from the Standard Library (see Appendix B) are all enclosed in the

namespace std.

A namespace (see Section 20.4) is a collection of classes, functions, and objects

that can be addressed with a name prefix. The using declaration tells the compiler to

add all symbols from thenamespace std to our global namespace.

Declaring and Initializing Variables

Variable declarations come in three styles in C++:

type-expr  variableName;
type-expr  variableName = init-expr;
type-expr  variableName (init-expr);

In the first form, the variable might not be initialized. The third form is an alter-

nate syntax for the second.

Selection

C++ provides the usual assortment of syntax variations for selection, which we

discuss in Section 21.2.

1 . 5 C + +  F I R S T  E X A M P L E

15

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 15



Iteration

We used two of the three iteration structures provided by C++ in our example. All

three are discussed in Section 21.3.

1.6 Input and Output
In Example 1.3, the directive

#include <iostream>

allowed us to make use of the predefined global input and output stream objects.

They are

1. cin—standard input, the keyboard by default

2. cout—standard output, the console screen by default

3. cerr—standard error, another output stream to the console screen that

flushes more often and is normally used for error messages

To send output to the screen in Example 1.3, we made use of the global stream

object (of the class ostream), called cout. We called one of its member func-

tions, whose name is operator<<(). This function overloads the insertion oper-

ator << and defines it like a global function.9 The syntax for that output statement

is also quite interesting. Instead of using the rather bulky function notation:

cout.operator<<("Factorial of :");

we invoked the same function using the more elegant and readable infix syntax:

cout << "Factorial of:  " ;

This operator is predefined for use with many built-in types, as we see in the next

output statement.

cout << "The cost is $" << 23.45 << " for " << 6 << 
"items." << '\n';

In Example 1.4, we can see the operator>>() used for input with istream in

an analogous way to << for ostream.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

16

9 We will discuss overloaded functions and operators in more detail later in Section 5.2.

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 16



E X A M P L E  1 . 4 src/iostream/io.cpp

#include <string>
#include <iostream>

int main() {
using namespace std;
const int THISYEAR = 2006;
string yourName;
int birthYear;

cout << " What is your name? "  << flush;
cin >> yourName;

cout << "What year were you born? " ;
cin >> birthYear;

cout << "Your name is " << yourName
<< " and you are approximately "
<< (THISYEAR - birthYear)
<< " years old. " << endl;

}

The symbols flush and endl are manipulators that were added to the std

namespace for convenience.10 Manipulators are implicit calls to functions that can

change the state of a stream object in various ways.

Notice also that we are using the string type from the Standard Library.

We will discuss this type and demonstrate some of its functions shortly (see

Section 1.9).

E X E R C I S E S : I N P U T  A N D  O U T P U T

1. Using Example 1.4, do the following experiments:

■ First, compile and run it to see its normal behavior.

■ What happens if you enter a non-numeric value for the birth year?

■ What happens if you enter a name such as Curious George as your name?

■ What happens if you remove the following line?

using namespace std;

1 . 6 I N P U T  A N D  O U T P U T

17

10 We discuss these further in Section 1.10.

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 17



■ Replace the statement

cin >> yourName;

with the statement

getline(cin, yourName);

and try Curious George again.

■ Can you explain the differences in behavior between cin >> and

getline()? We discuss this later in Section 1.9.

■ Add some more questions to the program that require a variety of numeri-

cal and string answers, and test the results.

2. Consider the program shown in Example 1.5.

E X A M P L E  1 . 5 src/early-examples/fac2.cpp

#include <iostream>

long factorial(long n) {
long ans = 1;
for (long i = 2; i <= n; ++i) {

ans = ans * i;
if (ans < 0) {

return -1;
}

}
return ans;

}

int main() {
using namespace std;
cout << "Please enter n: " << flush;
long n;  
cin >> n;

if (n >= 0) {
long nfact = factorial(n);
if (nfact < 0) {

cerr << "overflow error: "
<< n << " is too big." << endl;

}

2

1

C H A P T E R  1 : C + +  I N T R O D U C T I O N

18

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 18



else {
cout << "factorial(" << n << ") = "

<< nfact << endl;
}

}
else {

cerr << "Undefined:  "
<< "factorial of a negative number: " << n << endl;

}
return 0;

}

long int
read from stdin, try to convert to long

■ Test the program in Example 1.5 with a variety of input values, including

some non-numeric values.

■ Determine the largest input value that will produce a valid output.

■ Can you change the program so that it will produce valid results for larger

input values?

■ Modify the program so that it cannot produce invalid results.

■ Explore the effects of using the statement

if(cin >> n)   {  ...  }

to enclose the processing of n in this program. In particular, try entering

non-numeric data after the prompt. This is an example of the use of a con-

version operator, which we discuss in more detail in Section 2.13.

■ Modify the program so that it will accept values from the user until the value

9999 is entered.

1.7 Identifiers, Types, and Literals
Identifiers are names that are used in C++ programs for functions, parameters,

variables, constants, classes, and types. An identifier consists of a sequence of let-

ters, digits, and underscores that does not begin with a digit. An identifier cannot

be a reserved keyword. See Appendix A for a list of them. The standard does not

specify a limit to the length of an identifier, but certain implementations of C++

only examine the first 31 characters to distinguish between identifiers.

2

1

1 . 7 I D E N T I F I E R S , T Y P E S , A N D  L I T E R A L S

19

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 19



A literal is a constant value that appears somewhere in a program. Since every

value has a type, every literal has a type also. It is possible to have literals of each

of the native data types, as well as character string literals. Table 1.1 shows some

examples of literals.

T A B L E  1 . 1 Examples of Literals

Literal Meaning

5 an int literal

5u u or U specifies unsigned int

5L l or L specifies long int after an integer

05 an octal int literal

0x5 a hexadecimal int literal

true a bool literal

5.0F f or F specifies single precision floating point literal

5.0 a double precision floating point literal

5.0L l or L specifies long double if it comes after a
floating point

'5' a char literal (ASCII 53)

"50" a const char* containing the chars '5','0',
and '\0'

"any" "body" "anybody"

'\a' alert

'\\' backslash

'\b' backspace

'\r' carriage return

'\" single quote

'\"' double quote

'\f' formfeed  (newpage)

'\t' tab

'\n' newline char literal

"\n" newline followed by null terminator (const char*)

'\0' null character

'\v' vertical tab

"a string with another const char*
newline\n"

C H A P T E R  1 : C + +  I N T R O D U C T I O N

20

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 20



String literals are special in C++, due to its historical roots in the C language.

Example 1.6 shows how certain characters need to be escaped inside double-

quoted string delimiters.

E X A M P L E  1 . 6 src/early-examples/literals.cpp

#include <iostream>
#include <string>

int main() {
using namespace std;
const char* charstr = "this is one very long string "

"so I will continue it on the next line";
string str = charstr;
cout << str << endl;
cout << "\nA\tb\\c\'d\"" << endl;
return 0;

}

STL strings can hold onto C-style char* strings.

We compile and run the way we described earlier:

src/early-examples>  g++ -ansi -pedantic -Wall literals.cpp
src/early-examples>  ./a.out

The output should look something like this:

1

1

1 . 7 I D E N T I F I E R S , T Y P E S , A N D  L I T E R A L S

21

this is one very long string so I will continue it on the next line

A       b\c'd"

Notice that this program shows a way to avoid very long lines when dealing with

string literals. They can be broken at any white space character and are concate-

nated automatically using this syntax.

E X E R C I S E S : I D E N T I F I E R S , T Y P E S ,
A N D  L I T E R A L S

Modify Example 1.6 so that, with a single output statement, the output becomes:

1. GNU stands for "GNU's Not Unix".

2. Title 1         "Cat Clothing"

Title 2         "Dog Dancing"

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 21



1.8 C++ Simple Types
The simple types supported in C/C++ are

■ A Boolean type (bool)

■ Character types (char and wchar_t)

■ Integer types (short, int, long)

■ Floating point numbers (double, float, long double, etc.)

■ Pointers (int*, char*, bool*, double*, void*, etc.)

In addition, C and C++ both provide a name that signifies the absence of type

information (void).

C++ simple types can (variously) be modified by the following keywords to

produce other simple types:

■ short

■ long

■ signed

■ unsigned11

T A B L E  1 . 2 Simple Types Hierarchy

Byte/char types Integral types Floating point types

bool short int float

char int double

signed char long int long double

unsigned char unsigned short

wchar_t unsigned int

unsigned long

C++ compilers allow you to omit“int”fromshortint,longint, andunsigned

int. You can omit signed from most types, since that is the default.

Since the range of values for a particular type depends on the underlying archi-

tecture of the machine on which the compiler is running, the ANSI/ISO standard

for C++ does not specify the size (in bytes) of any of these types. It only guarantees

C H A P T E R  1 : C + +  I N T R O D U C T I O N

22

11 For a brief discussion of the differences between signed and unsigned integral types, see Section 19.4.

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 22



that a given type (e.g., int) must not be smaller than one that appears above it

(e.g., short) in Table 1.2.

There is a special operator sizeof() that returns the number of chars12 that

a given expression requires for storage. Unlike most functions, the sizeof()

operator can take value expressions or type expressions.

Example 1.7 shows how sizeof() can be used, and some of the values it

returns on a 32-bit x86 system.

E X A M P L E  1 . 7 src/early-examples/size.cpp

#include <assert.h>
#include <iostream>
#include <string>

int main(int argc, char* argv[]) {
using namespace std;
int i=0;
char array1[34] = "This is a dreaded C array of char";
char array2[] = "if not for main, we could avoid it entirely.";
char *charp = array1;
string stlstring = "This is an Standard Library string. Much
preferred." ;
assert (sizeof(i) == sizeof(int));
cout << "sizeof char = " << sizeof(char) << '\n';
cout << "sizeof wchar_t = " << sizeof(wchar_t) << '\n';
cout << "sizeof int = " << sizeof(int) << '\n';
cout << "sizeof long = " << sizeof(long) << '\n';
cout << "sizeof float = " << sizeof(float) << '\n';
cout << "sizeof double = " << sizeof(double) << '\n';
cout << "sizeof double* = " << sizeof(double*) << '\n';
cout << "sizeof array1 = " << sizeof(array1) << '\n';
cout << "sizeof array2 = " << sizeof(array2) << '\n';
cout << "sizeof stlstring = " << sizeof(stlstring) << endl;
cout << "length of stlstring= " << stlstring.length() << endl;
cout << "sizeof char* = " << sizeof(charp) << endl;
return 0;

}

Output:

sizeof char = 1
sizeof wchar_t = 4
sizeof int = 4
sizeof long = 4

1

1 . 8 C + +  S I M P L E  T Y P E S

23

12 On most systems, a single char is a byte.

continued

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 23



sizeof float = 4
sizeof double = 8
sizeof double* = 4
sizeof array1 = 34
sizeof array2 = 46
sizeof stlstring = 4
length of stlstring = 38
sizeof char* = 4

pointer to first element of array

Notice that all pointers are the same size, regardless of their type.

sizeof(stlstring) indicates it is only 4 bytes, but it is a complex class that

uses dynamic memory, so we use length() to get the number of characters in

the string.

The ranges of values for the integral types (bool, char, int) are defined

in the standard header file limits.h. On a typical *nix installation that file can

be found in a subdirectory of /usr/include.

1.8.1 main and Command Line Arguments

main() is a function (see Chapter 5), that is called at program startup. If the

program accepts command line arguments, we must define main with its full

parameter list.

C permits flexibility in the ways that arguments are defined in main(), so you

may see it defined in a variety of ways:

int main(int argc, char* argv[])
int main(int argc, char ** argv)
int main(int argCount, char * const argValue[])

All of the above forms are valid, and each defines two parameters. These parame-

ters contain enough information to reconstruct the command line arguments

passed into the program from the parent process (a command line shell, a window

manager, etc.).

Example 1.8 is a simple main program that prints its command line arguments.

E X A M P L E  1 . 8 src/main/main1.cpp

#include <iostream>
using namespace std;

1

C H A P T E R  1 : C + +  I N T R O D U C T I O N

24

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 24



int main (int argCount, char* argValue[]) {
for (int i=0; i<argCount; ++i) {

cout << "argv# " << i << " is " << argValue[i] << endl;
}
return 0;

}

argValue, or argv for short, is a two-dimensional array (see Section 22.4) of

char. argCount, or argc for short, is the number of char arrays in argv.

argv contains each command line string as an item in its array.

int main() “returns” an integer, which should be 0 if all went well, or a non-

zero error code if something went wrong.

Try not to confuse this interpretation of 0 with the bool value false,
which is equal to zero.

If we run this program and pass some arguments, we will see something like this

in the output:

~/src/main> ./a.out foo bar "space wars" 123
argv# 0 is ./a.out
argv# 1 is foo
argv# 2 is bar
argv# 3 is space wars
argv# 4 is 123

The first argument is always the name of the executable. The other arguments are

taken from the command line as strings separated by spaces or tabs. To pass a

string that contains spaces as a single argument, you must enclose the string in

quotes.

1.8.2 Arithmetic

Each programming language must provide facilities for doing basic arithmetic. For

each of its native numerical types,C++ provides these four basic arithmetic operators:

■ Addition (+)

■ Subtraction (-)

1 . 8 C + +  S I M P L E  T Y P E S

25

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 25



■ Multiplication (*)

■ Division (/)

These operator symbols are used to form expressions in the standard infix syntax

that we learned in math class.

C++ provides shortcut operators that combine each of the basic operators

with the assignment operator (=) so that, for example, it is possible to write

x += y;

instead of

x = x + y;

C++ also provides unary increment (++) and decrement (--) operators that can be

used with integral types. If one of these operators is applied to a variable on the left

(prefix), then the operation is performed before the rest of the expression is evalu-

ated. If it is applied to a variable on the right (postfix), then the operation is per-

formed after the rest of the expression is evaluated. Examples 1.9 through 1.13

demonstrate the use of the C++ arithmetic operators.

E X A M P L E  1 . 9 src/arithmetic/arithmetic.cpp

[ . . . . ]
#include <iostream>

int main() {
using namespace std;
double x(1.23), y(4.56), z(7.89) ;
int i(2), j(5), k(7);
x += y ;
z *= x ;
cout << "x = " << x << "\tz = " << z

<< "\nx - z = " << x - z << endl ;

Integer division is handled as a special case. The result of dividing one int by

another produces an int quotient and an int remainder. The operator / is used to

obtain the quotient. The operator %(called the modulus operator) is used to obtain

the remainder.

Example 1.10 shows the use of these integer arithmetic operators.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

26

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 26



E X A M P L E  1 . 1 0 src/arithmetic/arithmetic.cpp

[ . . . . ]

1 . 8 C + +  S I M P L E  T Y P E S

27

cout << "k / i = " << k / i
<< "\tk % j = " << k % j << endl ;

cout << "i = " << i << "\tj = " << j << "\tk = " << k << endl;
cout << "++k / i = " << ++k / i << endl;
cout << "i = " << i << "\tj = " << j << "\tk = " << k << endl;
cout << "i * j-- = " << i * j-- << endl;
cout << "i = " << i << "\tj = " << j << "\tk = " << k << endl;

Mixed expressions, if valid, generally produce results that are of the widest of the

argument types. We discuss this in more detail in Chapter 19.

Example 1.11 shows that the result of a double divided by an int is a double.

E X A M P L E  1 . 1 1 src/arithmetic/arithmetic.cpp

[ . . . . ]

cout << "z / j = " << z / j << endl ;

C++ also provides a full set of boolean operators to compare numeric expressions.

Each of these operators returns a bool value of either false or true.

■ Less than  (<)

■ Less than or equal to  (<=)

■ Equal to (==)

■ Not equal to  (!=)

■ Greater than (>)

■ Greater than or equal to (>=)

A bool expression can be negated with the unary not (!) operator. Two bool

expressions can be combined with the operators

■ and (&&)

■ or  (||)

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 27



We discuss bool expressions in more detail in Section 19.2.

E X A M P L E  1 . 1 2 src/arithmetic/arithmetic.cpp

[ . . . . ]

/*   if() ... else   approach */
if(x * j <= z)

cout << x * j << " <= " << z << endl ;
else

cout << x * j << " > " << z << endl;
/* conditional operator approach */
cout << x * k

<<( (x * k < y * j) ? " < " : " >= ")
<< y * j << endl;

}

In addition to the binary boolean operators, Example 1.12 makes use of the

conditional-expression.

The expression

(boolExpr) ? expr1 : expr2

returns expr1 if boolExpr is true, otherwise it returns expr2. Example 1.13

shows the output that this program produces.

E X A M P L E  1 . 1 3 src/arithmetic/arithmetic.cpp

[ . . . . ]

Output:

x = 5.79        z = 45.6831
x - z = -39.8931
k / i = 3       k % j = 2
i = 2   j = 5   k = 7
++k / i = 4
i = 2   j = 5   k = 8
i * j-- = 10
i = 2   j = 4   k = 8
z / j = 11.4208
23.16 <= 45.6831
46.32 >= 18.24

C H A P T E R  1 : C + +  I N T R O D U C T I O N

28

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 28



1 . 8 C + +  S I M P L E  T Y P E S

29

E X E R C I S E S : C + +  S I M P L E  T Y P E S

1. Here is an old favorite: Write a short program that asks the user to choose

Celsius-to-Fahrenheit or Fahrenheit-to-Celsius. Then ask for a lower bound, an

upper bound, and an increment. Using that information, produce an appropiate

table with column headings. The main() part of your program should be

relatively short. Most of the work should be performed by functions that

you design, e.g.,celsiusToFahrenheit(), fahrenheitToCelsius(),

makeTable(), and so forth (with appropriate parameter lists).

2. If you #include <cstdlib>, you can make use of the random() function

that generates a sequence of pseudo-random long ints in the range from 0

to RAND_MAX, which can be used in many interesting ways. It works by com-

puting the next number in its sequence from the last number that it generated.

The function srandom(unsigned int seed) sets its argument as the ini-

tializing value (seed) for the random sequence. Write a short program that tests

this function by allowing the user to supply the seed from the keyboard and

then generating a list of pseudo-random numbers.

3. One trick is to use srandom(time(0)) to seed the random() function. Since

time(0) returns the number of seconds since some initial starting point, the

seed will be different each time you run the program. This allows you to write

programs that have usefully unpredictable behavior patterns. Write a program

that simulates a dice game that the user can play with the computer. Here are

the rules to apply to your game:

■ The game is about repeated “throws” of a pair of dice.

■ Each die has six faces, which are numbered 1 through 6.

■ A throw results in a number that is the total of the two top faces.

■ The first throw establishes the player’s number.

■ If that number is 7 or 11, the player automatically wins.

■ If that number is 2, the player automatically loses.

■ Otherwise, the player continues throwing until she wins (by matching her

number) or loses (by throwing a 7 or an 11).

4. Write a program that accepts two values from the user (customer): the total

purchase amount and the amount submitted for payment.

Each of these values can be stored in a variable of type double. Then com-

pute and display the change that will be given to the user. Express the change

in terms of the number of $10 bills, $5 bills, $1 bills, quarters, dimes, nickels, and

pennies. (Presumably, this output could be sent to a machine that dispenses

those items automatically.)

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 29



For example, if the total purchase amount is $73.82 and the customer pays

with a $100 bill, then the change should be: two $10 bills, one $5 bill, one $1 bill,

no quarters, one dime, one nickel, and three pennies.

Convert the amount that is owed the customer to pennies, which can be
stored as an int and then use the integer division operators.

1.9 C++ Standard Library Strings
Our early (pre-Qt) examples will make use of C++ Standard Library strings (see

Appendix B). Standard Library strings have many disadvantages when compared

to QStrings, but they are easy to use and have a similar public interface that

includes many functions to construct and modify strings.

Example 1.14 demonstrates its basic usage.

E X A M P L E  1 . 1 4 src/generic/stlstringdemo.cpp

#include <string>
#include <iostream>

int main() {
using namespace std;
string s1("This "), s2("is a "), s3("string.");
s1 += s2;
string s4 = s1 + s3;
cout << s4 << endl;

string s5("The length of that string is: ");
cout << s5 << s4.length << " characters." << endl;

cout << "Enter a sentence: " << endl;
getline(cin, s2);
cout << "Here is your sentence: \n" << s2 << endl;
cout << "The length of it was: " << s2.length() << endl;
return 0;

}

concatenation1

1

C H A P T E R  1 : C + +  I N T R O D U C T I O N

30

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 30



Here is the compile and run:

src/generic> g++ -ansi -pedantic -Wall stlstringdemo.cpp
src/generic> ./a.out
This is a string.
The length of that string is 17
Enter a sentence:
20 years hard labour
Here is your sentence:
20 years hard labour
The length of it was: 20
src/generic>

Observe that we used the getline(istream, string) function to take a

string from standard input stream. We will learn more about input from

streams in the following section.

1.10 Streams
Streams are objects used for reading and writing. The Standard Library defines

<iostream>,while Qt defines <QTextStream> for the equivalent functionality.

iostream defines the three global streams:

■ cin—standard input (keyboard)

■ cout—standard output (console screen)

■ cerr—standard error (console screen)

Also defined (in both <iostream> and <QTextStream>) are manipulators,

such as flush and endl. A manipulator can be added to

■ An output stream to change the way the output data is formatted

■ An input stream to change the way that the input data is interpreted

The code in Example 1.15 demonstrates the use of several manipulators applied to

the standard output stream.

E X A M P L E  1 . 1 5 src/stdstreams/streamdemo.cpp

#include <iostream> 

int main() {
using namespace std;
int num1(1234), num2(2345) ;

1 . 1 0 S T R E A M S

31

continued

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 31



cout << oct << num2 << '\t'
<< hex << num2 << '\t'
<< dec << num2
<< endl;

cout << (num1 < num2) << endl;
cout << boolalpha

<< (num1 < num2)
<< endl;

double dub(1357);
cout << dub << '\t'

<< showpos << dub << '\t'
<< showpoint << dub
<< endl;

dub = 1234.5678;
cout << dub << '\t'

<< fixed << dub << '\t'
<< scientific << dub << '\n'
<< noshowpos << dub
<< endl;

}

Output:

4451    929     2345
1
true
1357    +1357   +1357.00
+1234.57        +1234.567800    +1.234568e+03
1.234568e+03

Streams are used for reading from or writing to files, network connections, and

also strings. One useful feature of streams is that they make it easy to produce

strings from mixed types of data. In Example 1.16, we will create some strings

from numerics and write them to a file.

E X A M P L E  1 . 1 6 src/stl/streams/streams.cpp

[ . . . . ]

int main() {
using namespace std;
ostringstream strbuf;

int lucky = 7;
float pi=3.14;
double e=2.71;

C H A P T E R  1 : C + +  I N T R O D U C T I O N

32

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 32



/* An in-memory stream */
strbuf << "luckynumber " << lucky << endl

<< "pi " << pi << endl
<< "e " << e << endl;

string strval = strbuf.str();
cout << strval;

/* An output file stream. */
ofstream outf;
outf.open("mydata");
outf << strval ;
outf.close();

convert the stringstream to a string
creates (or overwrites) a disk file for output

After the strings have been written, we have a couple of choices for how to read

them. We can use the analogous input operators that we wrote to output, and

because there is whitespace between each record, the insertion operator will work

as shown in Example 1.17.

E X A M P L E  1 . 1 7 src/stl/streams/streams.cpp

[ . . . . ]

/* An input file stream */
ifstream inf;
inf.open("mydata");
string newstr;
int lucky2;
inf >> newstr >> lucky2;
if (lucky != lucky2)

cerr << "ERROR! wrong lucky number" << endl;

float pi2;
inf >> newstr >> pi2;
if (pi2 != pi) cerr << "ERROR! Wrong pi." << endl;

double e2;
inf >> newstr >> e2;
if (e2 != e) cerr << "e2: " << e2 << " e: " << e << endl;
inf.close();  

2

1

2

1

1 . 1 0 S T R E A M S

33

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 33



In addition, we can read files line-by-line and deal with each line as a string, as

shown in Example 1.18.

E X A M P L E  1 . 1 8 src/stl/streams/streams.cpp

[ . . . . ]

/* Read line-by-line */
inf.open("mydata");
while(not inf.eof()) {

getline(inf, newstr);
cout << newstr << endl;

}
inf.close();
return 0;

}

E X E R C I S E : S T R E A M S

Modify the program in Example 1.16 so that it does the following:

■ It gets the file name from the user as an STL string fileName. You will need to

use the function fileName.c_str() to convert the string to a form that is

acceptable to the open( ) function.

■ It makes sure that the file specified by the user does not already exist (or that it

is all right to overwrite it if it does exist) before opening it for output.

■ It makes sure that the file exists before attempting to read from it. (Hint: After

the call to open, you can test the ifstream variable as if it were a bool.

false means that the file does not exist.)

1.11 The Keyword const
Declaring an entity to be const tells the compiler to make it “read-only.” const

can be applied usefully in a large number of programming situations, as we will

soon see.

Because it cannot be assigned to, a const object must be properly initialized.

For example:

const int x = 33;
const int v[] = {3, 6, x, 2 * x};

C H A P T E R  1 : C + +  I N T R O D U C T I O N

34

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 34



Working with the declarations above:

++x ;           // error
v[2] = 44;  // error

Compilers can take advantage of an object being read-only in various ways. For

integers and some simple types, no storage needs to be allocated for a const

unless its address is taken. Therefore, most optimizing compilers try to store them

in static memory.

It is good programming style to use const entities instead of embedding con-

stant expressions (sometimes called “magic numbers”) in your code. This will gain

you flexibility later when you need to change the values and, in general, it will

improve the maintainability of your programs. For example, instead of something

like this:

for(i = 0; i < 327; ++i) {

...
}

use something like this:

// const declaration section of your code
const int SIZE = 327;
...
for(i = 0; i < SIZE; ++i) {

...
}

In some C/C++ programs, you might see constants defined with pre-
processor macros like this:

#define STRSIZE 80

[...]

char str[STRSIZE];

Preprocessor macros get replaced before the compiler sees them. Using
macros instead of constants means that the compiler cannot perform
the same level of type checking as it can with proper constant expres-
sions. Generally const expressions are preferred to macros for defining
constant values in C++ programs.

1 . 1 1 T H E  K E Y W O R D  C O N S T

35

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 35



1.12 Pointers and Memory Access
C and C++ distinguish themselves from many other languages by permitting

direct access to memory through the use of pointers. This section explains the

basic pointer operations and modifiers, and introduces dynamic memory usage.

Pointers can seem complicated at first. We discuss pointer use and misuse in more

detail in Chapter 22.

1.12.1 The Unary Operators & and *

A variable is an object with a name recognized by the compiler. A variable’s name

can be used as if it is the object itself. For example, if we say:

int  x  =  5;

we can use x to stand for the integer object whose value is 5, and  we can manip-

ulate the integer object directly through the name x. For example:

++x ;    // symbol x now refers to an integer with value 6

An object (in the most general sense) is a chunk of memory that can hold data.

Each object has a memory address (where the data begins). The unary & operator,
also known as the address-of operator, when applied to any object, returns the

memory address of that object. For example, &x returns the memory address of x.

An object that holds the memory address of another object is called a pointer.

We say that the pointer points to the object at the stored memory address.

int*  y  =  &x ;

In this example, y points to the integer x. The asterisk * following the int indi-

cates that y is a pointer to int. Here we have initialized the int pointer y to the

address of the int variable x. One of the powerful features of pointers is that, sub-

ject to rules that we will explore shortly, it is possible for a pointer of one type to

hold the address of an object of a different (but related) type.

Zero (0), often represented by the macro NULL in C programs, is a special

value that can be legally assigned to a pointer, usually when it is being initialized

(or re-initialized). 0 is not the address of any object. A pointer that stores the value

0 is called a null pointer. Stroustrup recommends the use of 0 rather than the

macro NULL in C++ programs.

A pointer to a simple type uses exactly the same amount of memory as a

pointer to a large complicated object. That size is usually the same as

sizeof(int) on that machine.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

36

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 36



The unary * operator, also known as the dereference operator, when applied

to a non-null pointer returns the object at the address stored by the pointer.

The symbol * is used in two different ways in connection with pointers:

■ It can serve as a type modifier in a pointer variable definition.

■ It can be used as the dereference operator.

Dereferencing a null or uninitialized pointer causes a run-time error, usu-
ally a segmentation fault or, in Windows, a General Protection Fault (GPF).

It is the responsibility of the programmer to make sure that no attempt
is made to dereference a null or uninitialized pointer. We will discuss
techniques to ensure that such errors are avoided.

E X A M P L E  1 . 1 9 src/pointers/pointerdemo.cpp

// Filename pointerdemo.cpp

#include <iostream>
using namespace std;

int main() {
int x = 4;
int* px = 0 ;
px = &x;
cout << "x = " << x

<< " *px = " << *px
<< " px = " << px
<< " &px = " << &px << endl;

x = x + 1;
cout << "x = " << x

<< " *px = " << *px
<< " px = " << px << endl;

*px = *px + 1;
cout << "x = " << x

<< " *px = " << *px
<< " px = " << px << endl;

return 0;
}

2

1

1 . 1 2 P O I N T E R S  A N D  M E M O R Y  A C C E S S

37

continued

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 37



Output:

OOP> ./a.out
x = 4 *px = 4 px = 0xbffff514 &px = 0xbffff510
x = 5 *px = 5 px = 0xbffff514
x = 6 *px = 6 px = 0xbffff514
OOP>

type modifier
unary dereference operator

The particular values of the addresses will, of course, be different when the code

in Example 1.19 is executed on different machines.

The variable x accesses its data directly, but the variable px accesses the same

data indirectly. This is why the word indirection is often used to characterize the

process of accessing data through a pointer. The relationship between the two vari-

ables, x and px, is illustrated in Figure 1.1.

2

1

C H A P T E R  1 : C + +  I N T R O D U C T I O N

38

Name: px
Value: 0xbfff514

Name: x
Value: 4

Location: 0xbffff510

Location: 0xbfff514

F I G U R E  1 . 1 Pointer demo

1.12.2 Operators new and delete

C++ has a mechanism that permits storage to be allocated dynamically at run-

time. This means that the programmer does not need to anticipate the memory

needs of a program in advance and make allowances for the maximum amount

of memory that might be needed by the program. Dynamic allocation of storage

at runtime is a powerful tool that helps to build programs that are efficient

and flexible.

The new operator allocates storage from the memory heap (also called the

heap, free pool, or free storage) and returns a pointer to the newly allocated

object. If for some reason it is not possible for the memory to be allocated, an

exception is thrown (see Section 22.9).

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 38



In general, the code that calls new should document, or be physically
located near, the code that frees the memory. The goal is to keep mem-
ory management code as simple and reliable as possible.

The delete operator releases dynamically allocated memory and returns it to the

memory heap. delete should be applied only to pointers returned by the new, or

to null pointers. Heap memory that is no longer needed should be released for

reuse. Failure to do so can result in crippling memory leaks.

Qt, the Standard Library, and boost.org provide a variety of classes and
functions to help manage and clean up heap memory. In addition to
container classes, each library has one or more smart pointer class. A
smart pointer is an object that stores and manages a pointer to a heap
object. It behaves much like an ordinary pointer except that it automati-
cally deletes the heap object at the appropriate time. Qt has QPointer,
the Standard Library has std::auto_ptr, and Boost has a
shared_ptr. Using one of these classes makes C++ memory man-
agement much easier than it used to be.

The syntax of the new and delete operators is demonstrated in the code frag-

ment shown in Example 1.20.

E X A M P L E  1 . 2 0 src/pointers/newdelete/ndysntax.cpp

{ 
int* ip = 0;
ip = new int;
int* jp = new int(13);
[...]
delete ip;           
delete jp;

}

null pointer
allocate space for an int
allocate and initialize
Without this, we have a memory leak.4

3

2

1

4

3

2

1

1 . 1 2 P O I N T E R S  A N D  M E M O R Y  A C C E S S

39

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 39



E X E R C I S E S : P O I N T E R S A N D M E M O R Y A C C E S S

1. Predict the output of the program shown in Example 1.21.

E X A M P L E  1 . 2 1 src/pointers/newdelete1.cpp

#include <iostream> 
using namespace std;

int main() {
const char tab = '\t';
int n = 13;
int* ip = new int(n + 3);
double d = 3.14;
double* dp = new double(d + 2.3);
char c = 'K';
char* cp = new char(c + 5);
cout << *ip << tab << *dp << tab << *cp << endl;
int* ip2 = ip;
cout << ip << tab << ip2 << endl;
*ip2 += 6;
cout << *ip << endl;
delete ip;
cout << *ip2 << endl;
cout << ip << tab << ip2 << endl;

}

Then compile and run the code. Explain the output, especially the last two lines.

2. Modify Example 1.19 to do some arithmetic with the value pointed to by jp.

Assign the result to the location in memory pointed to by ip, and print the

result. Print out the values from different places in the program. Investigate how

your compiler and run-time system react to placement of the output

statements.

1.13 const* and *const
Suppose that we have a pointer ptr that is storing the address of a variable vbl:

Type* ptr = &vbl;

When using a pointer, two objects are involved: the pointer itself and the object

pointed to. This means there are two possible layers of protection that we might

want to impose with const:

C H A P T E R  1 : C + +  I N T R O D U C T I O N

40

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 40



1. If we want to make sure that ptr cannot point to any other memory

location, we can write it one of two ways:

Type* const ptr = &vbl;
Type* const ptr(&vbl);

The pointer is a const but the addressed object can be changed.

2. If we want to make sure that the value of vbl cannot be changed by

dereferencing  ptr, we can write it in two ways:

const Type* ptr = &vbl;
const Type* ptr(&vbl);

In this case, the addressed object is a constant but the pointer is not.

In addition, if we want to impose both kinds of protection we can write:

const Type* const ptr = &vbl;
const Type* const ptr(&vbl);

Here is a good way to remember which is which: Read each of the

following definitions from right to left (starting with the defined variable).

1 . 1 3 C O N S T *  A N D  * C O N S T

41

A short program that demonstrates the two kinds of protection is shown

in Example 1.22.

E X A M P L E  1 . 2 2 src/constptr/constptr.cpp

#include <iostream> 
using namespace std;

int main() {
int m1(11), m2(13);
const int* n1(&m1);
int* const n2(&m2);
// First snapshot
cout << "n1 = " << n1 << '\t' << *n1 << '\n'

<< "n2 = " << n2 << '\t' << *n2 << endl;
n1 = &m2;
//*n1 = 15;
m1 = 17; 2

1

const char * x = &p;        /* x is a pointer to const char*/
char * const y = &q; /* y is a const pointer to char */
const char * const z = &r; /* z is a const pointer to a const char */

continued

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 41



0xbffff504

First Snapshot

const (via n1)

m1
location 0xbffff504

n1

11

0xbffff500

const

m2
location 0xbffff500

n2

13

0xbffff504

Second Snapshot

const (via n1)

m1
location 0xbffff504

n1

17

0xbffff500

const

m2
location 0xbffff500

n2

16

//n2 = &m1;
*n2 = 16;
// Second snapshot
cout << "n1 = " << n1 << '\t' << *n1 << '\n'

<< "n2 = " << n2 << '\t' << *n2 << endl;
return 0;

}

Output:

src/constptr> g++ constptr.cpp
src/constptr> ./a.out
n1 = 0xbffff504 11
n2 = 0xbffff500 13
n1 = 0xbffff500 16
n2 = 0xbffff500 16
src/constptr>

error: assignment of read-only location
m2 is an ordinary int variable—OK to assign
error: assignment of read-only variable ‘n2’
okay to change target

Figure 1.2 shows two snapshots of memory that may help to clarify what is hap-

pening when the program runs. Notice that the program produces a memory leak.

4

3

2

1

4

3

C H A P T E R  1 : C + +  I N T R O D U C T I O N

42

F I G U R E  1 . 2 Two snapshots of memory showing what the program
in Example 1.2 produces

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 42



An object that is read-only when accessed through one pointer may be changeable

when accessed through another pointer. This fact is commonly exploited in the

design of functions.

char* strcpy(char* dst, const char* src); // strcpy cannot change *src

It is okay to assign the address of a variable to a pointer to const. It is an error to

assign the address of a const object to an unrestricted (i.e., non-const) pointer

variable because that would allow the const object’s value to be changed.

int a = 1;
const int c = 2;
const int* p1 = &c;   // OK
const int* p2 = &a;   // OK
int* p3 = &c;        // error
*p3 = 5;             // error

It is good programming practice to use const to protect  pointer and reference

parameters that do not need to be altered by the action of a function. Read-only

reference parameters provide the power and efficiency of pass-by-reference with

the safety of pass-by-value (see Section 5.6).

1.14 Reference Variables
We observed earlier that an object (in the most general sense) is a contiguous

region of storage. An lvalue is an expression that refers to an object. Examples of

lvalues are variables, array cells, and dereferenced pointers. In essence, an lvalue is

anything with a memory address that can be given an alternate name. By contrast,

temporary or constant expressions such as i+1 or 3 are not lvalues.

In C++, a reference provides a mechanism for assigning an alternative name

to an lvalue. References are useful for avoiding copies when a copy is costly or

unnecessary, for example, when passing a very large object as a parameter to a

function. A reference must be initialized when it is declared, and the initializer

must be an lvalue.

To create a reference to an object of type SomeType, a variable must be

declared to be of type  SomeType&. For example:

int n;
int& rn = n;

1 . 1 4 R E F E R E N C E  V A R I A B L E S

43

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 43



The ampersand & following the int indicates that rn is an int reference. The ref-

erence variable rn is an alias for the actual variable n. Note that the & is being used

here as a type modifier in a declaration, rather than as an operator on an lvalue.

For its entire life, a reference variable will be an alias for the actual lvalue that

initialized it. This association cannot be revoked or transferred. For example:

int a = 10, b = 20;
int& ra = a;         // ra is an alias for a
ra = b;             // this causes a to be assigned the value 20

const int c = 45;   // c is a constant: its value is read-only.
const int & rc = c; // legal but probably not very useful.
rc = 10;            // compiler error - const data may not 

// be changed.

The reader has surely noticed that the use of the ampersand in this section might

be confused with its use in the earlier section on pointers. To avoid confusion, just

remember these two facts:

1. The address-of operator applies to an object and returns its address.

Hence, it will only appear on the right side of an assignment or in an

initializing expression for a pointer variable.

2. In connection with references, the ampersand is used only in the declara-

tion of a reference. Hence, it will only appear to the left of the reference

name as it is being declared.

P O I N T S  O F  D E P A R T U R E

1. See Section 22.1 to learn more about how pointers can be used or

misused.

2. See Chapter 19 to learn more about how pointers and types can be

converted.

C H A P T E R  1 : C + +  I N T R O D U C T I O N

44

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 44



R E V I E W  Q U E S T I O N S

45

R E V I E W  Q U E S T I O N S

1. What is a stream? What kinds of streams are there?

2. Give one reason to use an ostrstream.

3. What is the main difference between getline and the >> operator?

4. What is the type of each expression?

a. 3.14

b. ‘D’

c. “d”

d. 6

e. 6.2f

f. “something stringey”

g. false

5. In Example 1.23, identify the type and value of each “thing”:

E X A M P L E  1 . 2 3 src/types/types.cpp

#include <iostream>

int main() {
using namespace std;
int i = 5;
int j=6;
int *p = &i;                           
int& r=i;
int& rpr=(*p);
i = 10;
p = &j;                               
rpr = 7;                              

r = 8;                                
cout << "i=" << i << " j=" << j << endl;  

}

*p: ______
*p: ________
*p: ________
rpr: ________
i: ________ j: ________

6. What is the difference between a pointer and a reference?

7. Why does main(int argc, char* argv[]) sometimes have

parameters? What are they used for?

5

4

3

2

1

5

4

3

2

1

ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 45



ezus_138004_ch01.qxd  8/4/06  9:36 AM  Page 46



2C H A P T E R  2  

Classes

This chapter provides an introduction to classes and

objects, and how member functions operate on

objects. UML is introduced. static and const

members are explained. Constructors, destructors,

copy operations, and friends are discussed.

47

2.1 Structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Class Definitions . . . . . . . . . . . . . . . . . . . . . 49

2.3 Member Access Specifiers . . . . . . . . . . . . 51

2.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Introduction to UML . . . . . . . . . . . . . . . . . 54

2.6 Friends of a Class . . . . . . . . . . . . . . . . . . . . 55

2.7 Constructors . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Destructors . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.10 The Keyword static . . . . . . . . . . . . . . . . . . . 61

2.11 Copy Constructors and Assignment

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.12 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.13 const Member Functions . . . . . . . . . . . . . 68

ezus_138004_ch02.qxd  8/3/06  4:27 PM  Page 47



2.1 Structs
In the C language, there is the struct keyword, for defining a structured chunk

of memory.

E X A M P L E  2 . 1 src/structdemo/demostruct.h

[ . . . . ]
struct Fraction {

int numer, denom;
string description;

};
[ . . . . ]

A structured piece of memory is comprised of smaller chunks of memory of var-

ious types and sizes, each chunk accessible by name. Example 2.1 shows the defi-

nition of a struct.

Example 2.2 shows how we can use a structured chunk of memory (containing

subobjects) as a single entity. Each data member (numer, denom, description)

is accessible by name.

E X A M P L E  2 . 2 src/structdemo/demostruct.cpp

[ . . . . ]
void printFraction (Fraction f) {

cout << f.numer << "/" << f.denom << endl;
cout << "    =?  "  << f.description << endl;

}

int main()  {

Fraction f1;

fl.numer = 4;
fl.denom = 5;
fl.description = "four fifths";

1

ezus_138004_ch02.qxd  8/3/06  4:27 PM  Page 48



Fraction f2 = {2, 3, "two thirds"};

f1.numer = f1.numer + 2;
printFraction (f1);
printFraction (f2);
return 0;

}

Output:

6/5
=? four fifths
2/3
=? two thirds

Passing a struct by value could be expensive if it has large components.
member initialization

2.2 Class Definitions
C++ has another datatype called class that is very similar to struct. A simple

class definition looks like this:

class className {
members

};

The first line of the class definition is called the classHead. The features of a class

include data members, member functions, and access specifiers. Member func-

tions are used to manipulate or manage the data members.

After a class has been defined, the class name can be used as a type for vari-

ables, parameters, and returns from functions. Variables of a class type are called

objects, or instances, of a class.

Member functions for class T specify the behavior of all objects of type T and

have access to all members of the class. Non-member functions normally manip-

ulate objects indirectly by calling member functions. The set of values of the data

members of an object is called the state of the object.
To define a class (or any other type) we generally place the definition in a

header file, preferably with the same name as the class and with the .h extension.

Example 2.3 shows a class definition defined in a header file.

2

1

2

2 . 2 C L A S S  D E F I N I T I O N S

49

ezus_138004_ch02.qxd  8/3/06  4:27 PM  Page 49



E X A M P L E  2 . 3 src/classes/fraction.h

#ifndef _FRACTION_H_ 
#define _FRACTION_H_  

#include <string>
using namespace std;

class Fraction {
public:

void set(int numerator, int denominator);
double toDouble() const;
string toString() const;

private:
int m_Numerator;
int m_Denominator;

};

#endif

Header files are #included in other files by the preprocessor. To prevent a

header file from accidentally being #included more than once in any compiled

file, we wrap it with #ifndef-#define . . . #endif preprocessor macros

(see Section C.1).

Generally, we place the definitions of member functions outside the class def-

inition in a separate implementation file with the .cpp extension.

The definition of any class member outside the class definition requires a

scope resolution operator of the form ClassName:: before its name. The scope

resolution operator tells the compiler that the scope of the class extends beyond

the class definition and includes the code between the :: and the closing brace of

the function definition.

Example 2.4 is an implementation file that corresponds to Example 2.3.

E X A M P L E  2 . 4 src/classes/fraction.cpp

#include "fraction.h"
#include <sstream>

void Fraction::set(int nn, int nd) {
m_Numerator = nn;
m_Denominator = nd;

}

C H A P T E R  2 : C L A S S E S

50

ezus_138004_ch02.qxd  8/3/06  4:27 PM  Page 50



double Fraction::toDouble() const {
return 1.0 * m_Numerator / m_Denominator;

}

string Fraction::toString() const {
ostringstream sstr;
sstr << m_Numerator << "/" << m_Denominator; 
return sstr.str();

}

a stream we write to, but that does not get output anywhere
convert the stream just written to a string

Every identifier has a scope (see Section 20.2), a region of code where a name is

“known” and accessible. Class member names have class scope. Class scope

includes the entire class definition, regardless of where the identifier was declared,

as well as inside each member function definition, starting at the :: and ending at

the closing brace of the definition.

So, for example, the members, Fraction::m_Numerator and

Fraction::m_Denominator are visible inside the definitions of

Fraction::toString() and Fraction::toDouble() even though those

function definitions are in a separate file.

2.3 Member Access Specifiers
Thus far we have worked with class definition code and class implementation
code. There is a third category of code as it relates to a given class. Client code is

code that is outside the scope of the class but that uses objects of the class.

Generally, client code #includes the header file that contains the class definition.

We now revisit the Fraction class, focusing on its member access specifiers.
See Example 2.5.

E X A M P L E  2 . 5 src/classes/fraction.h

#ifndef _FRACTION_H_
#define _FRACTION_H_

#include <string>
using namespace std;

2

1

2

1

2 . 3 M E M B E R  A C C E S S  S P E C I F I E R S

51

continued

ezus_138004_ch02.qxd  8/3/06  4:27 PM  Page 51



class Fraction {
public:

void set(int numerator, int denominator);
double toDouble() const;
string toString() const;

private:
int m_Numerator;
int m_Denominator;

};

#endif

The member access specifiers, public, protected, and private, are used in

a class definition to specify where in a program the affected members can be

accessed. The following list provides an informal first approximation of the defi-

nitions of these three terms. Refinements are contained in footnotes.

■ A public member can be accessed (using an object of the class1) any-

where in a program that #includes the class definition file.

■ A protected member can be accessed inside the definition of a mem-

ber function of its own class, or a member function of a derived class.2

■ A private member is only accessible by member functions of its own

class.3

Accessibility versus Visibility

There is a subtle difference between accessibility and visibility. In order for

a named item to be accessible, it must first be visible (in our scope). Not all

visible items are accessible. Accessibility depends on member access speci-

fiers: public/private/protected.

C H A P T E R  2 : C L A S S E S

52

1 public static members can be accessed without an object. We discuss this in Section 2.10.
2 We discuss derived classes in Chapter 6.
3 Private members are also accessible by friends of the class, which we discuss in Section 2.6.

Example 2.6 shows client code that demonstrates visibility errors in a variety of

ways. This example also focuses on block scope, which extends from an opening

brace to a closing brace. A variable declared inside a block is visible and accessible

only between its declaration and the closing brace. In the case of a function,

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 52



the block that contains the function definition also includes the function’s param-

eter list.

E X A M P L E  2 . 6 src/classes/fraction-client.cpp

#include "fraction.h"
#include <iostream>

int main() {
const int DASHES = 30;
using namespace std;

{                             
int i;
for(i = 0; i < DASHES; ++i)

cout << "=";
cout << endl;

}   

// cout << "i = " << i << endl;
Fraction f1, f2;
f1.set(3, 4);
f2.set(11,12);
// f2.m_Numerator = 12;         
cout << "The first fraction is: " << f1.toString() << endl;
cout << "\nThe second fraction, expressed as a double is: "

<< f2.toDouble() << endl;
return 0;

}

nested scope—inner block
error—i no longer exists, so it is not visible in this scope.
set through a member function
error—m_Numerator is visible but not accessible.

Now we can describe the difference between struct and class in C++.

Stroustrup defines a struct to be a class in which members are by default

public, so that

struct T { ... 

means precisely

class T {public: ...

4

3

2

1

4

3

2

1

2 . 3 M E M B E R  A C C E S S  S P E C I F I E R S

53

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 53



2.4 Encapsulation
Encapsulation is the first conceptual step in object-oriented programming. It

involves

■ Packaging data with the functions that can operate on that data in well-

named classes

■ Providing clearly named and well-documented public functions that

allow users of the class to do whatever needs to be done with objects of

this class

■ Hiding implementation details

The set of public function prototypes in a class is called its public interface.

The set of non-public members, as well as the function definitions them-

selves, comprise the implementation.

One immediate advantage of encapsulation is that it permits the programmer

to use a consistent naming scheme for the members of classes. For example, there

are many different classes for which it might make sense to have a data member

that contains the ID of the particular instance. We could adopt the convention of

calling such a data member m_ID in every class that needs one. Because class

member names are not visible outside the class scope, there is no danger of ambi-

guity if a member name is also used somewhere else in the program.

2.5 Introduction to UML
UML, the Unified Modeling Language, is a language for object-oriented design.

We use UML diagrams, because “a picture is worth 1K words.” UML class dia-

grams can show the important elements of and relationships between classes in a

concise and intuitive way. UML is much more than just class diagrams. Other

kinds of UML diagrams can illustrate how classes collaborate with one another

and how users interact with classes.We will only use a small subset of UML in this

book.

Most of our diagrams were created with a design tool called Umbrello.4 For a

good overview of UML, we recommend The Umbrello UML Modeller Handbook,

available from the help menu of Umbrello. Another reference that provides maxi-

mum content and minimal bulk is [Fowler04].

C H A P T E R  2 : C L A S S E S

54

4 http://uml.sourceforge.net

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 54



2 . 6 F R I E N D S  O F  A  C L A S S

55

Person

-m_Name : string- private

+ public

ClassName

Data Members

Member Functions+ getPosition() : Position
+ getEmployer() : Employer
+ getName() : string

Figure 2.1 is a class diagram with only one class: Person. Notice that the declarations

appear in the name : type, Pascal-style, rather than the more familiar C++/Java style,

where the names come after the types. This is to help with readability—because we

tend to read from left to right, this syntax helps us find names faster. Notice also that

public members are preceded by a plus sign (+) and private members are pre-

ceded by a minus sign (-).

2.5.1 UML Relationships

UML is especially good at describing relationships between classes. Looking ahead

to Example 2.9, we describe the subobject relationship in UML. Because the sub-

objects are strictly part of the parent object and cannot possibly exist as stand-

alone objects, we could use the composition relationship. As Figure 2.2 shows, the

filled-in diamond indicates that the object on that side is composed (partially) of

the object(s) from the other side of the relationship.

2.6 Friends of a Class
Now that we know about accessibility rules, we need to know how to break them

occasionally. The friend mechanism makes it possible for a class to allow non-

member functions to access its private data. The keyword friend is followed by

F I G U R E  2 . 1 Person class

Square

 - m_UpperLeft : Point
 - m_LowerLeft : Point

+ Square(ulx : int, uly : int, lrx : int, lry : int)
+ Square(ul : const Point&, lr : const Point&)

Point

 - x : int
 - y : int

+ Point(xx : int, yy : int)
+ ~ Point()

F I G U R E  2 . 2 Composition

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 55



a class or a function declaration. friend declarations are located inside a class

definition. Here are some syntax examples.

class Timer {
friend class Clock;
friend void Time::toString();
friend ostream& operator <<(ostream& os, const Timer& obj);
[ . . . ]   

private:
long m_Elapsed;

};

A friend can be a class, a member function of another class, or a non-member

function. In the previous example, class Clock is a friend, so all of its member

functions can access Timer::m_Elapsed. Time::toString() is a friend of

Timer and is assumed (by the compiler) to be a valid member of class Time. The

third friend is a non-member function, an overloaded insertion operator,

which inserts its second argument into the output stream and returns a reference

to the stream so that the operation can be chained.

Breaking encapsulation can compromise the maintainability of your programs,

so you should use the friend mechanism sparingly and carefully. Typically,

friend functions are used for two purposes.

1. For factory methods when we want to enforce creational rules (see

Section 16.1.4) on a class

2. For global operator functions such as << and >> when we do not wish

to make the operator a member function, or do not have write-access to

the class definition

2.7 Constructors
A constructor, sometimes abbreviated as ctor, is a special member function that

controls the process of object initialization. Each constructor must have the same

name as its class. Constructors do not return anything and do not have return types.

There is a special syntax for constructor definitions:

ClassName::ClassName( parameter_list )
:init-list
{

constructor body
}

optional1

1

C H A P T E R  2 : C L A S S E S

56

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 56



Between the closing parenthesis of the parameter list and the opening brace of a

function body, an optional member initialization list can be given. A member ini-
tialization list begins with a colon (:) and is followed by a comma-separated list

of member initializers, each of the form 

member_name(initializing_expression)

If (and only if) no constructor is specified in a class definition, the compiler will

supply one that looks like this:

ClassName::ClassName() 
{ }

A constructor that can be called with no arguments has the name default con-
structor. We say that a default constructor gives default initialization to an object

of its class. Any data member that is not explicitly initialized in the member ini-

tialization list of a constructor is given default initialization.

Classes can have several constructors, each of which initializes in a different

(and presumably useful) way. Example 2.7 has three constructors.

E X A M P L E  2 . 7 src/ctor/complex.h

class Complex {
public:

Complex(double realPart, double imPart);
Complex(double realPart);
Complex();

private:
double m_R, m_I;

};

Example 2.8 shows the implementation with some client code.

E X A M P L E  2 . 8 src/ctor/complex.cpp

#include "complex.h"
#include <iostream>
using namespace std;

Complex::Complex(double realPart, double imPart)
:   m_R(realPart), m_I(imPart)

{ 
cout << "complex(" << m_R << "," << m_I << ")" << endl;

}

1

2 . 7 C O N S T R U C T O R S

57

continued

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 57



Complex::Complex(double realPart) {
Complex(realPart, 0);

}

Complex::Complex() : m_R(0.0), m_I(0.0) {

}

int main() {
Complex C1;
Complex C2(3.14);
Complex C3(6.2, 10.23);

}

member initialization list
Call one constructor from another, java-style.

The default constructor for this class gives default initialization to the two data

members of the object C1. That initialization is the same kind that would be given

to a pair of variables of type double in the following code fragment:

double x, y;
cout << x << '\t' << y << endl;

What would you expect to be the output of that code?

2.8 Subobjects
An object can contain another object, in which case the contained object is

considered to be a subobject. In Example 2.9, each Square object has two Point

subobjects. Notice that Point has a function named ~Point. We discuss this

kind of function in the next section.

E X A M P L E  2 . 9 src/subobject/subobject.h

[ . . . . ]
class Point {
public:

Point(int xx, int yy) : m_x(xx), m_y(yy){}
~Point() {

cout << "point destroyed: ("
<< m_x << "," << m_y << ")" << endl;

}
private:

int m_x, m_y;
};

2

1

2

C H A P T E R  2 : C L A S S E S

58

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 58



class Square {
public:

Square(int ulx, int uly, int lrx, int lry)
: m_UpperLeft(ulx, uly), m_LowerRight (lrx, lry)
{}

Square(const Point& ul, const Point& lr) :
m_UpperLeft(ul), m_LowerRight(lr) {}
private:

Point m_UpperLeft, m_LowerRight;
};

[ . . . . ]

Initialization is required because there is no default ctor.
Initialize using the implicitly generated Point copy ctor.
embedded subobjects

Whenever an instance of Square is created, each of its subobjects is created with

it, so that the three objects occupy contiguous chunks of memory.

The Square is composed of two Point objects.

Because Point has no default constructor, we must properly initialize for each

Point subobject in the member initialization list of Square (see Example 2.10).

E X A M P L E  2 . 1 0 src/subobject/subobject.cpp

#include "subobject.h"

int main() {
Square sq1(3,4,5,6);
Point p1(2,3), p2(8, 9);
Square sq2(p1, p2);

}

Even though no destructor was defined for Square, each of its Point subobjects

is properly destroyed whenever the containing object is. This is an example of

composition.

point destroyed: (8,9)
point destroyed: (2,3)
point destroyed: (8,9)
point destroyed: (2,3)
point destroyed: (5,6)
point destroyed: (3,4)

3

2

1

3

2

1

2 . 8 S U B O B J E C T S

59

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 59



2.9 Destructors
A destructor, sometimes abbreviated as dtor, is a special member function that

automates clean-up actions just before an object is destroyed.

WHEN IS AN OBJECT DESTROYED?

■ When a local (automatic) object goes out of scope (e.g., when a func-
tion call returns)

■ When an object created by the new operator is specifically destroyed
by the use of the operator delete

■ Just before the program terminates, all objects with static storage
are destroyed

The destructor’s name is the classname preceded by the tilde (~) character. It has

no return type and no parameters, so it cannot be overloaded. If the class definition

contains no destructor definition, the compiler will supply one that looks like this:

ClassName::~ClassName() 
{ }

We will look at a less trivial example of a destructor in the next section.

WHEN DO WE NEED TO WRITE A DESTRUCTOR? In general, a class
that directly manages or shares an external resource (opens a file, opens
a network connection, creates a process, etc.) needs to free the resource
at some appropriate time. Such classes are usually wrappers that are
responsible for object cleanup.

Qt’s container classes make it easy for us to avoid writing code that
directly manages dynamic arrays.

You do not need a destructor if your class:

■ Has simple type members that are not pointers

■ Has class members with properly defined destructors themselves

The default compiler-generated destructor calls the destructors on each of its class

members in the order that they are listed in the class definition before the object

is destroyed. It does nothing with pointers or simple types.

C H A P T E R  2 : C L A S S E S

60

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 60



2.10 The Keyword static
The keyword static can be applied to a variable declaration to give the variable

static storage class (see Section 20.3).

A local static variable is created only once, the first time its declaration

statement is processed by the running program. It is destroyed when the program

terminates. A static data member of a class is created once, just before the pro-

gram begins execution, and is destroyed when the program terminates.

A static data member is a piece of data that is associated with the class itself

rather than one that belongs to a particular object. It does not affect the sizeof()

an object of the class. Each object of a class maintains its own set of non-static

data members, but there is only one instance of any static data member, and it

can be shared by all objects of the class.

static class members are preferable to (and can generally replace the use of)

global variables because they do not pollute the global namespace.

static data members must be declared static in (and only in) the class

definition.

A class member function that does not in any way access the non-static data

members of the class can (and should) be declared static. In Example 2.11, the

static data member is a private counter that keeps track of the number of

Thing objects that exist at any given moment. The public static member func-

tion displays the current value of the static counter.

E X A M P L E  2 . 1 1 src/statics/static.h

[ . . . . ]
class Thing {
public:

Thing(int a, int b);
~Thing();
void display() const ;
static void showCount();

private:
int m_First, m_Second;
static int sm_Count;

};
[ . . . . ]

The class UML diagram for Thing is shown in Figure 2.3. Notice that the static

members are underlined in the diagram.

2 . 1 0 T H E  K E Y W O R D  S T A T I C

61

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 61



C H A P T E R  2 : C L A S S E S

62

5 The exception to this rule is a static const int, which can be initialized in the class definition.

Each static data member must be initialized (defined) outside the class defini-

tion, preferably in the class implementation file (not a header file) as shown in

Example 2.12.5

E X A M P L E  2 . 1 2 src/statics/static.cpp

#include "static.h"
#include <iostream>

int Thing::sm_Count = 0;

Thing::Thing(int a, int b)
: m_First(a), m_Second(b) {

++sm_Count;
}

Thing::~Thing() {
--sm_Count;

}

void Thing::display() const {
using namespace std;
cout << m_First << "$$" << m_Second;

}

void Thing::showCount() {
using namespace std;
cout << "Count = " << sm_Count << endl;

}

Must initialize static member!
static function2

1

2

1

Thing

 - m_First : int
 - m_Second : int
 - sm_Count : int

+ Thing(a : int, b : int)
+ ~ Thing()
+ display()
+ showCount() 

F I G U R E  2 . 3 Thing class diagram

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 62



Notice that the term static does not appear in the definitions of
sm_Count or showCount(). This is because the keyword static
would mean something quite different there: It would change the scope
of the variable from global to file-scope (see Section 20.2).

Block-Scope static

statics that are defined inside a function or a block of code are initialized when

they are executed for the first time.

long nextNumber() {
int localvar(24);
static long nmber = 1000;
cout << nmber + localvar;
return ++nmber;

}

The first call to nextNumber() initializes localvar to 24 and nmber to 1000,

displays 1124 on the screen, and returns 1001. When the function returns,

localvar is destroyed but nmber is not destroyed. Each time that this function

is called, localvar gets created and initialized to 24 again. The static variable

nmber persists between calls and holds onto the value that it obtained in the last

call. So, for example, the next time the function is called, 1025 is displayed and

1002 is returned.

static Initialization

A static object that is not defined in a block or function is initialized when its

corresponding object module (see Section 7.1) is loaded for the first time. Most of

the time, this is at program startup, before main() starts. The order in which

modules get loaded and variables get initialized is implementation dependent.

A static object is constructed once and persists until the program termi-

nates. A static data member is a static object that has class scope.

In Example 2.13, we make use of an internal block so that we can introduce

some local objects that will be destroyed before the program ends.

2 . 1 0 T H E  K E Y W O R D  S T A T I C

63

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 63



E X A M P L E  2 . 1 3 src/statics/static-test.cpp

#include "static.h"

int main() {
Thing::showCount();
Thing t1(3,4), t2(5,6);
t1.showCount();
{

Thing t3(7,8), t4(9,10);
Thing::showCount(); 

}

Thing::showCount(); 
return 0;

}

No objects exist at this point.
direct access through object
An inner block of code is entered.
end inner block

Here is the compile and run.

src/statics> g++ -ansi -pedantic -Wall static.cpp static-test.cpp 
src/statics> ./a.out
Count = 0
Count = 2
Count = 4
Count = 2
src/statics>   

2.11 Copy Constructors and Assignment
Operators

C++ gives almost god-like powers to the designer of a class. Object “life cycle”

management means taking complete control over the behavior of objects during

birth, reproduction, and death. We have already seen how constructors manage the

birth of an object and how destructors are used to manage the death of an object.

This section investigates the reproduction process: the use of copy constructors

and assignment operators.

A copy constructor is a constructor that has a prototype like this:

ClassName(const ClassName & x);

4

3

2

1

4

3

2

1

C H A P T E R  2 : C L A S S E S

64

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 64



The purpose of a copy constructor is to create an object that is an exact copy of an

existing object of the same class.

An assignment operator for a class overloads the symbol = and gives it a

meaning that is specific to the class. There is one particular version of the assign-

ment operator that has the following prototype:

ClassName& operator=(const ClassName& x);

Because it is possible to have several different overloaded versions of the

operator=() in a class, we call this particular version the copy assignment
operator (see Example 2.14).

E X A M P L E  2 . 1 4 src/lifecycle/copyassign/fraction.h

[ . . . . ]
class Fraction {
public:

Fraction(int n, int d) : m_Numer(n), m_Denom(d) {
++ctors;

}
Fraction(const Fraction& other)

:  m_Numer(other.m_Numer), m_Denom(other.m_Denom) {
++copies;

}
Fraction& operator=(const Fraction& other) {

m_Numer = other.m_Numer;
m_Denom = other.m_Denom;
++assigns;
return *this;

}

Fraction multiply(Fraction f2)  {
return Fraction (m_Numer*f2.m_Numer, m_Denom*f2.m_Denom);

}

static void report();
private:

int m_Numer, m_Denom;
static int assigns;
static int copies;
static int ctors;

};
[ . . . . ]

2 . 1 1 C O P Y  C O N S T R U C T O R S  A N D  A S S I G N M E N T  O P E R A T O R S

65

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 65



The version of Fraction in Example 2.14 defines three static counters, so

that we can count the total number of times each member function is called. This

should help us better understand when objects are copied. Example 2.15 uses it to

create, copy, and assign some objects.

E X A M P L E  2 . 1 5 src/lifecycle/copyassign/copyassign.cpp

#include <iostream>
#include "fraction.h"

int main() {
using namespace std;
Fraction twothirds(2,3);
Fraction threequarters(3,4); 
Fraction acopy(twothirds);
Fraction f4 = threequarters;
cout << "after declarations" ;
Fraction::report();
f4 = twothirds;
cout << "before    multiply" ;
Fraction::report();
f4 = twothirds.multiply(threequarters);
cout << "after     multiply" ;
Fraction::report();
return 0;

}

using 2-arg constructor
using copy constructor
also using copy constructor
assignment
Lots of objects get created here.

src/ctor> g++ -ansi -pedantic -Wall copyassign.cpp
src/ctor> ./a.out
after declarations
[ assigns: 0 copies: 2 ctors: 2 ]

before    multiply
[ assigns: 1 copies: 2 ctors: 2 ]

after     multiply
[ assigns: 2 copies: 3 ctors: 3 ]

src/ctor> 

As you can see, the call to multiply creates three Fraction objects.
Can you explain why?

5

4

3

2

1

5

4

3

2

1

C H A P T E R  2 : C L A S S E S

66

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 66



It is important to know that the compiler will supply default versions of the copy

constructor and/or the copy assignment operator if one or both are missing from

the class definition. The compiler-supplied default versions have the following

prototypes for a class T:

T::T(const T& other);
T& T::operator=(const T& other);

2.12 Conversions
A constructor that can be called with a single argument (of a different type) is

a conversion constructor because it defines a conversion from the argument type

to the constructor’s class. See Example 2.16.

E X A M P L E  2 . 1 6 src/ctor/conversion/fraction.cpp

class Fraction {
public:

Fraction(int n, int d = 1)
: m_Numerator(n), m_Denominator(d) {}

private:
int m_Numerator, m_Denominator;

};
int main() {

Fraction frac(8);
Fraction frac2 = 5;
frac = 9;
frac = (Fraction) 7;
frac = Fraction(6);
frac = static_cast<Fraction>(6);
return 0;

}

default argument
conversion constructor call
copy init (calls conversion ctor too)
conversion followed by assignment
C-style typecast (deprecated)
explicit temporary, also a C++ typecast
preferred ANSI style typecast

In Example 2.16, the Fraction variable frac is initialized with a single int. The

matching constructor is the two argument version, but the second parameter

(denominator) defaults to 1. Effectively, this converts the integer 8 to the fraction 8/1.

The conversion constructor for ClassA is automatically called when an object of

that class is required and when such an object can be created by that constructor

from the value of TypeB that was supplied as an initializer or assigned value.

7

6

5

4

3

2

1

7

6

5

4

3

2

1

2 . 1 2 C O N V E R S I O N S

67

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 67



For example, if frac is of type Fraction as defined above, then we can write

the statement

frac = 19;    

Since 19 is not a Fraction object, the compiler checks to see whether it can be

converted to a Fraction object. Since we have a conversion constructor, this is

indeed possible.

So under the covers, the statement f = 19 makes two “implicit” calls to

Fraction member functions:

1. Fraction::Fraction(19); to convert from int to Fraction.

2. Fraction::operator=() to perform the assignment.

This causes a temporary Fraction object on the stack to be created, which is

then popped off when the statement is finished executing.

Since we have not defined Fraction::operator=(), the compiler uses a

default assignment operator that it supplied.

Fraction& operator=(const Fraction& fobj); 

This operator performs a memberwise assignment, from each data member of

fobj to the corresponding member of the host object.

Ordinarily, any constructor that can be called with a single argument of differ-

ent type is a conversion constructor that has the implicit mechanisms discussed

here. If the implicit mechanisms are not appropriate for some reason, it is possi-

ble to suppress them. The keyword explicit prevents implicit mechanisms from

using that constructor.

2.13 const Member Functions
When a class member function X::f() is invoked through an object x

x.f(); 

we refer to x as the host object.
The const keyword has a special meaning when it is applied to a (non-static)

class member function. Placed after the parameter list, const becomes part of the

function signature and guarantees that the function will not change the state of

the host object.

A good way to think of this is to realize that each non-static member function

has an implicit parameter, named this, which is a pointer to the host object.

When we declare a member function to be const, we are telling the compiler that,

as far as the function is concerned, this is a pointer to const.

C H A P T E R  2 : C L A S S E S

68

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 68



To explain how const changes the way a function is invoked, we look at how

the original C++ to C preprocessor dealt with member functions.

Since C did not support overloaded functions or member functions, the pre-

processor translated the function into a C function with a “mangled” name, which

distinguished itself from other functions by encoding the full signature in the

name. The mangling process also added an extra implicit parameter to the param-

eter list: this, a pointer to the host object. Example 2.17 shows how member

functions might be seen by a linker after a translation into C.

E X A M P L E  2 . 1 7 src/const/constmembers.cpp

#include <iostream>

class Point {
public:
Point(int px, int py) 

: m_X(px), m_Y(py) {}

void set(int nx, int ny) {
m_X = nx;
m_Y = ny;

}
void print() const {

using namespace std;
cout << "[" << m_X << "," << m_Y << "]";
m_X = 5;

}
private:

int m_X, m_Y;
};

int main() {
Point p(1,1);
const Point q(2,2);
p.set(4,4);
p.print();
q.set(4,4);
return 0;

}

mangled version: _Point_set_int_int(Point* this, int nx, int ny)
mangled version: _Point_print_void_const(const Point* this)
Error: this->m_X = 5, *this is const.
Okay to reassign p
Error! const object cannot call non-const methods.5

4

3

2

1

5

4

3

2

1

2 . 1 3 C O N S T  M E M B E R  F U N C T I O N S

69

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 69



In a real compiler, the mangled names for set and print would be compressed

significantly to save space and hence would be less understandable to a human

reader.

We can think of the const in the signature of print() as a modifier of the

invisible this parameter that points to the host object. This means that the mem-

ory pointed to by this cannot be changed by the action of the print() func-

tion. It is a compiler error to change anything via this in a const member

function. The reason that the assignment

x = 5;

produces an error is that it is equivalent to

this->x = 5;

The assignment violates the rules of const.

E X E R C I S E S : C L A S S E S

Examples 2.18–2.20 are part of a single program. Use them together to answer the

following questions.

1. E X A M P L E  2 . 1 8 src/early-examples/thing.h

#ifndef THING_H_
#define THING_H_

class Thing {
public:

void set(int num, char c);
void increment();
void show();

private:
int m_Number;
char m_Character;

};
#endif

E X A M P L E  2 . 1 9 src/early-examples/thing.cpp

#include <iostream>
#include "thing.h"

void Thing::set(int num, char c) {
m_Number = num;
m_Character = c;

}

C H A P T E R  2 : C L A S S E S

70

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 70



void Thing::increment() {
++m_Number;
++m_Character;

}

void Thing::show() {
using namespace std;
cout << m_Number << '\t' << m_Character << endl;

}

E X A M P L E  2 . 2 0 src/early-examples/thing-demo.cpp

#include <iostream>
#include "thing.h"

void display(Thing t, int n) {
int i;
for (i = 0; i < n; ++i)

t.show();
}

int main() {
using namespace std;
Thing t1, t2;
t1.set(23, 'H');
t2.set(1234, 'w');
t1.increment();

//    cout << t1.m_Number;  
display(t1, 3);

//    cout << i << endl;
t2.show();
return 0;

}

a. Uncomment the two commented out lines of code in thing-demo.cpp

(Example 2.20) and try to compile the program using 

g++ -ansi -pedantic -Wall thing.cpp thing-demo.cpp 

Explain the difference between the errors that are reported by the compiler.

b. Add public member functions to the definition of the class Thing so that

the data members can be kept private and the client code can still output

their values.

2. Implement the member functions of this slightly enhanced Fraction class

from Section 2.2. Given the UML diagram below, define the class, and each

2 . 1 3 C O N S T  M E M B E R  F U N C T I O N S

71

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 71



member specified, for an enhanced Fraction class. You can use Example 2.4

as a starting point.

C H A P T E R  2 : C L A S S E S

72

Write some client code to test all of the new operations and verify that proper

calculations are done.

3. Suppose that you wanted to write an application for a company that matches

employers and job seekers. A first step would be to design appropriate classes.

The UML diagram, The Company Chart, shows three classes, with Person

having two subobjects: Employer and Position.

Fraction

 - m_Numerator : int
 - m_Denominator : int

+ set(numerator : int, denominator : int)
+ toDouble() : double
+ toString() : string
+ add(other : const Fraction&) : Fraction
+ subtract(other : const Fraction&) : Fraction
+ multiply(other : const Fraction&) : Fraction
+ divide(other : const Fraction&) : Fraction

Person

 - m_Name : string
 - m_Employed : bool
 - m_position : Position
 - m_employer : Employer

+ Person(name : string)
+ toString() : string
+ setPosition(newC : Company, newP : Position)

Employer

 - m_Name : string
 - m_market : string

+ hire(newHire : Person&, pos : Position) : bool
+ Employer(name : string, market : string)
+ toString() : string

Position

 - m_Name : string
 - m_Description : string

+ Position(name : string, description : string)
+ toString() : string

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 72



2 . 1 3 C O N S T  M E M B E R  F U N C T I O N S

73

In order to do this exercise, you will need to use forward declarations (see

Section C.1).

a. Write classes for Person, Position, and Employer as described in The

Company Chart.

b. For Person::getPosition() and getEmployer(), create and return

something funny if the person has not yet been hired by a company.

c. For the hire(...) function, set the Person’s state so that future calls to

getPosition() and getEmployer() give the correct result.

d. In the main() program, create at least two Employers, the “StarFleet

Federation” and the “Borg.”

e. Create at least two employees, Jean-Luc Picard and Wesley Crusher.

f. For each class, write a toString() function that gives you a string rep-

resentation of the object.

g. Write a main program that creates some objects and then prints out each

company’s list of employees.

4. Define a class to represent a modern automobile.

Here are some features of this class.

■ The constructor requires an odometer reading and a value for the aver-

age fuel consumption rate in miles per gallon to initialize those two data

members.

■ The drive() function should be reasonably smart:

■ It should not permit the car to drive if there is no fuel.

■ It should adjust the odometer and the fuel amount correctly.

■ It should return the amount of fuel left in the tank.

■ The addFuel() function should adjust the fuel amount correctly and

return the resulting amount of fuel in the tank. addFuel(0) should fill

the tank.

Write client code to test this class.

Hondurota

 - m_Fuel : double
 - m_Speed : double
 - m_Odometer : double
 - sm_FuelTankCapacity : double
 - sm_FuelConsumptionRate : double

+ Hondurota(odom : double, mpg : double)
+ getFuel() : double
+ getSpeed() : double
+ getOdometer() : double
+ drive(speed : double, minutes : int) : double
+ addFuel(gal : double) : double

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 73



5. In the previous problem we really did not make use of the speed  member. The

drive( ) function assumed an average speed and used an average fuel con-

sumption rate. Now let’s use the speed member to make things a bit more

realistic.

Add a member function to the Hondurota class that has the prototype

double highwayDrive(double distance, double speedLimit); 

The return value is the elapsed time for the trip.

When driving on a highway, it is usually possible to travel at or near the

speed limit. Unfortunately, various things happen that can cause traffic to move

more slowly—sometimes much more slowly.

Another interesting factor is the effect that changing speed has on the fuel

consumption rate. Most modern automobiles have a speed that is optimal for

fuel efficiency (e.g., 45 mph).

Calculating how long it will take to travel a particular distance on the high-

way, and how much fuel the trip will consume, is the job of this new function.

■ Write the function so that it updates the speed, the odometer, and the fuel

amount every minute until the given distance has been travelled.

■ Use 45 mph as the speed at which fuel is consumed precisely at the stored

sm_FuelConsumptionRate.

■ Use an adjusted consumption rate for other speeds, increasing the rate of

consumption by 1% for each mile per hour that the speed differs from

45 mph.

■ Your car should stop if it runs out of fuel.

■ Assume that you are travelling at the speed limit, except for random differ-

ences that you compute each minute by generating a random speed

adjustment between –5 mph and +5 mph. Don’t allow your car to drive

faster than 40 mph above the speed limit. Of course, your car should not

drive slower than 0 mph. If a random speed adjustment produces an unac-

ceptable speed, generate another one.

Write client code to test this  function.

6. Be the computer and predict the output of Example 2.21.

E X A M P L E  2 . 2 1 src/statics/static3.h

#ifndef _STATIC_3_H_
#define _STATIC_3_H_

#include <string>
using namespace std;

C H A P T E R  2 : C L A S S E S

74

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 74



class Client {
public:

Client(string name) : m_Name(name), m_ID(sm_SavedID++)
{ }

static int getSavedID() {
if(sm_SavedID > m_ID) return sm_SavedID;
else return 0;

}
string getName() {return m_Name;}
int getID() {return m_ID; }

private:
string m_Name;
int m_ID;
static int sm_SavedID ;

};

#endif

E X A M P L E  2 . 2 2 src/statics/static3.cpp

#include "static3.h"
#include <iostream>

int Client::sm_SavedID(1000);

int main() {
Client cust1("George");
cout << cust1.getID() << endl;
cout << Client::getName() << endl;

}

7.

2 . 1 3 C O N S T  M E M B E R  F U N C T I O N S

75

Design and implement a Date class subject to the following restrictions and

suggestions.

■ Each Date must be stored as a single integer equal to the number of days

since the fixed base date, January 1, 1000 (or some other date if you prefer).

Let’s call that data member m_DaysSinceBaseDate.

Date

 - m_DaysSinceBaseDate : unsigned long

+ Date()
+ Date(m : unsigned, d : unsigned, y : unsigned)
+ toString(brief : bool) : string
+ setToToday()
+ getWeekDay() : string
+ lessThan(d : const Date&) : bool
+ equals(d : const Date&) : bool
+ daysAfter(d : const Date&) : int
+ addDays(days : int) : Date
+ leapyear(year : unsigned) : bool
+ monthname(month : unsigned) : string
+ yeardays(year : unsigned) : unsigned
+ monthdays(month : unsigned, year : unsigned) : unsigned

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 75



■ The base year should be stored as a static unsigned int (e.g., 1000).

■ The class has a constructor and a set function that have month, day, year

parameters. These three values must be used to compute the number of

days from the base date to the given date. We have specified a private

member function named mdy2dsbd() to do that calculation for both.

■ The toString() function returns a representation of the stored date in

some standard string format that is suitable for display (e.g., yyyy/mm/dd).

This involves reversing the computation used in the mdy2dsbd() function

described above. We have specified a private member function named

getMDY() to do that calculation. We have also suggested a parameter for

the toString() function (bool brief) to allow a choice of date formats.

■ We have specified several static utility functions (e.g.,leapyear()) that

are static because they do not affect the state of this class.

■ Make sure you use the correct rule for determining whether or not a given

year is a leap year!

■ Create a file named date.h to store your class definition.

■ Create a file named date.cpp that contains the definitions of all the func-

tions declared in date.h.

■ Write client code to test your Date class thoroughly.

■ Here is the code for setToToday() that makes use of the system clock to

determine today’s date. You will need to #include <time.h> (from the

C Standard Library) to use this code.

void Date::setToToday() {
struct tm *tp = new(tm);
time_t now;
now = time(0);
tp = localtime(&now);
set(1 + tp->tm_mon, tp->tm_mday, 1900 + tp->tm_year);

}

■ getWeekDay() function returns the name of the week day corresponding

to the stored date. Use this in the fancy version of toString(). Hint:

January 1, 1900, was a Monday.

8. Consider the class shown in Example 2.23.

E X A M P L E  2 . 2 3 src/destructor/demo/thing.h

#ifndef THING_H_
#define THING_H_

#include <iostream>
#include <string>
using namespace std;

C H A P T E R  2 : C L A S S E S

76

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 76



class Thing {
public:

Thing(int n) : m_Num(n) {

}
~Thing() {

cout << "destructor called: " 
<< m_Num << endl;

}

private:
string m_String;
int m_Num;

};
#endif

The client code in Example 2.24 constructs several objects in various ways and

destroys most of them.

E X A M P L E  2 . 2 4 src/destructor/demo/destructor-demo.cpp

#include "thing.h"

void function(Thing t) {
Thing lt(106);
Thing* tp1 = new Thing(107);
Thing* tp2 = new Thing(108);
delete tp1;

}

int main() {
Thing t1(101), t2(102);
Thing* tp1 = new Thing(103);
function(t1);
{

Thing t3(104);
Thing* tp = new Thing(105);

}
delete tp1;
return 0;

}

nested block/scope1

1

2 . 1 3 C O N S T  M E M B E R  F U N C T I O N S

77

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 77



C H A P T E R  2 : C L A S S E S

78

Here is the output of this program.

destructor called: 107
destructor called: 106
destructor called: 101
destructor called: 104
destructor called: 103
destructor called: 102
destructor called: 101

a. How many objects were created but not destroyed?

b. Why does 101 appear twice in the list?

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 78



R E V I E W  Q U E S T I O N S

79

R E V I E W  Q U E S T I O N S

1. What is the main advantage of using a struct?

2. Describe at least one difference between a class and a struct.

3. How does class scope differ from block scope? 

4. Describe two situations where it is okay to use friend functions.

5. How does a static data member differ from a non-static data mem-

ber?

6. What is the difference between a static member function and a non-

static member function?

7. What does it mean to declare a member function to be const?

8. Explain what would happen (and why) if a class T had a copy construc-

tor with the following prototype.

T::T(T other); 

9. Critique the design shown in The Company Chart in Exercise 3. What

problems do you see with it? In particular, how would you write

Employer::getEmployees() or Position::getEmployer()?

ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 79



ezus_138004_ch02.qxd  8/3/06  4:28 PM  Page 80



3C H A P T E R  3  

Introduction to Qt

This chapter introduces the Qt development envi-

ronment, including the compiler, linker, make, and

qmake. It includes a first example using Qt, and

introduces iterators and lists.

Qt is a modular system of classes and tools that

makes it easier for you to write smaller modules of

code yourself. This chapter explains how to start

reusing Qt.

81

3.1 Example Project: Using QApplication 

and QLabel . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Makefile, qmake, and Project Files . . . . . . 83

3.3 Getting Help Online . . . . . . . . . . . . . . . . . . 89

3.4 Style Guidelines and Naming 

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 The Qt Core Module . . . . . . . . . . . . . . . . . . 91

3.6 Streams and Dates . . . . . . . . . . . . . . . . . . . . 91

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 81



3.1 Example Project: Using QApplication 
and QLabel

Example 3.1 shows a simple main program that creates a QApplication and a

QLabel, manipulates some QStrings, and then pops up a graphical window.

1 http://www.unicode.org/standard/standard.html

This example makes use of Qt’s QString class, which is a dynamic string imple-

mentation that supports the Unicode standard.1 QString contains many helpful

member functions for converting and formatting strings in different ways. This

example also makes use of QTextStream, a very flexible Qt class that can provide

a well-developed stream interface for reading or writing text to various objects

(e.g., text files, strings, and byte arrays).

E X A M P L E  3 . 1 src/qapp/main.cpp

#include <QApplication>
#include <QString>
#include <QLabel>
#include <QWidget>
#include <QDebug>
#include <QTextStream>

int main(int argc, char * argv[]) {
QApplication myapp(argc, argv);
QWidget wid;
qDebug() << "sizeof widget: " << sizeof(wid) 

<< " sizeof qapplication: " << sizeof(myapp) ;
QString message;
QTextStream buf(&message);
buf << "A QWdget is " << sizeof(wid)

<< " bytes. \nA QObject is " << sizeof(QObject)

3

2

1

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 82



<< " bytes. \nA QApplication is " << sizeof(myapp)
<< " bytes.";

qDebug() << message;
QLabel label(message);
label.show();
return myapp.exec();

};

All Qt GUI applications need to create one of these at the start of main( ).
We are only creating this to see how big it is.
This is a stream that allows us to “write” to the string, similar in usage to std::stringstream.
Create a GUI widget with the message.
Make the label visible.
Enter the event loop, and wait for the user to do something. When the user exits, so does
myapp.exec( ).

To build this app, we need a project file. A project file describes the project by list-

ing all of the other files, as well as all of the options and file locations that are

needed to build the project. Because this is a very simple application, the project

file is also simple, as shown in Example 3.2.

E X A M P L E  3 . 2 src/qapp/qapp.pro

TEMPLATE = app
SOURCES += main.cpp

The first line, TEMPLATE = app, indicates that qmake should start with a tem-

plated Makefile suited for building applications. If this project file were for a

library, you would see TEMPLATE = lib to indicate that a Makefile library

template should be used instead. A third possibility is that we might have our

source code distributed among several subdirectories, each having its own project

file. In such a case we might see  TEMPLATE = subdirs in the project file located

in the parent directory, which would cause a Makefile to be produced in the par-

ent directory and also in each subdirectory.

3.2 Makefile, qmake, and Project Files
C++ applications are generally composed of many source files, header files, and

external libraries. During the normal course of project development, source files

and libraries get added, changed, or removed. During the testing/development

phase, the project is recompiled and re-linked many times. To produce an exe-

cutable, all changed source files must be recompiled, and the object files must all

be re-linked.

6

5

4

3

2

1

6

5

4

3 . 2 M A K E F I L E , Q M A K E , A N D  P R O J E C T  F I L E S

83

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 83



Keeping track of all of the parts of such a project requires a mechanism that

precisely specifies the input files involved, the tools needed to build, the interme-

diate targets and their dependencies, and the final executable target.

The most widely used utility for handling the job of building a project is make.

It reads the details of the project specifications and the instructions for the compiler

from a Makefile, which resembles a shell script but contains (at a minimum):

■ Rules for building certain kinds of files (e.g., to get a .o file from a .cpp

file, we must run gcc -c on the .cpp file)

■ Targets that specify which executables (or libraries) must be built

■ Dependencies that list which targets need to be rebuilt when certain files

get changed

The make command by default loads the file named Makefile from your current

working directory and performs the specified build steps (compiling and linking).

The immediate benefit of using make is that it recompiles only the files that

need to be rebuilt, rather than blindly recompiling every source file every time.

Figure 3.1 is a diagram that attempts to show the steps involved in building a Qt

application. To learn more about make, we recommend the book The Linux

Development Platform by Rafeeq Ur Rehman and Christopher Paul (Prentice Hall).

C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

84

qmake -project qapp.pro

qmake

libqapp.lib
libqapp.so

make dist

generates

Create Initial

qapp.tar.gztemplate=lib

rebuild
makefile

if needed

qapp

template=app

Other
Libraries

sources

headers

make, gmake,
or nmake

Makefile

F I G U R E  3 . 1 (q)make build steps

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 84



With Qt, it is not necessary to write Makefiles. Qt provides a tool called qmake

to generate Makefiles for you. It is still necessary to somehow run make and

understand its output. Most IDEs run make (or something similar) under the cov-

ers and either display or filter its output.

The following transcript shows which files get created at each step of the build

process for Example 3.1.

src/qapp> ls -sF
total 296

4 main.cpp    
src/qapp> qmake -project
src/qapp> ls -sF
total 296

4 main.cpp  4  qapp.pro
src/qapp> qmake
src/qapp> ls -sF
total 296

4 main.cpp  4 qapp.pro   4 Makefile
src/qapp> make

3 . 2 M A K E F I L E , Q M A K E , A N D  P R O J E C T  F I L E S

85

g++ -c -pipe -g -Wall -W             # compile step
-D_REENTRANT -DQT_CORE_LIB -DQT_GUI_LIB -DQT_SHARED
-I/usr/local/qt/mkspecs/linux-g++ -I.
-I/usr/local/qt/include/QtGui -I/usr/local/qt/include/QtCore
-I/usr/local/qt/include -I. -I. -I. 
-o main.o main.cpp

g++ -Wl,-rpath,/usr/local/qt/lib     # link step   
-L/usr/local/qt/lib -L/usr/local/qt/lib -lQtGui_debug 
-L/usr/X11R6/lib -lpng -lXi -lXrender -lXinerama -lfreetype 
-lfontconfig -lXext -lX11 -lm -lQtCore_debug -lz -ldl -lpthread
-o qapp main.o

src/qapp> ls -sF
total 420

4 main.cpp    132 main.o 124 qapp*
8 Makefile    4 qapp.pro            

src/qapp>                       

3.2.1 #include: Finding Header Files

There are three commonly used ways to #include a library header file:

#include <headerFile>
#include "headerFile"
#include "path/to/headerFile"

The angle brackets (< >) indicate that the preprocessor must look (sequentially)

in the directories listed in the include path for the file.

Notice that we can see the arguments passed to the compiler when we run make.

If any errors are encountered, we will see them too.

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 85



A quoted filename indicates that the preprocessor should look for

headerfile in the including file’s directory first. A quoted path indicates that

the preprocessor should check the path directory first. The path information can

be absolute or relative (to the including file’s directory). If no file is found at the

specified location, the directories listed in the include path are searched for

headerfile.

If versions of the file exist in more than one directory in the include path, the

search will stop as soon as the first occurrence of the file has been found. If the file

is not found in any of the directories of the search path, then the compiler will

report an error.

For items in the C++ Standard Library, the compiler generally already knows

where to find the header files. For other libraries, we can expand the search path

by adding a -I/path/to/headerfile switch to the compiler.

If you use an IDE, there will be a Project->Settings->Preprocessor,

or Project->Options->Libraries configuration menu that lets you specify

additional include directories, which end up getting passed as -I switches to the

compiler.

With qmake, as we will soon see, you can add INCLUDEPATH += dirname

lines to the project file. These directories end up in the generated Makefile as

INCPATH macros, which then get passed on to the compiler/preprocessor at build

time.

In general, it is a good idea to #include non-Qt header files after Qt
header files. Since Qt does define many symbols, in the compiler as well
as the preprocessor, this helps you avoid/find name clashes more easily.

3.2.2 The make Command

Instead of running the command line compiler directly, we will start using make,2

which greatly simplifies the build process when a project involves multiple source

files and libraries.

We have seen before that qmake (without arguments) reads a project file and

builds a Makefile. Example 3.3 is a slightly abbreviated look at the Makefile

for the previous qapp project.

C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

86

2 Depending on your development environment, this program goes under many other names, such as
mingw32-make, nmake, gmake, or unsermake.

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 86



E X A M P L E  3 . 3 src/qapp/Makefile-abbreviated

# Excerpts from a makefile

####### Compiler, tools and options

CC          = gcc     # executable for C compiler
CXX         = g++     # executable for c++ compiler
LINK        = g++     # executable for linker

3 . 2 M A K E F I L E , Q M A K E , A N D  P R O J E C T  F I L E S

87

# flags that get passed to the compiler
CFLAGS = -pipe -g -Wall -W -D_REENTRANT $(DEFINES)
CXXFLAGS = -pipe -g -Wall -W -D_REENTRANT $(DEFINES)
INCPATH = -I/usr/local/qt/mkspecs/default -I. \

-I$(QTDIR)/include/QtGui -I$(QTDIR)/include/QtCore \
-I$(QTDIR)/include

# Linker flags
LIBS = $(SUBLIBS) -L$(QTDIR)/lib -lQtCore_debug 

-lQtGui_debug -lpthread
LFLAGS = -Wl,-rpath,$(QTDIR)/lib

# macros for performing other operations as part of build steps:
QMAKE        = /usr/local/qt/bin/qmake

####### Files

HEADERS     =    # If we had some, they’d be here. 
SOURCES     = main.cpp
OBJECTS     = main.o
[snip]
QMAKE_TARGET = qapp
DESTDIR     = 
TARGET      = qapp  # default target to build

first: all           # to build "first" we must build "all"

####### Implicit rules

.SUFFIXES: .c .o .cpp .cc .cxx .C

.cpp.o:
$(CXX) -c $(CXXFLAGS) $(INCPATH) -o $@ $<

## Possible targets to build

all: Makefile $(TARGET)  # this is how to build "all"

$(TARGET):  $(OBJECTS) $(OBJMOC)    # this is how to build qapp
$(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJMOC) $(OBJCOMP) \

$(LIBS)

continued

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 87



qmake:  FORCE             # "qmake" is a target too! 
@$(QMAKE) -o Makefile qapp.pro  # what does it do?

dist:                                 # Another target 
@mkdir -p .tmp/qapp \

&& $(COPY_FILE) --parents $(SOURCES) $(HEADERS) \ 
$(FORMS) $(DIST) .tmp/qapp/ \ 

&&  (cd 'dirname .tmp/qapp' \ && $(TAR) qapp.tar qapp \ 
&& $(COMPRESS) qapp.tar) \ 

&& $(MOVE) 'dirname .tmp/qapp'/qapp.tar.gz . \ 
&& $(DEL_FILE) -r .tmp/qapp

clean:compiler_clean                # yet another target
-$(DEL_FILE) $(OBJECTS)
-$(DEL_FILE) *~ core *.core

####### Dependencies for implicit rules

main.o: main.cpp

The command make checks the dependencies and performs each build step spec-

ified in the Makefile. The name and location of the final result can be set with

the project variables, TARGET and target.path. If TARGET is not specified, the

name defaults to the name of the directory in which the project file is located. If

target.path is not specified, the location defaults to the directory in which the

project file is located.

3.2.3 Cleaning Up Files

make can clean up the generated files for you with the two targets clean and

distclean. Observe how they are different from the following code:

src/qapp> make clean
rm -f main.o
rm -f *~ core *.core
src/qapp> ls
Makefile  main.cpp  qapp  qapp.pro

src/qapp> make distclean
rm -f qmake_image_collection.cpp
rm -f main.o
rm -f *~ core *.core
rm -f qapp
rm -f Makefile
src/qapp> ls
main.cpp  qapp.pro

After a make distclean, the only files that remain are the source files that

can go into a tarball for distribution.

C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

88

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 88



If you modify a project file since the last execution of make, the next
invocation of make should rebuild the Makefile itself (via qmake)
before re-running make on the newly generated Makefile.

In other words, the Makefile is qmake-aware and can re-qmake
itself.

The command make dist will create a tarball (dirname.tar.gz) that
contains all the source files that the project file knows about.

As we add more source-code, header, or library modules for our project, we edit

the .pro file and add the new items to the SOURCES, HEADERS, and LIBS lists. The

same documentation standards that apply to C++ source code should be applied

to project files (where comments begin with #).

We think of the project file as a map of our project, containing references to all

files and locations required for building our application or library. Like other

source code files, this is both human readable and machine readable. The .pro file

is the first place to look when we encounter “not found” or “undefined” messages dur-

ing the build process (especially at link time). For further details we recommend that

you read Trolltech’s guide to qmake.3

3.3 Getting Help Online
In addition to the Trolltech Online Documentation,4 which includes links to API

docs as well as FAQs,5 there are many online resources available to you.

1. The Qt Interest Mailing List6 provides a developer community and

searchable archives. Searching on a class you are trying to use, or an error

message you do not understand, will often give you useful results.

2. QtCentre,7 a Web-based online community.

3. If it’s not directly related to Qt, and the error message is short and rare

enough, Google might even come up with interesting hits.

4. There is also a #qt irc channel on irc.freenode.net.

3 . 3 G E T T I N G  H E L P  O N L I N E

89

3 http://trolltech.com/qmake-manual.html
4 http://doc.trolltech.com
5 http://www.trolltech.com/developer/faqs/
6 http://lists.trolltech.com/qt-interest/
7 http://www.qtcentre.org/

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 89



3.4 Style Guidelines and Naming Conventions
C++ is a powerful language that supports many different programming styles. The

coding style used in most Qt programs is not “pure” C++. Instead, it uses combi-

nation of macros and preprocessor trickery to achieve a higher-level dynamic lan-

guage that more closely resembles Java or Python than C++. In fact, to take full

advantage of Qt’s power and simplicity, we tend to abandon the Standard Library

entirely.

We find there are certain aspects to “Qt programming style” that are worth emu-

lating, and they are summarized here. For a more complete guide, see “Designing

Qt-Style C++ APIs,” by Matthias Ettrich, published by Trolltech.

■ Class names begin with a capital letter: class Customer

■ Function names begin with a lowercase letter.

■ Although permitted by the compiler, periods, underscores, dashes, and

funny characters should be avoided whenever possible (except where

noted below).

■ Multi-word names have subsequent words capitalized: class

FileTagger void getStudentInfo() for example.

■ Constants should be in CAPS.

■ Each class name should be a noun or a noun phrase: class

LargeFurryMammal; for example.

■ Each function name should be a verb or a verb phrase:

processBookOrder(); for example.

■ Each bool variable name should produce a reasonable approximation of

a sentence when used in an if() statement: bool isQualified; for

example.

For data members, we use a common prefix.

■ Member name: m_Color, m_Width (prepend lowercase m_)

■ static data members: sm_Singleton, sm_ObjCount

For each attribute, we have naming conventions for their corresponding

getters/setters.

■ Non-boolean getters: color() or getColor()8

■ Boolean getters: isChecked() or isValid()

■ Setter: setColor(const Color& newColor); 

C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

90

8 The latter is Java style, the former is Qt style. Both conventions are widely used. Try to be consistent
in your code.

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 90



A consistent naming convention greatly improves the readability and maintain-

ability of a program.

3.5 The Qt Core Module
Qt 4 is a library consisting of smaller libraries, or modules. The most popular ones

are 

■ core—including QObject, QThread, QFile, and so forth

■ gui—all classes derived from QWidget, and some related classes

■ xml—for parsing and serializing XML 

■ sql—for communicating with SQL databases

■ net—for communicating data between hosts on specific protocols (http,

tcp, udp)

Except for core, modules need to be “enabled” in qmake project files in order to be

used. For example:

QT += xml  # to use the xml module
QT += gui  # to use QWidgets
QT += sql  # to use SQL module

The following section will introduce some of the core library classes.

3.6 Streams and Dates
In subsequent examples, we use instances of QTextStream, which behave in a

similar way to the C++ Standard Library’s global iostream objects. We have

given them the familiar names: cin, cout, and cerr. For convenience, we have

placed these definitions, along with some other useful functions, into a namespace

so that they can be easily added to any program.

E X A M P L E  3 . 4 src/libs/utils/qstd.h

[ . . . . ]
namespace qstd {

extern QTextStream cin;
extern QTextStream cout;
extern QTextStream cerr;
bool yes(QString yesNoQuestion);
bool more(QString prompt);
int promptInt(int base = 10);
double promptDouble();

1

3 . 6 S T R E A M S  A N D  D A T E S

91

continued

ezus_138004_ch03.qxd  8/4/06  9:37 AM  Page 91



void promptOutputFile(QFile& outfile);
void promptInputFile(QFile& infile);

[ . . . . ]

declared only—defined in the .cpp file

Example 3.4 declares the iostream-like QTextStreams, and Example 3.5 contains

the required definitions of these static objects.

E X A M P L E  3 . 5 src/libs/utils/qstd.cpp

[ . . . . ]

QTextStream qstd::cin(stdin, QIODevice::ReadOnly);
QTextStream qstd::cout(stdout, QIODevice::WriteOnly);
QTextStream qstd::cerr(stderr, QIODevice::WriteOnly);

<QTextStream> works with Unicode QStrings and other Qt types, so we will use

it in favor of <iostream> in most of our examples henceforth. The program in

Example 3.6 uses QTextStream objects and functions from the qstd namespace

just described. It also uses some of the QDate member functions and displays dates

in several different formats.

E X A M P L E  3 . 6 src/qtio/qtio-demo.cpp

[ . . . . ]
int main() {

using namespace qstd;
QDate d1(2002, 4,1), d2(QDate::currentDate());
int days;
cout << "The first date is: " << d1.toString()

<< "\nToday’s date is: "
<< d2.toString("ddd MMMM d, yyyy")<< endl;

if (d1 < d2)
cout << d1.toString("MM/dd/yy") << " is earlier than "

<< d2.toString("yyyyMMdd") << endl;

cout << "There are " << d1.daysTo(d2)
<< " days between "
<< d1.toString("MMM dd, yyyy") << " and "
<< d2.toString(Qt::ISODate) << endl;

cout << "Enter number of days to add to the first date: "
<< flush;

days = promptInt();

1

C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

92

ezus_138004_ch03.qxd  8/4/06  9:38 AM  Page 92



cout << "The first date was " << d1.toString()
<< "\nThe computed date is "
<<  d1.addDays(days).toString() << end1;

cout << "First date displayed in longer format: "
<<  d1.toString("dddd, MMMM dd, yyyy") << end1;

[ . . . . ]

Here is the output of this program.

The first date is: Mon Apr 1 2002
Today’s date is: Wed January 4, 2006
04/01/02 is earlier than 20060104
There are 1374 days between Apr 01, 2002 and 2006-01-04
Enter number of days to add to the first date: : 1234
The first date was Mon Apr 1 2002
The computed date is Wed Aug 17 2005
First date displayed in longer format: Monday, April 01, 2002

E X E R C I S E : T H E  Q T  C O R E  M O D U L E

1. Write a birthday reminder application called birthdays. Classes to reuse are

QDate, QFile, QString, QStringList, and QTextStream.

■ Store name/birthday pairs in any format you like, in a file called

birthdays.dat.

■ birthdays with no command line arguments opens the file and lists all

birthdays coming up in the next 30 days, in chronological order.

■ birthdays -a "john smith" "yyyy-mm-dd" should add an entry to

the file.

■ birthdays -n 40 shows birthdays coming up in the next 40 days.

■ birthdays namespec searches for the birthday paired with the name

namespec.

P O I N T S  O F  D E P A R T U R E

1. Visit the Unicode Web site. Explain what it is and why it is important

that QString supports the Unicode standard.

2. Explore the QString documentation. Explain what it means for a string

implementation to support the Unicode standard.

3. Look up make in the documentation. Discuss four useful command line

options for the make command.

3 . 6 S T R E A M S  A N D  D A T E S

93

ezus_138004_ch03.qxd  8/4/06  9:38 AM  Page 93



C H A P T E R  3 : I N T R O D U C T I O N  T O  Q T

94

R E V I E W  Q U E S T I O N S

1. What is a project file? How can you produce one for your project?

2. What does the TEMPLATE variable mean in the qmake project file?

What are possible values?

3. What is a Makefile? How can you produce a Makefile for your project?

ezus_138004_ch03.qxd  8/4/06  9:38 AM  Page 94



4.1 Introduction to Containers . . . . . . . . . . . . 96

4.2 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 99

4C H A P T E R  4

Lists

Whenever possible, we use lists in favor of arrays.This

chapter explains ways of grouping things together 

in lists and how to iterate through them.

95

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 95



4.1 Introduction to Containers
There are many occasions when it is necessary to deal with collections of things.

The classic approach in languages like C is to use arrays to store such collections. In

C++ arrays are regarded as evil. Here are a few good reasons to avoid using arrays.

■ Array subscripts are not checked to make sure that they are not out of

range. A programmer using an array has the responsibility to write extra

code to do the range checking.

■ Arrays are either fixed in size or they must use dynamic memory from

the heap. With heap arrays, the programmer is responsible for making

sure that, under all possible circumstances, the memory gets properly

deallocated when the array is destroyed. To do this properly requires

deep knowledge of C++, exceptions, and what happens under excep-

tional circumstances.

■ Inserting, prepending, or appending elements to an array can be expen-

sive operations (in terms of both run time and developer time).

The Standard Library and Qt both provide the programmer with lists that resize

themselves as needed and also perform range checking. std::list and QList

are each considered basic generic containers in their respective libraries. They are

similar to each other in interface (the way they are used from client code), but very

different in implementation (the way they behave at runtime).

A generic container is named as such because

1. Generics are classes or functions that accept template (see Section 10.1)

parameters so that they can operate on any type.

2. Containers (see Section 10.2)  are objects that can contain other objects.

To use a QList, the client code must contain a declaration that answers the ques-

tion: “List of what?” Like other generic containers, QList is a template class (see

Chapter 10) and must be declared in the following way.

QList<double>  doublList;
QList<Thing>  thingList;

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 96



QList supports many operations. As with any class you reuse, it is recommended

that you scan the API docs to get an overview of its full capabilities. With a single

function call, items can be added, removed, swapped, queried, cleared, moved,

located, and counted in a variety of ways.

4.2 Iterators
Any time you have a container of things, sooner or later you are probably going to

loop through the container and do something with each thing. An iterator is an

object that provides indirect access to each element in a container. It is specifically

designed to be used in a loop.

Qt 4 supports the following styles of iteration:

1. Qt 4 style foreach loops, similar to Perl and Python

2. Java 1.2 style Iterator

3. Standard Library style ContainerType::iterator

4. Hand-made while or for loops that use getters of the container

The next section demonstrates the various styles of iteration available in C++ with

Qt 4.

4.2.1 QStringList and Iteration

For text processing, it is very useful to work with lists of strings. QStringList

is derived from QList<QString> so it inherits all of QList’s behavior (see

Chapter 6). In addition, QStringList has some string-specific convenience

functions such as indexOf(), join(), and replaceInStrings().

Converting between lists and individual strings is quite easy with perl-like

split() and join() functions. Example 4.1 demonstrates lists, iterations,

split(), and join().

E X A M P L E  4 . 1 src/collections/lists/lists-examples.cpp

#include <QStringList>
#include <QDebug>
#include <cassert>

/* Some simple examples using QStringList, split and join */

4 . 2 I T E R A T O R S

97

continued

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 97



int main() {

QString winter = "December, January, February";
QString spring = "March, April, May";
QString summer = "June, July, August";
QString fall = "September, October, November";

QStringList list;
list << winter;
list += spring;
list.append(summer);  
list << fall;

qDebug() << "The Spring months are: " << list[1] ;

QString allmonths = list.join(", "); 
/* from list to string - join with a ", " delimiter */
qDebug() << allmonths;

QStringList list2 = allmonths.split(", ");  
/* split is the opposite of join. Each month will have its
own element. */

assert(list2.size() == 12);

foreach (QString str, list)  {
qDebug() << QString(" [%1] ").arg(str);

}

for (QStringList::iterator it = list.begin();
it != list.end(); ++it) {     

QString current = *it;
qDebug() << "[[" << current << "]]";

}

QListIterator<QString> itr (list2);
while (itr.hasNext()) {

QString current = itr.next();
qDebug() << "{" <<  current << "}";

}

return 0;
}

append operator 1
append operator 2
append member function
Assertions abort the program if the condition is not satisfied.
Qt 4 foreach loop, similar to Perl/Python and Java 1.5 style for loops.
C++ STL-style iteration
pointer-style dereference
Java 1.2 style iterator
Java iterators point in between elements.9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

C H A P T E R  4 : L I S T S

98

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 98



4 . 3 R E L A T I O N S H I P S

99

4.3 Relationships
When there is a one-to-one or a one-to-many correspondence between objects

of certain types, we can describe a relationship between them in a UML class

diagram.

Employer

 - m_Name : QString
 - m_EmployeeList : QList<Person*>
 - m_OpeningList : QList<Position*>

+ hire(newHire : Person&, forPosition : Position) : bool

Person

 - m_Name : QString
 - m_Employed : bool

+ getPosition() : Position
+ getEmployer() : Employer
+ getName() : QString

+employer 1

*+m_employeeList

src/collections> ./collections
The Spring months are: March, April, May
December, January, February, March, April, May, June, July, August,
September, October, November
[December]
[January]
[February]
[March]
[April]
[May]
[June]
[July]
[August]
[September]
[October]
[November]

src/collections>

F I G U R E  4 . 1 Simple relationship

In the relationship shown in Figure 4.1, we see a diamond on the Employer

side that can be read to mean “From the Employer, there is an employeeList

containing Persons.”

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 99



Since there could be many Person instances working for the Employer, there

is a * on the Person end of the relationship. This is a one to many relationship

between Employer and Person, where * takes on its regular expression defini-

tion, of “0 or more” of something (see Chapter 13).

Revisiting the company UML diagram from The Company Chart in Chapter 2,

Exercise 3, another set of relationships, as shown in Figure 4.2, is revealed when we

look at the company from the Employer’s viewpoint. These relationships are

C H A P T E R  4 : L I S T S

100

1. There is a composition relationship between Employer and

Position. This indicates that the Employer owns the Position, and

the Position should not exist without the Employer.

2. There is an aggregate relationship (the hollow diamond) from the

Employer to its employees. The Employer groups together a collec-

tion of Persons and gets them to do things during working hours. In an

aggregate relationship, the lifetimes of the objects on either end are not

related to each other.

Employer

 - m_Name : QString
 - m_EmployeeList : QList<Person*>
 - m_OpeningList : QList<Position*>

+ hire(newHire : Person&, forPosition : Position) : bool

Person

 - m_Name : QString
 - m_Employed : bool

+ getPosition() : Position
+ getEmployer() : Employer
+ getName() : QString

Position

 - m_Name : QString
 - m_Description : QString

+ getEmployer() : Employer

aggregation

association

Composition - Employer owns Position

*

1

1

F I G U R E  4 . 2 The employer’s view of the company

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 100



3. The Person and the Position have an association between them. An

association is a bidirectional relationship and does not specify anything

about ownership or management between objects. Although our dia-

gram indicates a 1:1 relationship between them, it is possible that other

Employers many hire many Persons for the same Position. In such

a case, the numbers should reflect that in the diagram.

E X E R C I S E S : R E L A T I O N S H I P S

In these exercises you are to implement some relationships based on Figure 4.2.

The diagram is only a starting point—you will need to add some members to the

classes.

1. Implement the findJobs() function to look at an Employer, and get a list

of all open Positions.

2. Implement the apply() function to call Employer::hire(), and return the

same result as hire, if successful.

3. Have the Employer::hire() function randomly return false half of the

time, to make things interesting.

4. Create some more test Employer objects (Galactic Empire and Klingon

Empire), Person objects (Darth Vader, C3PO, Data), and Position objects

(Tie Fighter Pilot, Protocol Android, Captain) in your client code.

5. Make up some funny job application scenarios, and run your program to deter-

mine whether they are successful.

E X E R C I S E S : C O N T A C T  L I S T

4 . 3 R E L A T I O N S H I P S

101

Contact

- category : int
- firstName : QString
- lastName : QString
- streetAddress : QString
- zipCode : QString
- city : QString
- phoneNumber : QString

+ toString() : QString

ContactList

+ add(c : Contact)
+ remove(c : Contact)
+ getPhoneList(category : int) : QStringList
+ getMailingList(category : int) : QStringList

1. This UML diagram describes a data model for a contact system. ContactList

can derive from or reuse any Qt container that you wish, as long as it supports

the operations listed.

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 101



■ getPhoneList(int category) accepts a value to be compared with

a Contact’s category member for selection purposes. It returns a

QStringList containing, for each selected Contact, the name and

phoneNumber, separated by the tab symbol:"\t".

■ getMailingList() has a similar selection mechanism and returns a

QStringList containing address label data.

2. Write a ContactFactory class that generates random Contacts. Example 4.2

contains a substantial hint.

E X A M P L E  4 . 2 src/containers/contact/testdriver.cpp

[ . . . . ]

void createRandomContacts(ContactList& cl, int n=10) {
static ContactFactory cf;
for (int i=0; i<n; ++i) {

cf >> cl;
}

}

adds a Contact into the ContactList

There are many ways to generate random names/addresses. One way is to have

the ContactFactory create lists of typical first names, last names, street

names, city names, and so forth. When it is time to generate a contact, it can pick

a random element from each list, add randomly generated address numbers,

zip codes, and so on. We demonstrate the use of the random function in

“Exercise: C++ Simple Types” in Chapter 1.

3. Write client code to test your classes. In particular, the client code should gen-

erate some random contacts, try out the queries, and print the original list, as

well as the query results, to the standard output. Summarize the results by list-

ing the number of elements in the original ContactList compared to the

query results.

P O I N T S  O F  D E P A R T U R E

1. Read the API docs for QList and find three distinct ways of adding ele-

ments to the list.

2. List three methods that exist in QStringList but are not in QList.

3. Why does QList have an iterator and an Iterator? What is the

difference between them?

1

1

C H A P T E R  4 : L I S T S

102

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 102



R E V I E W  Q U E S T I O N S

103

R E V I E W  Q U E S T I O N S

1. What is an iterator?

2. Draw a UML diagram with three or more classes that have at least one

of each kind of relationship: aggregation and composition. The classes

should represent real-world concepts, and the relationships should

attempt to represent reality. Write a couple of paragraphs explaining why

there is a relationship of each kind there.

ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 103



ezus_138004_ch04.qxd  8/4/06  9:38 AM  Page 104



5.1 Function Declarations . . . . . . . . . . . . . . . 106

5.2 Overloading Functions . . . . . . . . . . . . . . 107

5.3 Optional Arguments . . . . . . . . . . . . . . . . 109

5.4 Operator Overloading . . . . . . . . . . . . . . 111

5.5 Parameter Passing by Value . . . . . . . . . 116

5.6 Parameter Passing by Reference . . . . . 118

5.7 References to const . . . . . . . . . . . . . . . . . 121

5.8 Function Return Values . . . . . . . . . . . . . 122

5.9 Returning References from 

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10 Overloading on const-ness . . . . . . . . . . 124

5.11 Inline Functions . . . . . . . . . . . . . . . . . . . . 126

5.12 Inlining versus Macro Expansion . . . . . 127

5C H A P T E R  5

Functions

In this chapter we discuss the essentials of function

declarations, prototypes, and signatures; overloading

functions; function call resolution; default/optional

arguments; temporary variables and when they’re

created; reference parameters and return values; and

inline functions.

105

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 105



5.1 Function Declarations
Functions in C++ are very similar to functions and subroutines in other lan-

guages. C++ functions, however, support many features that are not found in

some languages, so it is worthwhile discussing each of them here. Each function

has:

1. A name

2. A return type (which may be void)

3. A parameter list (which may be empty)

4. A body (a group of statements)

The first three are the function’s interface, and the last is the implementation.

A function must be declared before it is used for the first time. The mechanism

for declaring a function is called a function prototype. A function prototype is a

declaration that must include

■ The function’s return type

■ The function’s name

■ An ordered, comma separated list of the types of the function’s

parameters

Here are a few prototypes.

int toCelsius(int fahrenheitValue);
QString toString();
int main(int argc, char* argv[]);

Even though parameter names are optional in function prototypes, it is good pro-

gramming practice to use them. They constitute a very effective and efficient part

of the documentation for a program. Furthermore, many documentation genera-

tors (e.g., kdoc) require them.

A simple example can help to show why parameter names should be used in

function prototypes. Suppose we needed a constructor for a Date class that we

designed and we wanted that constructor to initialize the Date with values for

the year, month, and day. If we presented the prototype as Date(int, int, int),

the user of that class would not know immediately what order to list the three

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 106



values when constructing a Date object. Since several of the possible orderings are

in common use somewhere on the planet, there is no “obvious” answer that would

eliminate the need for more information. By simply naming the parameters the

problem is eliminated and the function has documented itself.

In multi-file applications, function prototypes are usually stored in header

files.

5.2 Overloading Functions
The signature of a function consists of its name and its parameter list. In C++, the

return type is not part of the signature.

C++ permits overloading of function names. A function name is overloaded

if it has more than one meaning within a given scope. Overloading occurs when

two or more functions within a given scope have the same name but different

signatures. It is an error to have two functions in the same scope with the same

signature but different return types.

Function Call Resolution

When a function call is made to an overloaded function within a given scope,

the C++ compiler determines from the arguments which version of the function

to invoke. To do this, a match must be found between the number and type of the

arguments and the signature of exactly one of the overloaded functions. This is the

sequence of steps that the compiler takes to determine which overloaded function

to call.

1. If there is an exact match with one function, call it.

2. Else, match through standard type promotions (see Section 19.5).

3. Else, match through conversion constructors or conversion operators

(see Section 2.12).

4. Else, match through ellipsis (...) (see Section 24.1), if found

5. Else, report an error.

Example 5.1 shows a class with six member functions, each with a distinct signa-

ture. Keep in mind that each function has an additional implicit parameter: this.

The keyword const, following the parameter list, protects the host object from

the action of the function and is part of its signature.

5 . 2 O V E R L O A D I N G  F U N C T I O N S

107

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 107



E X A M P L E  5 . 1 src/functions/function-call.cpp

[ . . . . ]

class SignatureDemo {
public:

SignatureDemo(int val) : m_Val(val) {}
void demo(int n)

{cout << ++m_Val << "\tdemo(int)" << endl;}
void demo(int n) const

{cout << m_Val << "\tdemo(int) const" << endl;}
/*  void demo(const int& n)   

{cout << ++m_Val << "\tdemo(int&)" << endl;}  */
void demo(short s)  

{cout << ++m_Val << "\tdemo(short)" << endl;}
void demo(float f)  

{cout << ++m_Val << "\tdemo(float)" << endl;}
void demo(float f) const 

{cout << m_Val << "\tdemo(float) const" << endl;}
void demo(double d)

{cout << ++m_Val << "\tdemo(double)" << endl;}
private:

int m_Val;
};

overloaded on const-ness
clashes with previous function

Example 5.2 contains some client code that tests the overloaded functions from

SignatureDemo.

E X A M P L E  5 . 2 src/functions/function-call.cpp

[ . . . . ]

int main() {
SignatureDemo sd(5);
const SignatureDemo csd(17);
sd.demo(2);    
csd.demo(2);  
int i = 3;
sd.demo(i);
short s = 5;
sd.demo(s);
csd.demo(s);  
sd.demo(2.3);  
float f(4.5);   
sd.demo(f);
csd.demo(f);    
csd.demo(4.5);  
return 0;

}

3

2

1

2

1

2

1

C H A P T E R  5 : F U N C T I O N S

108

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 108



const version is called.
Non-const short cannot be called, so a promotion to int is required to call the const int version.
This is double, not float.

The output should look something like this:

6       demo(int)
17      demo(int) const
7       demo(int)
8       demo(short)
17      demo(int) const
9       demo(double)
10      demo(float)
17      demo(float) const

E X E R C I S E S : O V E R L O A D I N G  F U N C T I O N S

1. Experiment with Example 5.1. Start by uncommenting the third member func-

tion and compiling.

2. Try adding the following line just before the end of main():

csd.demo(4.5);

What happened? Explain the error message.

3. Add other function calls and other variations on the demo() function.

Explain each result.

5.3 Optional Arguments
Function parameters can have default values, making them optional. The default

value for an optional argument can be a constant expression or an expression that

does not involve local variables.

Parameters with default arguments must be the right-most (trailing) parame-

ters in the parameter list.

Trailing arguments with default values can be left out of the function call. The

corresponding parameters will then be initialized with the default values.

From the viewpoint of the function, if it is called with one missing argument,

then that argument must correspond to the last parameter in the list. If two argu-

ments are missing, they must correspond to the last two parameters in the list (and

so forth).

Because an optional argument specifier applies to a function’s interface, it

belongs with the declaration, not the definition of the function if the declaration

is kept in a separate header file.

3

2

1

5 . 3 O P T I O N A L  A R G U M E N T S

109

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 109



A function with default arguments can be called in more than one way. If all

arguments for a function are optional, the function can be called with no argu-

ments. Declaring a function with n optional arguments can be thought of as an

abbreviated way of declaring n+1 functions, one for each possible way of calling

the function.

In Example 5.3 the constructor for the Date class has three parameters; each

parameter is optional and defaults to 0.

E X A M P L E  5 . 3 src/functions/date.h

[ . . . . ]
class Date {
public:

Date(int d = 0, int m = 0, int y = 0);
void display(bool eoln = true) const;

private:
int m_Day, m_Month, m_Year;

};
[ . . . . ]

The constructor definition shown in Example 5.4 looks the same as usual; no

default arguments need to be specified there.

E X A M P L E  5 . 4 src/functions/date.cpp

#include <QDate>
#include "date.h"
#include <iostream>

Date::Date(int d , int m , int y ) 
: m_Day(d), m_Month(m), m_Year(y) {

static QDate currentDate = QDate::currentDate();

if (m_Day == 0) m_Day = currentDate.day(); 
if (m_Month == 0) m_Month = currentDate.month();
if (m_Year == 0) m_Year = currentDate.year();

}

void Date::display(bool eoln) const {
using namespace std;
cout << m_Year << "/" << m_Month << '/' << m_Day;
if (eoln)

cout << endl;
}

We use Qt’s QDate class only to get the current date.1

1

C H A P T E R  5 : F U N C T I O N S

110

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 110



If 0 is the actual value of any of the supplied arguments, it will be replaced with a

sensible value, derived from the current date.

E X A M P L E  5 . 5 src/functions/date-test.cpp

#include "date.h"
#include <iostream>

int main() {
using namespace std;
Date d1;
Date d2(15);
Date d3(23, 8);
Date d4(19, 11, 2003);

d1.display(false);
cout << '\t';
d2.display();
d3.display(false);
cout << '\t';
d4.display();
return 0;

}

The client code in Example 5.5 demonstrates that by defining default values we

are, in effect, overloading the function. The different versions of the function exe-

cute the same code, but with different values passed in for the later parameters.

So if we ran this program on November 26, 2005, it should show us this in the

output:

src/functions> qmake
src/functions> make
[ compiler linker messages ] 
src/functions> ./functions
11/26/2005      11/15/2005
8/23/2005       11/19/2003
src/functions>    

5.4 Operator Overloading
The keyword operator is used in C++ to define a new meaning for an operator

symbol such as +, -, =, *, &, and so forth. Adding a new meaning to an opera-

tor symbol is a specialized form of function overloading.

5 . 4 O P E R A T O R  O V E R L O A D I N G

111

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 111



Operator overloading provides a more compact syntax for calling functions,

which can lead to more readable code (assuming the operators are used in ways

that are commonly understood).

It is possible to overload nearly all of the existing operator symbols in C++.

For example, suppose that we want to define a class named Complex to represent

complex numbers.1 To specify how to do the basic arithmetic operations with

these objects we could overload the four arithmetic operator symbols. While we

are at it, we could also overload the insertion symbol so that output statements

become more readable.

Example 5.6 shows a class definition with both members and non-member

operators.

E X A M P L E  5 . 6 src/complex/complex.h

C H A P T E R  5 : F U N C T I O N S

112

1 Complex numbers were introduced initially to describe the solutions to equations such as x2 –
6x + 25 = 0. Using the quadratic formula one can easily determine that the roots of this equation
are 3 + 4i and 3 – 4i. The complex numbers consist of all numbers of the form a + bi, where
a and b are real numbers and i is the square root of –1. Since that set includes such numbers for which
b = 0, it is clear that the real numbers are a subset of the complex numbers.

#include <iostream>
using namespace std;

class Complex {
// binary non-member friend function declarations
friend ostream& operator<<(ostream& out, const Complex& c);
friend Complex operator-(const Complex& c1, const Complex & c2);
friend Complex operator*(const Complex& c1, const Complex & c2);
friend Complex operator/(const Complex& c1, const Complex & c2);

public:
Complex(double re = 0.0, double im = 0.0);

// binary member function operators
Complex& operator+= (const Complex& c);
Complex& operator-= (const Complex& c);

Complex operator+(const Complex & c2); 1

private:
double m_Re, m_Im;

};

This should be a non-member friend like the other non-mutating operators.1

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 112



The operators declared in Example 5.6 are all binary (accept 2 operands). For the

member functions, there is only one formal parameter because the first (left)

operand is implicit: *this. The member operators definitions are shown in

Example 5.7.

E X A M P L E  5 . 7 src/complex/complex.cpp

[ . . . . ]

Complex& Complex::operator+=(const Complex& c) {
m_Re += c.m_Re;
m_Im += c.m_Im;
return *this;

}

Complex Complex::operator+(const Complex& c2) {
return Complex(m_Re + c2.m_Re, m_Im + c2.m_Im);

}

Complex& Complex::operator-=(const Complex& c) {
m_Re -= c.m_Re;
m_Im -= c.m_Im;
return *this;

}

Example 5.8 shows the definitions of the non-member friend functions. They are

defined like ordinary global functions.

E X A M P L E  5 . 8 src/complex/complex.cpp

[ . . . . ]

ostream& operator<<(ostream& out, const Complex& c) {
out << '(' << c.m_Re << ',' << c.m_Im << ')' ;
return out;

}

Complex operator-(const Complex& c1, const Complex& c2) {
return Complex(c1.m_Re - c2.m_Re, c1.m_Im - c2.m_Im);

}

We have expressed the mathematical rules that define each of the four algebraic

operations in C++ code. These details are encapsulated and hidden so that client

code does not need to deal with them. Example 5.9 shows some client code that

demonstrates and tests the Complex class.

5 . 4 O P E R A T O R  O V E R L O A D I N G

113

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 113



E X A M P L E  5 . 9 src/complex/complex-test.cpp

#include "complex.h"
#include <iostream>

int main() {
using namespace std;
Complex c1(3.4, 5.6);
Complex c2(7.8, 1.2);

cout << c1 << " + " << c2 << " = " << c1 + c2 << endl;
cout << c1 << " - " << c2 << " = " << c1 - c2 << endl;
Complex c3 = c1 * c2;
cout << c1 << " * " << c2 << " = " << c3 << endl;
cout << c3 << " / " << c2 << " = " << c3 / c2 << endl;
cout << c3 << " / " << c1 << " = " << c3 / c1 << endl;

return 0;
}

Here is the output of the program in Example 5.9:

(3.4,5.6) + (7.8,1.2) = (11.2,6.8)
(3.4,5.6) - (7.8,1.2) = (-4.4,4.4)
(3.4,5.6) * (7.8,1.2) = (19.8,47.76)
(19.8,47.76) / (7.8,1.2) = (3.4,5.6)
(19.8,47.76) / (3.4,5.6) = (7.8,1.2)

Member versus Global Operators

As we have seen, it is possible to overload operators as member functions, or

as global functions. The primary difference that you will notice first is how

they can be called. In particular, a member function operator requires an

object as the left operand. A global function, in contrast, permits the same

kinds of type conversions for either operand.

Example 5.10 shows why Complex::operator+() would be better

suited as a non-member function.

E X A M P L E  5 . 1 0 src/complex/complex-conversions.cpp

#include "complex.h"

int main() {
Complex c1 (4.5, 1.2);
Complex c2 (3.6, 1.5);

C H A P T E R  5 : F U N C T I O N S

114

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 114



Complex c3 = c1 + c2;
Complex c4 = c3 + 1.4;
Complex c5 = 8.0 - c4;
Complex c6 = 1.2 + c4;

}

Right operand is promoted.
Left operand is promoted.
Error: Left operand is not promoted for member operators.3

2

1

3

2

1

5 . 4 O P E R A T O R  O V E R L O A D I N G

115

There are some limitations on operator overloading. Only built-in operators can be

overloaded. It is not possible to introduce definitions for symbols such as $, ", or '

that do not already possess operator definitions. Although new meanings can be

defined for built-in operators, their associativity and precedence remain the same.

It is possible to overload all of the built-in binary and unary operators except

for these:

■ The ternary conditional operator testExpr ? valueIfTrue :

valueIfFalse

■ Scope resolution operator ::

■ Member select operators . and .*

Here is one way to remember which operators can be overloaded: If it
has a dot in it(.)anywhere, it’s probably not allowed.

Overloading the comma operator is allowed, but not recommended
until you are a C++ expert.

We have provided a complete table of operator symbols and their characteristics

in Section 19.1.

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 115



E X E R C I S E S : O P E R A T O R  O V E R L O A D I N G

1. Continue the development of the Fraction class by adding overloaded oper-

ators for addition, subtraction, multiplication, division, and various kinds of com-

parison. In each case the parameter should be a const Fraction&. Write

client code to test your new operators.

2. To be really useful, a Fraction object should be able to interact with other

kinds of numbers. Expand the definition of Fraction so that the operators in

Exercise 1 also work for int and double. It should be clear, for example, how

to get frac + num to be correctly evaluated. How would you handle the

expression num + frac, where frac is a Fraction and num is an int? Write

client code to test your new functions.

3. Add arithmetic and comparison operators to the class Complex. Write client

code to test your expanded class.

5.5 Parameter Passing by Value
By default, C++ parameters are passed by value. When a function is called, a tem-

porary (local) copy of each argument object is made and placed on the program

stack. Only the local copy is manipulated inside the function, and the argument

objects from the calling block are not affected by these manipulations. The tem-

porary stack variables are all destroyed when the function returns. A useful way to

think of value parameters is this: Value parameters are merely local variables that

are initialized by copies of the corresponding argument objects that are specified

when the function is called. Example 5.11 gives a short demonstration.

E X A M P L E  5 . 1 1 src/functions/summit.cpp

#include <iostream>

int sumit(int num) {
int sum = 0;
for (; num ; --num)  

sum += num;
return sum;

}

int main() {
using namespace std;
int n = 10;
cout << n  << endl;
cout << sumit(n) << endl;
cout << n << endl; 
return 0;

}

2

1

C H A P T E R  5 : F U N C T I O N S

116

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 116



Output:

10
55
10

The parameter gets reduced to 0.
See what sumit( ) did to n.

If a pointer is passed to a function, a temporary copy of that pointer is placed on

the stack. Changes to that pointer will have no effect on the pointer in the calling

block. For example, the temporary pointer could be assigned a different value (see

Example 5.12).

E X A M P L E  5 . 1 2 src/functions/pointerparam.cpp

#include <iostream>
using namespace std;

void messAround(int* ptr) {
*ptr = 34;
ptr = 0;

}

int main() {
int n(12);     
int* pn(&n);    
cout << "n = " << n << "\tpn = " << pn << endl;
messAround(pn);  
cout << "n = " << n << "\tpn = " << pn << endl;
return 0;

}

Output:

n = 12  pn = 0xbffff524
n = 34  pn = 0xbffff524

Change the value that is pointed to.
Change the address stored by ptr.
Initialize an int.
Initialize a pointer that points to n.
See what is changed by messAround( ).

In the output we display the hexidecimal value of the pointer pn as well as the

value of n so that there can be no doubt about what was changed by the action of

the function.

5

4

3

2

1

5

4

3

2

1

2

1

5 . 5 P A R A M E T E R  P A S S I N G  B Y  V A L U E

117

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 117



5.6 Parameter Passing by Reference
Large objects, or objects with expensive copy constructors, should not be passed

by value because the creation of temporary copies consumes time, machine cycles,

and memory needlessly. In C, we passed objects by pointer to avoid copying them.

However, using pointers requires a different syntax from using regular variables.

Further, accidental misuse of pointers can cause data corruption, leading to run-

time errors that can be very difficult to find and fix. In C++ (and C99), we can pass

by reference, which offers the same performance as a pointer-pass. With objects,

this permits use of the (.) operator for accessing members.

A reference parameter is simply a parameter that is an alias for something else.

To declare a parameter to be a reference, put the ampersand character (&) between

the type name and the parameter name.

A reference parameter of a function is initialized by the actual argument being

passed when the function is called. That argument must be, as with any reference,

a non-const lvalue. Changes to a non-const reference parameter in the function

cause changes to the actual object used to initialize the parameter. This feature is

often exploited to allow functions, which can return at most one value, to cause

changes in several objects, effectively allowing the function to return several values.

Example 5.13 shows how reference parameters can be used with integers.

E X A M P L E  5 . 1 3 src/reference/swap.cpp

#include <iostream>
using namespace std;

void swap(int &a, int &b) {
int temp = a;
cout << "Inside the swap() function:\n"

<< "address of a: " << &a
<< "\taddress of b: " << &b
<< "\naddress of temp: " << &temp << endl;

a = b;
b = temp;

}

int main() {
int n1 = 25;
int n2 = 38;
int n3 = 71;
int n4 = 82;
cout << "Initial values:\n"

<< "address of n1: " << &n1
<< "\taddress of n2: " << &n2
<< "\nvalue of n1: " << n1
<< "\t\t\tvalue of n2: " << n2

C H A P T E R  5 : F U N C T I O N S

118

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 118



<< "\naddress of n3: " << &n3
<< "\taddress of n4: " << &n4
<< "\nvalue of n3: " << n3
<< "\t\t\tvalue of n4: " << n4
<< "\nMaking the first call to swap()" << endl;

swap(n1,n2);
cout << "After the first call to swap():\n"

<< "address of n1: " << &n1
<< "\taddress of n2: " << &n2
<< "\nvalue of n1: " << n1
<< "\t\t\tvalue of n2: " << n2
<< "\nMaking the second call to swap()" << endl;

swap(n3,n4);
cout << "After the second call to swap():\n"

<< "address of n3: " << &n3
<< "\taddress of n4: " << &n4
<< "\nvalue of n3: " << n3
<< "\tvalue of n4: " << n4 << endl;

return 0;
}

There are extra output statements in Example 5.13 to help keep track of the

addresses of the important variables.

Initial values:
address of n1: 0xbffff3b4       address of n2: 0xbffff3b0
value of n1: 25                value of n2: 38
address of n3: 0xbffff3ac       address of n4: 0xbffff3a8
value of n3: 71                value of n4: 82

Initially our stack might look something like Figure 5.1:

5 . 6 P A R A M E T E R  P A S S I N G  B Y  R E F E R E N C E

119

As the program proceeds, we will see output like this:

Making the first call to swap()
Inside the swap() function:
address of a: 0xbffff3b4        address of b: 0xbffff3b0
address of temp: 0xbffff394

When references get passed to functions, the values that get pushed onto the stack

are addresses, not values. Under the covers, pass-by-reference is very much like

pass-by-pointer. Our stack now might look like Figure 5.2:

F I G U R E  5 . 1 Before first swap()

25
38
71
82

Stack

0xbffff3a8

Before first swap()

n1
n2
n3
n4

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 119



C H A P T E R  5 : F U N C T I O N S

120

After the first call to swap():
address of n1: 0xbffff3b4        address of n2: 0xbffff3b0
value of n1: 38                 value of n2: 25
Making the second call to swap()
Inside the swap() function:

Now our stack might look like Figure 5.3:

Stack

inside first swap()

0xbffff394

0xbffff3b4

int main()
{
int n1, n2, n3, n4;
cout << "initial values..."
swap(n1, n2);
cout << "after first call.."
swap(n3, n4);
cout << "after second call..."

}

25
0xbffff3b4
0xbffff3b0
[retaddrs]
25
38
71
820xbffff3a8

Stack

inside second swap()

0xbffff394

0xbffff3b4

int main()
{
int n1, n2, n3, n4;
cout << "initial values..."
swap(n1, n2);
cout << "after first call.."
swap(n3, n4);
cout << "after second call..."

}

71
0xbffff3ac
0xbffff3a8
[retaddrs]
38
25
71
820xbffff3a8

address of a: 0xbffff3ac        address of b: 0xbffff3a8
address of temp: 0xbffff394
After the second call to swap():
address of n3: 0xbffff3ac       address of n4: 0xbffff3a8
value of n3: 82 value of n4: 71

The swap()function is actually working with n1 and n2 during the first call and

with n3 and n4 during the second call.

Pass-by-reference is an alternate syntax for passing by pointer. Under the

covers, it is implemented the same way (i.e., the value is not copied). The main

difference between pass-by-pointer and pass-by-reference is that you must de-ref-

erence a pointer, while a reference is accessible in the same way as the referred

“thing.”

F I G U R E  5 . 2 Inside first swap()

F I G U R E  5 . 3 Inside second swap()

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 120



PASS-BY-POINTER OR PASS-BY-REFERENCE? When you have a
choice, it is generally preferable to use references instead of pointers
because this can reduce the number of places where a programmer can
accidentally corrupt memory. It is only when you need to manage
objects (creation, destruction, adding to a managed container) that you
need to operate on pointers, and those routines can usually be encapsu-
lated as member functions.

5.7 References to const
Declaring a reference parameter to be const tells the compiler to make sure that

the function does not attempt to change that object. For objects larger than a

pointer, a reference to const is an efficient alternative to a value parameter

because no data is copied. Example 5.14 contains three functions, each accepting

a parameter in a different way.

E X A M P L E  5 . 1 4 src/const/reference/constref.cpp

class Person {

public:
void setNameV( QString newName) {

newName += " Smith";
m_Name = newName;

}

void setNameCR( const QString& newName) {
//      newName += " Python";

m_Name = newName;
}
void setNameR( QString& newName) {

m_Name += " Dobbs";
m_Name = newName;

}
private:

QString m_Name;
};

int main() {
Person p;
QString name("Bob");
p.setNameCR(name);

//  p.setNameR("Monty");
p.setNameCR("Monty"); 6

5

4

3

2

1

5 . 7 R E F E R E N C E S  T O  C O N S T

121

continued

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 121



p.setNameV("Connie");
p.setNameR(name);
cout << name;

}

Changes a temporary that’s about to be destroyed.
Error: Can’t change const&.
Changes the original Qstring.
No temporaries are created.
Error: Cannot convert to a QString&.
char* converts to temporary and gets passed by const reference.
Temporary QString #1 is created to convert char* to QString. Temporary #2 is created when it
is passed by value.
No temporaries are created.

5.8 Function Return Values
Some functions return a value when they have finished performing the task for

which they were designed. Space for a temporary return object is usually a regis-

ter (if it can fit), but sometimes it is an object allocated on the stack. The tempo-

rary return object is initialized when the return statement is executed and exists

just long enough to be used in whatever expression contains the function call. It is

generally a copy of an object that is local to the function or an object constructed

from an expression in the return statement.

5.9 Returning References from Functions
Sometimes it can be very useful to design a function so that it returns a reference.

For example, when we overload the insertion operator, operator<<(ostream&,

NewType), we always return a reference to the output stream. This makes it possi-

ble to chain operations like this:

cout << thing1 << thing2 << thing3 ... ;

A reference return (especially of *this) is used to provide lvalue behavior for

member functions.

As with reference parameters, it is possible to protect a reference return by

specifying that the object it aliases is const.

Example 5.15 captures the essence of reference returns.

8

7

6

5

4

3

2

1

8

7

C H A P T E R  5 : F U N C T I O N S

122

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 122



E X A M P L E  5 . 1 5 src/reference/maxi.cpp

#include <iostream>
using namespace std;

int& maxi(int& x, int& y) { 
return (x > y) ? x : y;

}

int main() {
int a = 10, b = 20;
maxi(a,b) = 5;
maxi(a,b) += 6;
++maxi(a, b) ;
cout << a << '\t' << b << endl;
return 0;

}

Output:

17      5

Assigns the value 5 to b.
Increases a by 6. a is now 16.
Increments a by 1.

As we see in the main() function, the reference return value of the function

maxi()makes the expression maxi(a,b)into a modifiable lvalue.

Be very careful that your function does not return a reference to a tem-
porary (local) object. A moment’s thought should make that restriction
clear: When the function returns, all of its local variables are destroyed.

int& max(int i,int j) {
int retval = i > j ? i : j;

return retval;
}

Code like the above may generate a compiler warning (if you are lucky). Alas, the

compiler does not consider it an error.

badmax.cpp:4: warning: reference to local variable 'retval' returned

A more practical example showing the benefits of reference returns is coming up

in Example 5.16, which defines some common operators for vectors.

3

2

1

3

2

1

5 . 9 R E T U R N I N G  R E F E R E N C E S  F R O M  F U N C T I O N S

123

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 123



5.10 Overloading on const-ness
const changes the signature of a member function. This means that functions

can be overloaded on const-ness. Example 5.16 shows a homemade vector class

with member functions overloaded in this way.

E X A M P L E  5 . 1 6 src/const/overload/constoverload.h

#ifndef CONSTOVERLOAD_H
#define CONSTOVERLOAD_H

#include <iostream>

class Point3 {
public:

friend std::ostream& operator<<(std::ostream& out, const
Point3& v);
Point3(double x = 0, double y = 0, double z = 0);
double& operator[](int index);    
const double& operator[](int index) const;
Point3 operator+(const Point3& v) const;
Point3 operator-(const Point3& v) const;
Point3 operator*(double s) const;

private:
static const int cm_Dim = 3;
double m_Coord[cm_Dim];

};

#endif

a 3D point (of double)
overloaded on const-ness
scalar multiplication3

2

1

3

2

1

C H A P T E R  5 : F U N C T I O N S

124

E X E R C I S E S : O V E R L O A D I N G  O N  C O N S T - N E S S

1. In Example 5.17, the compiler can tell the difference between calls to the const

and to the non-const versions of operator[]based on the const-ness of

the object.

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 124



E X A M P L E  5 . 1 7 src/const/overload/constoverload-client.cpp

#include "constoverload.h"
#include <iostream>

int main( ) {
using namespace std;
Point3 pt1(1.2, 3.4, 5.6);
const Point3 pt2(7.8, 9.1, 6.4);
double d ;
d = pt2[2];
cout << d << endl;
d = pt1[0];
cout << d << endl;
d = pt1[3];
cout << d << endl;
pt1[2] = 8.7;
cout << pt1 << endl;
//  pt2[2] = 'd';
cout << pt2 << endl;
return 0;

}

__________
__________
__________
__________

a. Which operator is called for each of the notes?

b. Why is the last assignment commented out?

c. The operator function definitions are shown in Example 5.18. The fact that

the two function bodies are identical is worth pondering. If index is in

range, each function returns m_Coord[index], so what is the difference

between them?

E X A M P L E  5 . 1 8 src/const/overload/constoverload.cpp

[ . . . . ]
const double& Point3::operator[](int index) const {

if ((index >= 0) && (index < cm_Dim))
return m_Coord[index];

else
return zero(index);

}

4

3

2

1

4

3

2

1

5 . 1 0 O V E R L O A D I N G  O N  C O N S T - N E S S

125

continued

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 125



double& Point3::operator[](int index) {
if ((index >= 0) && (index < cm_Dim))

return m_Coord[index];
else

return zero(index);
}

[ . . . . ]

5.11 Inline Functions
To avoid the overhead associated with a function call (creation of a stack frame

containing copies of arguments or addresses of reference parameters and the

return address) C++ permits you to declare functions to be inline. Such a dec-

laration is a request to the compiler that it replace each call to the function with the

fully expanded code of the function. For example:

inline int max(int a, int b){
return a > b ? a : b ;

}

int main(){
int temp = max(3,5);
etc....

}

The compiler could substitute the expanded code for max as shown here.

int main() {
int temp;  
{

int a = 3;
int b = 5;
temp = a > b ? a : b;

}
etc.......

}

The inlining of a function can give a significant boost in performance if it is called

repeatedly (e.g., inside a large loop). The penalty for inlining a function is that it

might make the compiled code larger, which will cause the program to use more

memory while it is running. For small functions that get called many times, that

memory effect will be small while the potential performance gain might be large.

There are no simple answers to the question of whether inlining will improve

the performance of your program or not. A lot depends on the optimization set-

tings of the compiler. A lot depends on the nature of the program. Does it make

very heavy use of the processor? Does it make heavy use of system memory? Does

C H A P T E R  5 : F U N C T I O N S

126

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 126



it spend a lot of its time interacting with slow devices (e.g., input and output)? The

answers to these questions affect the answer to the question of whether or not to

inline, and we leave them to a more advanced treatment of the subject. For an

overview of the complexity of this issue, visit Marshall Cline’s FAQ Lite site.2

An inline function is similar to a #define macro with one very important

difference: The substitution process for a #define macro is handled by the pre-

processor, which is essentially a text editor. The substitution process for an

inline function is handled by the compiler, which will perform the operation

much more intelligently with proper type checking. We discuss this in more detail

in the next section.

Some Rules about Inline Functions

■ An inline function must be defined before it is called (a declaration is not

enough).

■ An inline definition can only occur once in any source code module.

■ If a class member function’s definition appears inside the class definition,

the function is implicitly inline.

If a function is too complex, or the compiler options are switched, the com-

piler may ignore the inline directive. Most compilers refuse to inline func-

tions that contain:

■ while, for, do . . . while statements

■ switch statements

■ More than a certain number of lines of code

If the compiler does refuse to inline a function, it treats it as a normal func-

tion and generates regular function calls.

5.12 Inlining versus Macro Expansion
Macro expansion is a mechanism for placing code inline by means of the follow-

ing preprocessor directive.

#define MACRO_ID expr

This is very different from an inline function.

5 . 1 2 I N L I N I N G  V E R S U S  M A C R O  E X P A N S I O N

127

2 http://snet.wit.ie/GreenSpirit/c++-faq-lite/inline-functions.html

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 127



Macro expansion provides no type checking for arguments. It is essentially an

editing operation: Each occurrence of MACRO_ID is replaced by expr. Careful use

of parentheses in macros is necessary to avoid precedence errors. But parentheses

won’t solve all the problems associated with macros, as we will see in Example 5.19.

Errors caused by macros can lead to very strange (and unclear) compiler errors. Or,

more dangerously, it can lead to invalid results, as the program in Example 5.19

demonstrates.

E X A M P L E  5 . 1 9 src/functions/inlinetst.cpp

// Inline functions vs macros

#include <iostream>
#define  BADABS(X)   (((X) < 0)? -(X) : X)
#define  BADSQR(X) (X * X)
#define  BADCUBE(X) (X) * (X) * (X)

using namespace std;

inline double square(double x) {
return x * x ;

}

inline double cube(double x) {
return x * x * x;

}

inline int absval(int n) {
return (n >= 0) ? n : -n;

}

int main() {
cout << "Comparing inline and #define\n" ;
double  t = 30.0;
int i = 8, j = 8, k = 8, n = 8; 
cout << "\nBADSQR(t + 8) = " << BADSQR(t + 8) 

<< "\nsquare(t + 8) = " << square(t + 8)
<< "\nBADCUBE(++i) = " << BADCUBE(++i)
<< "\n i = " << i
<< "\ncube(++j) = " << cube(++j)
<< "\nj = " << j
<< "\nBADABS(++k) = " << BADABS(++k)
<< "\nk = " << k
<< "\nabsval(++n) = " << absval(++n)
<< "\nn = " << n << endl;

}

C H A P T E R  5 : F U N C T I O N S

128

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 128



Here is the output.

Comparing inline and #define

BADSQR(t + 8) = 278
square(t + 8) = 1444
BADCUBE(++i) = 1100
i = 11

cube(++j) = 729
j = 9
BADABS(++k) = 10
k = 10
absval(++n) = 9
n = 9

BADSQR(t+8) gives us the wrong results because

BADSQR(t + 8)
=   (t + 8 * t + 8)          (preprocessor)
=   (30.0 + 8 * 30.0 + 8)   (compiler)
=   (30 + 240 + 8)          (run-time)
=   278

More troubling, however, are the errors produced by BADCUBE and BADABS,

which both have sufficient parentheses to prevent the kind of error that occurred

with BADSQR. Here is what happened with BADCUBE(++i).

BADCUBE(++i)
=   ((++i) * (++i)) * (++i)   // left associativity 
=   ((10) * (10)) * (11)
=   1100

In general, code substitution macros should be avoided. They are regarded as evil

by most serious C++ programmers. Preprocessor macros are used mostly for the

following:

1. #ifndef/#define/#endif wrapping around header files to avoid

multiple inclusion

2. #ifdef/#else/#endif to conditionally compile some parts of code

but not others

3. __FILE__ and __LINE__ macros for debugging and profiling

As a rule, we use inline functions in favor of macros for code substitutions. The

exception to this rule is the use of Qt macros that insert code into programs that

use certain Qt classes. It is easy to see why some C++ experts look very suspi-

ciously at Qt’s use of macros.

5 . 1 2 I N L I N I N G  V E R S U S  M A C R O  E X P A N S I O N

129

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 129



E X E R C I S E S : E N C R Y P T I O N

1. In Example 5.16, we declared but did not implement three operators for the

Point3 class. Add implementations for these three operators and add tests to

the client code.

2. In this exercise, we will reuse the random()function from the <cstdlib> (see

Appendix B).

random()generates a pseudo-random integer in the range from 0 to

RAND_MAX (commonly set to 2147483647).

Write a function

int myRand(int min, int max);

that returns a pseudo-random int in the range from min to max - 1.

3. Write the function

QVector<int> randomPerm(int n, unsigned key);

that uses the myRand()function  (seeded with key) to produce a permutation

of the numbers 0,...n.

4. Encryption and privacy are becoming increasingly important. One way to think

of encryption is that we start with a string of text that we pass to one or more

transforming functions. The result of these transformations is a string of

encrypted text that we can then transmit more safely. The recipient of the

encrypted string then applies the inverses of the transforming functions to

the string of encrypted text (i.e., decrypts it) and obtains a copy of the original

string. The sender of the encrypted string must share some information with

the recipient that permits the string to be decrypted (i.e., a key). In the following

exercises we explore a few simple designs for the transforming functions.

a. Write the function

QString shift(const QString& text, unsigned key);

shift() uses the parameter key to set the random function’s seed by

calling srandom(). For each character ch in the given string, text, pro-

duce a shifted character by adding the next pseudo-random int to the

code for ch. The shifted character is then put in the corresponding place in

the new string. When all the characters of text have been processed,

shift()returns the new string.

b. The next function to write is:

QString unshift(const QString& cryptext, unsigned key);

This function reverses the process described in the previous exercise.

C H A P T E R  5 : F U N C T I O N S

130

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 130



c. Write code to test the two functions described above.

d. Another approach to encryption (which can be combined with the

approach described above) is to permute the characters of the given

string. Write the function

QString permute(const QString& text, unsigned key);

that uses the randomPerm()function to generate a permutation of the

characters of the original string, text.

e. Write the function

QString unpermute(const QString& scrtext, unsigned key);

that reverses the action of the permute()function described above.

f. Write code to test the two functions described above.

g. Write code to test shift()and permute()being applied to the same

string, followed by unpermute()and unshift().

5. Implement a Crypto class that encapsulates the functions from the preceding

exercises. You can use the following UML diagram to get you started.

5 . 1 2 I N L I N I N G  V E R S U S  M A C R O  E X P A N S I O N

131

Crypto

- m_Key : ushort
- m_OpSequence : QString
- m_CharSetSize : ushort
- m_Perm : QVector

+ Crypto(key : ushort, opseq : QString, charsiz : ushort)
+ encrypt(str : const QString&) : QString
+ decrypt(str : const QString&) : QString
- shift(str : const QString&) : QString
- unshift(str : const QString&) : QString
- permute(str : const QString&) : QString
- unpermute(str : const QString&) : QString
- limitedRand(max : int) : int
- randomPerm(n : int)

m_OpSequence is a QString consisting of the characters 'p' and 's' that

represent permute()and shift(). The encrypt()function applies those

functions to the given string in the order that they appear in the

m_OpSequence string. Example 5.20 shows some code to test your class.

Note that all of the member functions of Crypto are “silent” (i.e., no interac-

tion with the user). User interactions take place only in the client code.

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 131



C H A P T E R  5 : F U N C T I O N S

132

E X A M P L E  5 . 2 0 src/functions/cryptoclass/crypto-client.cpp

#include "crypto.h"
#include <QTextStream>
QTextStream cout(stdout, QIODevice::WriteOnly);

int main()  {
QString str1 ("This is a sample string"), str2;
cout << "Original string: " << str1 << endl;
QString seqstr("pspsps");
ushort key(13579);
Crypto crypt(key, seqstr);
str2 = crypt.encrypt(str1);
cout << "Encrypted string: " << str2 << endl;
cout << "Recovered string: " << crypt.decrypt(str2) << endl;

}

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 132



R E V I E W  Q U E S T I O N S

133

R E V I E W  Q U E S T I O N S

1. What is the difference between a function declaration and a function

definition?

2. Why are default argument specifiers in the declaration but not the

definition?

3. For overloading arithmetic symbols (+, -, *. /) on Fraction objects,

which is better, member functions or non-member global operators?

4. Explain the difference between pass-by-value and pass-by-reference. Why

would you use one instead of the other?

5. Explain the difference between preprocessor macros and inline

functions.

ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 133



ezus_138004_ch05.qxd  8/4/06  9:39 AM  Page 134



6.1 Simple Derivation . . . . . . . . . . . . . . . . . . . 136

6.2 Derivation with Polymorphism . . . . . . . . 142

6.3 Derivation from an Abstract 

Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Inheritance Design . . . . . . . . . . . . . . . . . . . 152

6.5 Overloading, Hiding, and Overriding . . . 154

6.6 Constructors, Destructors, and Copy

Assignment Operators . . . . . . . . . . . . . . . 155

6.7 Processing Command-Line 

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6C H A P T E R  6

Inheritance and 
Polymorphism

This chapter introduces the concepts and shows

some examples of how to define inheritance rela-

tionships between C++ classes. Overriding methods,

the virtual keyword, and simple examples show

how polymorphism works.

135

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 135



6.1 Simple Derivation

■ Chapter 2

■ Chapter 5

Inheritance is a way of organizing classes that is supported by all object-oriented

languages. It allows different classes to share code in many different ways.

To employ inheritance, we place the common features of similar classes

together in a base class and then derive other classes from it. Each derived class
inherits all the members of the base class and can override or extend each base

class function as needed. Inheritance from a common base class significantly sim-

plifes the derived classes and, with the use of certain design patterns, allows us to

eliminate redundant code.

WHAT’S WRONG WITH REPEATED CODE? Software that contains
repeated pieces of identical or very similar code is error prone and diffi-
cult to maintain. If repeated code is allowed in a program, it can be
difficult to keep track of all the repetitions.

Code often needs to be changed for one reason or another. If you
need to change a piece of code that has been repeated several times,
you must locate all of the repetitions and apply the change to each of
them. Chances are good that at least one repetition will be missed or that
the intended change will not be applied precisely to all repetitions.

Refactoring is a process of improving the design of software, without changing its

underlying behavior. One step of refactoring involves replacing similar code with

calls to library functions or base class methods.

We will demonstrate inheritance with a simple example. The base class

Student is supposed to contain the attributes that are common to all students.

We kept the list of attributes short for this example, but you can easily imagine

other attributes that might be appropriate.

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 136



We derived two classes from Student that describe particular kinds of stu-

dents. The first derived class, Undergrad, contains only those properties that are

specific to undergraduate students. The second derived class, GradStudent, con-

tains only those properties that are specific to graduate students. The UML dia-

gram shown in Figure 6.1 describes these relationships.

The pound sign (#) that precedes Student::m_Year indicates that m_Year

is a protected member of that class. Recall that protected members of a class

are accessible to the member functions of derived classes. The open arrowhead

(pointing at the base class) is used to indicate class inheritance. This arrow is also

called generalization because it points from the more specific (derived) class to

the more general (base) class. The derived classes are also called subclasses of the

base class.

Example 6.1 shows the definitions of the three classes.

E X A M P L E  6 . 1 src/derivation/qmono/student.h

#ifndef STUDENT_H
#define STUDENT_H

#include <QString>

6 . 1 S I M P L E  D E R I V A T I O N

137

 - mName : QString
 - mMajor : QString
 - mStudentId : int
 # mYear : int

+ getClassName()
+ Student()
+ ~ Student()
+ toString()
+ yearStr()

Student

Undergrad

+ Undergrad()
+ getClassName()

GradStudent

 - mSupport : QString

+ GradStudent()
+ getClassName()
+ toString()
 - supportStr()

F I G U R E  6 . 1 UML diagram of inheritance

continued

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 137



class Student  {
public:

Student(QString nm, long id, QString m_Major, int year = 1);
~Student() {}
QString getClassName() const;
QString toString() const;
QString yearStr() const;

private:
QString m_Name;
QString m_Major;
long m_StudentId;

protected:
int m_Year;

};

class Undergrad: public Student {
public:

Undergrad(QString name, long id, QString major, int year);
QString getClassName() const;

};

class GradStudent : public Student {
public:

enum Support { ta, ra, fellowship, other };
GradStudent(QString nm, long id, QString major, 

int yr, Support support);

QString getClassName() const ;
QString toString() const;

protected:
static QString supportStr(Support sup) ;

private:
Support  m_Support;

};

#endif        //  #ifndef STUDENT_H

There are other ways of identifying the classname that are better than defining a
getClassName() for each class. getClassName() is used here only to demonstrate how inheri-
tance and polymorphism work.

The classHead of each derived class specifies the base class from which it is derived

and the kind of derivation that is being used. In this case we are using public

derivation.1

Notice that each of the three classes has a function named getClassName(),

and two of them have a function named toString(). Even though Undergrad

1

1

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

138

1 We discuss the three kinds of derivation—public, protected, and private—in Section 23.4.

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 138



does not contain a toString()declaration in its definition, it inherits one from

the base class.

The student functions are defined in Example 6.2.

E X A M P L E  6 . 2 src/derivation/qmono/student.cpp

[ . . . . ]

#include <QTextStream>
#include "student.h"

6 . 1 S I M P L E  D E R I V A T I O N

139

Student::Student(QString nm, long id, QString major, int year)
: m_Name(nm), m_Major(major), m_StudentId(id), m_Year(year) {}

QString Student::getClassName() const {
return "Student";

}

QString Student::toString() const {
QString retval;
QTextStream os(&retval);
os << "[" << getClassName() << "]" 

<< " name: " << m_Name
<< " Id: " << m_StudentId
<< " Year: " << yearStr()
<< " Major: " << m_Major  ;

return retval;
}

1

We write to the stream, and return the string it uses.

Undergrad is not very different from Student, except for one function:

getClassName().

E X A M P L E  6 . 3 src/derivation/qmono/student.cpp

[ . . . . ]

Undergrad::Undergrad(QString name, long id, QString major, int year)
: Student(name, id, major, year)

{ }

QString Undergrad::getClassName() const {
return "Undergrad";

}

The base class object is considered a subobject of the derived object. Class members and base
classes both must be initialized and cleaned up, in an order determined by the order that they
appear in the class definition.

1

1

1

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 139



Member Initialization for Base Classes

Because each Undergrad is a Student, whenever an Undergrad object is cre-

ated, a Student object must also be created. In fact, one Student constructor is

always called to initialize the Student part of any derived class. In the member

initializers of a constructor, you can think of the base class name as an implicit

member of the derived class.

■ It gets initialized first, before the initialization of the derived class members.

■ If you do not specify how the base class is initialized, the default

constructor will be called.

GradStudent has all the features of Student plus some added attributes that

need to be properly handled.

E X A M P L E  6 . 4 src/derivation/qmono/student.cpp

[ . . . . ]

GradStudent::
GradStudent(QString nm, long id, QString major, int yr, 

Support support) :Student(nm, id, major, yr), 
m_Support(support) { }

QString GradStudent::toString() const {
QString result;
QTextStream os(&result);
os <<  Student::toString()

<< "\n  [Support: "
<< supportStr(m_Support)
<< " ]\n";

return result;
}

base class version
. . . plus items that are specific to GradStudent

Extending

Inside GradStudent::toString(), before the GradStudent attributes are

printed, we explicitly call Student::toString(), which handles the base class

attributes. In other words, GradStudent::toString() extends the function-

ality of Student::toString().

It is worth noting here that, since most of the data members of Student are

private, we need a  base class function (e.g., toString()) in order to access

the base class data members. A GradStudent object cannot directly access the

2

1

2

1

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

140

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 140



private members of Student even though it contains those members. This arrange-

ment definitely takes some getting used to!

6.1.1 Inheritance Client Code Example

GradStudent is a Student, in the sense that a GradStudent object can be used

wherever a Student object can be used. The client code shown in Example 6.5

creates some instances and performs operations on a GradStudent or an

Undergrad instance directly and also indirectly, through pointers.

E X A M P L E  6 . 5 src/derivation/qmono/student-test.cpp

#include <QTextStream>
#include "student.h"

static QTextStream cout(stdout, QIODevice::WriteOnly); 

void graduate(Student* student) {
cout << "\nThe following "

<< student->getClassName()
<< " has graduated\n "
<< student->toString() << "\n";

}

int main() {
Undergrad us("Frodo", 5562, "Ring Theory", 4);

6 . 1 S I M P L E  D E R I V A T I O N

141

GradStudent gs("Bilbo", 3029, "History", 6, GradStudent::fellowship);
cout << "Here is the data for the two students:\n";
cout << gs.toString() << endl;
cout << us.toString() << endl;
cout << "\nHere is what happens when they graduate:\n";
graduate(&us);
graduate(&gs);

continued

return 0;
}

To build this application we use qmake and make as follows:

src/derivation/qmono> qmake -project
src/derivation/qmono> qmake
src/derivation/qmono> make

We then can run it like this:

src/derivation/qmono> ./qmono
Here is the data for the two students:

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 141



[Student]2 name: Bilbo Id: 3029 Year: gradual student Major:
History

[Support: fellowship]

[Student] name: Frodo Id: 5562 Year: senior Major: Ring Theory

Here is what happens when they graduate:

The following Student has graduated
[Student] name: Frodo Id: 5562 Year: senior Major: Ring Theory

The following Student has graduated
[Student] name: Bilbo Id: 3029 Year: gradual student Major:
History

src/derivation/qmono> 

Calling student->toString() from the function graduate() invokes

Student::toString()regardless of what kind of object student points to. If

the object is, in fact, a GradStudent, then there should be a mention of the

fellowship in the graduation message. In addition, we should be seeing

“[GradStudent]” in the toString()messages, and we are not.

It would be more appropriate to use run-time binding for indirect function

calls to determine which toString()is appropriate for each object.

Because of its C roots, C++ has a compiler that attempts to bind function invo-

cations at compile time, for performance reasons. With inheritance and base class

pointers, the compiler can have no way of knowing what type of object it is oper-

ating on. In the absence of run-time checking, an inappropriate function can be

called. C++ requires the use of a special keyword to enable run-time binding on

function calls via pointers and references. The keyword is virtual, and it enables

polymorphism, which is explained in the next section.

6.2 Derivation with Polymorphism
We can now discuss a very powerful feature of object-oriented programming:

polymorphism. Example 6.6 differs from the previous example in only one

important way: the use of the keyword virtual in the base class definition.

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

142

2 It would be nice if we saw [GradStudent] here.

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 142



E X A M P L E  6 . 6 src/derivation/qpoly/student.h

[ . . . . ]
class Student  {
public:

Student(QString nm, long id, QString m_Major, int year = 1);
virtual QString getClassName() const;
QString toString() const;
virtual ~Student() {}
QString yearStr() const;

private:
QString m_Name;
QString m_Major;
long m_StudentId;

protected:
int m_Year;

};
// derived classes are the same as before...
[ . . . . ]

Note the keyword virtual here.
This should be virtual, too.
It is a good idea to make the destructor virtual, too.

By simply adding the keyword virtual to at least one member function we have

created a polymorphic type. When virtual is specified on a function, it

becomes a method in that class and all derived classes. Example 6.7 shows the

same client code again:

E X A M P L E  6 . 7 src/derivation/qpoly/student-test.cpp

#include <QTextStream> 
#include "student.h"

static QTextStream cout(stdout, QIODevice::WriteOnly); 

void graduate(Student* student) {
cout << "\nThe following "

<< student->getClassName()
<< " has graduated\n "
<< student->toString() << "\n";

}

3

2

1

3

2

1

6 . 2 D E R I V A T I O N  W I T H  P O L Y M O R P H I S M

143

int main() {
Undergrad us("Frodo", 5562, "Ring Theory", 4);
GradStudent gs("Bilbo", 3029, "History", 6, GradStudent::fellowship);
cout << "Here is the data for the two students:\n";
cout << gs.toString() << endl;
cout << us.toString() << endl;

continued

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 143



cout << "\nHere is what happens when they graduate:\n";
graduate(&us);
graduate(&gs);
return 0;

}

Running this version of the program produces slightly different output, as shown

here.

Here is the data for the two students:
[GradStudent] name: Bilbo Id: 3029 Year: gradual student Major:
History

[Support: fellowship ]

[Undergrad] name: Frodo Id: 5562 Year: senior Major: Ring Theory

Here is what happens when they graduate:

The following Undergrad has graduated
[Undergrad] name: Frodo Id: 5562 Year: senior Major: Ring Theory

The following GradStudent has graduated
[GradStudent] name: Bilbo Id: 3029 Year: gradual student Major:

History3

Notice that we now see [GradStudent] and [UnderGrad] in the output, thanks to the

fact that getClassName() is virtual. There is still a problem with the output of

graduate() for the GradStudent, however. The Support piece is missing.

With polymorphism, indirect calls (via pointers and references) to methods are

resolved at runtime. This is sometimes called dynamic, or late run-time binding.

Direct calls (not through pointers or references) of methods are still resolvable by

the compiler. That is called static binding or compile-time binding.

In this example, when graduate()receives the address of a GradStudent

object, student->toString()calls the Student version of the function.

However, when the Student::toString()calls getClassName() (indirectly

through this, a base class pointer), it is a virtual method call, bound at

runtime.

Try adding the keyword virtual to the declaration of toString()in the

Student class definition so that you can see the support data displayed properly.

In C++, dynamic binding is an option that one must switch on with the key-

word virtual.

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

144

3 What happened to the Fellowship?

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 144



E X E R C I S E : D E R I V A T I O N  W I T H
P O L Y M O R P H I S M

Be the computer and predict the output of the programs shown in Examples 6.8

through 6.12. Then compile and run the programs to check your answers.

1. E X A M P L E  6 . 8 src/polymorphic1.cc

#include <iostream>
using namespace std;

class A {
public:

virtual void foo() {
cout << "A's foo()" << endl;
bar();

}
virtual void bar() {

cout << "A's bar()" << endl;
}

};

class B: public A {
public:

void foo() {
cout << "B's foo()" << endl;
A::foo();

}
void bar() {

cout << "B's bar()" << endl;
}

};

int main() {
B bobj;
A *aptr = &bobj;
aptr->foo();
A aobj = *aptr;
aobj.foo();

}

2. E X A M P L E  6 . 9 src/polymorphic2.cc

#include <iostream>
using namespace std;

class A {
public:

virtual void foo() {
cout << "A's foo()" << endl;

}
};

6 . 2 D E R I V A T I O N  W I T H  P O L Y M O R P H I S M

145

continued

ezus_138004_ch06.qxd  8/4/06  6:53 PM  Page 145



class B: public A {
public:

void foo() {
cout << "B's foo()" << endl;

}
};

class C: public B {
public:

void foo() {
cout << "C's foo()" << endl;

}
};

int main() {
C cobj;
B *bptr = &cobj;
bptr->foo();
A* aptr = &cobj;
aptr->foo();

}

3. E X A M P L E  6 . 1 0 src/derivation/exercise/Base.h

[ . . . . ]
class Base {
public:

Base();
void a();
virtual void b() ;
virtual void c(bool condition=true);
virtual ~Base() {}

};

class Derived : public Base {
public:

Derived();
virtual void a();
void b();
void c();

};
[ . . . . ]

E X A M P L E  6 . 1 1 src/derivation/exercise/Base.cpp

[ . . . . ]
Base::Base() {

cout << "Base::Base() " << endl;
a();
c();

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

146

ezus_138004_ch06.qxd  8/4/06  6:53 PM  Page 146



}
void Base::c(bool condition) {

cout << "Base::c()" << endl;
}
void Base::a() {

cout << "Base::A" << endl;
b();

}
void Base::b() {

cout << "Base::B" << endl;
}

Derived::Derived() {
cout << "Derived::Derived() " << endl;

}

void Derived::a() {
cout << "Derived::a()" << endl;
c();

}
void Derived::b() {

cout << "Derived::b()" << endl;
}

void Derived::c() {
cout << "Derived::c()" << endl;

}
[ . . . . ]

E X A M P L E  6 . 1 2 src/derivation/exercise/main.cpp

[ . . . . ]
int main (int argc, char** argv) {

Base b;
Derived d;

cout << "Objects Created" << endl;
b.b();
cout << "Calling derived methods" << endl;
d.a();
d.b();
d.c();
cout << ".. via base class pointers..." << endl;
Base* bp = &d;
bp->a();
bp->b();
bp->c();

}
[ . . . . ]

6 . 2 D E R I V A T I O N  W I T H  P O L Y M O R P H I S M

147

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 147



An abstract base class is used to encapsulate common features of concrete
classes. An abstract class cannot be instantiated. Nevertheless, this scheme is quite

useful and efficient for organizing our knowledge of the vastly complex biological

world. In the simplified taxonomic organization chart shown in Figure 6.2, we can

see that a primate is a mammal that has certain additional characteristics, a gorilla

is a hominid with certain additional characteristics, and so forth.

A concrete class represents a particular kind of entity, something that really

exists and can be instantiated. For example, walking through the woods you will

never encounter a real, live animal that is completely described by the designation

Carnivora or Felidae. You may, depending on where you walk, find a lion, a

siamese cat, or a common housecat (Felis silvestris). But there is no instance of a

Hominidae (i.e., of a base class) in the concrete world that is not also an instance

of some particular species. If a biologist ever finds a concrete instance that does

not fit into an existing species definition, then that biologist may define and name

a new species and become famous.

To summarize, the more general categories (class, order, family, subfamily) are

all abstract base classes that cannot be instantiated in the concrete world. They

6.3 Derivation from an Abstract Base Class

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

148

ClassMammalia

OrderPrimatesOrderCarnivora

FamilyHominidaeFamilyFelidae

GenusFelis

SpeciesSilvestris SpeciesHomoSapiens

GenusGorilla GenusHomo

F I G U R E  6 . 2 Animal taxonomy

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 148



6 . 3 D E R I V A T I O N  F R O M  A N  A B S T R A C T  B A S E  C L A S S

149

were invented by people to help with the classification and organization of the

concrete classes (species).

Back to Programming

At first it might seem counterintuitive to define a class for an abstract idea that has

no concrete representative. But classes are groupings of functions and data, and are

useful tools to enable certain kinds of organization and reuse. Categorizing things

makes the world simpler and more manageable for humans and computers.

As we study design patterns and develop frameworks and class libraries, we

will sometimes design inheritance trees where only the leaf nodes can be instanti-

ated, and the inner nodes are all abstract.

Once again, an abstract base class is a class that is impossible and/or inappro-

priate to instantiate. Features of a class that tell the compiler to enforce this rule are:

■ There is at least one pure virtual function.

■ There are no public constructors.

Figure 6.3 shows a class hierarchy with an abstract base class, Shape. Shape is

abstract because it contains pure virtual functions.

Rectangle Circle

Shape

Square

F I G U R E  6 . 3 Shapes UML diagram

A pure virtual function has the following declaration syntax:

virtual returnType functionName(parameterList)=0;

Example 6.13 shows the base class definition.

E X A M P L E  6 . 1 3 src/derivation/shape1/shapes.h

[ . . . . ]

class Shape {
public:

virtual double area() = 0;
virtual QString getName() = 0;

2

1

continued

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 149



virtual QString getDimensions() = 0;
virtual ~Shape() {}

};

an abstract base class
pure virtual function

getName(), area(), and getDimension()are all pure virtual functions.

Because they are defined to be pure virtual, no function definition is required

in the Shape class. Any concrete derived class must override and define all pure

virtual base class functions for instantiation to be permitted. In other words, any

derived class that does not override and define all pure virtual base class functions

is, itself, an abstract class. Example 6.14 shows the derived class definitions.

E X A M P L E  6 . 1 4 src/derivation/shape1/shapes.h

[ . . . . ]

class Rectangle : public Shape {
public:

Rectangle(double h, double w) :
m_Height(h), m_Width(w) {}

double area();
QString getName();
QString getDimensions();

protected:
double m_Height, m_Width;

};

class Square : public Rectangle {
public:

Square(double h) : Rectangle(h,h) {}
double area();
QString getName();    
QString getDimensions();

};

We want to access m_Height in Square class.
Base class name in member initialization list—pass arguments to base class ctor

Rectangle, Circle, and Square are derived from Shape. Their implementa-

tions are shown in Example 6.15.

E X A M P L E  6 . 1 5 src/derivation/shape1/shapes.cpp

#include "shapes.h"

double Circle::area() {
return(3.14159 * m_Radius * m_Radius);

}

2

1

2

1

2

1

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

150

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 150



6 . 3 D E R I V A T I O N  F R O M  A N  A B S T R A C T  B A S E  C L A S S

151

double Rectangle::area() {
return (m_Height * m_Width);

}
double Square::area() {

return (Rectangle::area());
}

[ . . . . ]

calling base class version on ‘this’

We provide some client code to exercise these classes in Example 6.16.

E X A M P L E  6 . 1 6 src/derivation/shape1/shape1.cpp

#include "shapes.h"
#include <QString>
#include <QDebug>

void showNameAndArea(Shape* pshp) {
qDebug() << pshp->getName() 

<< " " << pshp->getDimensions() 
<< " area= " << pshp->area();

}

int main() {    
Shape shp;

Rectangle  rectangle(4.1, 5.2);
Square   square(5.1);
Circle   circle(6.1);

qDebug() << "This program uses hierarchies for Shapes";
showNameAndArea(&rectangle);
showNameAndArea(&circle);
showNameAndArea(&square);
return 0;

}

ERROR: Instantiation is not allowed on classes with pure virtual functions.

In the global function showNameAndArea()the base class pointer, pshp, is suc-

cessively given the addresses of objects of the three subclasses. For each address

assignment, pshp polymorphically invokes the correct getName()and area()

functions. Example 6.17 shows the output of the program.

1

1

1

1

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 151



E X A M P L E  6 . 1 7 src/derivation/shape1/shape.txt

This program uses hierarchies for Shapes

RECTANGLE  Height = 4.1 Width = 5.2   area = 21.32
CIRCLE  Radius = 6.1   area = 116.899
SQUARE  Height = 5.1    area = 26.01

6.4 Inheritance Design
Sometimes defining an inheritance relationship helps at first (e.g., by reducing

redundant code), but causes problems later when other classes must be added to

the hierarchy. Some up-front analysis can help make things easier and avoid prob-

lems later.

Example 6.14, in which we derived from the abstract Shape class, demon-

strates an inheritance relationship of two levels of depth. The Rectangle class

was used as a classification of objects and also as a concrete class.

Is a square a kind of rectangle?  Geometrically it certainly is. Here are some def-

initions that we borrow from elementary geometry.

■ A shape is a closed two-dimensional object in the plane, with a graphical

way of representing itself, together with a point that is considered its

“center.”

■ A rectangle is a shape consisting of four straight line segments with only

90-degree angles.

■ A square is a rectangle with equal sides.

As we attempt to represent an inheritance tree of classes, it helps to list the kinds

of capabilities that we will need to provide for each class. They would be:

■ Drawable

■ Scalable

■ Loadable

■ Savable

After we describe the interface in further detail, the geometric definitions for

shape classification may not lead to the ideal taxonomy for these shape classes.

As we perform an analysis, some questions arise:

■ What are the common operations and features we want to describe in

our abstract base classes?

■ What other kinds of shapes will we use in our application?

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

152

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 152



6 . 4 I N H E R I T A N C E  D E S I G N

153

■ A rhombus is four-sided, like a rectangle, so should Rectangle derive

from Rhombus?

■ Should we have a base class for all four-sided objects?

■ Is a Square substitutable for a Rectangle?

■ Should we have a different base class for all five-sided objects?

■ Should we have a general base class for polygons and represent the num-

ber of sides as an attribute?

■ What are the common operations we will want to perform on all shapes?

■ Is our program going to perform geometric proof searches to identify

objects?

■ Why do we need a Rectangle class as the base class of a Square?

Using a UML modeling tool makes it easier to try out different ideas before writ-

ing concrete code. UML diagrams are especially useful for focusing on and

describing small parts of a larger system.

PolygonCircle

Shape

Ellipse Square PentagonRhombus

F I G U R E  6 . 4 Another way to represent shapes

In Figure 6.4, we have concrete classes that serve as templates for creating the more

“specific” shapes. The leaf classes are, in some cases, constrained versions of their

base classes. The vector-representation, drawing, and loading/saving of the objects

is handled in the abstract base classes.

In the geometric sense, given a circle, one can prove it is also an ellipse,
because an equation exists that specifies an ellipse, with its two foci
being equal. In contrast, the diagram in Figure 6.4 shows Ellipse to be a
kind of Circle, with an extra point, or an extra degree of freedom.Would it
make more sense to reverse the inheritance relationship? Or to have a
completely different tree? Where is the is-a relationship?

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 153



6.5 Overloading, Hiding, and Overriding
First, let us recall the definitions of two terms that often get confused:

■ When two or more versions of a function foo exist in the same scope

(with different signatures), we say that foo has been overloaded.

■ When a virtual function from the base class also exists in the derived

class, with the same signature, we say that the derived version overrides
the base class version.

Example 6.18 demonstrates overloading and overriding and introduces another

relationship between functions that have the same name.

E X A M P L E  6 . 1 8 src/derivation/overload/account.h

[ . . . . ]
class Account {
protected:

static const int SS_LEN = 80;
public:

virtual void deposit(double amt);
virtual const char* toString() const;
virtual const char* toString(char delimiter);

protected:
unsigned  m_AcctNo;
double    m_Balance;
char     m_Owner[SS_LEN];

};

class InsecureAccount: public Account {
public:

const char* toString() const;
void deposit(double amt, QDate postDate);

};
[ . . . . ]

overloaded function
Overrides base method and hides toString(char).
Does not override any method, but hides all Account : : deposit( ) methods.

Function Hiding

A member function of a derived class with the same name as a function in the base

class hides all functions in the base class with that name. In addition:

■ Only the derived class function can be called directly.

■ The class scope resolution operator may be used to call hidden base

functions explicitly.

3

2

1

3

2

1

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

154

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 154



6 . 6 C O N S T R U C T O R S , D E S T R U C T O R S , A N D  C O P Y  A S S I G N M E N T  O P E R A T O R S

155

The client code in Example 6.19 shows how to call a base class function that has

been hidden by a derived class function with the same name.

E X A M P L E  6 . 1 9 src/derivation/overload/account.cpp

#include  "account.h"
#include <cstring>
#include <iostream>
using namespace std;

int main() {
InsecureAccount acct;
acct.deposit(6.23);        
acct.m_Balance += 6.23;    
acct.Account::deposit(6.23);  
return 0;

}

Error! No matching function—hidden by deposit(double, int)
Error! Member is protected, inaccessible.
Hidden does not mean inaccessible. We can still access hidden public members via scope
resolution.

6.6 Constructors, Destructors, and Copy
Assignment Operators

Three special kinds of member functions are never inherited:

1. Copy constructors

2. Copy assignment operators

3. Destructors

These three functions are generated automatically by the compiler for classes that

do not specify them.

WHY ARE THESE FUNCTIONS SPECIAL? The base class functions
are not sufficient to initialize, copy, or destroy a derived instance.

Constructors

For a class that inherits from another, the base class constructor must be called as

part of its initialization process. The derived constructor may specify which base

class constructor is called in its initialization list.

3

2

1

3

2

1

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 155



A class with no constructors is automatically given a compiler-generated

default constructor that calls the default constructor for each of its base classes. If

a class has some constructors but no default constructor, then it has no default ini-

tialization. In this case, any derived class constructor must make a specific base

class constructor call in its initialization list.

Order of Initialization

Initialization proceeds in the following order:

1. Base classes first, in the order in which they are listed in the classHead of

the derived class

2. Data members, in declaration order

Copy Assignment Operators

A copy assignment operator will be generated automatically by the compiler for

each class that does not have one explicitly defined for it. It calls its base class

operator= and then performs memberwise assignments in declaration order.

Other member function operators are inherited the same way as normal mem-

ber functions.

Copy Constructors

Like the copy assignment operator, the copy constructor gets generated automatically

for classes that do not have one defined. The compiler-generated copy constructor

will carry out member-by-member initialization, much as one would expect.

E X A M P L E  6 . 2 0 src/derivation/assigcopy/account.h

[ . . . . ]

class Account {
public:

Account(unsigned acctNum, double balance, string owner);
virtual ~Account();

private:
unsigned  m_AcctNum;
double    m_Balance;
string    m_Owner;

};

In Example 6.20, we defined a single constructor that takes arguments, so this class

has no default constructor (i.e., the compiler will not generate one for us).

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

156

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 156



6 . 6 C O N S T R U C T O R S , D E S T R U C T O R S , A N D  C O P Y  A S S I G N M E N T  O P E R A T O R S

157

We did not define a copy constructor, which means the compiler will generate

one for us. Therefore, this class can be initialized in exactly two ways.

E X A M P L E  6 . 2 1 src/derivation/assigcopy/account.h

[ . . . . ]

class JointAccount : public Account {
public:

JointAccount (unsigned acctNum, double balance, 
string owner, string jowner);

JointAccount(const Account & acct, string jowner);
~JointAccount();

private:
string m_JointOwner;

};

In the derived class defined in Example 6.21, we have two constructors. Both of

them require base class initialization.

E X A M P L E  6 . 2 2 src/derivation/assigcopy/account.cpp

[ . . . . ]

#include  "account.h"
#include <iostream>

Account::Account(unsigned acctNum, double balance, string owner) {
m_Balance=balance;
m_AcctNum = acctNum;
m_Owner = owner;

}
JointAccount::JointAccount (unsigned acctNum, double balance,

string owner, string jowner)
:Account(acctNum, balance, owner), 
m_JointOwner(jowner) {

}

JointAccount::JointAccount (const Account& acc, string jowner)
:Account(acc) {
m_JointOwner = jowner;

}

Base class initialization is required.
Compiler-generated copy constructor is called.

In Example 6.22, the compiler allows JointAccount::JointAccount to call

Account(const Account&), even though there isn’t one defined. The compiler-

generated copy constructor will do a memberwise copy.

2

1

2

1

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 157



Destructors

Destructors are not inherited. Just as with the copy constructor and copy assign-

ment operator, the compiler will generate a destructor if we do not define one

explicitly. Base class destructors are automatically called on all derived objects

regardless of whether a destructor is defined in the class. Members and base-class

parts are destroyed in the reverse order of initialization.

6.7 Processing Command-Line Arguments
Applications that run from the command line are often controlled through com-

mand line arguments, which can be switches or parameters. ls, g++, and qmake

are familiar examples of such applications. Handling the different kinds of com-

mand line arguments can be done in a variety of ways. Suppose that you are writ-

ing a program that supports these options:

Usage:
a.out [-v] [-t] inputfile.ext [additional files]

If -v is present then verbose  = true;
If -t is present then testmode = true;

In usage descriptions, optional arguments are always enclosed in [square brackets]

while required arguments are not. This program accepts an arbitrarily long list,

consisting of at least one file name, and performs the same operation on each file.

In general, command line arguments can be any of the following:

■ Switches, such as -verbose or -t

■ Parameters (typically filespecs), simple strings not associated with

switches

■ Switched parameters such as the gnu compiler’s optional -o switch,

which requires an accompanying parameter, the name of the executable

file to generate

The following line contains examples of all three kinds of arguments:

g++ -ansi -pedantic -Wall -o myapp someclass.cpp someclass-demo.cpp

Example 6.23 shows how a C program might deal with command line arguments:

E X A M P L E  6 . 2 3 src/reuse/argproc.cpp

[ . . . . ]
#include <cstring>

bool test = false;
bool verbose = false;

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

158

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 158



6 . 7 P R O C E S S I N G  C O M M A N D - L I N E  A R G U M E N T S

159

void processFile(char* filename) {
[ . . . . ]

}
/*

@param argc - the number of arguments
@param argv - an array of argument strings

*/
int main (int argc, char *argv[]) {

// recall that argv[0] holds the name of the executable.
for (int i=1; i < argc; ++i) {

if (strcmp(argv[i], "-v")==0) {
verbose = true;

}
if (strcmp(argv[i], "-t") ==0) {

test = true;
}

}
for (int i=1; i < argc; ++i) {

if (argv[i][0] != '-') 
processFile(argv[i]);

}
}
[ . . . . ]

first process the switches
make a second pass to operate on the non-switched arguments

In Qt, we wish to avoid the use of arrays, pointers, and <cstring> in favor of

more object-oriented constructs.

In Example 6.24, we will see how code like this could be greatly simplified

through the use of higher-level classes, QString and QStringList.

6.7.1 Derivation and ArgumentList

In this section, we present the ArgumentList class, an example from libutils

(see Section 7.2). It reuses QString and QStringList to simplify the process-

ing of command-line arguments.

Operationally, ArgumentList is a class that we initialize with the main()

function’s int and char** parameters that capture the command line argu-

ments. Conceptually, ArgumentList is a list of QStrings. Structurally, it is

derived from QStringList, with some added functionality. We could also say

that ArgumentList is extended from QStringList (as they do in Java-land).

Example 6.24 contains the class definition for ArgumentList.

2

1

2

1

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 159



E X A M P L E  6 . 2 4 src/libs/utils/argumentlist.h

#ifndef ARGUMENTLIST_H
#define ARGUMENTLIST_H

#include <QStringList>

class ArgumentList : public QStringList {
public:

ArgumentList();

ArgumentList(int argc, char* argv[]); {
argsToStringlist(argc, argv);

}

ArgumentList(const QStringList& argumentList): 
QStringList(argumentList) {}

bool getSwitch(QString option);
QString getSwitchArg(QString option, 

QString defaultRetValue=QString());
private:

void argsToStringlist(int argc,  char* argv[]);
};
#endif

Because it is publicly derived from QStringList, ArgumentList supports the

full interface of QStringList and can be used wherever a QStringList is

expected. In addition to its constructors, ArgumentList defines a few additional

functions:

■ argsToStringList() extracts the command-line arguments from the

given array of char arrays and loads them into a QStringList. This

function is private because it is part of the implementation of this class,

not part of the public interface. It is needed by the constructors but not

by client code.

■ getSwitch() finds and removes a switch from the string list, if that

switch exists. It returns true if the switch was found.

■ getSwitchArg() finds and removes a switch and its accompanying argu-

ment from the string list and returns the argument if the switch is found. It

does nothing and returns a defaultValue if the switch is not found.

Example 6.25 shows the implementation code for these functions.

E X A M P L E  6 . 2 5 src/libs/utils/argumentlist.cpp

#include <QApplication>
#include "argumentlist.h"

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

160

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 160



6 . 7 P R O C E S S I N G  C O M M A N D - L I N E  A R G U M E N T S

161

ArgumentList::ArgumentList() {
if (qApp != NULL)  

argsToStringlist(qApp->argc(), qApp->argv());
}

void ArgumentList::argsToStringlist(int argc, char * argv []) {
for (int i=0; i < argc; ++i) {

*this += argv[i];
}

}

bool ArgumentList::getSwitch (QString option) {
QMutableStringListIterator itr(*this);
while (itr.hasNext()) {

if (option == itr.next()) {
itr.remove();
return true;

}
}
return false;

}

QString ArgumentList::getSwitchArg(QString option, QString
defaultValue) {

if (isEmpty())
return defaultValue;

QMutableStringListIterator itr(*this);
while (itr.hasNext()) {

if (option == itr.next()) {
itr.remove();
QString retval = itr.next();
itr.remove();
return retval;

}
}
return defaultValue;

}

a global pointer to the current qApplication

In the client code shown in Example 6.26, all argument processing code has been

removed from main(). No loops, char*, or strcmp are to be found.

E X A M P L E  6 . 2 6 src/reuse/main.cpp

#include <QString>
#include <QDebug>
#include <argumentlist.h>  // in our utils lib

void processFile(QString filename, bool verbose) {
if (verbose)

1

1

continued

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 161



qDebug() << QString("Do something chatty with
%1.").arg(filename);

else
qDebug() << filename;

}

void runTestOnly(QStringList & listOfFiles, bool verbose) {
foreach (QString current, listOfFiles) {

processFile(current, verbose);
}

}

int main( int argc, char * argv[] ) {

ArgumentList al(argc, argv);
QString appname = al.takeFirst();
qDebug() << "Running " << appname;

bool verbose = al.getSwitch("-v");
bool testing = al.getSwitch("-t");
if (testing) {

runTestOnly(al, verbose);
return 0;

} else {
qDebug() << "This Is Not A Test";

}
}

Qt improved foreach loop.
Instantiate the ArgumentList with command line args.
The first item in the list is the name of the executable.
Now all switches have been removed from the list. Only filenames remain.
ArgumentList can be used in place of QStringList.

Here are some sample outputs from running the program in Example 6.26:

src/reuse> ./reuse item1 "item2 item3" item4 item5
"Running ./reuse"
This Is Not A Test
src/reuse> ./reuse -t item1 "item2 item3" item4 item5
"Running ./reuse"
"item1"
"item2 item3"
"item4"
"item5"
src/reuse> ./reuse -v -t "foo bar" 123 space1 "1 1"
"Running ./reuse"
"Do something chatty with foo bar."
"Do something chatty with 123."
"Do something chatty with space1."
"Do something chatty with 1 1."
src/reuse>

The project file in Example 6.27 shows how to reuse the classes in our utils

library.

5

4

3

2

1

5

4

3

2

1

C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

162

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 162



6 . 7 P R O C E S S I N G  C O M M A N D - L I N E  A R G U M E N T S

163

E X A M P L E  6 . 2 7 src/reuse/reuse.pro

TEMPLATE = app
INCLUDEPATH += $$(CPPLIBS)/utils
LIBS += -L$$(CPPLIBS) -lutils
# Input
SOURCES += main.cpp

E X E R C I S E : I N H E R I T A N C E  A N D
P O L Y M O R P H I S M

1. The classes in the diagram below are intended to help organize the film collec-

tion in the college library.

a. Implement the Film classes. Make sure that the constructors have sufficient

parameters to initialize all data members. We have suggested enum types

FilmTypes (Action, Comedy, SciFi, . . .) and MPAARatings (G, PG, PG-13, . . .)

for use in the Entertainment class.

Film

 - m_FilmID : QString
 - m_Title : QString
 - m_Director : QString
 - mFilmLength : int
 - m_ReleaseDate : QDate

+ Film()
+ toString() 

FilmList

+ toString() : QString
+ findFilm(id : QString) : Film*
+ getID(title : QString) : QString
+ addFilm(film : Film*)
+ removeFilm(filmID : QString)

Entertainment

 - m_Type : FilmTypes
 - m_Rating : MPAARatings

+ Entertainment()
+ toString() : QString

Educational

 - m_Subject : QString
 - m_GradeLevel : int

+ Educational()
+ toString() : QString

QList

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 163



C H A P T E R  6 : I N H E R I T A N C E  A N D  P O L Y M O R P H I S M

164

4 http://oop.mcs.suffolk.edu/qtdocs/hierarchy.html

b. Implement the FilmList class as a container of Film pointers. Make sure

that the addFilm() function does not permit the same Film to be added

more than once.

c. Write client code to test these classes. Put a mixture of Entertainment

and Educational films into the FilmList and exercise all the member

functions.

2. Revisit the birthday reminder exercise (“Exercise: The Qt Core Module” in

Chapter 3) and use an ArgumentList object to process the command-line

arguments.

P O I N T S  O F  D E P A R T U R E

1. Which methods are in QStringList but not in QList? Would it make

sense to put them in QList?

2. Examine the Qt class hierarchy.4 The most important classes are those

with the most derived classes. Which three classes have the most derived

classes? Write a paragraph about each of them and why you think it is

important.

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 164



R E V I E W  Q U E S T I O N S

165

R E V I E W  Q U E S T I O N S

1. What is inheritance for?

2. Explain polymorphism. What is it? How can you use it? 

3. Explain the difference between dynamic binding and static binding.

Describe the conditions that enable each.

4. How do you override a base class method?

5. What is a pure virtual function? What is it used for?

6. What is an abstract class? What is it used for? What can you do with a

concrete class that you cannot do with an abstract class?

7. What does it mean for a base class function to be hidden? What can

cause this to happen?

8. Which member functions cannot be inherited from the base class?

Explain why.

ezus_138004_ch06.qxd  8/4/06  9:40 AM  Page 165



P A R T  I I  

Higher-Level
Programming 

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 166



Chapter 7. Libraries . . . . . . . . . . . . . . . . . . . . . . 169

Chapter 8. Introduction to Design Patterns. . 181

Chapter 9. QObject . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 10. Generics and Containers . . . . . . . 213

Chapter 11. Qt GUI Widgets . . . . . . . . . . . . . . . . 237

Chapter 12. Concurrency. . . . . . . . . . . . . . . . . . . 277

Chapter 13. Validation and Regular 

Expressions . . . . . . . . . . . . . . . . . . . 307

Chapter 14. Parsing XML . . . . . . . . . . . . . . . . . . . 321

Chapter 15. Meta Objects, Properties,

and Reflective Programming. . . . 341

Chapter 16. More Design Patterns . . . . . . . . . . 359

Chapter 17. Models and Views. . . . . . . . . . . . . . 391

Chapter 18. Qt SQL Classes. . . . . . . . . . . . . . . . . 423

167

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 167



ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 168



169

7C H A P T E R  7

Libraries 

Libraries are groups of code modules organized in a

reusable way. This chapter introduces how they are

built, reused, and designed.

7.1 Code Containers . . . . . . . . . . . . . . . . . . . . . 170

7.2 Reusing Other Libraries . . . . . . . . . . . . . . 171

7.3 Organizing Libraries: Dependency

Management . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Installing Libraries: A Lab Exercise . . . . . 176

7.5 Frameworks and Components . . . . . . . . 178

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 169



Libraries generally contain code that has already been designed, tested, and

compiled, and can be easily linked into your application. Libraries are essential for

making software reuse possible. They can be packaged in a number of different

ways, such as

1. Source code

2. Binary format (dynamic library, shared object, static library, run-time

library), called lib for short.

3. lib + header files (sometimes referred to as “-dev” or “-devel” packages in

Linux package managers)

The lib+header combo allows you to distribute your library without the
full source. Others can still compile their apps with it. The binary format
can only be used with an app that was already compiled against the
library.

A lib is a file that contains several compiled files (called object files) that are

indexed to make it easy for the linker to locate symbols (e.g., names of classes,

members, functions, variables, etc.) and their definitions. Packaging these object

files in one lib expedites the linking process significantly.

7.1 Code Containers
One aspect of C++ that makes it very powerful is its ability to package code in sev-

eral different ways.

Table 7.1 defines some terms that are used to describe containers of code. The

table is arranged (approximately) in order of increasing granularity from top to

bottom.

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 170



T A B L E  7 . 1 Reusable Components

Term Visible attributes Description

class class Classname A collection of functions and 
{ body } ; data members, and descriptions 

of its lifecycle management 
(constructors and destructors)

namespace namespace name A collection of declarations and 
{ body } ; definitions, of classes, functions 

and static members, perhaps 
spanning multiple files

header file .h Class definitions, template 
definitions, function declarations 
(with default argument definitions),
inline definitions, static object 
declarations

source code .cpp Function definitions, static object 
module definitions

compiled .o or .obj Each .cpp module is compiled into 
“object” module a binary module as an intermediate 

step in building a library or 
executable.

library .lib or .la (+ .so or An indexed collection of object 
.dll if dynamic) files linked together. No main()

function must exist in any code 
module in a library.

devel package lib + header files A library along with accompanying 
header files

application .exe on windows, A collection of object files, linked 
no particular with libraries, to form an application.
extension on *nix Contains exactly one function 

definition called main().

7.2 Reusing Other Libraries
Many of our examples link with various libraries that we have supplied. The one we

use most frequently is called libutils. You can download a tarball containing

this library here.1 Create a shell/environment variable CPPLIBS that points to a

convenient (empty) directory and then unpack the utils tarball in that directory.

7 . 2 R E U S I N G  O T H E R  L I B R A R I E S

171

1 http://oop.mcs.suffolk.edu/dist

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 171



When we set up projects that reuse utils we will always assume that
the shell/environment variable $CPPLIBS (or %CPPLIBS% in Windows)
has been properly set to contain the “libs root.” This variable is used for
two purposes: It is the parent directory of all the C++ source code for
libraries supplied by us (or by you), and it is also the destination directory
of the compiled shared object code for those libraries.

qmake can access an environment variable such as CPPLIBS from inside a proj-

ect file using the syntax $$(CPPLIBS).qmake can also include other project file

(fragments). For example, the project file in Example 7.1 includes a .pri file located

in a directory relative to your environment variable CPPLIBS.

E X A M P L E  7 . 1 src/qapp-gui/qapp-gui.pro

include ($$(CPPLIBS)/utils/common.pri)

TEMPLATE = app
# Input
HEADERS += messager.h
SOURCES += main.cpp messager.cpp

The command

qmake -project

produces a project file that contains information based on the contents of the

current working directory. In particular, qmake cannot know about external

libraries that you may need to build your project. So, if your project depends on

an external library, you must edit the project file and add assignments to three of

the variables.

For example, suppose we are developing an application that uses our utils

library. The header files are located in $CPPLIBS/utils and the lib shared

object files are located in $CPPLIBS. Then we must add the following lines to the

project file

INCLUDEPATH += $$(CPPLIBS)/utils # the source header files
LIBS += -L$$(CPPLIBS) # add this to the lib search path
LIBS += -lutils                # link with libutils.so

Assignments to the LIBS variable generally contain two kinds of linker switches

that are passed directly to the compiler and the linker. For more information about

what the linker switches mean see Section C.2.

C H A P T E R  7 : L I B R A R I E S

172

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 172



7.3 Organizing Libraries: Dependency
Management

A dependency between two program elements exists if one is reusing the other,

that is, if using or testing one (the reuser) requires the presence and correctness of

the other one (the reused). In the case of classes, a dependency exists if the imple-

mentation of the reuser class must be changed whenever the interface of the

reused class is changed.

Another way of describing this relationship is to say that ProgElement1

depends on ProgElement2 if ProgElement2 is needed in order to build

ProgElement1.

This dependency is a compile-time dependency if ProgElement1.h must

be #included in ProgElement2.cpp in order to compile.

It is a link-time dependency if the object file ProgElement2.o contains

symbols that are defined in ProgElement1.o.

We depict the dependency between a reuser ClassA and a reused ClassB

with a UML diagram, as shown in Figure 7.1.

7 . 3 O R G A N I Z I N G  L I B R A R I E S : D E P E N D E N C Y  M A N A G E M E N T

173

A dependency between ClassA and ClassB can arise in a variety of ways. In each

of the following situations, a change in the interface of ClassB might necessitate

changes in the implementation of ClassA.

■ ClassA has a data member that is a ClassB object or pointer.

■ ClassA is derived from ClassB.

■ ClassA has a function that takes a parameter of type ClassB.

■ ClassA has a function that uses a static member of ClassB.

■ ClassA sends a message (e.g., a signal) to ClassB.2

In each case, it is necessary to #include ClassB in the implementation file for

ClassA.

In the package diagram shown in Figure 7.2, we have displayed parts of our

own libs collection of libraries. There are direct and indirect dependencies

shown. At this level of granularity we are concerned with the dependencies between

libraries (indicated by dashed arrows).

2 We discuss signals and slots in Section 9.3.2.

F I G U R E  7 . 1 Dependency

ClassA ClassBdependency

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 173



F I G U R E  7 . 2 Libraries and their dependencies

C H A P T E R  7 : L I B R A R I E S

174

If you wish to reuse one of the libraries shown in Figure 7.2, you need to ensure

that all of its dependent libraries are also part of your project. For example, if you

use the filetagger library, there is a chain of dependencies that requires you to

also make available the dataobjects library (e.g., FileTagger is derived from

DataObject), the utils library (e.g., the test code generally reuses the various

assert macros in utils), and the id3lib library (e.g., FileTagger has a mem-

ber of type auto_ptr<ID3_Tag*> and defines some functions with parameters

of type ID3_FrameID*).

Code reuse, a valuable and important goal, always produces dependencies.

When designing classes and libraries it is important to make sure that we produce

as few unnecessary or unintentional dependencies as possible because they tend to

slow down compile times and reduce the reusability of your classes and libraries.

Each #include directive produces a dependency and should be carefully exam-

ined to make sure that it is really necessary. This is especially true in header files:

Each time a header file is #included it brings all of its own #includes along

with it so that the number of dependencies grows accordingly.

Objects for storing/managing
data read from user or file

classes related to
MP3 Manager apps

Model-View derived classes

General-purpose
classes + testcase
framework

utils

ArgumentList
FileVisitor
assertequals.h
TestCase
logger.h
logwindow.h
qstd.h
common.pri
xmlExport

libs

DataObject
ObjectFactory
Constraint
ConstraintMgr
Xmlimport
PropsMap
Address
Country

FormModel
FormView
Question
ChoiceDelegate

Mp3Song
Mp3Player
PlayList
Preference
FileTagger

Customer
CustomerList

Qt4

dataobjects

forms

customer

filetagger

id3lib

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 174



A forward declaration of a class declares its name as a valid class name
but leaves out its definition. This permits that name to be used as a type
for pointers and references that are not dereferenced before the defini-
tion is encountered. Forward declarations make it possible for classes to
have circular relationships without having circular dependencies
between header files (which the compiler will not permit).

In a class definition, one good rule to follow is this: Do not use an #include if a

forward declaration will suffice. For example, the header file "classa.h" might

look something like this:

#include "classb.h"
#include "classd.h"
// other #include directives as needed
class ClassC;    // forward declaration
class ClassA : public ClassB {

public:
ClassC* f1(ClassD);

// other stuff that does not involve ClassC 
};

We have (at least) two intentional reuse dependencies in this definition: ClassB

and ClassD, so both #include directives are necessary. A forward declaration of

ClassC is sufficient, however, since the class definition only involves a pointer to

that class.

It is very important to make sure that there are no circular dependencies in

your project (i.e., in a diagram like the one in Figure 7.2, there must be no path that

permits you to return to the starting location by following a sequence of arrows.)3

Dependency management is an important issue that is the subject of several

articles and for which a variety of tools have been developed. Two open-source

tools are

■ cinclude2dot, a perl script that analyzes C/C++ code and produces a

dependency graph.

■ Makedep, a C/C++ dependency generator for large software projects

that parses all source files in a directory tree and constructs a large

dependency file for inclusion in a Makefile.

7 . 3 O R G A N I Z I N G  L I B R A R I E S : D E P E N D E N C Y  M A N A G E M E N T

175

3 Such a path is called a cycle.

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 175



7.3.1 Installing Libraries

After a library has been written and tested, it will be installed at the end of the

build process in the directory specified by the DESTDIR variable. For example, the

project file for our utils library contains the following relevant lines:

C H A P T E R  7 : L I B R A R I E S

176

4 http://oop.mcs.suffolk.edu/dist

TEMPLATE = lib     # Build this as a library, not as an application
DESTDIR=$$(CPPLIBS) # Place the compiled shared object code here

For library templates, qmake can generate a Makefile with the install target

so that the command

make install

will, after a successful build, copy the library to some particular location. For

example, on a *nix platform, the following lines could be added to the project file

for utils:

target.path=/usr/lib

INSTALLS += target

Then, if you have write access there, the command

make install

would copy the libutils.so files and their associated symlinks to the directory

/usr/lib.

If you need to relocate a library, the procedure varies from platform to plat-

form. In Windows, you can copy its .dll file into an appropriate directory that is

listed in your PATH variable. In *nix, you can copy the shared object file and asso-

ciated symbolic links into a directory that is listed in /etc/ld.so.conf or one

that is findable by searching in LD_LIBRARY_PATH.

During development, it is usually sufficient to make and install libraries in

your home directory, and adjust LD_LIBRARY_PATH appropriately. At deploy-

ment time, on a *nix platform, it may be desirable to install the library in

/usr/local, a systemwide location accessible to all other users. This would

require superuser permissions.

7.4 Installing Libraries: A Lab Exercise
A number of examples in this book make use of classes found in one of the

libraries that were written for this book. The source code for these classes is avail-

able for download.4 In the HTML version of this book, the class names are all

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 176



hyperlinked to API docs.5 Here you learn how to download and install these extra

classes.

Instructions for installing libraries on a *nix platform for use with the book

examples follow.

■ Create a ~/projects/libs directory.

■ Create a shell/environment variable CPPLIBS that  contains the absolute

path of projects/libs.

■ You should already have a shell/environment variable QTDIR that con-

tains the absolute path of the directory that contains Qt 4.6

■ Download libs.pro, utils.tar.gz, and dataobjects.tar.gz.7

■ Unpack these two tarballs in the $CPPLIBS directory. That should

result in two new subdirectories, $CPPLIBS/utils and $CPPLIBS/

dataobjects.

■ Create or modify a $CPPLIBS/libs.pro SUBDIRS project to build

only libutils followed by libdataobjects.

■ Build the libraries from the libs directory in two steps:

1. qmake // to create a Makefile

2. make // to build the library

■ Verify that the libraries are built and that the shared object files (e.g.,

libutils.so) are located in the $CPPLIBS directory.

7.4.1 Fixing the Linker Path

■ Update the shell/environment variable LD_LIBRARY_PATH (*nix) or

PATH (win32) to include CPPLIBS.

■ Create a projects/tests directory. This is where you can keep code

for testing various library components.

■ Download main.cpp from Example 6.26 into projects/tests and

write/modify a tests.pro file to build that application using the utils

library.

■ Run the application.

■ Verify that it gives the same output that we displayed back in Chapter 6

when we discussed the ArgumentList class.

7 . 4 I N S T A L L I N G  L I B R A R I E S : A  L A B  E X E R C I S E

177

5 http://oop.mcs.suffolk.edu/api
6 This is not required by Qt 4, but is required by Qt 3 and KDE, and is used for Qt 4 as a way of
pointing to “the current version of Qt that you are using.”
7 From http://oop.mcs.suffolk.edu/dist

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 177



On a *nix platform a shell script is generally used to define environment
variables. Example 7.2 shows a bash script that handles the job.

E X A M P L E  7 . 2 src/bash/env-script.sh

export CPPLIBS=$HOME/cs331/projects/libs
export QTDIR=/usr/local/qt
export LD_LIBRARY_PATH=$QTDIR/lib:$CPPLIBS
export PATH=$QTDIR/bin:$PATH

You can run this script by typing one of the following commands:

source env-script.sh

or

. env-script.sh

Notice the dot (.) at the beginning of the second version. In the bash
shell, the dot is equivalent to the command,source.

If you want to make sure that these environment variables are auto-
matically set at the start of each shell, you can source the script from
~/.bashrc, which runs automatically whenever bash starts.

Hamish Whittal has put together a very nice online guide to shell
scripting at http://learnlinux.tsf.org.za/courses/build/shell-scripting.

7.5 Frameworks and Components 
Organization of classes goes beyond simple inheritance. Carefully designed frame-

works allow one to find and reuse components much more easily. All large soft-

ware projects are built on top of frameworks, and we discuss some of the more

popular ones in use today.

Code reuse is the holy grail of programming. In the past, computer time was

expensive and programmer time was relatively cheap, but now things are exactly

reversed. Today all software is built out of building blocks, which are themselves

pieces of software. We never start from scratch. It is a waste of programmers’ time

to reinvent and reimplement things that have already been designed, imple-

mented, refined, and tested by recognized experts.

A framework is a (typically large) collection of general-purpose (or domain-

specific) classes and conventions designed to improve the consistency of design.

Frameworks are often used to create graphical applications, database applications,

or other complex pieces of software.

C H A P T E R  7 : L I B R A R I E S

178

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 178



A framework has a well-documented public Application Programmers’

Interface, or API. An API is a description of the public functions, classes, and

interfaces in a library. To implement frameworks, design patterns are used.

Development with design patterns involves looking for pertinent objects and pos-

sible hierarchies. The classes and patterns used are given good descriptive names

so that we can define them once and reuse them elsewhere. We will discuss design

patterns shortly in Chapter 8.

Qt 4 is one of many open-source object-oriented frameworks that provide a set

of reusable components for building cross-platform applications. Some others

worth knowing about are:

■ boost: an open-source cross-platform library of C++ utility classes

■ mono: an open-source implementation of Microsoft’s .NET, the API for

C#, which is built on top of libgtk

■ libgtk, libgtk++: the widgets used under the Gnome desktop, Mozilla,

GAIM, GIMP, Evolution, and many other open-source programs

■ wxWidgets: another C++ cross platform widget toolkit

■ Wt8: a Qt-like framework for building Web applications using boost and

AJAX.9

With a multi-platform framework like Qt 4, you can gain enormous benefits from

the creative efforts of others. Software built on top of (strictly using) Qt 4 will be

based on components that have already been tested on Windows, Linux, and Mac

OS/X by hundreds of programmers.

Toolkits like Qt 4 (and also Gtk++, the cross-platform Gnu Toolkit) have parts

that are implemented differently on each platform. This is why Qt-based applica-

tions look like KDE apps in Linux and like Windows apps in Windows.

7 . 5 F R A M E W O R K S  A N D  C O M P O N E N T S

179

8 http://jose.med.kuleuven.ac.be/wt
9 A system of JavaScript and XML-rpc that gives list/tree/table views inside a Web page

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 179



C H A P T E R  7 : L I B R A R I E S

180

R E V I E W  Q U E S T I O N S

1. For each of these items, list whether it would be found in a header (.h)

file or an implementation (.cpp) file, and why.

a. Function definitions

b. Function declarations

c. Static object declarations

d. Static object definitions

e. Class definitions

f. Class declarations

g. Inline function definitions

h. Inline function declarations

i. Default argument specifiers

2. What is the difference between a compile-time dependency and a link-

time dependency?

ezus_138004_ch07.qxd  8/4/06  9:41 AM  Page 180



181

8C H A P T E R  8

Introduction to 
Design Patterns

Design patterns are efficient and elegant solutions to

common problems in object-oriented software

design. They are high-level abstract templates that

can be applied to particular kinds of design problems.

8.1 Iteration and the Visitor Pattern . . . . . . . 182

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 181



In their very influential book, Design Patterns, Erich Gamma, Richard Helm,

Ralph Johnson, and John Vlissides, often (affectionately) referred to as the “Gang

of Four,” analyzed 23 specific patterns [Gamma95]. Each pattern has a section

devoted to it, including

■ A pattern name

■ A description of the kinds of problems to which one might apply the

pattern

■ An abstract description of a design problem and how its solution can be

obtained

■ A discussion of the results and trade-offs that can occur when the pat-

tern is applied

Design patterns are used for many different purposes. As a result, they are subdi-

vided into categories. The three main categories are

■ Creational patterns, which manage the creation of objects

■ Structural patterns, which describe how objects are connected together

to form more complex objects

■ Behavioral patterns, which are used to describe how code is organized,

to assign responsibility or roles to certain classes, and to specify the way

objects communicate with each other

The Gang of Four assert that design patterns are “descriptions of communicating

objects and classes that are customized to solve a general design problem in a par-

ticular context.” As we continue to develop applications with Qt, we will discuss

and give examples of several design patterns.

8.1 Iteration and the Visitor Pattern
In this section, we discuss some elegant ways to reuse QFile, QDir, and

QFileInfo. We present a visitor object that processes each file in a file system. By

separating the visitor code from the application logic, we have a FileVisitor

that can be used by other programs. Maximum code reuse is demonstrated

through careful interface design.

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 182



8.1.1 Directories and Files: QDir and QFileInfo

There will be many occasions when it is necessary to write a program to visit files

of a certain type, and to perform some operation on each. Since directories can

contain subdirectories as well as files, the visiting code may need to be recursive.

Qt has two particularly useful classes for visiting files and getting information

about their contents: QDir and QFileInfo. Using these classes, we can write

portable (Win32, MacOS, and *nix) code that searches a file system.

Example 8.1 will assemble a list of absolute path names of MP3 files that are

scattered throughout the subdirectories below a given path. The final product

might be a playlist that we present to a piece of software such as Winamp, XMMS,

or amaroK. Here is our first try.

E X A M P L E  8 . 1 src/visitorsrc/recurseadddir.cpp

/* This function searches for all Mp3 files in a directory
tree and adds them. */

void Mp3Db::recurseAddDir(QDir d) {
d.setSorting( QDir::Name );
d.setFilter( QDir::Files | QDir::Dirs );
QStringList qsl = d.entryList();
foreach (QString entry, qsl) {

QFileInfo finfo(entry);
if ( finfo.isSymLink () && !m_SymLink )

return;
if ( finfo.isDir() ) {

if (!m_Recursive )
return;

QString dirname = finfo.fileName();
if ((dirname==".") || (dirname == ".."))

return;
QDir d(finfo.filePath());
if (skipDir(d))

return;
recurseAddDir(d);

} else {
if (fi->extension(false)=="mp3") {

addMp3File(fi->absFilePath());
}

}
}

}

non-reusable part

Example 8.1 shows how the APIs of QDir and QFileInfo can be used for travers-

ing directories. It is not well-designed for reuse, however, since there is application-

specific code in the example.

1

1

8 . 1 I T E R A T I O N  A N D  T H E  V I S I T O R  P A T T E R N

183

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 183



8.1.2 Visitor Pattern

C H A P T E R  8 : I N T R O D U C T I O N  T O  D E S I G N  P A T T E R N S

184

The Visitor pattern, like most design patterns, describes how to separate

code in a more reusable way. In this case, an operation is to be performed on

selected objects in some organized collection. The idea of this pattern is to

maintain a separation between visiting code and the code that processes

each visited item. Then we can plug application-specific code for processing

each selected file into our reusable visiting code.

In this section, we present some code from our libutils (see Section 7.4) called

FileVisitor. Given a path to a directory, FileVisitor traverses all the files

and subdirectories in that path. We can impose constraints so that we skip over

files that we do not wish to process. FileVisitor applies the function

processFile() to each file that satisfies our constraints.

To make FileVisitor into a reusable tool, we keep the file-processing

operation separate from the file-traversing code. There are two ways we can plug

in the processing code: through inheritance/polymorphism or signals/slots

(see Section 9.3.3).

To use the inheritance approach, we override the virtual method

processFile(). By deriving from FileVisitor, we can customize its behavior

as it deals with individual files. Since the FileVisitor’s processFile emits a

signal, we could connect the signal to a slot and avoid inheritance entirely.

E X A M P L E  8 . 2 src/libs/utils/filevisitor.h

[ . . . . ]
#include <QDir>
#include <QObject>

class FileVisitor : public QObject {
Q_OBJECT

public:
FileVisitor(QString nameFilter="*",

bool recursive=true, bool symlinks=false);
public slots:

void processFileList(QStringList sl);
void processEntry(QString pathname);

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 184



signals:
void foundFile(QString filename);

protected:
virtual void processFile(QString filename);

[ . . . . ]
protected:

QString m_NameFilter;
bool m_Recursive;
QDir::Filters m_DirFilter;

};
[ . . . . ]

The constraints (m_NameFilter, m_DirFilter, and m_Recursive) are

stored as data members of FileVisitor, shown in Example 8.2. If

m_Recursive is true, then the FileVisitor will descend into each subdirec-

tory that it encounters. Example 8.3 shows how the visitor deals with files and

directories. Notice, that since the FileVisitor’s processFile emits a signal,

we could create a concrete FileVisitor and connect the foundFile() to a

slot, avoiding inheritance entirely.

E X A M P L E  8 . 3 src/libs/utils/filevisitor.cpp

8 . 1 I T E R A T I O N  A N D  T H E  V I S I T O R  P A T T E R N

185

[ . . . . ]
void FileVisitor::processFile(QString filename) {

//  qDebug() << QString("FileVisitor::processFile(%1)").arg(filename);
emit foundFile(filename);

}

void FileVisitor::processEntry(QString current) {
QFileInfo finfo(current);
processEntry(finfo);

}

void FileVisitor::processEntry(QFileInfo finfo) {
//   qDebug(QString("ProcessEntry: %1").arg(finfo.fileName()));

if (finfo.isDir()) {
QString dirname = finfo.fileName();
if ((dirname==".") || (dirname == ".."))

return;
QDir d(finfo.filePath());
if (skipDir(d))

return;
processDir(d);

} else
processFile(finfo.filePath());

}

1

continued

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 185



[ . . . . ]
void FileVisitor::processDir(QDir& d) {

QStringList filters;
filters += m_NameFilter;
d.setSorting( QDir::Name );
QStringList files = d.entryList(filters, m_DirFilter);
foreach(QString entry, files) {

processEntry(d.filePath(entry));
}

if (m_Recursive) {
QStringList dirs = d.entryList(QDir::Dirs);
foreach (QString dir, dirs) {

processEntry(d.filePath(dir));
}

} 
}
[ . . . . ]

Override this method to do something more interesting with each file.

After all the files in a directory’s list are processed and if m_Recursive is true,

processDir()obtains a list of entries and calls processEntry()recursively

on each of them.

8.1.3 Customizing the Visitor Using Inheritance

Figure 8.1 shows an extended FileVisitor, customized for the specific purpose

of tracking code dependencies.

1

C H A P T E R  8 : I N T R O D U C T I O N  T O  D E S I G N  P A T T E R N S

186

F I G U R E  8 . 1 Code Visitor UML

FileVisitor

+ processFile(filename : QString)

CodeVisitor

 - m_NumFiles : int
 - m_Result : QStringList

+ CodeVisitor(filter : QString, recursive : bool)
+ processFile(filename : QString)
+ getNumFiles() : int
+ getResultString() : QString

The codevisitor application opens each file that it visits and collects all the

#include lines in a QStringList. The class definition is shown in Example 8.4.

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 186



E X A M P L E  8 . 4 src/visitor/codevisitor/codevisitor.h

[ . . . . ]
class CodeVisitor : public FileVisitor {

public:
CodeVisitor(QString filter = "-h", bool recursive = true) : 

FileVisitor(filter, recursive), m_NumFiles(0) {}
void processFile(QString filename);
int getNumFiles() const;
QString getResultString() const;

private:
int m_NumFiles;
QStringList m_Result;

};
[ . . . . ]

The implementation shown in Example 8.5, consists mainly of overriding the

processFile() method.

E X A M P L E  8 . 5 src/visitor/codevisitor/codevisitor.cpp

[ . . . . ]

void CodeVisitor::processFile(QString filename) {
m_Result << filename;
QString line;
QFile file(filename);
file.open(QIODevice::ReadOnly);
QTextStream filestream(&file);
while(! filestream.atEnd()) {

line = filestream.readLine();
if(line.startsWith("#include"))

m_Result << QString("    %1").arg(line);
}
file.close();
++m_NumFiles;

}

Example 8.6 is an application for reporting on dependencies of source code files.

E X A M P L E  8 . 6 src/visitor/codevisitor/codevisitor-test.cpp

#include <argumentlist.h>
#include <codevisitor.h>
#include <QApplication>
#include <qstd.h>
using namespace qstd;

8 . 1 I T E R A T I O N  A N D  T H E  V I S I T O R  P A T T E R N

187

continued

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 187



void usage(QString appname) {
cout << appname << " Usage: \n"

<< "codevisitor [-r] [-d startdir] [-f filter] [file-
list]\n"

<< "\t-r        \tvisitor will recurse into subdirs\n"
<< "\t-d startdir\tspecifies starting directory\n"
<< "\t-f filter\tfilename filter to restrict visits\n"
<< "\toptional list of files to be visited" << endl;

}

int main(int argc, char** argv) {
ArgumentList al(argc, argv);
QString appname = al.takeFirst();
if(al.count() == 0) {

usage(appname);
exit(1);

}
bool recursive(al.getSwitch("-r"));
QString startdir(al.getSwitchArg("-d"));
QString filter(al.getSwitchArg("-f"));
CodeVisitor cvis(filter, recursive);
if(startdir != QString()) {

cvis.processEntry(startdir);
}
else if(al.size()) {

cvis.processFileList(al);
}
else

return 1;
cout << "Files Processed: " << cvis.getNumFiles() << endl;
cout << cvis.getResultString() << endl;
return 0;

}

app name is always first in the list.

Decoupling

Notice that codevisitor also reuses our ArgumentList class.main() passes

an ArgumentList to the FileVisitor function, processFileList

(QStringList). Both FileVisitor and ArgumentList depend on

QStringList, but neither depends on the other. Thus, each can be compiled and

reused separately. We can also pass one as an argument to the other’s function.

Now, main()is free of iteration code, conditionals, and data structure manip-

ulations. Dealing with these higher-level objects makes main()easier to read and

understand. Here are some sample runs of this app.

src/visitor/codevisitor> ./codevisitor
./codevisitor Usage:
codevisitor [-r] [-d startdir] [-f filter] [file-list]

1

1

C H A P T E R  8 : I N T R O D U C T I O N  T O  D E S I G N  P A T T E R N S

188

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 188



-r           visitor will recurse into subdirs
-d startdir    specifies starting directory
-f filter      filename filter to restrict visits
optional list of files to be visited

src/visitor/codevisitor> ./codevisitor -r -d "../" -f "*.h"
Files Processed: 3
../imagexport.h

#include <filevisitor.h>
#include <QApplication>
#include <qonsole.h>

../qonsole.h
#include <QMainWindow>

../codevisitor/codevisitor.h
#include <filevisitor.h>
#include <QStringList>

src/visitor/codevisitor>   

E X E R C I S E S : I T E R A T I O N  A N D  T H E  V I S I T O R
P A T T E R N

1. diskusage reports, in various formats, the amount of disk space used in a

directory tree. It traverses all files and computes total file sizes, providing differ-

ent levels of detail (depending on command line arguments) in its report.

diskusage [-v] [-b] [-k] [-m] fileOrDirName 

[fileName2 dirName3 ...]

Option for diskusage Description

-v Verbose—show each file visited and its total

-k Print size in kilobytes (1024 bytes)

-m Print size in megabytes (1024 kbytes)

a. Write a tool diskusage that prints the summary information (totals) of files

found for each argument supplied (directory or file), in kilobytes. For example:

OOP> diskusage .

30102k    .

b. Implement the options -v, -k, and -m. Check that subdirectories in the tra-

versal each have their own totals properly calculated. Compare your results

to the *nix command du.

2. Use FileVisitor to implement the playlist problem that was described in

Section 8.1.1.

8 . 1 I T E R A T I O N  A N D  T H E  V I S I T O R  P A T T E R N

189

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 189



C H A P T E R  8 : I N T R O D U C T I O N  T O  D E S I G N  P A T T E R N S

190

R E V I E W  Q U E S T I O N S

1. What is a design pattern? What is an example of a design pattern? Why

would you use it?

2. Why does the FileVisitor need to be recursive?

3. There are three kinds of design patterns: structural, creational, and

behavioral. Which kind is the visitor? Why?

4. FileVisitor could be used to make changes to selected files. Testing

such an app would be quite risky. How would you do it?

ezus_138004_ch08.qxd  8/4/06  9:42 AM  Page 190



191

9C H A P T E R  9

QObject

An important class to become familiar with is the one

from which all Qt Widgets are derived:QObject.

9.1 QObject’s Child Managment . . . . . . . . . . 194

9.2 Composite Pattern: Parents 

and Children . . . . . . . . . . . . . . . . . . . . . . . . 196

9.3 QApplication and the Event Loop . . . . . 200

9.4 Q_OBJECT and moc: A Checklist . . . . . . . 209

9.5 Values and Objects. . . . . . . . . . . . . . . . . . . 210

9.6 tr() and Internationalization. . . . . . . . . . . 211

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 191



We will refer to any object of a class derived from QObject as a QObject.

Here is an abbreviated look at its definition.

class QObject {
public:

QObject(QObject* parent=0);
QObject * parent () const;
QString objectName() const;
void setParent ( QObject * parent );
const ObjectList & children () const;
// ... more ...

};

The first interesting thing that we observe is that QObject’s copy constructor is not

public.QObjects are not meant to be copied. In general,QObjects are intended

to represent unique objects with identity; that is, they correspond to real-world

things that also have some sort of persistent identity. One immediate consequence

of not having access to its copy constructor is that a QObject can never be passed

by value to any function. Copying a QObject’s data members into another

QObject is still possible, but the two objects are still considered unique.

One immediate consequence of not having access to its copy constructor is

that QObjects can never be passed by value to any function.

Each QObject can have (at most) one parent object and an arbitrarily large

container of QObject* children. Each QObject stores pointers to its children in

a QObjectList.1 The list itself is created in a lazy-fashion to minimize the over-

head for objects which do not use it. Since each child is a QObject and can have

an arbitrarily large collection of children, it is easy to see why copying QObjects

is not permitted.

The notion of children can help to clarify the notion of identity and the no-

copy policy for QObjects. If you represent individual humans as QObjects, the

idea of a unique identity for each QObject is clear. Also clear is the idea of chil-

dren. The rule that allows each QObject to have at most one parent can be seen

as a way to simplify the implementation of this class. Finally, the no-copy policy

stands out as a clear necessity. Even if it were possible to “clone” a person (i.e., copy

1 QObjectList is a typedef (i.e., an alias) for QList<QObject*>.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 192



C H A P T E R  9 : Q O B J E C T

193

its data members to another QObject), the question of what to do with the chil-

dren of that person makes it clear that the clone would be a separate and distinct

object with a different identity.

Each QObject parent manages its children. This means that the QObject

destructor automatically destroys all of its child objects.

The child list establishes a bidirectional, one-to-many association between

objects. Setting the parent of one object implicitly adds its address to the child list

of the other, for example

objA->setParent(objB);

adds the objA pointer to the child list of objB. If we subsequently have

objA->setParent(objC);

then the objA pointer is removed from the child list of objB and added to the

child list of objC. We call such an action reparenting.

Parent Objects versus Base Classes

Parent objects should not be confused with base classes. The parent-child

relationship is meant to describe containment, or management, of objects at

runtime. The base-derived relationship is a static relationship between

classes determined at compile-time.

It is possible that a parent can also be an instance of a base class of some

of its child objects. These two kinds of relationships are distinct and must

not be confused, especially considering that many of our classes will be

derived directly or indirectly from QObject.

It is already possible to understand some of the reasons for not permitting

QObjects to be copied. For example, should the copy have the same parent as the

original? Should the copy have (in some sense) the children of the original? A shal-

low copy of the child list would not work because then each of the children would

have two parents. Furthermore, if the copy gets destroyed (e.g., if the copy was a

value parameter in a function call), each child needs to be destroyed too. Even with

resource sharing methods, this approach would introduce some serious difficul-

ties. A deep copy of the child list could be a costly operation if the number of chil-

dren were large and the objects pointed to were large. Since each child could also

have arbitrarily many children, this questionable approach would also generate

serious difficulties.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 193



9.1 QObject’s Child Managment
Example 9.1 shows a QObject derived class.

E X A M P L E  9 . 1 src/qobject/person.h

[ . . . . ]
class Person : public QObject {

public:
Person(QObject* parent, QString name);
virtual ~Person();

};
[ . . . . ]

The complete implementation is shown in Example 9.2 to show that there is no

explicit object deletion done in ~Person().

E X A M P L E  9 . 2 src/qobject/person.cpp

#include "person.h"
#include <QTextStream>
static QTextStream cout(stdout, QIODevice::WriteOnly);

Person::Person(QObject* parent, QString name)
: QObject(parent) {

setObjectName(name);
cout << QString("Constructing Person: %1").arg(name) << endl;

}

Person::~Person() {
cout << QString("Destroying Person: %1").arg(objectName()) <<
endl;

}

main(), shown in Example 9.3, creates some objects, adds them to other objects,

and then exits. All heap objects were implicitly destroyed.

E X A M P L E  9 . 3 src/qobject/main.cpp

#include <QTextStream>
#include "person.h"

static QTextStream cout(stdout, QIODevice::WriteOnly);

C H A P T E R  9 : Q O B J E C T

194

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 194



int main(int , char**) {
cout << "First we create a bunch of objects." << endl;
Person bunch(0, "A Stack Object");
/* other objects are created on the heap */
Person *mike = new Person(&bunch, "Mike");
Person *carol = new Person(&bunch, "Carol");
new Person(mike, "Greg");
new Person(mike, "Peter");
new Person(mike, "Bobby");
new Person(carol, "Marcia");
new Person(carol, "Jan");
new Person(carol, "Cindy");
new Person(0, "Alice");
cout << "\nDisplay the list using QObject::dumpObjectTree()"

<< endl;
bunch.dumpObjectTree();
cout << "\nProgram finished - destroy all objects." << endl;
return 0;

}

not a pointer
We do not need to remember pointers to children, since we can reach them via object
navigation.
Alice has no parent—memory leak?

Here is the output of this program:

First we create a bunch of objects.
Constructing Person: A Stack Object
Constructing Person: Mike
Constructing Person: Carol
Constructing Person: Greg
Constructing Person: Peter
Constructing Person: Bobby
Constructing Person: Marcia
Constructing Person: Jan
Constructing Person: Cindy
Constructing Person: Alice

Display the list using QObject::dumpObjectTree()
QObject::A Stack Object

QObject::Mike
QObject::Greg
QObject::Peter
QObject::Bobby

QObject::Carol
QObject::Marcia
QObject::Jan
QObject::Cindy

3

2

1

3

2

1

9 . 1 Q O B J E C T ’ S  C H I L D  M A N A G M E N T

195

continued

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 195



C H A P T E R  9 : Q O B J E C T

196

Program finished - destroy all objects.
Destroying Person: A Stack Object
Destroying Person: Mike
Destroying Person: Greg
Destroying Person: Peter
Destroying Person: Bobby
Destroying Person: Carol
Destroying Person: Marcia
Destroying Person: Jan
Destroying Person: Cindy

Notice that Alice is not part of the dumpObjectTree() and does not get

destroyed.

E X E R C I S E : Q O B J E C T ’ S  C H I L D  M A N A G M E N T

Add the function

void showTree(QObject* theparent)

to main.cpp.The output of this function, after all objects have been created, should

look like this:

Member: Mike - Parent: A Stack Object
Member: Greg - Parent: Mike
Member: Peter - Parent: Mike
Member: Bobby - Parent: Mike
Member: Carol - Parent: A Stack Object
Member: Marcia - Parent: Carol
Member: Jan - Parent: Carol
Member: Cindy - Parent: Carol

9.2 Composite Pattern: Parents and Children
According to [Gamma95], the Composite pattern is intended to facilitate build-

ing complex (composite) objects from simpler (component) parts by representing

the part-whole hierarchies as tree-like structures. This must be done in such a way

that clients do not need to distinguish between simple parts and more complex

parts that are made up of (i.e., contain) simpler parts.

In Figure 9.1 there are two distinct classes for describing the two roles.

■ A composite object is something that can contain children.

■ A component object is something that can have a parent.

In Figure 9.2, we can see that QObject is both composite and component. We can

express the whole-part relationship as a parent-child relationship between

QObjects. The highest level (i.e., most “composite”) QObject in such a tree

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 196



9 . 2 C O M P O S I T E  P A T T E R N : P A R E N T S  A N D  C H I L D R E N

197

F I G U R E  9 . 1 Components and composites

F I G U R E  9 . 2 QObject

(i.e., the root of the tree) will have lots of children but no parent. The simplest

QObjects (i.e., the leaf nodes of this tree) will each have a parent but no children.

Client code can recursively deal with each node of the tree.

For an example of how this pattern might be used, let’s look at Suffolk

University. In 1906 the founder, Gleason Archer, decided to start teaching the prin-

ciples of law to a small group of tradesmen who wanted to become lawyers. He was

assisted by one secretary and, after a while, a few instructors. The organizational

chart for this new school was quite simple: a single office consisting of several

employees with various tasks. As the enterprise grew, the chart gradually became

more complex with the addition of new offices and departments. Today, 100 years

Component

+ setParent(parent : Composite*)

Leaf

Client

Customer

Composite

+ findChildren(name : QString)

CustomerList

QObject

+ QObject(parent : QObject*)
+ ~ QObject()
+ objectName() : QString
+ setObjectName(name : const QString&)
+ findChild(name : const QString&) : QObject*
+ findChildren(name : const QString&) : QObjectList
+ findChildren(re : const QRegExp&) : QObjectList
+ children() : const QObjectList&
+ setParent( : QObject*)
+ isAncestorOf(child : const QObject*) : bool
+ parent() : QObject*

+children *

1

+parent

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 197



later, the Law School has been joined with a College of Arts and Sciences, a School

of Management, a School of Art and Design, campuses abroad, and many special-

ized offices so that the organizational chart has become quite complex and prom-

ises to become more so. Figure 9.3 shows an abbreviated and simplified subchart

of today’s Suffolk University.

Each box in the chart is a component. It may be composite and have sub-

components which, in turn, may be composite or simple components. For example,

the PresidentOffice has individual employees (e.g., the President and his assistants)

and sub-offices (e.g., DiversityServices). The leaves of this tree are the individual

employees of the organization.

We can use the Composite pattern to model this structure. Each node of the

tree can be represented by an object of

class OrgUnit : public QObject {
public:

QString getName();
double getSalary();

private:
QString m_Name;
double m_Salary;

};

The QObject public interface allows us to build up a tree-like representation of

the organization with code that instantiates an OrgUnit and then calls

setParent()to add it to the appropriate child list.

C H A P T E R  9 : Q O B J E C T

198

F I G U R E  9 . 3 Suffolk University organizational chart

University

EnrollmentVPOffice

Admissions

PresidentOffice

DiversityServices

AdmOfficerA AdmOfficerB

FinanceDpt

LawSchool

LawDeanOffice EnglishDpt

Math/CSDpt

SSOM

ProfDProfC

AcctDpt

ProfAProfF ProfE

DeanA

CAS

HistoryDpt

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 198



For each OrgUnit pointer ouptr in the tree, we initialize its m_Salary data

member as follows:

■ If ouptr points to an individual employee, we use that employee’s actual

salary.

■ Otherwise we initialize it to 0.

We can implement the getSalary() method somewhat like this:

double OrgUnit::getSalary() {
QList<OrgUnit*> childlst = findChildren<OrgUnit*>();
double salaryTotal(m_Salary);
if(!childlst.isEmpty())

foreach(OrgUnit* ouptr, childlst)
salaryTotal += ouptr->getSalary();

return salaryTotal;
}

A call to getSalary() from any particular node returns the total salary for the

part of the university represented by the subtree whose root is that node. For

example, if ouptr points to University, ouptr->getSalary() returns the

total salary for the entire university. But if ouptr points to EnglishDpt, then

ouptr->getSalary() returns the total salary for the English Department.

9.2.1 Finding Children

QObject provides convenient and powerful functions named findChildren()

for finding children in the child list. The signature of one of its overloaded forms

looks like this:

QList<T> parentObj.findChildren<T> ( const QString & name ) const

If name is an empty string, findChildren() works as a class filter by returning

a QList holding pointers to all children, which can be typecast to type T.

To call the function, you must supply a template parameter after the function

name, as shown in Example 9.4.

E X A M P L E  9 . 4 src/findchildren/findchildren.cpp

[ . . . . ]
/* Filter on Customer* */

QList<Customer*> custlist = parent.findChildren<Customer*>();
foreach (Customer* current, custlist) {

qDebug() << current->toString();
}

[ . . . . ]

9 . 2 C O M P O S I T E  P A T T E R N : P A R E N T S  A N D  C H I L D R E N

199

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 199



9.3 QApplication and the Event Loop
Interactive Qt applications with GUI have a different control flow from console

applications and filter applications2 because they are event-based, and often multi-

threaded. Objects are frequently sending messages to each other, making a linear

hand-trace through the code rather difficult.

Observer Pattern

When writing event-driven programs, GUI views need to respond to changes

in the state of data model objects, so that they can display the most recent

information possible.

When a particular subject object changes state, it needs an indirect way

to alert (and perhaps send additional information to) all the other objects

that are listening to state-change events, known as observers. A design pat-

tern that enables such a message-passing mechanism is called the Observer
pattern, sometimes also known as the Publish-Subscribe pattern.

There are many different implementations of this pattern. Some common

characteristics that tie them together are

1. They all enable concrete subject classes to be decoupled from

concrete observer classes.

2. They all support broadcast-style (one to many) communication.

3. The mechanism used to send information from subjects to observers is

completely specified in the subject’s base class.

Qt’s approach is very different from Java’s approach, because signals and slots

rely on generated code, while Java just renames observer to listener.

The Qt class QEvent encapsulates the notion of an event. QEvent is the base class

for several specific event classes such as QActionEvent, QFileOpenEvent,

QHoverEvent, QInputEvent, QMouseEvent, and so forth. QEvent objects

can be created by the window system in response to actions of the user (e.g.,

QMouseEvent) at specified time intervals (QTimerEvent) or explicitly by an

application program. The type()member function returns an enum that has

nearly a hundred specific values that can identify the particular kind of event.

A typical Qt program creates objects, connects them, and then tells the applica-

tion to exec(). At that point, the objects can send information to each other in a

C H A P T E R  9 : Q O B J E C T

200

2 A filter application is not interactive. It simply reads from standard input and writes to standard
output.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 200



variety of ways. QWidgets send QEvents to other QObjects in response to user

actions such as mouse clicks and keyboard events. A widget can also respond to

events from the window manager such as repaints, resizes, or close events.

Furthermore,QObjects can transmit information to one another by means of sig-

nals and slots.

Each QWidget can be specialized to handle keyboard and mouse events in its

own way. Some widgets will emit a signal in response to receiving an event.

An event loop is a program structure that permits events to be prioritized,

enqueued, and dispatched to objects. Writing an event-based application means

implementing a passive interface of functions that only get called in response to

certain events. The event loop generally continues running until a terminating

event occurs (e.g., the user clicks on the QUIT button).

Example 9.5 shows a simple application that initiates the event loop by calling

exec().

E X A M P L E  9 . 5  src/eventloop/main.cpp

[ . . . . ]

int main(int argc, char * argv[]) {
QApplication myapp(argc, argv);

QWidget rootWidget;
setGui(&rootWidget);

rootWidget.show();
return myapp.exec();

};

Every GUI, multithreaded, or event-driven Qt Application must have a QApplication object
defined at the top of main( ).
Show our widget on the screen.
Enter the event loop.

When we run this app, we first see a widget on the screen as shown in the following

figure.

3

2

1

3

2

1

9 . 3 Q A P P L I C A T I O N  A N D  T H E  E V E N T  L O O P

201

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 201



We can type in the QTextEdit on the screen, or click on the Shout button. When

Shout is clicked, a widget is superimposed on our original widget as shown in the

next figure.

C H A P T E R  9 : Q O B J E C T

202

This message dialog knows how to self-destruct, because it has its own buttons and

actions.

9.3.1 Layouts: A First Look

Whenever more than a single widget needs to be displayed, they must be arranged

in some form of a layout (see Section 11.5). Layouts are derived from the abstract

base class, QLayout, which is derived from QObject. Layouts are geometry man-

agers that fit into the composition hierarchy of a graphical interface. Typically, we

start with a widget that will contain all of the parts of our graphical construction.

We select one or more suitable layouts to be children of our main widget (or of

one another) and then we add widgets to the layouts.

It is important to understand that widgets in a layout are not children of
the layout—they are children of the widget that owns the layout. Only a
widget can be the parent of another widget. It may be useful to think of
the layout as an older sibling acting as the nanny of its widgets.

In Example 9.6, we are laying out widgets in a vertical fashion with QVBoxLayout.

E X A M P L E  9 . 6  src/eventloop/main.cpp

[ . . . . ]

QWidget* setGui(QWidget *box) {
QLayout* layout = new QVBoxLayout;
box->setLayout(layout);

QTextEdit *te = new QTextEdit;
layout->addWidget(te); 3

2

1

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 202



te->setHtml("Some <b>text</b> in the <tt>QTextEdit</tt>"
"edit window <i>please</i>?");

QPushButton *quitButton=new QPushButton("Quit");
layout->addWidget(quitButton);

QPushButton *shoutButton = new QPushButton("Shout");
layout->addWidget(shoutButton);

Messager *msgr = new Messager("This dialog will self-
destruct.", box);

QObject::connect(quitButton, SIGNAL(clicked()),
qApp, SLOT(quit())); 4

9 . 3 Q A P P L I C A T I O N  A N D  T H E  E V E N T  L O O P

203

connect()is actually a static member of QObject and can be called with any

QObject or, as we showed, by means of its class scope resolution operator. qApp

is a global pointer that points to the currently running QApplication.

The second connect goes to a slot that we declare in Example 9.7.

E X A M P L E  9 . 7  src/eventloop/messager.h

#ifndef MESSAGER_H
#define MESSAGER_H

#include <QObject>
#include <QString>
#include <QErrorMessage>

QObject::connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit()));

qApp->connect(shoutButton, SIGNAL(clicked()), msgr, SLOT(shout()));

continued

qApp->connect(shoutButton, SIGNAL(clicked()), msgr, SLOT(shout()));
return box;

}

box is the parent of layout.
This is the window for qDebug messages.
te is the child of layout.
qApp is a global variable that points to the current QApplication object.

The widgets are arranged vertically in this layout, from top to bottom, in the order

that they were added to the layout.

9.3.2 Connecting to Slots

In Example 9.7, we saw the following connections established:

4

3

2

1

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 203



class Messager : public QObject {
Q_OBJECT

public:
Messager (QString msg, QWidget* parent=0);

public slots:
void shout();

private:
QWidget* m_Parent;
QErrorMessage* message;

};

#endif

Declaring a member function to be a slot enables it to be connected to a signal

so that it can be called passively in response to some event. For its definition,

shown in Example 9.8, we have kept things quite simple: the shout() function

simply pops up a message box on the screen.

E X A M P L E  9 . 8 src/eventloop/messager.cpp

#include "messager.h"

Messager::Messager(QString msg, QWidget* parent)
: m_Parent(parent) {

message = new QErrorMessage(parent);
setObjectName(msg);

}

void Messager::shout() {
message->showMessage(objectName());

}

9.3.3 Signals and Slots

When the main thread of a C++ program calls qApp->exec(), it enters into an

event loop, where messages are handled and dispatched. While qApp is executing

its event loop, it is possible for QObjects to send messages to one another.

A signal is a message that is presented in a class definition like a void function

declaration. It has a parameter list but no function body. A signal is part of the inter-

face of a class. It looks like a function but it cannot be called—it must be emitted by

an object of that class. A signal is implicitly protected, and so are all the identifiers

that follow it in the class definition until another access specifier appears.

A slot is a void member function. It can be called as a normal member

function.

C H A P T E R  9 : Q O B J E C T

204

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 204



A signal of one object can be connected to the slots of one or more3 other objects,

provided the objects exist and the parameter lists are assignment compatible4 from

the signal to the slot. The syntax of the connect statement is:

bool QObject::connect(senderqobjptr,
SIGNAL(signalname(argtypelist)),
receiverqobjptr,
SLOT(slotname(argtypelist))
optionalConnectionType);

Any QObject that has a signal can emit that signal. This will result in an indirect

call to all connected slots.

QWidgets already emit signals in response to events, so you only need to make

the proper connections to receive those signals. Arguments passed in the emit

statement are accessible as parameters in the slot function, similar to a function

call, except that the call is indirect. The argument list is a way to transmit infor-

mation from one object to another.

Example 9.9 defines a class that uses signals and slots to transmit a single int

parameter.

E X A M P L E  9 . 9  src/widgets/sliderlcd/sliderlcd.h

[ . . . . ]
class QSlider;
class QLCDNumber;
class LogWindow;
class QErrorMessage;

class SliderLCD : public QMainWindow {
Q_OBJECT

public:
SliderLCD(int minval = -273, int maxval = 360);
void initSliderLCD();

public slots:
void checkValue(int newValue);
void showMessage();

signals:
void toomuch();

private:
int m_Minval, m_Maxval;
LogWindow* m_LogWin;
QErrorMessage *m_ErrorMessage;

9 . 3 Q A P P L I C A T I O N  A N D  T H E  E V E N T  L O O P

205

3 Multiple signals can be connected to the same slot also.
4 Same number of parameters, each one being assignment compatible.

continued

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 205



QLCDNumber* m_LCD;
QSlider* m_Slider;

};
#endif
[ . . . . ]

In Example 9.10, we can see how the widgets are initially created and connected.

E X A M P L E  9 . 1 0 src/widgets/sliderlcd/sliderlcd.cpp

[ . . . . ]

SliderLCD::SliderLCD(int min, int max) : m_Minval(min),
m_Maxval(max) {

initSliderLCD();
}

void SliderLCD::initSliderLCD() {
m_LogWin = new LogWindow();
QDockWidget *logDock = new QDockWidget("Debug Log");
logDock->setWidget(m_LogWin);
logDock->setFeatures(0);
setCentralWidget(logDock);

m_LCD = new QLCDNumber();
m_LCD->setSegmentStyle(QLCDNumber::Filled);
QDockWidget *lcdDock = new QDockWidget("LCD");
lcdDock->setFeatures(QDockWidget::DockWidgetClosable);
lcdDock->setWidget(m_LCD);
addDockWidget(Qt::LeftDockWidgetArea, lcdDock);

m_Slider = new QSlider( Qt::Horizontal);
QDockWidget* sliderDock = new QDockWidget("How cold is it

today?");
sliderDock->setWidget(m_Slider);
sliderDock->setFeatures(QDockWidget::DockWidgetMovable);
/* Can be moved between doc areas */
addDockWidget(Qt::BottomDockWidgetArea, sliderDock);

m_Slider->setRange(m_Minval, m_Maxval);
m_Slider->setValue(0);
m_Slider->setFocusPolicy(Qt::StrongFocus);
m_Slider->setSingleStep(1);
m_Slider->setPageStep(20); 
m_Slider->setFocus();

connect(m_Slider, SIGNAL(valueChanged(int)),  /*SliderLCD is a
QObject so

connect does not need scope resolution. */
this, SLOT(checkValue(int)));

6

5

4

3

2

1

C H A P T E R  9 : Q O B J E C T

206

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 206



connect(m_Slider, SIGNAL(valueChanged(int)),
m_LCD, SLOT(display(int)));

connect(this, SIGNAL(toomuch()),
this, SLOT(showMessage()));

m_ErrorMessage = NULL;
}

a class defined in the utils library
cannot be closed, moved, or floated
can be closed
Step each time left or right arrow key is pressed.
Step each time PageUp/PageDown key is pressed.
Give the slider focus.
Normally there is no point in connecting a signal to a slot on the same object, but we do it for
demonstration purposes.

Only the argument types belong in the connect statement; for example, the fol-

lowing is not legal:

7

6

5

4

3

2

1

7

9 . 3 Q A P P L I C A T I O N  A N D  T H E  E V E N T  L O O P

207

connect( button, SIGNAL(valueChanged(int)), lcd, SLOT(setValue(3)))

Example 9.11 defines the two slots, one of which conditionally emits another

signal.

E X A M P L E  9 . 1 1 src/widgets/sliderlcd/sliderlcd.cpp

[ . . . . ]

void SliderLCD::checkValue(int newValue) {
if (newValue> 120) {

emit toomuch();
}

}

/* This slot is called indirectly via emit because
of the connect */

void SliderLCD::showMessage() {
if (m_ErrorMessage == NULL) {

m_ErrorMessage = new QErrorMessage(this);
}
if (!m_ErrorMessage->isVisible()) {

QString message("Too hot outside! Stay in. ");
m_ErrorMessage->showMessage(message);

}
}

Emit a signal to anyone interested.
This is a direct call to a slot. It’s a member function.

Example 9.12 contains client code to test this class.

2

1

2

1

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 207



C H A P T E R  9 : Q O B J E C T

208

E X A M P L E  9 . 1 2 src/widgets/sliderlcd/sliderlcd-demo.cpp

#include "sliderlcd.h"
#include <QApplication>
#include <QDebug>

int main(int argc, char ** argv) {
QApplication app(argc, argv);
SliderLCD slcd;
slcd.show();
qDebug() << QString("This is a debug message.");
return app.exec();

}

Whenever the slider produces a new value, that value is transmitted as an argu-

ment from the valueChanged(int) signal to the display(int) slot of

the lcd.

Synchronous or Asynchronous?

In single-threaded applications, or in multithreaded applications where the

emitting and receiving QObjects are in the same thread, signals are sent in

a synchronous manner. This means the thread blocks (suspends execution)

until the code for the slots has completed execution (see Section 12.2).

In multi-threaded applications, where signals are emitted by an object in

one thread and received by an object in another, it is possible to have signals

queued, or executed in an asynchronous way, depending on the optional

Qt::ConnectionType passed to connect().

E X E R C I S E S : S I G N A L S  A N D  S L O T S

1. Modify the sliderlcd program as follows:

■ Make the lcd display show the temperatures as hexadecimal integers.

■ Make the lcd display characters have a different (“flat”) style.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 208



9 . 4 Q _ O B J E C T  A N D  M O C : A  C H E C K L I S T

209

■ Give the slider a vertical orientation.

■ Give the slider and the lcd display more interesting colors.

■ Add a push button that the user can click to switch the lcd display from dec-

imal mode to hexadecimal mode.

■ Make the push button into a toggle that allows the user to switch back and

forth between decimal and hexadecimal modes.

2. Write an application, similar to the one in Section 9.3, but that has four buttons.

The first one, labeled Advice, should be connected to a slot that randomly

selects a piece of text (such as a fortune cookie) and displays it in the

QTextEdit window.The second one, labeled Weather, randomly selects a sen-

tence about the weather and displays it in the QTextEdit window. The third

one, labeled Next Meeting, pops up a message dialog with a randomly gener-

ated (fictitious) meeting time and descriptive message in it. The fourth one,

labeled Quit, terminates the program. Use signals and slots to connect the but-

ton clicks with the appropriate functions.

9.4 Q_OBJECT and moc: A Checklist
QObject supports features not normally available in C++ objects.

■ Children (see the first two sections of Chapter 9)

■ Signals and slots (see Section 9.3.3)

■ MetaObjects, metaproperties, metamethods (see Chapter 15)

■ qobject_cast (see Section 15.3)

These features are only possible through the use of generated code. The Meta

Object Compiler, moc, generates additional functions for each QObject-derived

class that uses the macro. Generated code can be found in files with names

moc_filename.cpp.

This means that some errors from the compiler/linker may be confuscated5

when moc is not able to find or process your classes. To help ensure that moc

processes each of your QObject-derived classes, here are some guidelines for

writing C++ code and qmake project files.

■ Each class definition should go in its own .h file.

■ Its implementation should go in a corresponding .cpp file.

■ The header file should be “#ifndef wrapped” to avoid multiple inclusion.

■ Each source (.cpp) file should be listed in the SOURCES variable of the

project file, otherwise it will not be compiled.

5 confusing + obfuscated

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 209



■ The header file should be listed in the HEADERS variable of the .pro file.

Without this, moc will not preprocess the file.

■ The Q_OBJECT macro must appear inside the class definition, so that

moc will know to generate code for it.

MULTIPLE INHERITANCE AND QOBJECT Because each Q_OBJECT
has signals and slots, it needs to be preprocessed by moc. moc works
under the assumption that you are only deriving from QObject once,
and further, that it is the first base class in the list of base classes. If you acci-
dentally inherit from QObject multiple times, or if it is not the first base
class in the inheritance list, you may receive very strange errors from moc-
generated code.

9.5 Values and Objects
We can divide C++ types into two categories: value types and object types.

Instances of value types are relatively “simple”: They occupy contiguous mem-

ory space, and can be copied or compared quickly. Examples of value types are

Anything*, int, char, QString, QDate, and QVariant.

Instances of object types, on the other hand, are typically more complex and

maintain some sort of identity. Object types are rarely copied (cloned). If cloning

is permitted, the operation is usually expensive and results in a new object (graph)

that has a separate identity from the original.

The designers of QObject asserted an unequivocal “no copy” policy by desig-

nating its assignment operator and copy constructor private. This effectively

prevents the compiler from generating assignment operators and copy construc-

tors for QObject-derived classes. One consequence of this scheme is that any

attempt to pass or return QObject-derived classes by value to or from functions

results in a compile-time error.

E X E R C I S E S : Q O B J E C T

1. Rewrite the Contact and ContactList from “Exercise: Contact List” in Chapter 4 so

that they both derive from QObject.

When a Contact is to be added to a ContactList, make the Contact the child

of the ContactList.

2. Port the client code you wrote for “Exercise: Contact List” to use the new

versions of Contact and ContactList.

C H A P T E R  9 : Q O B J E C T

210

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 210



9 . 6 T R ( )  A N D  I N T E R N A T I O N A L I Z A T I O N

211

9.6 tr( ) and Internationalization
If you are writing a program that will ever be translated into another language

(internationalization), Qt Linguist and Qt translation tools have already solved

the problem of how to organize and where to put the translated strings. To prepare

our code for translation, we use QObject::tr() to surround any translatable

string in our application. The tr() function is generated for every QObject and

places its international strings in its own “namespace,” which has the same name

as the class.

tr() serves two purposes:

1. It makes it possible for Qt’s lupdate tool to extract all of the translat-

able string literals.

2. If a translation is available, and the language has been selected, the

strings will actually be translated into the selected language at runtime.

If no translation is available, tr() returns the original string.

It is important that each translatable string is indeed fully inside the
tr() function and extractable at compile time. For strings with parame-
ters, use the QString::arg() function to place parameters inside
translated strings. For example,

statusBar()->message
(tr("%1 of %2 complete. progress: %3%%")
.arg(processed).arg(total).arg(percent));

This way, translations can place the parameters in different order in situ-
ations where language changes the order of words/ideas.

For a much more complete guide to internationalization, we recommend

[Blanchette06], written by one of Linguist’s lead developers.

P O I N T  O F  D E P A R T U R E

There are other open-source implementations of signals and slots, similar to the

Qt QObject model. One is called xlobject (available at http://sourceforge.net/

projects/xlobject). In contrast to Qt, it does not require any moc-style preprocess-

ing, but instead relies heavily on templates, so it is only supported by modern (post-

2002) C++ compilers. The boost library (available from http://www.boost.org)

also contains an implementation of signals and slots.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 211



C H A P T E R  9 : Q O B J E C T

212

R E V I E W  Q U E S T I O N S

1. What does it mean when object A is the parent of object B?

2. What happens to a QObject when it is reparented?

3. Why is the copy constructor of QObject not public?

4. What is the composite pattern?

5. How can QObject be both composite and component?

6. How can you access the children of a QObject?

7. What is an event loop? How is it initiated?

8. What is a signal? How do you call one?

9. What is a slot? How do you call one?

10. How are signals and slots connected?

11. How can information be transmitted from one object to another?

12. Deriving a class from QObject more than once can cause problems.

How might that happen accidentally?

13. What is the difference between value types and object types? Give

examples.

ezus_138004_ch09.qxd  8/4/06  9:43 AM  Page 212



10.1 Generics and Templates . . . . . . . . . . . . . 214

10.2 Containers . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.3 Managed Containers, Composites,

and Aggregates . . . . . . . . . . . . . . . . . . . . 221

10.4 Implicitly Shared Classes . . . . . . . . . . . . 224

10.5 Generics, Algorithms, and Operators. . 225

10.6 Serializer Pattern . . . . . . . . . . . . . . . . . . . 227

10.7 Sorted Map Example . . . . . . . . . . . . . . . . 229

10C H A P T E R  1 0

Generics and Containers

This chapter covers more deeply the subject of

generics. Generics are classes and functions that can

operate just as easily on objects as primitive types. Qt

container classes are generic, template-based classes,

and we will see examples using lists, sets, and maps.

Operators,managed containers,and resource sharing

are also discussed.

213

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 213



10.1 Generics and Templates
C++ supports four distinct categories of types:

1. Primitives: int, char, float, double, etc.

2. Pointers

3. Instances of class/struct

4. Arrays

Because there is no common base type for these four distinct type categories, writ-

ing generic functions and classes that can operate on multiple type categories

would be very difficult without the use of templates. Templates provide a means

for C++ to generate different versions of classes and functions with parameterized

types and common behavior. They are distinguished by the use of the keyword

template, and a template parameter enclosed in angle brackets <>.

A template parameter differs from a function parameter in that it can be used

to pass not only variables and values, but also type expressions.

template <class T > class String { ... }; 
template <class T, int max > Buffer { ...

T v[max]; 
};
String <char> s1;
Buffer <int, 10> intBuf10;

10.1.1 Function Templates

Function templates are used to create type-checked functions which all work on

the same pattern. Example 10.1 defines a template function that raises a value of

type T to the power exp by repeatedly applying the operator*=.

E X A M P L E  1 0 . 1 src/templates/template-demo.cpp

[ . . . . ]

template <class T> T power (T a, int exp) {
T ans = a;
while (--exp > 0) {

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 214



ans *= a;
}
return (ans);

}

When the function is called, as shown in Example 10.2, different function bod-

ies will be automatically generated by the compiler based on the argument types

supplied in the function call. Even though the word class is in the template

parameter, we can supply a class or a primitive type for T. The only limitation on

the type T is that it must be a type for which the operator*= is defined.

E X A M P L E  1 0 . 2 src/templates/template-demo.cpp

[ . . . . ]

int main() {
Complex z(3,4), z1;
Fraction f(5,6), f1;
int n(19);
z1 = power(z,3);
f1 = power(f,4);
z1 = power<Complex>(n, 4);
z1 = power(n,5);

}

First instantiation T is Complex.
Second instantiation T is Fraction.
Supply an explicit template parameter if the actual argument is not “specific” enough. This
results in a call to a function that was already instantiated.
Which version gets called?

Each time the compiler sees a template function used for the first time with a spe-

cific combination of parameter types, we say the template is instantiated.

Subsequent uses of of power(Complex, int) or power(Fraction, int) will

be translated into ordinary function calls.

E X E R C I S E S : F U N C T I O N  T E M P L A T E S

1. Complete Example 10.2. In particular, write a generic Complex and Fraction

class, and fix main()so that it works and uses those classes.

2. Write a template version of swap(), based on Example 5.13. Write client code

to test it thoroughly.

4

3

2

1

4

3

2

1

1 0 . 1 G E N E R I C S  A N D  T E M P L A T E S

215

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 215



3. Are there any types for which swap()does not work?

4. Specify the restrictions on the class parameter in your template swap function.

10.1.2 Class Templates

Like functions, classes can also use parameterized types. Class templates are used

to generate generic containers of data. The parameter is the answer to the ques-

tion, “Container of what?” All Qt container classes and, of course, all classes in the

Standard Template Library (STL) are parameterized.

We will discuss a homemade example of a template stack class. Figure 10.1

shows a UML diagram of two template classes.

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

216

F I G U R E  1 0 . 1 Template-based stack

UML locates the template parameter in a small offset box in the upper-right cor-

ner of the class box. Example 10.3 contains definitions for these classes.

E X A M P L E  1 0 . 3 src/collections/stack/stack.h

[ . . . . ]

#include <qstd.h>
template<class T> class Node {
public:

Node(T invalue): m_Value(invalue), m_Next(0) {}
~Node() ;

Node

 - mValue : T
 - mNext : Node<t>*

+ Node(val : T)
+ ~Node()
+ getValue() : T
+ setValue(value : T)
+ getNext() : Node<t>*
+ setNext(next : Node<t>*)

Stack

 - mHead : Node<t>*
 - mCount : int

+ Stack()
+ ~Stack()
+ push(t : const T&)
+ pop() : T
+ top() : T
+ count() : int

T

T

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 216



T getValue() const {return m_Value;}
void setValue(T value) {m_Value = value;}
Node<T>* getNext() const {return m_Next;}
void setNext(Node<T>* next) {m_Next = next;}

private:
T m_Value;
Node<T>* m_Next;

};

template<class T> Node<T>::~Node() {
using namespace qstd;
cout << m_Value << " deleted " << endl;
if(m_Next) {

delete m_Next; 
}

}

template<class T> class Stack {
public:

Stack(): m_Head(0), m_Count(0) {}
~Stack<T>() {delete m_Head;} 
void push(const T& t);
T pop();
T top() const;
int count() const;

private:
Node<T> *m_Head;
int m_Count;

};

Notice that template definitions, shown in Example 10.4 (classes and functions),

appear in the header file. This is necessary for the compiler to generate code from

a template declaration. Also notice the required template declaration code,

template<class T>. This code must precede each class or function definition

that has a template parameter in its name.

E X A M P L E  1 0 . 4 src/collections/stack/stack.h

[ . . . . ]

template <class T> void Stack<T>::push(const T& value) {
Node<T> *newNode = new Node<T>(value);
newNode->setNext(m_Head);
m_Head = newNode;
++m_Count;

}

template <class T>  T Stack<T>::pop() {
Node<T> *popped = m_Head;
if (m_Head != 0) {

1 0 . 1 G E N E R I C S  A N D  T E M P L A T E S

217

continued

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 217



m_Head = m_Head->getNext();
T retval = popped->getValue();
popped->setNext(0);
delete popped;
--m_Count;
return retval;

}
return 0;

}

The creation of objects is handled generically in the template function, push().

The destructor for the Node<T> class recursively deletes Node pointers until it

reaches one with a zero m_Next pointer.1 Controlling creation and destruction of

Node<T> objects this way enables Stack<T> to completely manage its dynamic

memory. Example 10.5 contains some client code to demonstrate these classes.

E X A M P L E  1 0 . 5 src/collections/stack/main.cpp

#include <QDebug>
#include <QString>
#include "stack.h"

int main() {
Stack<int> intstack1, intstack2;
int val;
for(val = 0; val < 4; ++val) {

intstack1.push(val);
intstack2.push(2 * val);

}
while (intstack1.count()) {

val = intstack1.pop();
qDebug() << val;

}
Stack<QString> stringstack;
stringstack.push("First on");
stringstack.push("second on");
stringstack.push("first off");
QString val2;
while (stringstack.count()) {

val2 = stringstack.pop();
qDebug() << val2;

}
qDebug() << "Now intstack2 will self destruct.";
return 0;

}

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

218

1 This is a consequence of the fact that calling delete on a pointer automatically invokes the destruc-
tor associated with that pointer.

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 218



Output:

3 deleted
3
2 deleted
2
1 deleted
1
0 deleted
0
first off deleted
"first off"
second on deleted
"second on"
First on deleted
"First on"
Now intstack2 will self destruct.
6 deleted
4 deleted
2 deleted
0 deleted

E X E R C I S E S : C L A S S  T E M P L A T E S

1. Place the function definitions for Stack in a separate file (stack.cpp), mod-

ify the project file appropriately, and then build the app. Explain the results.

2. How general is this application (i.e., what conditions must the class T satisfy in

order to be used here)?

3. What limits the size of a Stack<T>?

4. Write a template Queue<T> class and client code to test it.

10.2 Containers
Qt’s container classes are used to collect value types (things that can be copied),

including pointers to object types (but not object types themselves). Qt contain-

ers are defined as template classes which leave the collected type unspecified. Each

data structure is optimized for different kinds of operations. In Qt 4, there are

several template container classes to choose from.

■ QList<T> is implemented using an array, with space preallocated at

both ends. It is optimized for index-based random access and, for lists

with less than a thousand items, it also gives good performance with

operations like prepend() and append().

1 0 . 2 C O N T A I N E R S

219

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 219



■ QStringList is a convenience class that is derived from

QList<QString>.

■ QLinkedList<T> is optimized for sequential access with iterators and

quick, constant-time inserts anywhere in the list. Sorting and searching are

slow. It has several convenience functions for frequently used operations.

■ QVector<T> stores its data in contiguous memory locations and is

optimized for random access by index. Generally, QVector objects are

constructed with an initial size. There is no automatic preallocation of

memory at either end, so insertions, appends, and prepends are expensive.

■ QStack<T> is publicly derived from QVector<T>, so the public

interface of QVector is available to QStack objects. However, the 

last-in-first-out semantics are implemented by the push(), pop(),

and top()functions.

■ QMap<Key, T> is an ordered associative container that stores (key,

value) pairs and is designed for fast lookup of the value associated with 

a key and for easy insertions. It keeps its keys in sorted order, for fast

searching and subranging, by means of a skip-list dictionary2 that is

probabilistically balanced and uses memory very efficiently. The Key

type must have an operator<() and operator==().

■ QHash<Key, T> is an associative container that uses a hash table to

facilitate key lookups. It provides very fast lookups (exact key match)

and insertions, but slow searching and no sorting. The Key type must

have an operator==().

■ QMultiMap<Key, T> is a subclass of QMap, and QMultiHash<Key, T>

is a subclass of QHash. These two classes allow multiple values to be

associated with a single key.

■ QCache<Key, T> is also an associative container but it provides fastest

access to recently used items and automatic removal of infrequently used

items based on cost functions.

■ QSet<T> stores values of type T using a QHash with keys in T and a

dummy value associated with each key. This arrangement optimizes

lookups and insertions. QSet has functions for the usual set operations

(e.g., union, intersection, set difference, etc.). The default constructor

creates an empty set.

A type parameter T for a template container class or key type for an associative

container must be an assignable data type (i.e., a value type; see Section 9.5). This

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

220

2 ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 220



means that it must have a public default constructor, copy constructor, and assign-

ment operator.

Basic types (e.g., int, double, char, etc.) and pointers are assignable. Some Qt

types are assignable (e.g., QString, QDate, QTimer). QObject and types derived

from QObject are not assignable. If you need to group objects of some non-

assignable type, you can define a container of pointers, e.g., QList<QFile*>.

10.3 Managed Containers, Composites,
and Aggregates

Value containers are containers of uniform (same-typed) values, for example,

QString, byte, int, float, etc. Pointer containers are containers of pointers to

(polymorphic commonly typed) objects. They can be managed or unmanaged.

Both kinds of containers can grow at runtime by allocating additional heap

memory as needed. This is always done in an exception-safe way, so you don’t need

to worry about possible memory leaks.

In the case of pointer containers to heap objects, however, one must decide

which class is responsible for managing the heap objects. UML diagrams can dis-

tinguish between managed and unmanaged containers by using composite (filled

diamond) and aggregate (empty diamond) connectors, as shown in Figure 10.2.

1 0 . 3 M A N A G E D  C O N T A I N E R S , C O M P O S I T E S , A N D  A G G R E G A T E S

221

F I G U R E  1 0 . 2 Aggregates and compositions

In general, we can say that a managed container is a composite, because the con-

tainer manages its pointed-to objects. In other words, when a composite is

destroyed, it destroys (cleans up) its entire self (because the smaller objects are

part of its composition).

When one object embeds another as a sub-object, it is also considered a

composition.

In Figure 10.2, there are two kinds of Customer containers, CustomerList

and CustDb. CustDb and CustomerList both reuse template containers.

QList<Customer*>

CustomerList Customer CustDb

Address

QObject

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 221



CustomerList objects are aggregates—temporary structures to hold the results

of a query, or a user selection. CustDb, on the other hand, is a singleton composite

that manages all of the Customer objects that exist.

In the case of the Customer and Address relationship, this diagram indi-

cates that one or more Address objects should be associated with a particular

Customer. When the Customer object is destroyed, it is reasonable to destroy all

of its Address objects at the same time. Thus, the Customer object manages its

Addresses, which gives us another example of a composite relationship.

This suggested design does impose some limitations on possible use of
Address; in particular, there is no easy way to find all customers at a
particular address. If Address and Customer were independently
managed, then we could form bidirectional relationships between the
classes.

Typically, a managed container deletes any heap objects it “owns” when the con-

tainer itself is destroyed. With a Qt container of pointers, one can use

qDeleteAll(container), an algorithm that calls delete on each element in

the container.

Copying a managed container can be defined in a number of ways:

■ For some containers, the feature might be disabled.

■ For others, it might be called a deep copy, where all contained objects are

cloned and placed in the new container.

■ Another approach, taken with the design of Qt containers, is implicit

sharing, explained in the next section.

When a container only provides an indexing or reference navigation mechanism

to its objects we call it an aggregate container.

In this case, the container does not manage its objects, it only provides a con-

venient way to access them. When an aggregate container is copied, only references

to the collected objects are copied. When an aggregate container is deleted, only

the references are removed. There is no impact on the underlying objects in the

container.

A managed container is a composition, and an unmanaged container of
objects is usually (but not always) represented in a UML diagram as
aggregation.

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

222

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 222



E X E R C I S E : M A N A G E D  C O N T A I N E R S ,
C O M P O S I T I O N S  A N D  A G G R E G A T E S

This exercise involves designing some data types to represent a deck and a hand

of cards. The following UML diagram suggests one way of representing them.

1 0 . 3 M A N A G E D  C O N T A I N E R S , C O M P O S I T E S , A N D  A G G R E G A T E S

223

Here are some hints:

■ The CardDeck constructor generates a complete deck of 52 cards in a con-

venient order.

■ CardDeck::deal(int k) should use the random() function from

<stdlib.h> to pick k cards from the deck (removing each one from the deck

after it is picked) to fill a CardHand object.

■ Initialize the random() function from the system clock so that the results will be

different each time you run the app. The syntax is

srandom(time(0));

Card

 - mFaceNbr : int
 - mSuitNbr : QString
 - smFaces : QStringList
 - smSuits : QStringList

+ Card(faceNbr : int, suitNbr : int)
+ toString() : QString
+ getFace() : QString
+ setFaceNbr(faceNbr : int)
+ getSuit() : QString
+ setSuitNbr(suitNbr : int)
+ getValue() : int

CardDeck

+ CardDeck()
+ deal(handSize : int) : Hand
+ toString() : QString
+ getCardsLeft() : int
+ restoreDeck()
+ shuffle()

CardHand

+ getValue() : int
+ toString() : QString

QList<Card>

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 223



■ Evaluate the hand using the rules of the game of bridge: Ace � 4, King � 3,

Queen � 2, Jack � 1; all other cards have zero value. Use this formula to calcu-

late the return values for the getValue() functions.

■ Example 10.6 gives a piece of client code that you can start with for testing.

E X A M P L E  1 0 . 6 src/cardgame/datastructure/cardgame-client.cpp

#include "carddeck.h"
#include <qstd.h>
using namespace qstd;

int main() {
CardDeck deck;
CardHand hand;
int handSize, playerScore, progScore;
cout << "How many cards in a hand? " << flush;
handSize = promptInt();
do {

hand = deck.deal(handSize);
cout << "Here is your hand:" << endl;
cout << hand.toString() << endl;
playerScore = hand.getValue();
cout << QString("Your score is: %1 points.")

.arg(playerScore) << endl;
// Now a hand for the dealer:
hand = deck.deal(handSize);
progScore = hand.getValue();
cout << "Here is my hand:" << endl;
cout << hand.toString() << endl;
cout << QString("My score is: %1 points.")

.arg(progScore) << endl;
cout << QString("%1 win!!")

.arg((playerScore > progScore)?"You":"I") << endl;
} while(more("hand"));

}

for cout, endl, and more()

10.4 Implicitly Shared Classes
A hybrid kind of managed container is the implicitly shared container. Container

classes in the Qt library implement “lazy copy on write,” or implicit sharing. This

means they have reasonably fast3 copy constructors and assignment operators.

Only when the copy is actually modified are the collected objects cloned from the

original container. That is when there will be a time/memory penalty.

1

1

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

224

3 Operations should be “not much slower” than the time it takes to do one pointer-copy and one
integer increment.

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 224



QString and QStringList are both implemented this way, meaning that it

is fast to pass and return these objects by value. If you need to change values stored

in the container from inside a function, you can pass the container by reference. It

is still faster to pass by const reference, which allows C++ to optimize out the

copy operation entirely. With const reference, the function cannot make changes

to the container at all.

Implicitly shared classes work by reference-counting, to prevent the accidental

deletion of shared managed objects. Since implicitly shared memory is encapsu-

lated, the user of the class does not need to be concerned with reference counts or

direct memory pointers.

We look in more detail at the implementation of a reference counted class in

Section 24.2.

10.5 Generics, Algorithms, and Operators
Overloading operator symbols makes it possible to define a common interface for

our classes that is consistent with that of the basic types. Many generic algorithms

take advantage of this by using the common operators to perform basic functions

such as comparison.

TheqSort()function is a generic algorithm that is implemented using the heap

sort algorithm. In Example 10.7, we show how it can be used on two similar but

different containers.

qSort() can be applied to any Qt container of objects that have publicly

defined functions operator<()and operator==(). Containers of built-in

numeric types can also be sorted with this function.

E X A M P L E  1 0 . 7 src/collections/sortlist/sortlist4.cpp

#include <QList>
#include <assertequals.h>
#include <QtAlgorithms>    // for qSort()
#include <qstd.h>        // for cin and cout
using namespace qstd;

class CaseIgnoreString : public QString {
public:

CaseIgnoreString(const QString& other = QString()) :
QString(other) {}

1 0 . 5 G E N E R I C S , A L G O R I T H M S , A N D  O P E R A T O R S

225

continued

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 225



bool operator<(const QString & other) const {
return toLower() < other.toLower();

}
bool operator==(const QString& other) const {

return toLower() == other.toLower();
}

};

int main() {
CaseIgnoreString s1("Apple"), s2("bear"), 

s3 ("CaT"), s4("dog"), s5 ("Dog");

ASSERT_TRUE(s4 == s5);
ASSERT_TRUE(s2 < s3);
ASSERT_TRUE(s3 < s4);

QList<CaseIgnoreString> namelist;

namelist << s5 << s1 << s3 << s4 << s2;

qSort(namelist.begin(), namelist.end());
int i=0;
foreach (QString stritr, namelist) {

cout << QString("namelist[%1] = %2")
.arg(i++).arg(stritr) << endl;

}

QStringList strlist;
strlist << s5 << s1 << s3 << s4 << s2;

qSort(strlist.begin(), strlist.end());
cout << "StringList sorted: " + strlist.join(", ") << endl;
return 0;

}

Insert all items in an order that is definitely not sorted.
The value collection holds QString, but we are adding CaseIgnoreString. A conversion is
required.

operator<<(), which is the left shift operator from C, has been overloaded in

the QList class to append items to the list.

Example 10.8 shows the output of this program.

E X A M P L E  1 0 . 8 src/collections/sortlist/sortlist-output.txt

namelist[0] = Apple
namelist[1] = bear
namelist[2] = CaT
namelist[3] = dog
namelist[4] = Dog
StringList sorted: Apple, CaT, Dog, bear, dog

2

1

2

1

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

226

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 226



1 0 . 6 S E R I A L I Z E R  P A T T E R N

227

Notice that the sorting order is case sensitive when we add CaseIgnoreString

objects to a QStringList. This is because a CaseIgnoreString must be con-

verted into a QString as it is added to strlist. Therefore, when strlist's

elements are compared, they are compared as QStrings.

E X E R C I S E S : G E N E R I C S , A L G O R I T H M S ,
A N D  O P E R A T O R S

1. A QStringList is a value container of objects that have lazy copy-on-write.

In a way, it is like a pointer-collection, but smarter. In Example 10.7, a

CaseIgnoreString was added to a QStringList, which required a con-

version. Does this require a copy of the actual string data? Why or why not?

2. Add some more functions to ContactList:

4 Sockets are addressable entities, used as endpoints for sending and receiving data between computers.
Qt has an abstract base class named QAbstractSocket, which provides the interface for working
with various kinds of sockets, and a concrete QTcpSocket class, which provides a TCP (Transmission
Control Protocol) socket.

ContactList

+ operator +=(c : Contact)
+ operator -=(c : Contact)
+ sortByCategory()
+ sortByZip()

Operators += and -= should add() and remove() respectively.

Write some client code that tests these functions.

10.6 Serializer Pattern

A serializer is an object that is responsible only for reading or writing objects.

With QDataStream, it is already possible to serialize and deserialize all

QVariant-supported types, including QList, QMap, QVector, and others.

For other file formats, or more complex object models, we isolate the reading/

writing in separate reader and writer classes. These classes are examples of

the Serializer pattern [Martin 98].

A serializer that reads and writes to files should handle all of the file and/or

stream initialization and cleanup.A serializer could also be used to send objects

over a network from one socket to another.4 In that case it would be responsi-

ble for connecting and disconnecting to/from the appropriate socket.

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 227



C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

228

F I G U R E  1 0 . 3 The Serializer pattern

In C++, serializer classes can have overloaded input/output operators, similar to

iostream or QTextStream, so that we can use them with a familiar interface.

To read a file into the container, it should be as easy as this:

ContactList cl;
ContactListReader reader("somefile.txt");
reader >> cl;

And analogously, when it is time to output, the client code should look like this:

ContactListWriter writer("somefile.txt");
writer << cl;

We achieve this by defining the following insertion operators:

ContactListReader& operator>>(ContactListReader& reader,
ContactList& cl);

ContactListWriter& operator<< (ContactListWriter& writer,
const ContactList& cl);

Example 10.9 shows how to implement customized i/o operators.

E X A M P L E  1 0 . 9 src/containers/contact/serializer.cpp

[ . . . . ]

ContactListReader& operator>>(ContactListReader& reader,
ContactList& cl) {
reader.read(cl);
return reader;

}

ContactListWriter& operator<< (ContactListWriter& writer,
const ContactList& cl) {
writer.write(cl);
return writer;

}

In Figure 10.3, we have a UML diagram for two serializer classes. Together, they

can read and write ContactList objects.

ContactListReader

+ ContactListReader(fileName : constQString&)
+ read(contactList : ContactList&) : int

ContactListWriter

+ ContactListWriter(fileName : constQString&)
+ write(contactList : constContactList&) : bool
+ ContactListWriter(fileName : constQString&)

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 228



In Example 10.9, we defined global (non-member) operators. It would also be

possible to write member function operators. The reason it is necessary to define

non-member operators for iostream and QTextStream is because we cannot

modify those classes to add member functions.

10.6.1 Benefits of the Serializer

By using the serializer, it will become much easier to change the file format, or the

transport layer, with only small changes in client code. In addition, removing seri-

alization code from the model makes the model simpler and easier to maintain.

E X E R C I S E S : S E R I A L I Z E R  P A T T E R N

1. Revisiting the Contact List exercise from Section 4.3, complete the implemen-

tation of ContactListWriter and ContactListReader classes for the

ContactList, following the Serializer pattern, so that you can read and write

a ContactList to a file.

When each Contact is serialized, it should be written on a single line, in a

tab-separated format (tabs separating each field in the record). Therefore, a seri-

alized ContactList should have a sequence of lines, each line representing a

Contact.

2. Write a main program that supports, at minimum, the following command line

arguments. Feel free to add others after these are working.

1 0 . 7 S O R T E D  M A P  E X A M P L E

229

Contact List Test Driver usage
contact [-i inputfile] [-c] [-o outputfile] [-p]

-i  read contact list from specified inputfile into ContactList
-c  generate 10 more random contacts and add to ContactList
-o  write ContactList list to specified output file
-p  print ContactList to standard output

If an invalid option is supplied, or if no options are supplied, it should print the

above “Contact List Usage”.

10.7 Sorted Map Example
As we mentioned earlier, QMap is an associative array that maintains key sorting-

order as items are added and removed. Key-based insertions and deletions are fast

(log(n)) and iteration is done in key order.

QMap is a value container, but pointers are simple values, so we can use a QMap

to store pointers to heap allocated QObjects. By default, value containers do not

manage heap objects, so to avoid memory leaks we must ensure they are destroyed

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 229



at the proper time. Figure 10.4 describes a class that extends a QMap to contain

information about textbooks. By deriving from QMap, the entire public interface

of QMap becomes part of the public interface of TextbookMap. We only added a

destructor plus two convenience functions to facilitate adding and displaying

Textbooks in the container.

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

230

F I G U R E  1 0 . 4 TextBookMap

In TextbookMap, defined in Example 10.10, we store ISBN numbers as keys, and

pointers to Textbook objects as values. Example 10.10 shows the class definitions.

E X A M P L E  1 0 . 1 0 src/containers/qmap/textbook.h

#ifndef _TEXTBOOK_H_
#define _TEXTBOOK_H_

#include <QObject>
#include <QString>

class Textbook : public QObject {
Q_OBJECT

public:
Textbook(QString title, QString author, QString 

isbn, uint year);
[ . . . . ]
private:

uint m_YearPub;
QString m_Title, m_Author, m_Isbn;

};

class TextbookMap : public QMap<QString, Textbook*> {
public:

~TextbookMap();
void add(Textbook* text);
void showAll() const;

};
#endif

TextbookMap

+ ~ TextbookMap()
+ add(text : Textbook*)
+ showAll()

Textbook

QObjectQMap

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 230



E X A M P L E  1 0 . 1 1 src/containers/qmap/qmap-example.cpp

[ . . . . ]

TextbookMap::~TextbookMap() {
cout << "Destroying TextbookMap ..." << endl;
foreach (QString key, keys())

delete value(key);
clear(); 

}

void TextbookMap::add(Textbook* text) {
insert(text->getIsbn(), text);

}

void TextbookMap::showAll() const {
foreach (QString key, keys()) {

Textbook* tb = value(key);  
cout << '[' << key << ']' << ":" 

<< tb->toString() << endl;
}

}

keys( ) is a QMap function.
Get and delete a pointer from the map

In Example 10.11, the destructor  iterates through the QMap, deleting each pointer.

This is necessary for a value container to manage its objects.

Notice in the client code, shown in Example 10.12, that when we remove() a

pointer from the TextbookMap we also remove its responsibility for deleting

that pointer.

E X A M P L E  1 0 . 1 2 src/containers/qmap/qmap-example.cpp

[ . . . . ]

int main() {

2

1

2

1

1 0 . 7 S O R T E D  M A P  E X A M P L E

231

continued

Textbook* t1 = new Textbook("The C++ Programming Language",
"Stroustrup", "0201700735", 1997);

Textbook* t2 = new Textbook("XML in a Nutshell", "Harold", 
"0596002920", 2002);

Textbook* t3 = new Textbook("UML Distilled", "Fowler", 
"0321193687", 2004);

Textbook* t4 = new Textbook("Design Patterns", "Gamma", 
"0201633612", 1995);

{ 1

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 231



TextbookMap m;
m.add(t1);
m.add(t2);
m.add(t3);
m.add(t4);
m.showAll();
m.remove (t3->getIsbn());

}
cout << "After m has been destroyed we still have: \n" 

<< t3->toString() << endl;
return 0;

}

inner block for demonstration purposes
removed but not deleted
end of block, local variables destroyed.

When TextbookMap::ShowAll() iterates through the container, we can see

from the output in Example 10.13 that the Textbooks have been placed in order

by ISBN (the key).

E X A M P L E  1 0 . 1 3 src/containers/qmap/qmap-example-output.txt

src/containers/qmap> ./qmap
[0201633612]:Title: Design Patterns; Author: Gamma; ISBN:
0201633612; Year: 1995
[0201700735]:Title: The C++ Programming Language; Author:
Stroustrup; ISBN: 0201700735; Year: 1997
[0321193687]:Title: UML Distilled; Author: Fowler; ISBN:
0321193687; Year: 2004
[0596002920]:Title: XML in a Nutshell; Author: Harold; ISBN:
0596002920; Year: 2002
Destroying TextbookMap ...
After m has been destroyed we still have:
Title: UML Distilled; Author: Fowler; ISBN: 0321193687; Year: 2004
src/containers/qmap>

3

2

1

3

2

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

232

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 232



1 0 . 7 S O R T E D  M A P  E X A M P L E

233

EquivMap

+ ~EquivMap()
+ set(k1 : QString, k2 : QString)
+ unset(k1 : QString, k2 : QString)
+ getEquivs(key : QString) : EquivClass&

Engine

+ showEqualities(symbol : QString)
+ processLine(inputline : QString) : QString

EquivClass

QObject

QMap

QSet

-m_Equivs

1
*

QString
EquivClass

QString

An equivalence relation is a boolean operator, equiv, on a set S of symbols that has

three properties:

1. Reflexivity: For any symbol s in S, we always have

s equiv s

2. Symmetry: For any symbols s and t in S,

if s equiv t then t equiv s

3. Transitivity: For any symbols s, t, and u in S,

if s equiv t and t equiv u then s equiv u

Another example of an equivalence relation is the operator== relationship

between pointers.This one is very easy to check, because their addresses also must

be equal. If the set members are different symbols with different values, we need to

keep track of the sets themselves in order to determine which symbols are related

to each other.

E X E R C I S E : Q S E T S  A N D  Q M A P S

This exercise requires you to use a map of sets to implement a dynamic equiva-

lence relation.

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 233



An equivalence relation, equiv, partitions the set S of symbols into subsets called

equivalence classes. An equivalence class is a set of symbols that are equivalent

to one another. It is easy to see that two equivalence classes are either equal or

disjoint.

1. Write a program that repeatedly asks the user to enter assertions or commands,

and keeps track of equivalency sets for all QStrings that it sees. At any time, the

user should be able to see the contents of any equivalence class. In other words,

processLine()should expect strings of the following form:

a. To make an equivalence assertion between two strings: string1=string2

b. To list the contents of string1’s EquivClass:string1 (no = symbol in the

line)

2. Add another function, takeback(int n), which takes an integer that refers

to the nth assertion. The function should “undo” the nth assertion that was per-

formed, fixing up all EquivClass sets in the equivalence engine. After this, list

the updated equivalences of both symbols involved.

Have the processLine() function scan for messages of the form “take-

back n” and call this takeback() in response.

C H A P T E R  1 0 : G E N E R I C S  A N D  C O N T A I N E R S

234

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 234



R E V I E W  Q U E S T I O N S

235

R E V I E W  Q U E S T I O N S

1. Explain an important difference between a template parameter and a

function parameter.

2. What does it mean to instantiate a template function? Describe one way

to do this.

3. Normally, you need to place template definitions in header files. Why is

this?

4. Qt’s container classes are used to collect value types. What kinds of

things are not appropriate to store by value in a value collection?

5. Which containers provide a mappings from key to value? List and

describe at least two, and tell how they are different from each other.

6. What does it mean for a container to “manage” its heap objects? How

does a container of pointers to heap objects become a “managed

container”?

ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 235



ezus_138004_ch10.qxd  8/4/06  9:44 AM  Page 236



11.1 Widget Categories . . . . . . . . . . . . . . . . . . 239

11.2 QMainWindow and QSettings . . . . . . . 240

11.3 Dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

11.4 Images and Resources . . . . . . . . . . . . . . 248

11.5 Layout of Widgets . . . . . . . . . . . . . . . . . . 251

11.6 QActions, QMenus,

and QMenuBars . . . . . . . . . . . . . . . . . . . . 260

11.7 QActions, QToolbars,

and QActionGroups . . . . . . . . . . . . . . . . 262

11.8 Regions and QDockWidgets . . . . . . . . . 270

11.9 Views of a QStringList . . . . . . . . . . . . . . 272

11C H A P T E R  1 1

Qt GUI Widgets 

This chapter provides an overview of the GUI build-

ing blocks, called widgets, that are part of the Qt

library and includes some simple examples of how to

use them.

237

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 237



Widgets, objects of classes derived from QWidget, are reusable building

blocks with a visual representation on the screen. The common features of a

QWidget are shown in Figure 11.1.

QWidget is a class that uses multiple inheritance (see Section 23.3). A QWidget

is a QObject, and thus can have parents, signals, slots, and managed children.

A QWidget is a QPaintDevice, the base class of all objects that can be

“painted.”

QWidgets interact with their children in interesting ways. A widget that has

no parent is called a window. If one widget is a parent of another widget, the

boundaries of the child widget lie completely within the boundaries of the par-

ent. The contained child widget is displayed according to layout rules (see

Section 11.5).

A QWidget can handle events by responding to signals from various entities

in the window system (e.g., mouse, keyboard, other processes, etc.). It can paint its

own rectangular image on the screen. It can remove itself from the screen in a way

that respects whatever else is on the screen at the moment.

A typical desktop GUI application can contain many (hundreds is not unusual)

different QWidget-derived objects, deployed according to parent-child relation-

ships and arranged according to the specifications of the applicable layouts.

A QWidget is considered to be the simplest of all GUI classes, because it is ren-

dered as an empty box. The class itself is quite complex, containing hundreds of

functions. When you reuse QWidget and its subclasses you are standing on the

shoulders of giants, because every QWidget is built on top of layers of Qt code,

QPaintDeviceQObject

QWidget

F I G U R E  1 1 . 1 QWidget’s Heritage

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 238



which in turn are built on top of different layers of native widget libraries, depend-

ing on your platform (X11 in Linux, Cocoa on MacOS, and Win32 in Windows).

In fact, QWidget is a Façade for the widget classes from each of these native

window libraries (see Section 16.3).

11.1 Widget Categories
Qt widgets can be categorized in a number of ways to make it easier to find classes

you are likely to use. The more complex widgets may cross over into more than

one category. This section provides a brief overview of some of the classes we are

likely to use as we get started with GUI programming.

There are four categories of widgets. Button widgets, in “Windows style,” are

shown in Figure 11.2.

1 1 . 1 W I D G E T  C A T E G O R I E S

239

Input widgets, in “Plastique style,” are shown in Figure 11.3.

F I G U R E  1 1 . 2 Button widgets, in “Windows style”

F I G U R E  1 1 . 3 Input widgets, in “Plastique style”

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 239



Display widgets are non-interactive widgets, such as QLabel, QProgressBar,

and QPixMap.

Container widgets, such as the QMainWindow, QFrame, QToolBar,

QTabWidget, and QStackedWidget, contain other widgets.

These widgets are used as building blocks to create other more complex

widgets, such as:

■ Dialogs for asking the user questions or popping up information, such as

the QFileDialog, QInputDialog, and QErrorMessage.

■ Views that provide displays of collections of data such as QListView,

QTreeView, and QTableView.

In addition, there are some Qt classes that do not have any graphical representa-

tion (so they are not widgets) but are used in GUI development. They include

■ Qt Data types: QPoint and QSize are popular types to use when work-

ing with graphical objects.

■ Controller classes: QApplication and QAction are both objects that

manage the GUI application’s control flow.

■ Layouts: These are objects that dynamically manage the layout of widgets.

There are specific layout varieties: QHBoxLayout, QVBoxLayout,

QGridLayout, etc.

■ Models: The QAbstractItemModel and its derived classes

QAbstractListModel and QAbstractTableModel are part of Qt’s

model/view framework, and are used as base classes for classes that rep-

resent data for a QListView, QTreeView, or QTableView.

■ Database models: These are for use with QTableView (or other

customized view classes) using SQL Databases as data sources:

QSqlTableModel and QSqlRelationalModel.

To see more widgets rendered in different styles, check out TrollTech’s Qt Widget

Gallery1, which contains a variety of screenshots and source code for rendering

the widgets in different styles.1

11.2 QMainWindow and QSettings 
Most QApplications manage a single QMainWindow. As Figure 11.4 shows, the

QMainWindow has some features that are common to most desktop applications:

■ A central widget

■ Menu bar

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

240

1 http://oop.mcs.suffolk.edu/qtdocs/gallery.html

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 240



■ Status bar

■ Dock regions

1 1 . 2 Q M A I N W I N D O W  A N D  Q S E T T I N G S

241

Because the QMainWindow is the parent of all other widgets (in that main win-

dow), it is common practice to extend that class for some applications, as shown

in Example 11.1.

E X A M P L E  1 1 . 1 src/widgets/mainwindow/mymainwindow.h

[ . . . . ]
class MyMainWindow : public QMainWindow {

Q_OBJECT

public:
MyMainWindow();
void closeEvent(QCloseEvent *event);

protected slots:
virtual void newFile();
virtual void open();
virtual bool save();

[ . . . . ]

overridden from base class to capture when the user wants to close the window1

1

F I G U R E  1 1 . 4 A main window

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 241



11.2.1 QSettings: Saving and Restoring 
Application State

All modern desktop applications have a way for users to configure the settings.

The settings/preferences/options need to be persistent. The mechanism for that is

included with QSettings. As you develop a new QMainWindow application, the

first persistent settings you may want to save will probably be the window size and

position. You may also want to save the names of the most recent documents that

were opened by the application.

QSettings is a persistent map of key/value pairs. It is a QObject and uses

QObject’s property interface, setValue()and value(), to set and get its

values. It can be used to store any data that needs to be remembered across multi-

ple executions.

The QSettings constructor has two QString parameters: one for the organ-

ization name and one for the application name. You can establish defaults for these

values with the two QCoreApplication functions, setOrganizationName()

and setApplicationName(), after which you can use the default QSettings

constructor. Each combination of names defines a unique persistent map that does

not clash with settings from other-named Qt applications.

Monostate Pattern

A class that allows multiple instances to share the same state is an imple-

mentation of the Monostate pattern. Two instances of QSettings with

the same organization/application name can be used to access the same

persistent map data. This makes it easy for applications to access common

settings from different source files.

QSettings is an implementation of the Monostate pattern.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

242

The actual mechanism for the persistent storage of QSettings data is imple-

mentation dependent and quite flexible. Some possibilities for its storage include

the Win32 registry (in Windows) and your $HOME/.qt directory (in Linux). For

more detailed information, see the Qt QSettings API documentation.

QMainWindow::saveState() returns a QByteArray that contains infor-

mation about the main window’s toolbars and dockwidgets. To do this it makes use

of theobjectName property for each of those subwidgets, thus making it important

that each name be unique. saveState()has an optional int versionNumber

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 242



parameter. The QSettings object stores that QByteArray with the key string

"state".

QMainWindow::restoreState() takes a QByteArray, presumably cre-

ated by saveState(), and uses the information that it holds to put the toolbars

and dockwidgets into a prior arrangement. It too has an optional versionNumber

parameter. We show the use of these functions in Example 11.2.

E X A M P L E  1 1 . 2 src/widgets/mainwindow/mymainwindow.cpp

[ . . . . ]

void MyMainWindow::readSettings() { 

1 1 . 2 Q M A I N W I N D O W  A N D  Q S E T T I N G S

243

QSettings settings("objectlearning.net", "Qt4 Sample Main");
QPoint pos = settings.value("pos", QPoint(200, 200)).toPoint();
QSize size = settings.value("size", QSize(400, 400)).toSize();
QByteArray state = settings.value("state", QByteArray()).toByteArray();
restoreState(state);
resize(size);
move(pos);

}

void MyMainWindow::writeSettings() {
/* Save postion/size of main window */

QSettings settings("objectlearning.net", "Qt4 Sample Main");
settings.setValue("pos", pos());
settings.setValue("size", size());
settings.setValue("state", saveState());

}

1

The constructor takes the organization name and the app name as arguments.

By placing the “root program logic” in a derived class of QMainWindow or

QApplication, the main() becomes quite simple, as shown in Example 11.3.

E X A M P L E  1 1 . 3 src/widgets/mainwindow/mainwindow-main.cpp

#include "mymainwindow.h"
#include <QApplication>

int main( int argc, char ** argv ) {
QApplication a( argc, argv );
MyMainWindow mw;
mw.show();
return a.exec();

}

1

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 243



11.3 Dialogs
A dialog box pops up, shows the user something, and gets a response back from

the user. It’s a brief interaction that can (optionally) force the user to respond.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

244

QDialog, the base class for dialogs, has a bool attribute named modal. If modal

is set to true, the dialog box blocks input to all other visible windows in its par-

ent. A modal dialog box must be dismissed (by clicking on one of its buttons)

before the application can proceed.

In general, dialog boxes should be used only for obtaining or communicating

important information that should (or must) be dealt with before the program

can proceed.

The QMessageBox (derived from QDialog) class produces a modal dialog

with a brief message (or question), a distinctive icon, and from one to three buttons.

Each of the icons characterizes a particular severity level and corresponds to a par-

ticular kind of message box.

QMessageBox has a number of static convenience functions that cause these

kinds of dialogs to pop up. A short application demonstrating the use of the vari-

ous kinds of QMessagebox is shown in Examples 11.4 and 11.5.

E X A M P L E  1 1 . 4 src/widgets/dialogs/messagebox/dialogs.h

#ifndef APPWINDEMO_H
#define APPWINDEMO_H

#include <QMainWindow>
class Dialogs : public QMainWindow {

Q_OBJECT
public:

Dialogs();

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 244



public slots:
void askQuestion();
void askDumbQuestion();

private:
QString answer;

};
#endif 

E X A M P L E  1 1 . 5 src/widgets/dialogs/messagebox/dialogs.cpp

[ . . . . ]

void Dialogs::askQuestion() {
bool done=false;
QString q1("Who was Canadian Prime Minister in 1847?"),

a0("John A. Macdonald"), a1("Alexander Mackenzie"),
a2("Sir Wilfred Laurier");

while (!done) {
int ans = QMessageBox::

question( this,
"Difficult Question",
q1, a0, a1, a2, 
0,
-1 ) ;

if (ans > 0) return;
switch( ans ) {
case 0:

answer = a0;
break;

case 1:
answer = a1;
break;

case 2:
answer = a2;
break;

}
QString q2(QString("Your answer was: %1."

" That is incorrect.\n Try again?")
.arg(answer));

int again = QMessageBox::
question(this, "Your Score", q2,

4

3

2

1

1 1 . 3 D I A L O G S

245

continued

"No", "Yes", "I give up - what’s the answer?");

if ( again <1 ) {
return;

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 245



}
if (again == 2) {

QMessageBox::
information(this, "Ha Ha!",

"There was no prime minister until 1867",
"Grrrrr.....");

return;
}

}
}

Message box is modal relative to its parent.
default value
Value sent on “esc” or “windowclose”.
If window was closed, no QButton was pressed.

When you build and run this application, notice that once the critical dialog is on-

screen, you cannot interact with the main window at all—the pull down

Questions menu is not receiving events, and even the window manager can’t kill

the main window. This is the power of a modal dialog.

4

3

2

1

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

246

11.3.1 Input Dialogs and Widgets

When a user enters text into a box, it is an input widget, probably a QLineEdit

(for single lines), a QComboBox (for a choice of values), QSpinBox (for a num-

ber), or QTextEdit (for multiple lines of text). These widgets are never “solitary”

because there needs to be at least a label nearby that tells the user what informa-

tion is required.

Input dialogs are higher-level widgets that group together the lower-level

input widgets with labels and decorations for convenience. QInputDialog has a

label, an input widget (such as a QLineEdit), and, like the message dialogs, one

to three buttons.

QInputDialog has four configurable static functions that determine the char-

acteristics of the data entry widget. It can return a QString, an int, or a double.

Example 11.6 is a short application that supplies the static function getItem()

with a QStringList to store a set of possible responses and returns the QString

selected by the user.

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 246



E X A M P L E  1 1 . 6 src/widgets/dialogs/inputdialog/inputdialog.cpp

#include <QInputDialog>
#include <QStringList>
#include <QApplication>

int main(int argc, char** argv) {
QApplication app(argc, argv);
app.setQuitOnLastWindowClosed(false);
QStringList hobbits, yesno;

1 1 . 3 D I A L O G S

247

By default, Qt expects a GUI app to have a single top-level window (i.e., a
window with no parent). Our Hobbit selection app has two. This can
cause some confusion about when the program is finished.

We inserted the following function call to address this problem:
app.setQuitOnLastWindowClosed(false);

hobbits << "Frodo" << "Bilbo" << "Samwise" < "Merry" << "Pippin";
yesno << "yes" << "no";
QString outcome, more, title("Hobbit Selector");
QString query("Pick your favorite Hobbit");
do {

QString pick = 
QInputDialog::getItem(0, title, query, hobbits);

outcome = QString("You picked %1, try again?").arg(pick);
more = QInputDialog::

getItem(0, "Pick a Hobbit", outcome, yesno, 1, false);
}  while (more == "yes");

}

The first call to getItem() uses the overloaded version that accepts a

QStringList. This puts a QComboBox (editable by default) on the screen, pre-

filled with the values from the QStringList. The user can then select one of the

choices or type in a new string.

We supplied six arguments in the second call to getItem(), resulting in a

non-editable combobox. Here are two screenshots of the running program.

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 247



E X E R C I S E : D I A L O G S

Make the following modifications of the Hobbit Selection app.

1. Remove the line 

app.setQuitOnLastWindowClosed(false);

and see if you can explain the results.

2. Change the app so that each time the user, by editing one of the selections in

the list, creates a new Hobbit name, that name becomes one of the (sorted)

choices for the next iteration.

3. In both of the getItem() dialogs of the Hobbit Selection app, there is no differ-

ence between OK and Cancel. What should that difference be? As Captain

Picard would say, “Make it so.”

11.4 Images and Resources
Graphic images can be used to add visual impact to various applications. In this

section, we show how to build an application or a library that includes graphic

images in the project.

Qt 4 enables projects to make use of binary resources, such as images, sounds,

icons, text in some exotic font, and so forth. Resources such as these are generally

stored on disk in separate binary files. The advantage of incorporating binary

dependencies in the actual project is that they can then be addressed using paths

that do not depend on the local file system, and they can“move”with the executable.

In the next examples, we will demonstrate how to create and reuse a library

that includes images, one for each card in a deck of playing cards.

The first step is to list the binary files we wish to use in a Resource
Collection File, an XML file that has the extension .qrc. The resource file in

libcards2 is automatically generated by a python script. Here is an abbrevi-

ated listing of it.

<!DOCTYPE RCC>
<RCC version="1.0">
<qresource>
<file alias="images/qh.png">images/qh.png</file>
<file alias="images/qd.png">images/qd.png</file>
<file alias="images/jc.png">images/jc.png</file>
[ ... ]
<file alias="images/jd.png">images/jd.png</file>
<file alias="images/ac.png">images/ac.png</file>
</qresource>
</RCC>

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

248

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 248



RCC is a file format, required by qmake and rcc (Qt’s resource compiler), that

generally consists of a list of <file> elements enclosed by <qresource> tags.

Each <file> element contains a relative path and an optional file alias.

We must add a RESOURCES line in the project file that contains the name of

the qresource file, as shown in Example 11.7.

E X A M P L E  1 1 . 7 src/libs/cards2/cards2.pro

# project file for libcards2

include ($$(CPPLIBS)/utils/common.pri)

TEMPLATE = lib
INCLUDEPATH += .
QT += gui
# For locating the files.
RESOURCES = cards2.qrc

SOURCES += cardpics.cpp
HEADERS += cardpics.h
DESTDIR=$$(CPPLIBS)
target.path=$$(CPPLIBS)
unix {

UI_DIR = .ui
MOC_DIR = .moc
OBJECTS_DIR = .obj

}

When this project is built, the resource compiler generates an extra file named

cards2_qrc.cpp that contains byte arrays defined in C++. This file gets com-

piled and linked into the project binary (executable or library) instead of the orig-

inal files. The DESTDIR line specifies that the shared object files for libcards2

will be located in $CPPLIBS with the other libraries that we have built.

In libcards2, we defined a class named CardPics, shown in Example 11.8,

which utilizes the QPixmap class. There are three Qt classes that facilitate the han-

dling of images.

1. QPixmap: designed and optimized for drawing on the screen

2. QImage: designed for input and output operations and for direct pixel

access

3. QPicture: designed to enable scalability

1 1 . 4 I M A G E S  A N D  R E S O U R C E S

249

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 249



E X A M P L E  1 1 . 8 src/libs/cards2/cardpics.h

[ . . . . ]
class CardPics {

public:
CardPics();
static CardPics* instance();
QPixmap get(QString card);
static const QString values, suits;

protected:
static QString fileName(QString card);    

private:
QMap<QString, QPixmap> m_pixmaps;

};
[ . . . . ]

Attaching required binary data files to projects as resources makes the project more

robust. The source code does not need to use nonportable pathnames for the

resource files. To refer to a file that is stored as a resource, we can use the alias that

was established in the RCC file, and precede it with the prefix, “:/”. Each resource

then appears (to Qt) to be located in a private virtual file system, rooted at :/.

Example 11.9 shows some Qpixmaps created with pathnames of this format.

E X A M P L E  1 1 . 9 src/libs/cards2/cardpics.cpp

[ . . . . ]
const QString CardPics::values="23456789tjqka";
const QString CardPics::suits="cdhs";

CardPics* CardPics::instance() {
static CardPics* inst = 0;
if (inst == 0)

inst = new CardPics;
return inst;

}

CardPics::CardPics() {
foreach (QChar suit, suits) {

foreach (QChar value, values) {
QString card = QString("%1%2").arg(value).arg(suit);
QPixmap pixmap(fileName(card)); 

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

250

m_pixmaps[card]= pixmap;

}
}

}

QString CardPics::fileName(QString card) {
return QString(":images/%1.png").arg(card);

}

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 250



QPixmap CardPics::get(QString card) {
return m_pixmaps[card];

}
[ . . . . ]

Each resource is used to construct a QPixmap, which gets added to CardPics for

easy access with the get() function.

11.5 Layout of Widgets
A widget can be popped up on the screen, like a dialog, or it can be made a part of

a larger window. Whenever we wish to arrange smaller widgets inside larger ones,

we use layouts. A layout is an object that belongs to exactly one widget. Its sole

responsibility is to organize the space occupied by its owner’s child widgets.

Although each widget has a setGeometry() function that allows you to set

its size and position, absolute sizing and positioning are rarely used in a window-

ing application because they impose an undesirable rigidity on the design.

Proportional resizing, splitters, scrollbars when needed, and flexible arrangement

of visual space are all achieved quite naturally through the use of layouts.

The process of specifying the way that your widgets will be arranged on the

screen consists of dividing the screen into regions, each controlled by a QLayout.

Layouts can arrange their widgets

■ Vertically (QVBoxLayout)

■ Horizontally (QHBoxLayout)

■ In a grid (QGridLayout)

■ In a stack where only one widget is visible at any time (QStackedLayout)

Widgets are added to QLayouts using the addWidget() function.

Layouts are not widgets, and they have no visual representation. Qt supplies an

abstract base class named QLayout plus several concrete QLayout subclasses:

QBoxLayout (particularized to QHBoxLayout and QVBoxLayout),

QGridLayout, and QStackedLayout. Each of the layout types has an appro-

priate set of functions to control the spacing, sizing, alignment, and access to its

widgets.

For its geometry management to work, each QLayout object must have a par-

ent that is either a QWidget or another QLayout. The parent of a QLayout can

be specified when the layout is constructed by passing the constructor a pointer to

the parent widget or layout. It is also possible to construct a QLayout without

specifying its parent, in which case you can call QWidget::addLayout() at some

later time.

1 1 . 5 L A Y O U T  O F  W I D G E T S

251

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 251



Layouts can have child layouts. One layout can be added as a sub-layout to

another by calling addLayout(). The exact signature depends on the kind of

layout used. If the parent of a layout is a widget, that widget cannot be the parent

of any other layout.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

252

F I G U R E  1 1 . 5 Rows and columns

The CardTable class defined in Example 11.10 reuses libcards2, for easy access

to QPixmaps of playing cards (see Section 11.4). Constructing a CardTable

object puts Figure 11.5 on the screen.

E X A M P L E  1 1 . 1 0 src/layouts/boxes/cardtable.h

#ifndef CARDTABLE_H
#define CARDTABLE_H
#include <carddeck.h>
#include <QWidget>

class CardTable : public QWidget {
public:

CardTable();
private:

CardDeck m_deck;

};

#endif        //  #ifndef CARDTABLE_H

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 252



CardTable is implemented in Example 11.11 by making use of the fact that a

QLabel can hold an image. This implementation demonstrates some simple but

useful layout techniques.

E X A M P L E  1 1 . 1 1 src/layouts/boxes/cardtable.cpp

[ . . . . ]
// Given a pixmap, return a label with that pixmap on it.
static QLabel* label(QPixmap pm) {

QLabel* retval = new QLabel();
retval->setPixmap(pm);
return retval;

}

CardTable::CardTable() {

// create 2 rows of cards:
QHBoxLayout *row = new QHBoxLayout();
row->addWidget(label(m_deck.get(1)));  
row->addWidget(label(m_deck.get(2)));
row->addWidget(label(m_deck.get(3)));
row->addWidget(label(m_deck.get(4)));    

QVBoxLayout* rows = new QVBoxLayout();
rows->addLayout(row);

row = new QHBoxLayout();
row->addWidget(label(m_deck.get(5)));
row->addWidget(label(m_deck.get(6)));
row->addWidget(label(m_deck.get(7)));
rows->addLayout(row);

// create a column of buttons:
QVBoxLayout *buttons = new QVBoxLayout();
buttons->addWidget(new QPushButton("Deal"));
buttons->addWidget(new QPushButton("Shuffle"));

// Bring them together:
QHBoxLayout* cols = new QHBoxLayout();
setLayout(cols);
cols->addLayout(rows);
cols->addLayout(buttons);

}
[ . . . .]

the “root layout” for this widget
Add both card rows as a column.
Add column of buttons as another column.3

2

1

3

2

1

1 1 . 5 L A Y O U T  O F  W I D G E T S

253

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 253



The simple piece of client code shown in Example 11.12 suffices to put the window

on the screen.

E X A M P L E  1 1 . 1 2 src/layouts/boxes/boxes.cpp

#include <QApplication>
#include "cardtable.h"

int main(int argc, char* argv[]) {
QApplication app (argc, argv);
CardTable ct;
ct.show();
return app.exec();

}

If you build and run this example and use your mouse to resize the window, you will

notice that the width of the buttons stretches first to gobble up extra space, but that

there is also stretchable spacing between the cards, as well as between the buttons. If

we removed the buttons, we could observe that the horizontal spacing between the

cards would grow evenly and uniformly.

11.5.1 Spacing, Stretching, and Struts

To get finer control over the layout of widgets, we can use the API of the QLayout

class. Box layouts, for example, offer the following functions:

1. addSpacing(int size) adds a fixed number of pixels to the end of

the layout.

2. addStretch(int stretch = 0) adds a stretchable number of

pixels. It starts at a minimum amount and stretches to use all available

space. In the event of multiple stretches in the same layout, this can be

used as a growth factor.

3. addStrut(int size) imposes a minimum size to the perpendicular

dimension (i.e., the width of a VBoxLayout or the height of an

HboxLayout).

Revisiting Example 11.11, we will make the layout behave a little better during

resizing. Figure 11.6 shows the results of adding some stretch and some spacers to

this application.

Normally, layouts try to treat all widgets equally. When we want one widget to

be off to a side, or pushed away from another, we can use stretches and spacing to

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

254

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 254



deviate from that norm. Example 11.13 demonstrates how to use stretches and

spacing.

E X A M P L E  1 1 . 1 3 src/layouts/stretch/cardtable.cpp

[ . . . . ]
QVBoxLayout *buttons = new QVBoxLayout();

buttons->addStretch(1);
buttons->addWidget(new QPushButton("Deal"));
buttons->addWidget(new QPushButton("Shuffle"));
buttons->addSpacing(20);

QHBoxLayout* cols = new QHBoxLayout();
setLayout(cols);
cols->addLayout(rows);
cols->addStretch(30);
cols->addLayout(buttons);

}
[ . . . . ]

stretchable space before buttons in column
fixed spacing after buttons
Adds a fixed spacing of 30 that stretches

If you build and run this application using the code from Example 11.13 instead

of Example 11.11, you can resize the main window and observe that the buttons

no longer grow, and are pushed off to the corner. The horizontal spacing between

the cards does not grow, but the vertical spacing does.

3

2

1

3

2

1

1 1 . 5 L A Y O U T  O F  W I D G E T S

255

F I G U R E  1 1 . 6 Improved layout with stretch and spacers

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 255



11.5.2 Moving Widgets across Layouts

Figure 11.7 shows the basic layout for our next example, which demonstrates what

happens when a widget is added to more than one layout.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

256

F I G U R E  1 1 . 7 Moving labels application

This application moves QLabels from one layout to the other in response to

the button press. In Example 11.14 we derive from QApplication a class that

defines the GUI.

E X A M P L E  1 1 . 1 4 src/layouts/moving/moving.h

[ . . . . ]

class MovingApp : public QApplication {
Q_OBJECT

public:
MovingApp(int argc, char* argv[]);

public slots:
void moveLeft();
void moveRight();
void newLeft();
void newRight();

private:
QString nextLabel();
QMainWindow m_MainWindow;
QQueue<QLabel*> m_LeftQueue, m_RightQueue;
QVBoxLayout *m_LeftLayout, *m_RightLayout;
int m_Count;

};
[ . . . . ]

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 256



The constructor starts by creating the layouts and the various widgets, as we see in

Example 11.15.

E X A M P L E  1 1 . 1 5 src/layouts/moving/moving.cpp

[ . . . . ]

MovingApp::MovingApp(int argc, char* argv[]) :
QApplication(argc, argv),
m_MainWindow(), 
m_Count(0)  {

QWidget *center = new QWidget(&m_MainWindow);
m_MainWindow.setCentralWidget(center);

QGridLayout *mainGrid = new QGridLayout;

m_LeftLayout = new QVBoxLayout;
m_RightLayout = new QVBoxLayout;

mainGrid->addLayout(m_LeftLayout, 0,0);
mainGrid->addLayout(m_RightLayout, 0, 1);    
QPushButton *moveRight = new QPushButton("Move Right");
QPushButton *moveLeft = new QPushButton("Move Left");
mainGrid->addWidget(moveRight, 1,0);
mainGrid->addWidget(moveLeft, 1,1);

QPushButton *addRight = new QPushButton("Add Right");
QPushButton *addLeft = new QPushButton("Add Left");

mainGrid->addWidget(addLeft, 2,0);
mainGrid->addWidget(addRight, 2,1);
center->setLayout(mainGrid);

The QMainWindow takes ownership of this widget and makes it the central widget.We do not
need to delete it.

After creation of the various layouts and widgets, signals must be connected to

slots, as we see in Example 11.16.

E X A M P L E  1 1 . 1 6 src/layouts/moving/moving.cpp

1

1

1 1 . 5 L A Y O U T  O F  W I D G E T S

257

continued

[ . . . .]

connect(moveRight, SIGNAL(pressed()), this, SLOT(moveRight()));
connect(moveLeft, SIGNAL(pressed()), this, SLOT(moveLeft()));
connect(addRight, SIGNAL(pressed()), this, SLOT(newRight()));
connect(addLeft, SIGNAL(pressed()), this, SLOT(newLeft()));    

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 257



// What do the insertStretch lines do?
m_LeftLayout->insertStretch(0);
m_RightLayout->insertStretch(0);

newLeft();
newRight();
m_MainWindow.move(200,200);
m_MainWindow.resize(300, 500);
m_MainWindow.show();

This puts a label in the left layout.
This puts a label in the right layout.

Because a widget cannot exist in more than one layout at any given time, it disap-

pears from the first layout and shows up in the new one. Each widget retains its

parent after the layout change. The code for the movement slots is shown in

Example 11.17.

E X A M P L E  1 1 . 1 7 src/layouts/moving/moving.cpp

[ . . . . ]

void MovingApp::moveLeft() {
if (m_RightQueue.isEmpty()) return;
QLabel *top = m_RightQueue.dequeue();
m_LeftQueue.enqueue(top);
m_LeftLayout->addWidget(top);

}

void MovingApp::moveRight() {
if (m_LeftQueue.isEmpty()) return;
QLabel *top = m_LeftQueue.dequeue();
m_RightQueue.enqueue(top);
m_RightLayout->addWidget(top);

}

By adding it to the left, it disappears from the right.

E X E R C I S E S : L A Y O U T  O F  W I D G E T S

1. There are many ways of getting information from the user. The keeper of the

Bridge of Death wants to know the answers to three questions, as we see in the

following figure.

1

1

2

1

2

1

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

258

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 258



■ Create a dialog that asks these questions of the user, using QLineEdit

widgets and two QPushButtons to submit or cancel the request. Check the

responses to make sure they are correct. If they are not correct, output a

funny message.

■ Change the third question randomly so that half of the time it asks “What is

the mean air speed velocity of an unladen swallow?”

2. The 15 puzzle (or n2 � 1 puzzle) involves a 4 � 4 (n � n) grid that contains 15

tiles numbered 1 to 15 (1 to n2 � 1), and one empty space. The only tiles that

can move are those next to the empty space.

■ Create a 15 puzzle with QPushButtons in a QGridLayout.

■ At the start of the game, the tiles are presented to the player in “random”

order. The object of the game is to rearrange them so that they are in

ascending order, with the lowest numbered tile in the upper-left corner.

■ If the player solves the puzzle, pop up a QMessageBox saying “YOU WIN!”

(or something more clever).

■ Add some buttons:

■ Shuffle: Randomize the tiles by performing a large number (at least 50)

of legal tile slides.

■ Quit: To leave the game.

Sample 15 Puzzle

1 1 . 5 L A Y O U T  O F  W I D G E T S

259

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 259



Model-View-Controller Design for Puzzle

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

260

11.6 QActions, QMenus, and QMenuBars
A QAction is a QObject that is a base class for user-selected actions. It provides

a rich interface that can be used for a wide variety of actions, as we will soon see.

The QWidget interface enables each widget to maintain a QList<QAction*>.

A QMenu is a QWidget that provides a particular kind of view for a collection

of QActions. A QMenuBar is a collection of menus.

DESIGN SUGGESTIONS Want to get a head start using the model-
view-controller style? It comes up later, but you can try it now. Define the
classes shown in the accompanying figure and try to partition your code
properly into them.

PuzzleWindow

+ PuzzleWindow()

Visual Code for showing a puzzle

+ mw

Non-Visual class - for representing the “state” of the puzzle

QMainWindow

QWidget

QObject

QApplication

PuzzleApp

 - inModel : PuzzleModel*
 - mView : PuzzleView*
 - mw : PuzzleWindow
 - mActions : QActionGroup*

+ PuzzleApp(argc : int, argv[] : char*)
+ createWidgets()
+ createActions()

PuzzleView

 - mModel : PuzzleModel*
 - mLayout : QGridLayout*
 - mButtons : QButtonGroup

+ PuzzleView( : PuzzleModel*)
+ refresh()

PuzzleModel

+ value(r : int, c : int) : int
+ slide(tilenum : int) : bool
+ neighboring(r : int, c : int) : bool
+ signal : gridChanged()

QPushButton

+ number : int

+ Tile(tileNumber : int)

*

Tile

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 260



When the parent of a QMenu is a QMenuBar, the QMenu appears as a pull-

down menu with a familiar interface. When its parent is not a QMenuBar it can

pop up, like a dialog, in which case it is considered a context menu.2 A QMenu can

have another QMenu as its parent, in which case it becomes a submenu.

To help the user make the right choice, each action can have the following:

■ Text and/or icon that appears on a menu and/or button

■ An accelerator or a shortcut key

■ A “What’s this?” and a tool-tip

■ A way to toggle the state of the action between visible/invisible,

enabled/disabled, and checked/not checked

■ changed(), hovered(), toggled(), and triggered()signals

The Dialog in Example 11.4 had a menubar with a single menu that gave two

choices.

1 1 . 6 Q A C T I O N S , Q M E N U S , A N D  Q M E N U B A R S

261

2 A context menu is usually activated by clicking the right mouse button or by pressing the “menu”
button. It is called a context menu because the menu always depends on the context (which QWidget
is currently selected or focused).

Example 11.18 shows the code that sets up that menubar.

E X A M P L E  1 1 . 1 8 src/widgets/dialogs/messagebox/dialogs.cpp

[ . . . . ]

/* Insert a menu into the menubar */
QMenu *menu = new QMenu("&Questions", this);

QMainWindow::menuBar()->addMenu(menu);

/* Add some choices to the menu */
menu->addAction("&Ask question",

this, SLOT(askQuestion()), tr("Alt+A"));
menu->addAction("Ask a &dumb question",

this, SLOT(askDumbQuestion()), tr("Alt+D"));
}

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 261



The calls to QMenu::addAction(text, target, slot, shortcut) each

create an unnamed QAction and call QWidget::addAction(QAction*) to

install it in the menu. The latter call adds the new action to the menu’s

QList<QAction*>.

11.7 QActions, QToolbars, and QActionGroups

11.7.1 The Command Pattern

The Command pattern, as described in [Gamma95] encapsulates operations

as objects with a common execution interface. This can make it possible to

place operations in a queue, log operations, and undo the results of an

already executed operation.

Because an application might provide a variety of different ways for the user to

issue the same command (e.g., menus, toolbar buttons, keyboard shortcuts),

encapsulating each command as an action helps to ensure consistent, synchro-

nized behavior across the application.QAction is, therefore, an ideal base class for

implementing the Command pattern.

In Qt GUI applications, actions are typically “triggered” in one of the follow-

ing ways:

■ A user clicks on a menu choice.

■ A user presses a shortcut key.

■ A user clicks on a toolbar button.

There are several overloaded forms of QMenu::addAction(). We will use the ver-

sion inherited from QWidget, addAction(QAction*)in Example 11.19. Here

we see how to add actions to menus, action groups, and toolbars. We start by deriv-

ing a class from QMainWindow and equipping it with several QAction members

plus a QActionGroup and a QToolBar.

E X A M P L E  1 1 . 1 9 src/widgets/menus/study.h

[ . . . . ]
class Study : public QMainWindow {

Q_OBJECT
public:

Study();

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

262

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 262



public slots:
void actionEvent(QAction* act);

private:

QActionGroup* actionGroup;
QToolBar *toolbar;

QAction *useTheForce;
QAction *useTheDarkSide;
QAction *studyWithObiWan;
QAction *studyWithYoda;
QAction *studyWithEmperor;
QAction *fightYoda;
QAction *fightDarthVader;
QAction *fightObiWan;
QAction *fightEmperor;

protected:
QAction* addChoice(QString name, QString text);

};
[ . . . . ]

for catching the signals
for displaying the actions as buttons

The constructor for this class sets up the menus and installs them in the QMenuBar

that is already part of the base class. (See Example 11.20.)

E X A M P L E  1 1 . 2 0 src/widgets/menus/study.cpp

[. . . . ]

Study::Study() {
actionGroup = new QActionGroup(this);
actionGroup->setExclusive(false);
statusBar();

QWidget::setWindowTitle( "to become a jedi, you wish?" );
QMenu* useMenu = new QMenu("&Use", this);
QMenu* studyMenu = new QMenu("&Study", this);
QMenu* fightMenu = new QMenu("&Fight", this);

useTheForce = addChoice("useTheForce", "Use The &Force");
useTheForce->setStatusTip("This is the start of a 
journey...");
useTheForce->setEnabled(true);
useMenu->addAction(useTheForce);

[ . . . . ]
2

1

2

1

2

1

1 1 . 7 Q A C T I O N S , Q T O O L B A R S , A N D  Q A C T I O N G R O U P S

263

continued

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 263



studyWithObiWan = addChoice("studyWithObiWan", "&Study With
Obi Wan");
studyMenu->addAction(studyWithObiWan);
studyWithObiWan->setStatusTip("He will certainly open doors
for you...");

fightObiWan = addChoice("fightObiWan", "Fight &Obi Wan");
fightMenu->addAction(fightObiWan);
fightObiWan->setStatusTip(
"You’ll learn some tricks from him that way, for sure!");

[ . . . . ]

QMainWindow::menuBar()->addMenu(useMenu);
QMainWindow::menuBar()->addMenu(studyMenu);    
QMainWindow::menuBar()->addMenu(fightMenu);

toolbar = new QToolBar("Choice ToolBar", this);
toolbar->addActions(actionGroup->actions());

QMainWindow::addToolBar(Qt::LeftToolBarArea, toolbar);

QObject::connect(actionGroup, SIGNAL(triggered(QAction*)), 
this, SLOT(actionEvent(QAction*)));

QWidget::move(300, 300);
QWidget::resize(300, 300);

}

The ClassName:: prefixes we use in methods here are not necessary, because the methods can
be called on “this”. We list the classname only to show the human reader from which class the
method was inherited.
It’s already in a QActionGroup, but we also add it to a QMenu.
This gives us visible buttons in a dockable widget for each of the QActions.
Instead of connecting each individual action’s signal, we perform one connect to an
actionGroup that contains them all.

It is possible to connect individual QAction triggered()signals to individual

slots. It is also possible to group related QActions together in a QActionGroup, as

we have just done.QActionGroup offers a single signaltriggered(QAction*),

which makes it possible to handle the group of actions in a uniform way.

After being created, each QAction is added to three other objects (via

addAction()):

1. A QActionGroup, for signal handling

2. A QMenu, one of three possible pull-down menus in a QMenuBar

3. A QToolBar, where it is rendered as a button

4

3

2

1

4

3

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

264

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 264



E X A M P L E  1 1 . 2 1 src/widgets/menus/study.cpp

1 1 . 7 Q A C T I O N S , Q T O O L B A R S , A N D  Q A C T I O N G R O U P S

265

[ . . . . ]

// Factory method for creating QActions initialized in a uniform way
QAction* Study::addChoice(QString name, QString text) {

QAction* retval = new QAction(text, this);
retval->setObjectName(name);
retval->setEnabled(false);
retval->setCheckable(true);
actionGroup->addAction(retval); 1

return retval;
}

Add every action we create to a QActionGroup so that we only connect one signal to a slot.

To make this example a bit more interesting, we established some logical depend-

encies between the menu choices so that they were consistent with the plot of the

various movies. This logic is expressed in the actionEvent() function. (See

Example 11.22).

E X A M P L E  1 1 . 2 2 src/widgets/menus/study.cpp

[ . . . . ]

void Study::actionEvent(QAction* act) {
QString name = act->objectName();
QString msg = QString();

if (act == useTheForce ) {
studyWithObiWan->setEnabled(true);
fightObiWan->setEnabled(true);
useTheDarkSide->setEnabled(true);       

}
if (act == useTheDarkSide) {

studyWithYoda->setEnabled(false);
fightYoda->setEnabled(true);
studyWithEmperor->setEnabled(true);
fightEmperor->setEnabled(true);
fightDarthVader->setEnabled(true);

}

if (act == studyWithObiWan) {
fightObiWan->setEnabled(true);
fightDarthVader->setEnabled(true);
studyWithYoda->setEnabled(true);

}
[ . . . . ]

1

continued

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 265



if (act == fightObiWan ) {
if (studyWithEmperor->isChecked()) {

msg = "You are victorious!"; 
}
else {

msg = "You lose.";
act->setChecked(false);
studyWithYoda->setEnabled(false);

}
}

[ . . . . ]

if (msg != QString()) {
QMessageBox::information(this, "Result", msg, "ok");

}
}

Because all actions are in a QActionGroup, a single triggered(QAction*)

signal can be connected to the actionEvent() slot.

The client code in Example 11.23 shows how the program starts.

E X A M P L E  1 1 . 2 3 src/widgets/menus/study.cpp

[ . . . .]

int main( int argc, char ** argv ) {
QApplication a( argc, argv );
Study study;
study.show();
return a.exec();

}

Here is a screenshot of the running program.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

266

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 266



All menu choices except one are initially disabled. As the user selects from the

available choices, other options become enabled or disabled. Also, notice that the

there is consistency between the buttons and the choices in the menus. Clicking on

an enabled button causes the corresponding menu item to be checked. QAction

stores the state (enabled/checked), and the QMenu and QToolBar provide views

of the QAction.

E X E R C I S E S : Q A C T I O N S , Q M E N U S ,
A N D  Q M E N U B A R S

1. (Discussion question) There are QActions as children of QWidgets all over the

place. How do you gather them all for a ShortcutView widget that lets the user

display and change all of the keyboard shortcuts in the application?

2. Revisit the 15 puzzle application in Section 11.5.2 and add QActions for:

■ Shuffle puzzle

■ Reset puzzle

■ Quit

For Quit, pop up a message box asking whether the user is sure before actually

quitting.

3. Write a “login” application using QMainWindow. Start with these QActions:

■ Login

■ Create New User

■ Edit Preferences

■ Change Password

These choices should be available by pull-down menu as well as toolbar. Create

QActions and a QActionGroup for them all.

The last two choices should be disabled unless the user is logged in.

The initial login screen should have QLineEdits for a user id and a pass-

word. If the user chooses “Create New User” or “Change Password”, the program

should display a new form with QLineEdits. It should ask for the password

twice, and make sure the passwords match, before actually performing the

operation. If the passwords mismatch, try again.

For “Login”, it should check that the user exists and that the password is valid,

before letting you log in, and enabling the other QActions.

If the user chooses “Edit Preferences” it should ask the following questions:

■ What is your name?

■ What is your quest?

1 1 . 7 Q A C T I O N S , Q T O O L B A R S , A N D  Q A C T I O N G R O U P S

267

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 267



■ What is your favorite color? (Use a QComboBox with preset colors to red,

green, blue, black, pink, and chartreuse to choose from.)

It should remember these for each user from previous sessions.

The program should load the user data from a file called “users.xml” on

startup and save to the same file when finished, without any interaction. Load

and save in any format you want, using QTextStream and QFile.

E X E R C I S E : C A R D  G A M E  G U I

Write a blackjack game, with the following actions:

1. New game

2. Deal new hand

3. Shuffle deck

4. Hit me—ask for another card

5. Stay—evaluate my hand

6. Quit—stop playing

These actions and the rules of the game are explained below.

When the game starts, the user and the dealer are each dealt a “hand” of cards.

Each hand initially consists of two cards. The user plays her hand first by deciding

to add cards to her hand with the “Hit me” action zero or more times. Each Hit adds

one card to her hand.The user signals that she wants no more cards with the “Stay”

action.

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

268

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 268



For the purposes of evaluation of a hand, a “face card” (Jack, Queen, and King)

counts as 10 points, an Ace can count as 1 or 11 points, whichever is best. Each

other card has a number and a point value equal to that number. If the hand con-

sists of an Ace plus a Jack, then it is best to count the Ace as 11 so that the total

score is 21. But if the hand consists of an 8 plus a 7, and an Ace is added to the hand,

it is best to count the Ace as 1.

The object of the game is to achieve the highest point total that is not greater

than 21. If a player gets a point total greater than 21, that player is “busted” (loses)

and the hand is finished.

If a player gets five cards in her hand with a total that is not greater than 21, then

that player wins the hand.

After the user either wins, loses, or Stays, the dealer can take as many hits as nec-

essary to obtain a point total greater than 18. When that state is reached the dealer

must Stay and the hand is finished. The player whose score is closer to, but not

greater than, 21 wins. If the two scores are equal, the dealer wins.

When the hand is over, the user can only select “Deal hand”, “New game”, or

“Quit” (i.e., Hit and Stay are disabled).

After the user selects “Deal hand”, that choice should be disabled until the hand

is finished.

Keep track of the number of games won by the dealer and by the user, starting

with zero for each player, by adding one point to the total for the winner of each

hand. Display these totals above the cards.

Deal more cards without resetting the deck until the deck becomes empty or

the user chooses “Shuffle deck”. Try to reuse or extend the CardDeck and related

classes that you developed earlier in Section 10.3. Add a graphical representation

to your game by showing a QLabel with a QPixMap for each card, as was done in

Chapter 11.

Provide a pull-down menu and a toolbar for each of the QActions. Make sure

that Hit and Stay are only enabled after the game has started.

Show how many cards are left in the deck in a read only QSpinBox at the top

of the window.

New game should zero the games won totals and reset the deck.

1 1 . 7 Q A C T I O N S , Q T O O L B A R S , A N D  Q A C T I O N G R O U P S

269

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 269



BlackJack UML Diagram

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

270

QMainWindow QWidget

BlackJack

+ BlackJack()
+ loadSettings()
+ closeEvent(event : QCloseEvent*)
+ deal()
+ actionEvent(act : QAction*)

Hand

+ Hand(name : QString)
+ operator <<(card : Card*) : Hand&
# handChanged()

Deck

+ Deck()
+ shuffle()
+ reset()
+ pick() : Card*
+ toString() : QString
 # cardsLeft( : int)

Card

 - m_label : QLabel*
 - m_name : QString

+ Card(name : QString)
+ name() : const QString&
+ label() : QLabel*
+ value() : int
+ isAce() : bool

HandView

+ HandView(hand : Hand*)
+ setModel(hand : Hand*)
+ rescanHand()

2

2
1

*

1

52

+m_deck

11.7.1.1 Design Suggestions

Try to keep the model classes separate from the view classes, rather than adding

GUI to the model classes. Keeping a strong separation between model and view

will give us benefits later.

Figure 11.10 is only a starting point. You need to decide on the base class(es)

to extend for defining the model classes, as well as which containers to reuse.

To modify the UML diagram you can try loading the diagram file,

cardgame.xmi, into umbrello.

11.8 Regions and QDockWidgets
Any class that derives from QMainWindow has four dock window regions, one on

each of the four sides of the central widget. These four regions are used for attach-

ing secondary windows to the central widget.

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 270



A QDockWidget can be thought of as an envelope for another widget. It has

a title bar and a content area to contain the other widget. Depending on how it is

set, a QDockWidget can be undocked, resized, dragged to a different location, or

docked to the same or to a different dock window region by the end user.

The QMainWindow correctly creates the slidable QSplitters between the

central widget and the QDockWidgets. The two principal QMainWindow func-

tions for managing the dock window regions are

1. setCentralWidget(QWidget*), which establishes the central widget

2. addDockWidget(Qt::DockWidgetAreas, QDockWidget*), which

adds the given QDockWidget to the specified dock window region.

DockWindows are very important in integrated development environments,

because different tools or views are needed in different situations. Each view is a

widget, and they can all be “plugged” into the main window quite easily with the

docking mechanism as shown in Figure 11.8.

1 1 . 8 R E G I O N S  A N D  Q D O C K W I D G E T S

271

F I G U R E  1 1 . 8 Dragged DockWindows

Like most KDE applications, kdbg, the stand-alone KDE debugger, makes use of

DockWindows. kdbg has a source code window (central widget) and dockable

views for things such as:

■ Program stack

■ Output

■ Watches

■ Local variables

■ Threads

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 271



These widgets do not all need to be visible at the same time, so there is a View

menu that lets you select or de-select all of the different views.

QMainWindow::createPopupMenu() returns this menu, permitting you to add

it to toolbars or other pull-down menus.

11.9 Views of a QStringList
Example 11.24 demonstrates the use of the simplest concrete model,

QStringListModel.

E X A M P L E  1 1 . 2 4 src/modelview/qstringlistmodel/simplelistapp.h

#ifndef SIMPLELIST_H
#define SIMPLELIST_H

#include <QApplication>
#include <QListView>
#include <QStringListModel>
#include <QMainWindow>
#include <QPushButton>
/* Controller example */

class SimpleListApp : public QApplication {
Q_OBJECT
public:
SimpleListApp(int argc, char* argv[]); 

public slots:
void showNewChanges();
void addItem();

private:
QStringListModel m_Model;
QMainWindow m_Window;
QListView m_View;
QPushButton m_Button;

};

#endif

created first
destroyed first

SimpleListApp extends QApplication and is the “managing object” for all

others.

Because all of the objects are direct children of the SimpleListApp, we

defined the other objects as members, rather than pointers to heap objects. Their

creation and destruction is then done during SimpleListApp’s creation and

destruction. The model is listed before the view so that it is destroyed after the view.

2

1

2

1

C H A P T E R  1 1 : Q T  G U I  W I D G E T S

272

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 272



The implementation of this class, with a bit of client code, is shown in

Example 11.25.

E X A M P L E  1 1 . 2 5 src/modelview/qstringlistmodel/simplelistapp.cpp

#include "simplelistapp.h"
#include <QDebug>
#include <QVBoxLayout>

SimpleListApp::SimpleListApp(int argc, char* argv[]) :
QApplication(argc, argv), m_Button("Insert") {

1 1 . 9 V I E W S  O F  A  Q S T R I N G L I S T

273

QString englishDays = "Monday,Tuesday,Wednesday,Thursday,Friday,"
"Saturday,Sunday";

QString frenchDays = "Lundi,Mardi,Mercredi,Jeudi,Vendredi"
",Samedi,Dimanche";

QString dutchDays = "Mandaag,Dinsdag,Wowoensdag,Dunderdag,"
"Vrijdag,Zaterdag,Zonedag";

QStringList days = dutchDays.split(",");                         
m_Model.setStringList(days);
m_View.setModel(&m_Model);
connect(this, SIGNAL(aboutToQuit()), 

this, SLOT(showNewChanges()));
QWidget *wid = new QWidget(&m_Window);
QVBoxLayout *layout = new QVBoxLayout(wid);
m_Window.setCentralWidget(wid);
layout->addWidget(&m_View);
layout->addWidget(&m_Button);
connect (&m_Button, SIGNAL(clicked()),

this, SLOT(addItem()));
m_Window.setVisible(true);

}

void SimpleListApp::addItem() {
static int itemnumber = 1;
QString str = QString("item #%1").arg(itemnumber++);
QStringList sl = m_Model.stringList();
sl << str;
m_Model.setStringList(sl);

}

void SimpleListApp::showNewChanges() {
qDebug() << " The new days of the week: ";
qDebug() << m_Model.stringList().join(",");

}

int main(int argc, char* argv[]) {
SimpleListApp app(argc, argv);
return app.exec();

}

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 273



C H A P T E R  1 1 : Q T  G U I  W I D G E T S

274

When the app in Example 11.24 is run an editable QListView appears. You can

use the mouse or arrow keys to navigate, and use F2 or double-click to edit.

After you exit, you will see the revised days of the week:

The new days of the week:

"Mandaag,Dinsdag,Wednesday,Thursday,Friday,Saturday,Zonedag"

E X E R C I S E : V I E W S  O F  A  Q S T R I N G L I S T

Provide a graphical front-end for the equivalence engine from Section 10.7. The

UI should have a QLineEdit for the the user to type in new equivalences, and 

two  QListView widgets side by side above it.

In the diagram shown here, the item b is selected on the left, and we can see that

b’s equivalences are c, d, e on the right. Any time the “Submit” button is clicked,

whatever is in the TextEdit is added to the equivalence engine, and we should be

able to see that in subsequent views.

P O I N T S  O F  D E P A R T U R E

■ Read the Qt Designer Manual and follow the tutorial to familiarize your-

self with a more graphical way of defining GUIs.

■ Qt Quarterly 3 has an article that discusses how to write a shortcut editor.

3 http://doc.trolltech.com/qq/qq14-actioneditor.html

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 274



R E V I E W  Q U E S T I O N S

275

R E V I E W  Q U E S T I O N S

1. List six things that QWidgets have in common.

2. How can you save and later restore the size, position, and arrangements

of widgets for a GUI app?

3. Why would you want to do such a thing?

4. What is a dialog? Where is an appropriate place to use it?

5. What is a QLayout? What is its purpose? What is an example of a con-

crete QLayout class?

6. Can a widget be a child of a layout?

7. Can a layout be a child of a widget?

8. Revisiting Example 11.15, how does the QGridLayout determine the

number of columns? What would be the effect of using 

mainGrid->addWidget(moveLeft, 1,2); 

in line 25?

9. What are the advantages of listing our images in a resources file?

10. What is the difference between a spacer and a stretch?

11. What is a QAction? How are actions triggered?

12. It is possible to create QMenus without using QActions. What are the

advantages of using a QAction?

ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 275



ezus_138004_ch11.qxd  8/4/06  9:58 AM  Page 276



277

12.1 QProcess and Process Control. . . . . . . . 278

12.2 Threads and QThread . . . . . . . . . . . . . . . 290

12.3 Summary: QProcess and QThread. . . . 303

12C H A P T E R  1 2

Concurrency

QProcess and QThread provide two approaches

to concurrency. We discuss how to create and

communicate with processes and threads, as well as

techniques for monitoring and debugging them.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 277



12.1 QProcess and Process Control
QProcess is a very convenient (and cross-platform) class for starting and con-

trolling other processes. It is derived from QObject and takes full advantage of

signals and slots to make it easier to “hook up” with other Qt classes.

We discuss now a simple example that starts a process and views its continu-

ally running output. Example 12.1 shows the definition of a simple class derived

from QProcess.1

E X A M P L E  1 2 . 1 src/logtail/logtail.h

[ . . . . ]
#include <QObject>
#include <QProcess>
class LogTail : public QProcess {

Q_OBJECT
public:

LogTail(QString fn = QString());
~LogTail();

public slots:
void logOutput();

};
[ . . . . ]

A QProcess can spawn another process using the start()function. The new

process is a child process in that it will terminate when the parent process does.

Example 12.2 shows the implementation of the constructor and destructor of the

LogTail class.2

E X A M P L E  1 2 . 2 src/logtail/logtail.cpp

[ . . . . ]

LogTail::LogTail(QString fn) {
if (fn == QString()) {

fn = "/var/log/apache/access.log";
}

1 tail -f runs forever showing whatever is appended to a file, and is useful for showing the contents
of a log file of a running process.
2 It is also possible to use startDetached()to start a process that will continue to live after the call-
ing process exits.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 278



connect (this, SIGNAL(readyReadStandardOutput()),
this, SLOT(logOutput()));

QStringList argv;
argv << "-f" << fn;
// We want to exec "tail -f filename"
start("tail", argv); 

}

LogTail::~LogTail() {
terminate();  

}

When there is input ready, we will know about it.
Returns immediately, and now there is a forked process running independently but “attached”
to this process. When the calling process exits, the forked process will terminate.
Attempts to terminate this process.

The child process can be treated as a sequential I/O device with two predefined out-

put channels that represent two separate streams of data: stdout and stderr.

The parent process can select an output channel with setReadChannel()

(default is stdout). The signal readyReadStandardOutput()is emitted when

data is available on the selected channel of the child process. The parent process can

then read its output by calling read(), readLine(), or getChar(). If the child

process has standard input enabled, the parent can use write()to send data to it.

Example 12.3 shows the implementation of the slot logOutput(), which 

is connected to the signal readyReadStandardOutput() and uses

readAllStandardOutput()so that it pays attention only to stdout.

E X A M P L E  1 2 . 3 src/logtail/logtail.cpp

[ . . . . ]

// tail sends its output to stdout.
void LogTail::logOutput() {  

QByteArray bytes = readAllStandardOutput();
QStringList lines = QString(bytes).split("\n");
foreach (QString line, lines) {

qDebug() << line;
}

}

event driven—passive interface

The use of signals eliminates the need for a read loop. When there is no more input

to be read, the slot will no longer be called. Signals and slots make concurrent code

much simpler to read, because they hide the event-handling and dispatching code.

Some client code is shown in Example 12.4.

1

1

3

2

1

3

2

1

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

279

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 279



E X A M P L E  1 2 . 4 src/logtail/logtail.cpp

[ . . . . ]

#include <QApplication>
#include <logwindow.h>
#include <argumentlist.h>

int main (int argc, char* argv[]) {
QApplication app(argc, argv);
ArgumentList al;
LogWindow lw("debug");
lw.setWindowTitle("logtail demo");
QString filename;
if (al.size() > 1) filename = al[1];
LogTail tail(filename);
lw.show();
return app.exec();

}

Create a scrolling edit window watching debug messages.
Create object, but start process too.

This application appends lines to the LogWindow whenever they appear in the

specified log file. The default log file is named access.log for the apache Web

server on a typical *nix local host.

12.1.1 Processes and Environment

Environment variables are name/value string pairs that can be stored quite easily

in a map or a hash table. Every running process has an environment, or a collec-

tion of environment variables. Most programming languages support a way of

getting and setting these variables.

The most common environment variables are

1. PATH, a list of directories to search for executables

2. HOME, the location of your home directory

3. HOSTNAME (*nix) or COMPUTERNAME (win32), which usually gives you

the name of your machine

4. USER (*nix) or USERNAME (Win32), which usually gives you the cur-

rently logged-in user

Another environment variable you will encounter in the context of the exercises is

CPPLIBS, which denotes the location of our own C++ libraries.

Environment variables and their values are arbitrarily set by the parent process,

so they can be any pair of strings. Programs that depend on specific variables are

2

1

2

1

C H A P T E R  1 2 : C O N C U R R E N C Y

280

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 280



generally not portable, but depend somehow on their parent process. Variables pro-

vide a convenient cross-language mechanism for communicating information

between processes.

Operating system shells allow the user to set environment variables for that

process and its future children. Here are some examples.

1. Microsoft Windows desktop: start -> settings -> system ->

advanced -> environment variables

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

281

3 Some platforms also offer setenv(), which is more convenient but less portable.

2. Microsoft command prompt: set VARIABLE=value and echo

%VARIABLE%

3. bash command line: export VARIABLE=value and echo $VARIABLE

Many programming languages support getting and setting environment variables

too, as listed here.

1. C/C++: getenv()and putenv()from <cstdlib> (see Appendix B)3

2. Python: os.getenv() and os.putenv()

3. Perl: %ENV hashtable

4. Java 1.5: ProcessBuilder.environment()

5. Qt 4: QProcess::environment()

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 281



Changing the environment does not affect other processes that are already running.

Environments are inherited from the parent process at process creation time.

Any program that you run is quite possibly a few levels deep in the process tree.

This is because the typical desktop operating system environment consists of

many processes running together. In Figure 12.1 indentation levels indicate the

parent-child relationships. Processes that are at the same indentation level are sib-

lings (i.e., children of the same parent).

C H A P T E R  1 2 : C O N C U R R E N C Y

282

F I G U R E  1 2 . 1 Linux process hierarchy

Whenever program A runs program B, A is the parent process of B. B inherits (a

copy of) A’s environment when B is created. Changes to B’s environment from

inside B will only affect B and B’s future children, and will always be invisible to A.

In Example 12.5, we verify that the value given to  setenv() is propagated to

its child process.

E X A M P L E  1 2 . 5 src/environment/setenv.cpp

#include <qstd.h>
#include <argumentlist.h>
#include <QProcess>
#include <cstdlib>

Init

startxll

kdm

kde

konsole

bash

qmake

make

g++

./environment

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 282



class Fork : public QProcess {
public:

Fork(QStringList argv = QStringList() ) {
execute("environment", argv);

}
~Fork() {

waitForFinished();
}

};

int main(int argc, char* argv[]) {
using namespace qstd;
ArgumentList al(argc, argv);

al.removeFirst();
bool fork=al.getSwitch("-f");

QStringList extraVars;
if (al.count()  > 0) {

setenv("PENGUIN", al.first().toAscii(), true);
}
cout << " HOME=" << getenv("HOME") << endl;
cout << " PWD=" << getenv("PWD") << endl;
cout << " PENGUIN=" << getenv ("PENGUIN") << endl;

if (fork) {
Fork f;

}
}

Runs this same app as a child.

When this program is run, our output looks like this:

/home/lazarus/src/environment> export PENGUIN=tux
/home/lazarus/src/environment> ./environment -f
HOME=/home/lazarus
PWD=/home/lazarus/src/environment
PENGUIN=tux
HOME=/home/lazarus
PWD=/home/lazarus/src/environment
PENGUIN=tux

/home/lazarus/src/environment> ./environment -f opus
HOME=/home/lazarus
PWD=/home/lazarus/src/environment
PENGUIN=opus
HOME=/home/lazarus
PWD=/home/lazarus/src/environment
PENGUIN=opus

1

1

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

283

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 283



C H A P T E R  1 2 : C O N C U R R E N C Y

284

12.1.2 Qonsole: Writing an Xterm in Qt

A command line shell reads commands from the user and prints the output. In

this example, we have a LogWindow (see Section 7.4) providing a view of the out-

put of another running process, in this case, bash. The QProcess is a model,
representing a running process. Figure 12.2 shows a screenshot of Qonsole, our

first attempt at a GUI for a command shell.

F I G U R E  1 2 . 3 Qonsole UML: Model and view

F I G U R E  1 2 . 2 Qonsole1

Because it connects signals to slots and handles user interactions, Qonsole is con-

sidered a controller. Because it derives from QMainWindow, it also contains some

view code. The UML diagram in Figure 12.3 shows the relationships between the

classes in this application.

QMainWindow QTextEdit

QProcess

Qonsole

+ Qonsole()
+ execute()
+ showOutput()

LogWindow

QLineEdit

-mInputArea

Model
-mBash

View

View
View

Controller

-mLogw - shouldScroll : int

In Example 12.6 we see how the constructor establishes the structure of

Qonsole and the important connections between its components.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 284



E X A M P L E  1 2 . 6 src/qonsole/qonsole1/qonsole.cpp

[ . . . . ]

Qonsole::Qonsole() {
m_Logw = new LogWindow("debug"); 
m_Logw->setReadOnly(true);
setCentralWidget(m_Logw); 
m_InputArea = new  QLineEdit(); 
QDockWidget* qdw = new QDockWidget("Type commands here");
qdw->setWidget(m_InputArea);
addDockWidget(Qt::BottomDockWidgetArea, qdw);
connect (m_InputArea, SIGNAL(returnPressed()),

this, SLOT(execute()));
m_Bash = new QProcess();
m_Bash->setReadChannelMode(QProcess::MergedChannels);
connect (m_Bash, SIGNAL(readyReadStandardOutput()),

this, SLOT(showOutput()));
m_Bash->start("bash", QStringList() << "-i");

}

Merge stdout and stderr.
Run bash in interactive mode.

Whenever bash outputs anything,Qonsole sends it to theLogWindow. Whenever

the user presses the return key, Qonsole grabs any text that is in the QLineEdit

and sends it to bash, which interprets it as a command, as we see in Example 12.7.

E X A M P L E  1 2 . 7 src/qonsole/qonsole1/qonsole.cpp

[ . . . . ]

void Qonsole::showOutput() { 
QByteArray bytes = m_Bash->readAllStandardOutput();
QStringList lines = QString(bytes).split("\n");
foreach (QString line, lines) {

m_Logw->append(line);
}

}

void Qonsole::execute() {
QString cmdStr = m_InputArea->text() + "\n";
m_InputArea->setText("");
m_Logw->append(cmdStr);
QByteArray bytes = cmdStr.toUtf8();
m_Bash->write(bytes);

}

A slot that gets called whenever input is ready
8-bit Unicode Transformation Format
Send the data into the stdin stream of the bash child process

Example 12.8 shows the client code that launches this application.

3

2

1

3

2

1

2

1

2

1

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

285

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 285



E X A M P L E  1 2 . 8 src/qonsole/qonsole1/qonsole.cpp

[ . . . . ]

#include <QApplication>

int main(int argc, char* argv[]) {
QApplication app(argc, argv);
Qonsole qon;
qon.show();
return app.exec();

}

12.1.3 Qonsole with Keyboard Events

In the preceding example, Qonsole had a separate widget for user input. For a more

authentic xterm experience, the user should be able to type commands in the com-

mand output window. To accomplish this Qonsole needs to capture keyboard

events. The first step is to override the QObject base class eventFilter()

method, as we see in Example 12.9, the revised class definition.

E X A M P L E  1 2 . 9 src/qonsole/keyevents/qonsole.h

[ . . . . ]
class Qonsole : public QMainWindow {

Q_OBJECT
public:

Qonsole();
public slots:

void execute();
void showOutput();
bool eventFilter(QObject *o, QEvent *e)  ;

protected:
void updateCursor();

private:
QString m_UserInput;
LogWindow* m_Logw;
QProcess* m_Bash;

};
[ . . . . ]

As we discussed in Section 9.3, an event is an object derived from QEvent. Within

the context of an application, such a QEvent is associated with a QObject that is

its intended receiver. The receiving object has a handler to process the event. An

eventFilter examines a QEvent and determines whether or not to permit it to

be processed by the intended receiver. We have provided our revised Qonsole

application with an eventFilter() function that will be used to filter keyboard

C H A P T E R  1 2 : C O N C U R R E N C Y

286

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 286



events from m_Logw, an extended QTextEdit. QOnsole, an extended

QMainWindow, is the intended recipient of those events. The implementation of

this function is shown in Example 12.10.

E X A M P L E  1 2 . 1 0 src/qonsole/keyevents/qonsole.cpp

[ . . . . ]

bool Qonsole::eventFilter(QObject *o, QEvent *e) {
if (e->type() == QEvent::KeyPress) {

QKeyEvent *k = static_cast<QKeyEvent*> (e);
int key = k->key();
QString str = k->text();
m_UserInput.append(str);
updateCursor();
if ((key == Qt::Key_Return) || (key == Qt::Key_Enter) ) {

execute();
return true;

}
else {

m_Logw->insertPlainText(str);
return true;

}
}
return QMainWindow::eventFilter(o,e);

}

We processed the event. This prevents other widgets from seeing it.
Let the base class eventFilter have a shot at it.

Each time a key is pressed by the user the character generated by that key is

appended to the mUserInput string and the position of the cursor in the

LogWindow is adjusted by the member function updateCursor(). When the

Enter key is pressed, the member function execute()is called so that the com-

mand string can be sent to the shell and then reset. Example 12.11 shows the

implementation of these two functions.

E X A M P L E  1 2 . 1 1 src/qonsole/keyevents/qonsole.cpp

[ . . . . ]

bool Qonsole::eventFilter(QObject *o, QEvent *e) {
if (e->type() == QEvent::KeyPress) {

QKeyEvent *k = static_cast<QKeyEvent*> (e);
int key = k->key();
QString str = k->text();
m_UserInput.append(str);
updateCursor();

2

1

2

1

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

287

continued

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 287



if ((key == Qt::Key_Return) || (key == Qt::Key_Enter) ) {
execute();
return true;

}
else {

m_Logw->insertPlainText(str);
return true;

}
}
return QMainWindow::eventFilter(o, e);

}

We processed the event. This prevents other widgets from seeing it.
Let the base class eventFilter have a shot at it.

All that remains to be done is to call the base class function

installEventFilter()on mLogw, the widget whose events we want to cap-

ture. This is done in the constructor, as we see in Example 12.12.

Here is the controller code that sets up Qonsole.

E X A M P L E  1 2 . 1 2 src/qonsole/keyevents/qonsole.cpp

[ . . . . ]

Qonsole::Qonsole() {
m_Logw = new LogWindow("debug");
setCentralWidget(m_Logw);
m_Logw->installEventFilter(this);
m_Logw->setLineWrapMode(QTextEdit::WidgetWidth);
m_Bash = new QProcess();
m_Bash->setReadChannelMode(QProcess::MergedChannels);
connect (m_Bash, SIGNAL(readyReadStandardOutput()),

this, SLOT(showOutput()));
m_Bash->start("bash", QStringList("-i"), QIODevice::ReadWrite);

}

E X E R C I S E S : Q P R O C E S S  A N D  P R O C E S S
C O N T R O L

1. Modify Qonsole to support the backspace key.

2. Modify Qonsole to support multiple simultaneous terminals in separate tabs.

3. The command htpasswd4 can be run from the shell, and it provides a

command-line interface for encrypting and storing passwords. It stores a list of

names and passwords separated by colons in a text file. The passwords are

encrypted with a user-selectable protocol.

2

1

2

1

C H A P T E R  1 2 : C O N C U R R E N C Y

288

4 This command is available on most Linux systems, since it is included with Apache httpd server, one
of the most widely used Web servers. It is also available on other platforms at no change.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 288



The constructor should load all users and encrypted passwords into a QMap.

addUser will require using QProcess to run htpasswd. checkPassword

will use the in-memory map and the htpasswd -nb command to verify that

the password is correct.

Write a graphical front-end to this application—a login screen, as in the fig-

ure that follows.

If htpasswd has been installed on your *nix system you can learn about its

command-line options by viewing its manual page.

Write a Qt wrapper, called Users, around the htpasswd command. It

should have the interface shown in the following figure.

1 2 . 1 Q P R O C E S S  A N D  P R O C E S S  C O N T R O L

289

Use message boxes to describe precisely any errors that occur during login. For

example if the user enters the correct username but an incorrect password, the

error message should be different from the one for an incorrect username. In a

real-world security application, you would not have different error messages (no

reason to help would-be hackers gaining access to our systems, right?) but we

want a different message to help in testing.

If the user clicks Register, show another dialog (or modify the existing one)

so that it asks for the password twice, to verify that the user entered it correctly.

The authors encountered some difficulties using the crypt()(-d)
and MD5 (-m) encryption schemes for this problem, so we recommend
using SHA (-s) encryption.

Users

+ containsUser(userName : QString) : bool
+ checkPassword(user : QString, pw : QString) : bool
+ addUser(user : QString, pw : QString) : bool

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 289



12.2 Threads and QThread
Platform-independent threads are a rarity in C++ open-source libraries, because

threads are handled in different ways by different operating systems. On the other

hand, it is not possible to write GUI applications without threads, since a user click

may take just an instant, while the work that needs to be done in response may

take much longer. Users are accustomed to being able to continue moving and

clicking while their work is being done, and seeing constant progress feedback at

the same time.

A single process can simulate multitasking by supporting multiple threads.

Each thread has its own call stack and a current statement to execute. A multi-

threaded process iterates through the threads, switching to each thread’s stack, exe-

cuting some statements for awhile, and then switching to the next thread. Qt’s

thread model permits the prioritizing and control of threads.

12.2.1 QPixmap and QThread Animation 
Example: Movie Player

In this section we write a multithreaded animation viewer application. This appli-

cation loops through a sequence of eight images on the screen. The user controls

the time interval between images to speed up or slow down the process. Figure 12.4

shows the two main classes for this application.

C H A P T E R  1 2 : C O N C U R R E N C Y

290

F I G U R E  1 2 . 4 UML diagram for Movie and MovieView

QMainWindowQThread

MovieThread

 - mPics : QVector<QPixmap>
 - mDelay : int

+ MovieThread()
+ ~ MovieThread()
+ run()
+ loadPics()
+ stop()
+ addFile(filename : const QString&)
+ setInterval(newDelay : int)
# show(image : const QPixmap*)

MovieView

 - label : QLabel*
 - slider : QSlider*

+ MovieView()
+ setDelay(delayval : int)
+ showPix(pix : const QPixmap*)
# intervalChanged(newInterval : int)

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 290



1 2 . 2 T H R E A D S  A N D  Q T H R E A D

291

We will start with the top-level code in Example 12.13 and then drill down to the

lower layers of code.

E X A M P L E  1 2 . 1 3 src/threads/animate/moviethreadmain.cpp

[ . . . . ]

A new thread starts executing at this point, but the method returns immediately. The new
thread starts by calling movie.run().

The interface for starting a thread is similar to that of starting a process—in both

cases, start()returns immediately. Instead of running another program, the

newly created thread runs in the same process, shares the same memory, and starts

by calling the run()function.

The MovieThread does not actually display anything—it is a model that

stores the data representing the movie. Periodically, it emits a signal containing a

pointer to the correct pixmap to display as seen in Example 12.14.

E X A M P L E  1 2 . 1 4 src/threads/animate/moviethread.cpp

[ . . . . ]

void MovieThread::run() {
int current(0), picCount(m_Pics.size());
while (true) {

msleep(m_Delay);   
emit show(&m_Pics[current]);
current = (current + 1) % picCount; 

}
}

1

[ . . . . ]
int main(int argc, char** argv) {

QApplication app(argc, argv);
MovieView view;
MovieThread movie;
app.connect(&movie, SIGNAL(show(const QPixmap*)),

&view, SLOT(showPix(const QPixmap*)));
app.connect(&view, SIGNAL(intervalChanged(int)),

&movie, SLOT(setInterval(int)));
app.connect(&app, SIGNAL(aboutToQuit()), &movie, SLOT(stop()));
movie.start();
view.show();
return app.exec();

}

1

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 291



In Example 12.15 we can see the slot that actually displays the images and the slot

that responds to the slider signals. These slots are in the view class, as they should be.

E X A M P L E  1 2 . 1 5 src/threads/animate/movieview.cpp

[ . . . . ]

void MovieView::showPix(const QPixmap* pic) {
label->setPixmap(*pic);

}

void MovieView::setDelay(int newValue) {
QString str;
str = QString("%1ms delay between frames").arg(newValue);
slider->setToolTip(str);
emit intervalChanged(newValue);

}

To summarize: the run() function emits a signal from the (model)

MovieThread object, which will be received by a slot in the (view) MovieView

object, as arranged by the connect()statement in the main()function (shown

in Example 12.13). Signals are ideal for transmitting data to objects across threads.

In Example 12.16 we see how the view is created, and how the slider controls the

speed of the animation.

E X A M P L E  1 2 . 1 6 src/threads/animate/movieview.cpp

[ . . . . ]

MovieView::MovieView() {
resize(200, 200);

slider = new QSlider(Qt::Vertical);
slider->setRange(1,500);
slider->setTickInterval(10);
slider->setValue(100);
slider->setToolTip("How fast is it spinning?");
connect(slider, SIGNAL(valueChanged(int)), this,

SLOT(setDelay(int)));
QDockWidget *qdw = new QDockWidget("Delay");
qdw->setWidget(slider);
addDockWidget(Qt::LeftDockWidgetArea, qdw);
label = new QLabel("Movie");
setCentralWidget(label);

}

C H A P T E R  1 2 : C O N C U R R E N C Y

292

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 292



The user controls the time interval between image exposures with a QSlider

widget that is placed in a dock widget.

In Example 12.17, to avoid a crash on exit, we introduced a delay that makes

sure the thread has enough time to be properly terminated.

E X A M P L E  1 2 . 1 7 src/threads/animate/moviethread.cpp

[ . . . . ]

void MovieThread::stop() {
terminate();
wait(5000);

}

Putting it all together, we have produced a movie of a spinning yin-yang symbol,

using resources, signals, slots, and threads, with an interface that gives the user

control of the spin speed via a docked slider widget. The following figure is a

screenshot of the running program.

1 2 . 2 T H R E A D S  A N D  Q T H R E A D

293

To load images from disk, we use the Qt resource feature (discussed in Section 11.4),

which permits us to “embed” binary files into the executable.

E X A M P L E  1 2 . 1 8 src/threads/animate/moviethread.cpp

[ . . . . ]

void MovieThread::loadPics() {
FileVisitor fv("*.jpg");
connect (&fv, SIGNAL(foundFile(const QString&)),

this, SLOT(addFile(const QString&)));
fv.processEntry(":/images/");

}
1

continued

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 293



void MovieThread::addFile(const QString& filename) {
m_Pics << QPixmap(filename);

}

We are using resources, which link binary files into the executable. They exist in a file system
rooted at “:”. See file: animate.qrc for list of embedded resources (.jpg files).

12.2.2 Movie Player with QTimer

The MovieThread object, discussed in Section 12.2.1, simply emitted a signal

periodically, with the interval determined by the user. This is a very simple use of

a thread.

The QTimer class is well suited for emitting periodic signals to drive anima-

tions and other rapid but brief operations.5 In Example 12.19 we derive our movie

model class from QTimer instead of deriving it from QThread.

E X A M P L E  1 2 . 1 9 src/threads/animate/movietimer.h

[ . . . . ]
class MovieTimer :public QTimer {

Q_OBJECT
public:

MovieTimer();
~MovieTimer();
void loadPics();

public slots:
void nextFrame();
void addFile(const QString& filename);
void setInterval(int newDelay);

signals:
void show(const QPixmap *image);

private:
QVector<QPixmap> pics;
int current;

};
[ . . . . ]

The MovieTimer class can be used in place of the MovieThread class of the

previous example. We need to change only one line of the client code from

Example 12.13, as we show in Example 12.20.

1

C H A P T E R  1 2 : C O N C U R R E N C Y

294

5 Connecting a QTimer signal to a slot that takes a relatively long time to execute may slow down the
main thread and cause the QTimer to miss clock ticks.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 294



1 2 . 2 T H R E A D S  A N D  Q T H R E A D

295

E X A M P L E  1 2 . 2 0 src/threads/animate/movietimermain.cpp

[ . . . . ]
int main(int argc, char** argv) {

QApplication app(argc, argv);
MovieView view;
MovieTimer movie;
app.connect(&movie, SIGNAL(show(const QPixmap*)),

&view, SLOT(showPix(const QPixmap*)));
app.connect(&view, SIGNAL(intervalChanged(int)),

&movie, SLOT(setInterval(int)));

[ . . . . ]

Starts the timer, not a thread.

In fact, the implementation of MovieTimer is simpler than that of MovieThread,

as shown in Example 12.21.

E X A M P L E  1 2 . 2 1 src/threads/animate/movietimer.cpp

[ . . . . ]

MovieTimer::MovieTimer(): current(0) {
setInterval(100);
loadPics();
connect(this, SIGNAL(timeout()), this, SLOT(nextFrame()));

}

void MovieTimer::nextFrame() {
current = (current + 1) % pics.size();
emit show(&pics[current]);

}

QTimer is very convenient and can be used in some situations where, at first, you

might think of using a QThread. A QTimer with a timeout of 0 will emit its sig-

nal as fast as possible, but only when the Qt event queue is empty. By rewriting a

“worker thread” to operate in small chunks when its slot is repeatedly called, you

can achieve something similar to multithreading without slowing down the user

interface response.

1

app.connect(&app, SIGNAL(aboutToQuit()), &movie, SLOT(stop()));
movie.start();
view.show();
return app.exec();

}

1

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 295



C H A P T E R  1 2 : C O N C U R R E N C Y

296

12.2.3 Multiple Threads, Queues, and Loggers
Example: Giant

In this section, we present an example of a consumer-producer problem inspired

by the famous fable, “Jack and the Beanstalk.” As we see in Figure 12.5, the main

window of the application shows a split-screen view (provided by the

QSplitter) of two text areas.

6 We discussed how to obtain and install libutils in Section 7.4.

F I G U R E  1 2 . 5 Giant versus Jack main window

The slider docked on the left determines the rate at which Jack steals the items on

his list from the Giant. That rate has a random component. The LineEdit docked

on the bottom allows the user to give Jack things to say to the Giant. Each text area

is a LogWindow that monitors a named Logger. Both classes are provided in

libutils and are documented in our API Docs.6

A Logger is an abstraction for a named stream of bytes. A Logger gets

attached to a LogWindow through signals and slots.

Loggers are important tools for debugging (and, sometimes, even visualizing)

multitasking processes. These are based on the Java loggers, but take advantage of

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 296



1 2 . 2 T H R E A D S  A N D  Q T H R E A D

297

Qt’s signals and slots, which can send messages and objects across threads. The

UML diagram in Figure 12.6 shows how these classes are related.

F I G U R E  1 2 . 7 Speaking with signals

When this program executes, two threads are running, Jack and Giant. Each thread

emits signals and writes to loggers independently. The sequence diagram in

Figure 12.7 shows how this works in one thread.

Jack and Giant have no knowledge of each other—they are strictly decou-

pled. They do not include each other’s header files, and they are connected to each

QTextEdit

LogWindow

 - shouldScroll : int

+ LogWindow(logName : QString, parent : QWidget*)
+ log(logname : QString)
+ append(str : QString)
+ checkScroll(newValue : int)

QObject

Logger

 - sm_LogMap : QMap<QString, Logger * >

+ getLogger(logname : QString) : Logger*
+ myDebugHandler(type : QtMsgType, msg : const char*)
+ info(str : QString)
# data(str : const QString&)
# Logger(logname : QString)

: m_JackWindow:  jacklog
: m_Jack

: speak signal()

: data signal()

append slot

log slot

F I G U R E  1 2 . 6 Loggers

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 297



C H A P T E R  1 2 : C O N C U R R E N C Y

298

LogWindow

QThread

0..1

2

0..1

-m_Giant

-m_Jack

GiantWindow

 - m_GiantLogWindow : LogWindow*
  - m_JackLogWindow : LogWindow*
 - m_LineEdit : QLineEdit*
 - m_SpeakButton : QPushButton*
 - m_KillButton : QPushButton*
 - m_GiantSlider : QSlider*
 - m_Giant : Giant*
 - m_Jack : Jack*

+ GiantWindow()
+ ~ GiantWindow()
+ speakJack()
+ bigText(text : QString)
+ smallText(text : QString)
+ setDelay(delayval : int)
+ terminateThreads()

Giant

 - m_Fifo : QQueue< QString >
 - m_Delay : int
 - m_IsDead : bool

+ Giant()
+ run()
+ hear(text : const QString&)
+ die()
+ setDelay(newDelay : int)
# say(line : QString)
# small(line : QString)
# giantDead()
 - process(message : QString)
 - distort(text : QString) : QString

Jack

 - m_Fifo : QQueue< QString >
 - m_Delay : int
 - m_BeanstalkChopped : bool
 - m_Stuff : QStringList

+ Jack()
+ run()
+ setDelay(newDelay : int)
+ killGiant()
# chopBeanstalk()

Each thread has an incoming message queue (fifo). Messages may arrive in the

Giant’s queue faster than he can handle them. Some messages will be responded

to, some will be ignored.

To make things more interesting, we have connected Jack’s Logger’s data sig-

nal to the Giant’s hear slot, so the Giant is somewhat aware of what Jack is doing

and can react to it. We show the class definition for Giant in Example 12.22.

F I G U R E  1 2 . 8 Jack and Giant UML

other exclusively by signals and slots in controller code from GiantWindow.

These relationships are depicted in the UML diagram in Figure 12.8.

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 298



E X A M P L E  1 2 . 2 2 src/threads/giant/giant.h

[ . . . . ]
class Giant :public QThread {

Q_OBJECT
public:

Giant();
void run();

public slots:
void hear(const QString& text);
void die();
void setDelay(int newDelay);

signals:
void say(QString line);
void small(QString line);
void giantDead();

private:
void process(QString message);
QString distort(QString text);
QQueue<QString> m_Fifo;
int m_Delay;
bool m_IsDead;

};
[ . . . . ]

Even without threads, both Jack and Giant have slots and receive signals emitted

from the Qt event loop, as we see in Example 12.23.

E X A M P L E  1 2 . 2 3 src/threads/giant/giant.cpp

[ . . . . ]

void Giant::die() {
if (m_IsDead)

return;
m_IsDead = true;
m_Fifo << "What? You nasty little worm.";
m_Fifo << "I will squash you!!! ";
m_Fifo << "So you’re running back down the beanstalk.";
m_Fifo << "I am coming right after you!";
msleep(m_Delay);
m_Fifo << "Oh no!! Someone chopped the beanstalk!!";
m_Fifo << "aaaaaaaaa!!! .........";
m_Fifo << "   *splat* \n";

}

void Giant::hear(const QString &text) {
QString t2 = ":" + text;
m_Fifo << t2;

}

Which thread is going to sleep here, the Giant or the MainThread?1

1

1 2 . 2 T H R E A D S  A N D  Q T H R E A D

299

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 299



In addition to responding to signals from the main thread, Jack and Giant each

override the run()function. Example 12.24 shows the Giant’s thread code, which

is a typical “infinite” loop, reading input when there is some and sleeping when

there is not.

To simulate the Giant’s difficulty hearing the sounds made by a creature as

tiny as Jack, we use the distort()function to introduce some noise into his

process()function.

E X A M P L E  1 2 . 2 4 src/threads/giant/giant.cpp

[ . . . . ]

void Giant::run() {
int zcount = 0;
while (true) {

zcount = 0;
while (m_Fifo.isEmpty()) {

msleep(m_Delay);
++zcount ;
if (m_IsDead) {

emit giantDead();
break;

}
if (zcount > 3) {

m_Fifo << "zzzzzz";
}

}
QString message = m_Fifo.dequeue();
msleep(m_Delay);
process(message);

}
}

void Giant::process(QString message) {
if(message.startsWith(":")) {

QStringList l = message.split(":");
msleep(m_Delay);
if(! l[1].startsWith("(")) {

QString msg = l[1];
emit say ("Did I hear a mouse speak? It sounded like");
emit say (distort(msg));
emit say ("I never could understand those darned mice.");
if (msg.startsWith("I FOUND")) {

msg = msg.remove("I FOUND the ").remove("!!");
msg = QString("Hey! Where is my %1?").arg(msg);
emit say(msg);

}
}

} else
emit say(message);

}

C H A P T E R  1 2 : C O N C U R R E N C Y

300

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 300



GiantWindow is a very primitive GUI front end for Giant. It has slots that can be

hooked up to the giant’s signals, as we see in Example 12.25.

E X A M P L E  1 2 . 2 5 src/threads/giant/giantwindow.h

[ . . . . ]
class GiantWindow : public QMainWindow {

Q_OBJECT
public:

GiantWindow();
~GiantWindow();

public slots:
void speakJack();
void bigText(QString text);
void smallText(QString text);
void setDelay(int delayval);
void terminateThreads();

private:
LogWindow *m_GiantLogWindow;
LogWindow *m_JackLogWindow;
QLineEdit *m_LineEdit;
QPushButton *m_SpeakButton, *m_KillButton;
QSlider *m_GiantSlider;
Giant* m_Giant;
Jack* m_Jack;

};
[ . . . . ]

The constructor spells out the details of arranging things on the screen and con-

necting signals with slots. Example 12.26 shows some of those details.

E X A M P L E  1 2 . 2 6 src/threads/giant/giantwindow.cpp

1 2 . 2 T H R E A D S  A N D  Q T H R E A D

301

continued

[ . . . . ]
GiantWindow::GiantWindow() {

resize(800, 600);
m_Giant = new Giant();
m_Jack = new Jack();
/* The giant talks to the GiantWindow through signals and slots */
connect (m_Giant, SIGNAL(say(QString)), this,

SLOT(bigText(QString)));
connect (m_Giant, SIGNAL(small(QString)), this,

SLOT(smallText(QString)));
connect (m_Jack,  SIGNAL(chopBeanstalk()), m_Giant, SLOT(die()));
connect (m_Giant, SIGNAL(giantDead()), this,

SLOT(terminateThreads()));

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 301



m_GiantLogWindow = new LogWindow("giant");
m_GiantLogWindow->setToolTip("This is what the giant says");

m_JackLogWindow = new LogWindow("jack");
m_JackLogWindow->setToolTip("This is what Jack is doing");
Logger *jackLog = Logger::getLogger("jack");

connect (jackLog, SIGNAL(data(const QString&)),
m_Giant, SLOT(hear(const QString&)));

QSplitter *split = new QSplitter(this);
split->addWidget(m_GiantLogWindow);
split->addWidget(m_JackLogWindow);
setCentralWidget(split);

[ . . . . ]

A LogWindow will display all messages sent to the logger of the same name. In this case,
Logger::getLogger(“jack”) will return an object through which you send messages that get dis-
played in this window.
The giant can hear what Jack is saying!!
split-window container with draggable splitter between two widgets
We can only add two widgets to split.

12.2.4 Thread Safety and QObjects

A QObject that was created in a particular thread “belongs” to that thread and its

children must also belong to the same thread. Having parent-child relationships

that cross over threads is forbidden by Qt.

A thread-safe object is one that can be accessed concurrently by multiple

threads and is guaranteed to always be in a “valid” state. QObjects are not “thread

safe” by default. To make an object thread safe, there are a number of approaches

to take. Some are listed here, but we recommend the Qt 4 Thread Support7 docu-

mentation for further details.

1. QMutex, for mutual exclusion, along with QMutexLocker, allows an

individual thread T to protect (lock) an object or a section of code so

that no other thread can access it until T releases (unlocks) it.

2. QWaitCondition, combined with QMutex, can be used to put a thread

into a non-busy block state where it can wait for another thread to wake

it up.

3. A QSemaphore is a more generalized QMutex for situations where a

thread may need to lock more than one resource before doing its work.

Semaphores make it possible to ensure that a thread only locks resources

when enough are available for it to do its job.

4

3

2

1

4

3

2

1

C H A P T E R  1 2 : C O N C U R R E N C Y

302

7 http://oop.mcs.suffolk.edu/qtdocs/threads.html

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 302



E X E R C I S E : T H R E A D S  A N D  Q T H R E A D

■ Write a program that tells the user how many prime numbers exist in a range

between two numbers supplied in the command line.
■ Make the progress bar show the progress of the search (estimated number

of numbers left to check, relative to number of numbers checked). Also

show how many primes have been found so far.

■ Make the start/stop buttons start/stop the search for prime numbers.

Make sure the search thread does not take up so much CPU time that you

are unable to perform other user interactions.

■ Create a QListWidget (or QListView) that shows the prime numbers

found so far during the search.

■ Display the elapsed search time and the number of primes found per second.

1 2 . 3 S U M M A R Y : Q P R O C E S S  A N D  Q T H R E A D

303

12.3 Summary: QProcess and QThread
QProcess and QThread are similar in concept and have one special thing in

common: a powerful start()function that causes an execution fork (two

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 303



C H A P T E R  1 2 : C O N C U R R E N C Y

304

“things” are happening, when before there was only one). Table 12.1 summarizes

the main differences between a process and a thread.

T A B L E  1 2 . 1 QProcess versus QThread

QProcess QThread

Runs a (presumably) different program Runs in the same process, shares code,
in separate process, separate memory. and shares memory with other threads.

Communicates with child process via Shares memory and code with peer 
streams (stdin,stdout,stderr) threads. Synchronizes using locks, wait 
and passes in data initially using conditions, mutexes, and semaphores.
command line arguments (argc,argv) 
or environment variables (getenv().
See Appendix B.

Managed by the operating system Managed by the process

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 304



R E V I E W  Q U E S T I O N S

305

R E V I E W  Q U E S T I O N S

1. What are two important differences between a process and a thread?

2. List and explain at least two mechanisms by which a parent process

communicates information to its child process.

3. List and explain at least two mechanisms by which threads synchronize

with each other.

4. In what situations can a QTimer be used instead of a QThread? Why

would one want to do that?

ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 305



ezus_138004_ch12.qxd  8/4/06  10:01 AM  Page 306



307

13.1 Validators . . . . . . . . . . . . . . . . . . . . . . . . . . 308

13.2 Regular Expressions. . . . . . . . . . . . . . . . . 310

13.3 Regular Expression Validation. . . . . . . . 316

13C H A P T E R  1 3

Validation and Regular
Expressions

Validation of input data is an important issue that can

be handled in an object-oriented way by a combina-

tion of Qt classes. This chapter discusses some effi-

cient ways of validating input, including the use of

regular expressions.

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 307



13.1 Validators
Validators are nonvisual objects that are attached to input widgets (such as

QLineEdit, QSpinBox, and QComboBox) to provide a general framework for

checking user input. Qt has an abstract class named QValidator that establishes

the interface for all built-in and custom validators.

There are two concrete subclasses that can be used for numeric range check-

ing: QIntValidator and QDoubleValidator. There is also a concrete sub-

class that can be used for validating a string with a specified regular expression. We

will discuss regular expressions in the next section.

QValidator::validate() is a pure virtual method that returns an enumer-

ated value, as follows:

■ Invalid: The expression does not satisfy the required conditions and

further input will not help.

■ Intermediate: The expression does not satisfy the required condi-

tions, but further input might produce an acceptable result.

■ Acceptable: The expression satisfies the required conditions.

Other member functions enable the setting of the conditions that validate() uses.

In Example 13.1 we have a short app that uses the two numerical validators. It

takes an int and a double from the user to display the product. Each input is

given a range check when the user presses return.

E X A M P L E  1 3 . 1 src/validate/inputform.h

[ . . . . ]
class InputForm : public QMainWindow {

Q_OBJECT
public:

InputForm(int ibot, int itop, double dbot, double dtop);
void setupForm();
public slots:

void computeResult();

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 308



private:
int m_BotI, m_TopI;
double m_BotD, m_TopD;
QIntValidator* m_IValid;
QDoubleValidator* m_DValid;
QGridLayout* m_Layout;
QLineEdit *m_IntEntry, *m_DoubleEntry;
QLabel* m_Result;
QWidget* m_Center;

};
[ . . . . ]

In Example 13.2, validators are initialized with range values in the constructor

and are assigned to their respective input widgets in the setupForm() function.

E X A M P L E  1 3 . 2 src/validate/inputform.cpp

1 3 . 1 V A L I D A T O R S

309

[ . . . . ]
InputForm::InputForm(int ibot, int itop, double dbot, double dtop):

m_BotI(ibot), m_TopI(itop), m_BotD(dbot), m_TopD(dtop),
m_IValid(new QIntValidator(ibot, itop, this)),
m_DValid(new QDoubleValidator(dbot, dtop, 2, this)),
[ . . . . ]

void InputForm::setupForm() {
[ . . . . ]

m_IntEntry->setValidator(m_IValid);
m_DoubleEntry->setValidator(m_DValid);
connect(m_IntEntry, SIGNAL(returnPressed()), 

this, SLOT(computeResult()));
connect(m_DoubleEntry, SIGNAL(returnPressed()),

this, SLOT(computeResult()));
}
[ . . . . ]

The running program looks like the screenshot that follows.

If you run it, try to enter a non-int textfield, or a non-float in the second. You

should notice that it does not recognize invalid characters as input.

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 309



C H A P T E R  1 3 : V A L I D A T I O N  A N D  R E G U L A R  E X P R E S S I O N S

310

13.2 Regular Expressions
Regular expressions are powerful tools for validating input, for extracting data

from input, and for searching and replacing (see Table 13.1). The regular expres-

sion pattern matching language is used to describe regular expressions. A regular

expression (regex for short) describes constraints on the way a string is composed.

T A B L E  1 3 . 1 Examples of Regular Expressions

Pattern Meaning 

hello matches the literal string,hello

c*at (quantifier) zero or more occurrances of c, followed by at

c?at zero or 1 occurrances of c, followed by at

c.t (character set: anychar) c followed by any character 
followed by t: cat, cot, c3t, ct

c.*t (char set and quantifier) c followed by 0 or more anychar 
followed by t:ct,caaatttt,carsdfsdft

ca+t (quantifier) + means 1 or more of the preceding “thing,”
so this matches cat,caat,caaaat, but not ct

c\.\*t (literals) backslashes precede special characters 
to “escape them,” so this matches the literal:c.*t

c\\\.t (literals) c\.t

c[0-9a-c]+z matches c312abbaz caa211bac2z 

the (cat|dog) ate (alternation) the cat ate the fish or the dog
the (fish|mouse) ate the mouse or the dog ate the fish, and 

the obvious last one.

\w+ (charset) a sequence of alphanumerics, or a word, same as 
[a-zA-Z0-9]+

\W a character that is not part of a word (punctuation,
whitespace, etc.) 

\s{5} exactly 5 whitespace chars (tabs, spaces, newlines) 

\S{1,5} at least 1, at most 5 non-whitespace (printable characters)  

\d a digit [0-9] (and \D is a non-digit, i.e.,[^0-9])  

\d{3}-\d{4} 7-digit phone numbers: 555-1234

\bm[A-Z]\w+ \b means word boundary: matches mBuffer but not 
StreamBuffer

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 310



Regular expressions were first available in tools such as vi, emacs, awk, sed,

and the POSIX Standard Library. Perl was the first mainstream programming lan-

guage to integrate regular expressions so tightly into the language that it caused

many people to learn regular expressions for the first time. Many enhancements

have been made to the version of regular expressions that Perl recognizes. The

enhancements are part of what we call Perl-style extended regular expressions.

These extended regular expressions are also available in Java and Python.

Qt has a class, QRegExp, that implements most of the Perl-style extended reg-

ular expression language.

13.2.1 Regular Expression Syntax

A regular expression can be a simple string, in which case it specifies an exact string

match, or it can be a string that includes regular expression meta-characters. A

meta-character is a character that describes other characters.

Here are some of the most commonly used meta-characters.

1. Special characters

■ . (the dot matches any character)

■ \n (matches the newline character)

■ \f (matches the form feed character)

■ \t (matches the tab character)

■ \xhhhh (matches the Unicode character whose code is the hexadeci-

mal number hhhh in the range 0x0000 to 0xFFFF)

2. Quantifiers: Modifiers that specify the number of occurrences of the pre-

ceding character (or group) that may appear in the matching expression.

■ + (1 or more occurrences)

■ ? (0 or 1 occurrences)

■ * (0 or more occurrences)

■ {i,j} (at least i but not more than j occurrences)

3. Character sets: Sets of allowable values for the character in the specified

position of the matching expression. Several character sets are predefined:

■ \s (matches any whitespace character)

■ \S (matches any non-whitespace character)

■ \d (matches any digit character: '0' to '9')

■ \D (matches any non-digit character)

1 3 . 2 R E G U L A R  E X P R E S S I O N S

311

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 311



■ \w (matches any “word” character; i.e., any letter or digit or the

underscore ‘_’)

■ \W (matches any non-word character)

Character sets can also be specified in square brackets:

■ [AEIOU] (matches any of the chars 'A', 'E', 'I', 'O', or 'U')

■ [a-g] (the dash makes this a range from ‘a’ to ‘g’)

■ [^xyz] (matches any character except for 'x', 'y', and 'z')

4. Grouping and capturing characters (round parentheses): Characters that

can be used to form a group. Groups can be back-referenced, meaning

that if there is a match, the grouped values can be captured and accessed

in various ways.

For convenience, up to 9 groups can be referenced within the regular

expression by using the identifiers \1 thru \9.

There is also a QRegExp member function  cap(int nth) that

returns the nth group (as a QString).

5. Anchoring characters: Assertions that specify the boundaries of a match-

ing effort.

■ The caret (^), if it is the first character in the regex, indicates that the

match starts at the beginning of the string.

■ The dollar sign ($), when it is the last character in the regex, means

that the effort to match must continue to the end of the string.

■ In addition, there are word boundary (\b) or non-word boundary

(\B) assertions that help to focus the attention of the regex.

Backslashes are used for escaping special characters in C++ strings as
well, so this means that regular expression strings inside C++ strings
must be “double-backslashed.” In other words, every \ becomes \\, and
to match the backslash character itself you will need four:\\\\

There is much more to regular expressions. Time spent learning to use them is

well-invested time. The documentation for QRegExp is a good place to start. For

a much more extensive discussion, we recommend [Fried198].

C H A P T E R  1 3 : V A L I D A T I O N  A N D  R E G U L A R  E X P R E S S I O N S

312

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 312



13.2.2 Regular Expressions: Phone 
Number Recognition

The Problem

We want to specify conditions, in a generic way, that must be satisfied by input

data at runtime. For example:

■ In a U.S. address, every zip code can have five digits, followed by an

optional dash (-) and four more digits.

■ A U.S. phone number consists of ten digits, usually grouped 3 + 3 + 4,

with optional parentheses and dashes and an optional initial 1.

■ A U.S. state abbreviation must be one from the set of 50 approved

abbreviations.

How can we impose conditions such as these on incoming data in an object-

oriented way?

Suppose that you wanted to write a program that recognized phone number

formats, and could accept Dutch or U.S./Canada phone numbers. You would need

to take the following things into consideration.

■ For any U.S./Canada format numbers, there must AAA EEE NNNN,

where A = area code, E = exchange, and N = number.

■ For Dutch format numbers, there must be CC MM followed by either

NN NN NNN or NNN NNNN, where C = country code, M = municipal

code, and N = localNumberDigits.

■ There might be dashes or spaces between number clusters.

■ There might be + or 00 in front of the country code.

Imagine how you would write this program using the standard tools available to

you in C++. It would be necessary to write lengthy parsing routines for each pos-

sible format. Example 13.3 shows the desired output of such a program.

E X A M P L E  1 3 . 3 src/regexp/testphone.txt

$> ./testphone
Enter a phone Number (or q to quit): 1112223333
validated: (US/Canada) +1 111-222-3333
Enter a phone Number (or q to quit): 20618676017
validated: (Europe) +20 (0)61-86-76-017
Enter a phone Number (or q to quit): 31206472582
validated: (Europe) +31 (0)20-64-72-582
Enter a phone Number (or q to quit): 16175551212
validated: (US/Canada) +1 617-555-1212

1 3 . 2 R E G U L A R  E X P R E S S I O N S

313

continued

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 313



Enter a phone Number (or q to quit): +31 20 64 28 258
validated: (Europe) +31 (0)20-64-28-258
Enter a phone Number (or q to quit): 1 (617) 222 3333
validated: (US/Canada) +1 617-222-3333
Enter a phone Number (or q to quit): 31 20 111 1111
validated: (Europe) +31 (0)20-11-11-111
Enter a phone Number (or q to quit): asdf
Unknown format
Enter a phone Number (or q to quit): 111 2222 333
Unknown format
Enter a phone Number (or q to quit): 111223
Unknown format
Enter a phone Number (or q to quit): 1112222333
validated: (US/Canada) +1 111-222-2333
Enter a phone Number (or q to quit): q
$ >

A procedural C-style solution that shows how to use QRegExp is shown in

Example 13.4.

E X A M P L E  1 3 . 4 src/regexp/testphoneread.cpp

[ . . . . ]
QRegExp usformat
("(\\+?1[- ]?)?\\(?(\\d{3})\\)?[\\s-]?(\\d{3})[\\s-]?(\\d{4}"); 

QRegExp nlformat
("(\\+|00)?[\\s\\-]?(31)[\\s\\-]?(\\d\\d)[\\s\\-]?(.*)$");  

QRegExp nlformat2
("(\\d\\d)(\\d\\d)(\\d{3}");

QRegExp filtercharacters
("[\\s-\\+\\(\\)\\-]");

QString stdinReadPhone() {
QString str;
bool format=false;
do {

cout << "Enter a phone Number (or q to quit): ";
cout.flush();
str = cin.readLine();
if (str=="q")

return str;
if (usformat.exactMatch(str)) {

format = true;
QString areacode = usformat.cap(2);
QString exchange = usformat.cap(3);
QString number = usformat.cap(4);
str = QString("(US/Canada) +1 %1-%2-%3")

.arg(areacode).arg(exchange).arg(number);
}

[ . . . . ]

6

5

4

3

2

1

C H A P T E R  1 3 : V A L I D A T I O N  A N D  R E G U L A R  E X P R E S S I O N S

314

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 314



if (format == false) {
cout << "Unknown format" << endl;

}
} while (format == false) ;
return str;

}

int main() {
QString str;
do {

str =  stdinReadPhone();
if (str != "q")

cout << "validated: " << str << endl;
} while (str != "q");
return 0;

}
[ . . . . ]

All usformat numbers have country code 1, and have 3 + 3 + 4 = 10 digits.White spaces, dashes,
and parantheses between these digit groups are ignored, but they help to make the digit
groups recognizable.
Netherlands (country code 31) numbers have 2 + 2 + 7 = 11 digits.
The last seven digits will be arranged as 2 + 2 + 3.
These are characters we ignore in the last seven digits of NL numbers.
Ensures that the user-entered phone string complies with a regular expression and extracts
the proper components from it.
Keep asking until you get a valid number.

E X E R C I S E S : R E G U L A R  E X P R E S S I O N S : P H O N E
N U M B E R  R E C O G N I T I O N

1. Rewrite the birthday reminder application from Section 3.6 so that it accepts

dates in any of the following formats:

■ YYYY-MM-DD

■ YYYY/MM/DD

■ MM/DD (year defaults to this year)

■ MMM DD YYYY (year optional, defaults to this year) (MMM = 3-letter abbre-

viation for month, ignores upper/lower case but does verify validity of

month abbreviation)

2. Many operating systems come with a reasonably good list of words that are

used by various programs to check spelling. On *nix systems the word list is

generally named (at least indirectly) “words”. You can locate the file on your *nix

system by typing the command

locate words | grep dict

Piping the output of this command through grep reduces the output to those

lines that contain the string “dict”.

6

5

4

3

2

1

1 3 . 2 R E G U L A R  E X P R E S S I O N S

315

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 315



Once you have located your system word list file, write a program that will

read lines from the file and, using a suitable regex, display all the words that do

the following:

a. Begin with a pair of repeated letters

b. End in “gory”

c. Have more than one pair of repeated letters

d. Are palindromes

e. Consist of letters arranged in strictly increasing alphabetic order (e.g., knot)

If you cannot find such a suitable word list on your system, you can use the file

canadian-english-small.gz, in our dist directory.1 After you download it,

you must uncompress it with the command

gunzip canadian-english-small.gz

13.3 Regular Expression Validation
The class QRegExpValidator uses a QRegExp to validate an input string. In

Example 13.5,we defined a main window class that contains aQRegExpValidator

and some input widgets.

E X A M P L E  1 3 . 5 src/validate/regexval/rinputform.h

[ . . . . ]
class RinputForm : public QMainWindow {

Q_OBJECT
public:

RinputForm();
void setupForm();

public slots:
void computeResult();

private:
QRegExpValidator* m_PhoneValid;
QGridLayout* m_Layout;
QLineEdit* m_PhoneEntry;
QWidget* m_Center;
QLabel* m_PhoneResult;
QString m_Phone;
static QRegExp sm_PhoneFormat; 

};
[ . . . . ]

C H A P T E R  1 3 : V A L I D A T I O N  A N D  R E G U L A R  E X P R E S S I O N S

316

1 http://oop.mcs.suffolk.edu/dist

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 316



We borrowed the regex from Example 13.4 and used it to initialize the static

QRegExp. The program in Example 13.6 takes a phone number from the user and

displays it only if it is valid.

E X A M P L E  1 3 . 6 src/validate/regexval/rinputform.cpp

1 3 . 3 R E G U L A R  E X P R E S S I O N  V A L I D A T I O N

317

As we have seen, the QValidator classes provide a powerful mechanism for val-

idating input data. Qt has provided two numerical range validators and a regular

expression validator. If other types of data need to be validated, it is not difficult

to produce other subclasses of QValidator.

[ . . . . ]
QRegExp RinputForm::sm_PhoneFormat(

"(\\+?1[- ]?)?\\(?(\\d{3,3})\\)?[\\s-]?(\\d{3,3})[\\s-]?(\\d{4,4})");

RinputForm::RinputForm() :
m_PhoneValid(new QRegExpValidator(sm_PhoneFormat, this)),
[ . . . . ]

void RinputForm::setupForm() {
[ . . . . ]

m_PhoneEntry->setValidator(m_PhoneValid);
connect(m_PhoneEntry, SIGNAL(returnPressed()), 

this, SLOT(computeResult()));
}

void RinputForm::computeResult() {
m_Phone = m_PhoneEntry->text();
if (sm_PhoneFormat.exactMatch(m_Phone)) {

QString areacode = sm_PhoneFormat.cap(2);
QString exchange = sm_PhoneFormat.cap(3);
QString number = sm_PhoneFormat.cap(4);
m_PhoneResult->setText(QString("(US/Canada) +1 %1-%2-%3")

.arg(areacode).arg(exchange).arg(number));
}

}

[ . . . . ]

The QRegExpValidator will not permit entry of any characters that would pro-

duce an invalid result. Here is a snapshot of the running program.

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 317



E X E R C I S E S : V A L I D A T I O N  A N D  R E G U L A R
E X P R E S S I O N S

1. Write a program that extracts the hyperlinks from HTML files using regular

expressions. Each hyperlink looks like this:

<a href="http://www.web.www/location/page.html">The Label</a>

For each hyperlink encountered in the input file, print just the URL and label,

separated by a tab.

Keep in mind that optional whitespace can be found in different parts

of the above example pattern. Test your program on a variety of different

Web pages and verify that your program does indeed catch all the links.

2. You just changed companies and you want to reuse some open-source code

that you wrote for the previous company. Now you need to rename all the data

members in your source code. The previous company wanted data members

named like this: mVarName, but your new company wants them named like

this: m_varName. Extend FileVisitor and perform a substitution in the text

of each visited file so that all data members conform to the new company’s

coding standards.

3. Write a program that asks the user for a palindrome in a QLineEdit and has a

validator that enforces the rule that the letters (ignoring uppercase and lower-

case and whitespace) do indeed have the same order in either direction.

C H A P T E R  1 3 : V A L I D A T I O N  A N D  R E G U L A R  E X P R E S S I O N S

318

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 318



R E V I E W  Q U E S T I O N S

319

R E V I E W  Q U E S T I O N S  

1. What is a regular expression? What can you use it for?

2. What is a validator? What is it used for?

3. What is a regular expression meta-character? There are four kinds of

metacharacters: quantifier, character set, group, and anchor. Give exam-

ples of each type, and explain what they mean.

ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 319



ezus_138004_ch13.qxd  8/4/06  10:02 AM  Page 320



321

14.1 The Qt XML Module . . . . . . . . . . . . . . . . . 325

14.2 Event-Driven Parsing. . . . . . . . . . . . . . . . 325

14.3 XML, Tree Structures, and DOM. . . . . . . 329

14C H A P T E R  1 4

Parsing XML

This chapter introduces two ways of parsing XML

data, available from Qt’s XML module. We demon-

strate event-driven parsing with SAX, the Simple API

for XML, and tree-style parsing with DOM, the

Document Object Model.

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 321



XML is an acronym for eXtensible Markup Language. It is a markup language

similar to HTML (HyperText Markup Language), but with stricter syntax and no

semantics (i.e., no meanings associated with the tags).

XML’s stricter syntax is in strong contrast to HTML. For example:

■ Each XML <tag> must have a closing </tag>, or be self-closing, like

this: <br/>.

■ XML tags are case sensitive: <tag> is not the same as <Tag>.

■ Characters such as > and < that are not actually part of a tag must be

replaced by passive equivalents such as &gt; and &lt; in an XML 

document to avoid confusing the parser.

Example 14.1 is an HTML document that does not conform to XML rules.

E X A M P L E  1 4 . 1 src/xml/html/testhtml.html

<html>
<head> <title> This is a title </title>

<!-- Unterminated <link> and <input> tags are quite commonplace
in HTML code:    -->

<link rel="Saved&nbsp; Searches" title="oopdocbook"
href="buglist.cgi?cmdtype=runnamed&amp;namedcmd=oopdocbook">

<link rel="Saved&nbsp;Searches" title="queryj"
href="buglist.cgi?cmdtype=runnamed&amp;namedcmd=queryj">

</head>
<body>
<p> This is a paragraph. What do you think of that? </p>

Html makes use of unterminated line-breaks: <br>
And those do not make XML parsers happy. <br>

<ul>
<li> HTML is not very strict.
<li> An unclosed tag doesn't bother HTML parsers one bit.
</ul>

</body>
</html>

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 322



If we combined XML syntax with HTML element semantics, we would get a

language called XHTML. Example 14.2 shows Example 14.1 rewritten as XHTML.

E X A M P L E  1 4 . 2 src/xml/html/testxhtml.html

<!DOCTYPE xhtml >
<html>
<head>
<title> This is a title </title>
<!-- These links are now self-terminated: -->
<link rel="Saved&nbsp;Searches" title="oopdocbook"

href="buglist.cgi?cmdtype=runnamed" />
<link rel="Saved&nbsp;Searches" title="queryj"

href="buglist.cgi?namedcmd=queryj" />
</head>
<body>

<p> This is a paragraph. What do you think of that? </p>

<p>
Html self-terminating linebreaks are ok: <br/>
They don’t confuse the XML parser. <br/>
</p>

<ul>
<li> This is proper list item </li>
<li> This is another list item </li>
</ul>

</body>
</html>

XML is a whole class of file formats that is understandable and editable by humans

as well as by programs. XML has become a popular format for storing and

exchanging data from Web applications. It is also a natural language for represent-

ing hierarchical (tree-like) information, which includes most documentation.

Many applications (e.g., Qt Designer, Umbrello, Dia) use an XML file format

for storing data. Qt Designer’s .ui files use XML to describe the layout of Qt widg-

ets in a GUI. The book you are reading now is written in a flavor of XML called

Slacker’s DocBook.1 It’s like DocBook,2 an XML language for writing books, but

it adds some shorthand tags from XHTML and custom tags for describing

courseware.

C H A P T E R  1 4 : P A R S I N G  X M L

323

1 http://slackerdoc.tigris.org/
2 http://www.docbook.org

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 323



An XML document is comprised of nodes. Elements are nodes and look like

this: <tag> text or elements </tag>. An opening tag can contain attributes. An

attribute has the form: name="value". Elements nested inside one another form

a parent-child tree structure.

E X A M P L E  1 4 . 3 src/xml/sax1/samplefile.xml

<section id="xmlintro">
<title> Intro to XML </title>
<para> This is a paragraph </para>
<ul>

<li> This is an unordered list item. </li>
<li c="textbook"> This only shows up in the textbook </li>

</ul>
<p> Look at this example code below: </p>
<include src="xmlsamplecode.cpp" mode="cpp"/>

</section>

In Example 14.3, <ul> has two <li> children, and its parent is a <section>.

Elements with no children can be self-terminated with a />, i.e., <include/>.

Some elements such as <section> and <include> have attributes. Indenting

nested elements helps readability, but extra whitespace is ignored by most parsers.

How many direct children are there of the <section>?

XML Editors

There are several open-source XML editors available. You are encouraged to

try them before you go with a commercial solution.

1. jEdit3 has an XML plugin that works quite well. Be sure to use this option:

“insert closing tag when </ is typed”.

2. For KDE users, there is quanta.4 Like kdevelop, this is based on Kate, the

KDE advanced text editor. If you are accustomed to using emacs keys, be

sure to get this Kate plugin: ktexteditor-emacsextensions.5

C H A P T E R  1 4 : P A R S I N G  X M L

324

3 http://www.jedit.org
4 http://quanta.kdewebdev.org/
5 http://www.kde-apps.org/content/show.php?content=21706

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 324



XMLLINT The free toolxmllint is very handy for checking an XML file
for errors. It reports very descriptive error messages (mismatched start/end
tags, missing characters, etc.) and points out where the errors are. It can
also be used to indent/“pretty print”a well-formed XML document.

14.1 The Qt XML Module
Qt’s XML Module includes the following APIs of interest:

■ A C++ version of the SAX2 parser6

■ A C++ implementation of DOM, The Document Object Model7

SAX, which stands for Simple API for XML, is a low-level event-driven way of

parsing XML. SAX can run on an XML file of any size.

DOM is a higher-level interface for dealing with XML elements as objects in a

navigable tree structure. DOM loads the XML file into memory, so the maximum

file size your application can handle is limited by the amount of available RAM.

14.2 Event-Driven Parsing
Working with SAX-style XML parsers means doing event-driven programming.

The flow of execution depends entirely on the data that is being read from a file.

This inversion of control means that the thread of execution will be more diffi-

cult to trace. Our code will be called by code inside the Qt library.

Invoking the parser involves creating a reader and a handler, hooking them

up, and calling parse(), as shown in Example 14.4.

E X A M P L E  1 4 . 4 src/xml/sax1/tagreader.cpp

#include "structureparser.h"
#include <QFile>
#include <QXmlInputSource>
#include <QXmlSimpleReader>
#include <QDebug>

1 4 . 2 E V E N T - D R I V E N  P A R S I N G

325

6 http://www.saxproject.org 
7 http://www.w3c.org/DOM/

continued

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 325



int main( int argc, char **argv ) {
if ( argc < 2 ) {

qDebug() << QString("Usage: %1 <xmlfile>").arg(argv[0]);
return 1;

}
for ( int i=1; i < argc; ++i ) {

QFile xmlFile( argv[i] );
QXmlInputSource source( &xmlFile );
StructureParser handler;
QXmlSimpleReader reader;
reader.setContentHandler( &handler );
reader.parse( source );

}
return 0;

}

a custom derived instance of QXmlContentHandler
the generic parser
Hook up the objects together.
Start parsing.

The interface for parsing XML is described in the abstract base class

QXmlContentHandler. We call this a passive interface because these methods

get called, just not from our code.QXmlSimpleReader is provided, which reads an

XML file and generates parse events, calling methods on a content handler in

response to them. Figure 14.1 shows the main classes involved.

4

3

2

1

4

3

2

1

C H A P T E R  1 4 : P A R S I N G  X M L

326

F I G U R E  1 4 . 1 Abstract and concrete SAX classes

QXmlDefaultHandler

MyHandler

QXmlSimpleReader

QXmlReader QXmlContentHandler

+ startDocument()
+ endDocument()
+ startElement()
+ endElement()
+ characters()

+ parse()

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 326



F I G U R E  1 4 . 2 Plug-in component architecture

1 4 . 2 E V E N T - D R I V E N  P A R S I N G

327

For the reader to provide any useful information, it needs an object to receive

parse events. This object, a parse event handler, must implement a published

interface, so it can “plug” into the parser, as shown in Figure 14.2.

QXMLReader

QXmlContentHandler

The handler derives (directly or indirectly) from QXmlContentHandler. The

virtual methods get called by the parser when it encounters various elements of

the XML file during parsing. This is event-driven programming: You do not call

these functions directly.

E X A M P L E  1 4 . 5 src/xml/sax1/structureparser.h

#include <QXmlDefaultHandler>

class QString;

class MyHandler : public QXmlDefaultHandler {
public:

bool startDocument();
bool startElement( const QString & namespaceURI,

const QString & localName,
const QString & qName,
const QXmlAttributes & atts);

bool characters(const QString& text);
bool endElement( const QString & namespaceURI,

const QString & localName,
const QString & qName );

private:
QString indent;

};
#endif

These passively called functions are often referred to as callbacks. They respond to

events generated by the parser. The client code of MyHandler is the

QXmlSimpleReader class, inside the Qt XML Module.

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 327



CONTENTHANDLER OR DEFAULTHANDLER?
QXmlContentHandler is an abstract class with many pure virtual
methods, all of which must be overridden by any concrete derived class.
Qt has provided a concrete class named QXmlDefaultHandler that
implements the base class pure virtualmethods as empty do-nothing
bodies. You can think of this class as a concrete base class. Handlers
derived from this class are not required to override all of the methods but
must override some in order to accomplish anything.

If we do not properly override each handler method that will be used by our app,

the corresponding QXmlDefaultHandler method, which does nothing, will be

called instead. In the body of a handler function, you can

■ Store the parse results in a data structure

■ Create objects according to certain rules

■ Print or transform the data in a different format

■ Do other useful things

See Example 14.6.

E X A M P L E  1 4 . 6 src/xml/sax1/myhandler.cpp

[ . . . . ]
QTextStream cout(stdout, QIODevice::WriteOnly);

bool MyHandler::startDocument() {
indent = "";
return TRUE;

}

bool MyHandler::characters(const QString& text) {
QString t = text;
cout << t.remove('\n');
return TRUE;

}

bool MyHandler::startElement( const QString&,
const QString&,
const QString& qName,
const QXmlAttributes& atts) {

QString str = QString("\n%1\\%2").arg(indent).arg(qName);
cout << str;
if (atts.length()>0) {

QString fieldName = atts.qName(0);
QString fieldValue = atts.value(0);
cout << QString("(%2=%3)").arg(fieldName).arg(fieldValue);

C H A P T E R  1 4 : P A R S I N G  X M L

328

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 328



}
cout << "{";
indent += "    ";
return TRUE;

}

bool MyHandler::endElement( const QString&,
const QString& ,
const QString& ) {

indent.remove( 0, 4 );
cout << "}";
return TRUE;

}
[ . . . . ]

The QXmlAttributes object passed into the startElement()function is a

map, used to hold the name = value attribute pairs that were contained in the XML

elements.

As it processes the file, the parse()function calls characters(),

startElement(), and endElement()as these “events” are encountered in the

file. In particular, each time a string of ordinary characters (between the beginning

and end of a tag) is encountered, it’s passed as an array of bytes to the

characters()function.

We ran the previous program on Example 14.3 and it transformed that docu-

ment into Example 14.7, something that looks a little like LaTeX, another document

format.

E X A M P L E  1 4 . 7 src/xml/sax1/tagreader-output.txt

\section(id=xmlintro){
\title{ Intro to XML }
\para{ This is a paragraph }
\ul{

\li{ This is an unordered list item. }
\li(c=textbook){ This only shows up in the textbook }   }

\p{ Look at this example code below: }
\include(src=xmlsamplecode.cpp){}}

14.3 XML, Tree Structures, and DOM
The Document Object Model (DOM) is a higher-level interface for operating on

XML documents. Working with and navigating through DOM documents is very

straightforward (especially if you are familiar with QObject children).

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

329

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 329



SAX OR DOM? DOM requires the entire document to be loaded into
memory, so it should not be used on large files. SAX, in contrast, can write
or dispose of processed data while parsing and processing more data in
a very large document.

C H A P T E R  1 4 : P A R S I N G  X M L

330

F I G U R E  1 4 . 3 QDom UML model

The main classes in DOM are shown in Figure 14.3. setContent()parses the

file, after which the QDomDocument contains a structured tree comprised of

QDomNode objects. Each QDomNode could be an instance of QDomElement,

QDomAttr, or QDomText. Every QDomNode has a parent except the root, which is

a QDomDocument. Every node is reachable from the parent. DOM is another

application of the Composite pattern.

QDomNodeListPrivate

Unpublished Classes

children

0..1

+ impl

0..1

+ impl

QDomNodePrivate

QDomDocument

QDomText

QDomElement

QDomNodeList

 - impl : QDomNodeListPrivate*

QDomNode

# impl : QDomNodePrivate*

QDomElement

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 330



The QDom classes are wrappers around private implementation classes.
They contain no data except a pointer. This makes it possible to pass
around QDomNode by value to other functions that can change the
addressed objects (by adding attributes or children or by changing
attributes). This gives QDom a more Java-like interface.

14.3.1 Visitor Pattern: DOM Tree Walking

Qt 4 provides full read/write access to trees of XML data. Nodes can be navigated

through an interface which is similar to but slightly different from the QObject

interface. Under the surface, SAX performs the parsing, and DOM defines a

ContentHandler that creates the tree of objects in memory. All client code needs

to do is call setContent(), and this causes the input to be parsed and the tree to

be generated.

Example 14.8 transforms an XML document in place. After the tree is manip-

ulated, it is serialized to a QTextStream where it will become savable/parsable

again.

E X A M P L E  1 4 . 8 src/xml/domwalker/main.cpp

[ . . . . ]
int main(int argc, char **argv) {

QApplication app(argc, argv);
QString filename;
if (argc < 2) {

cout << "Usage: " << argv[0] << " filename.xml" << endl;
filename = "samplefile.xml";

}
else {

filename = argv[1];
}
QFile f(filename);
QString errorMsg;
int errorLine, errorColumn;
QDomDocument doc("SlackerDoc");
bool result = doc.setContent(&f, &errorMsg,

&errorLine, &errorColumn);
QDomNode before = doc.cloneNode(true);
Slacker slack(doc);
QDomNode after = slack.transform();
cout << QString("Before: ") << before << endl;
cout << QString("After: ") << after << endl;

4

3

2

1

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

331

continued

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 331



F I G U R E  1 4 . 4 Domwalker and Slacker

C H A P T E R  1 4 : P A R S I N G  X M L

332

QWidget * view = twinview(before, after);
view->show();
app.exec();
delete view;

}
[ . . . . ]

Parse the file into a DOM tree, and store tree in empty doc.
deep copy
Send the tree to Slacker.
Start the visitation.
a pair of QTreeView objects separated by slider, using the QDomDocuments as models

The Slacker class is derived from DomWalker, another application of the Visitor

pattern, specialized for walking through DOM trees.

Figure 14.4 shows the main classes used in this example.

5

4

3

2

1

5

DomWalker

# m_Doc : QDomDocument

# DomWalker(doc : QDomDocument)
+ ~ DomWalker()
+ visit(current : QDomElement) : QDomElement
+ transform() : QDomDocument
# walkTree(current : QDomNode) : QDomNode
# createElement(name : QString) : QDomElement

Slacker

+ Slacker(doc : QDomDocument)
+ visit(current : QDomElement) : QDomElement

QDomDocument

+ m_Doc

E X A M P L E  1 4 . 9 src/xml/domwalker/domwalker.cpp

[ . . . . ]
QDomDocument DomWalker::transform() {

walkTree(m_Doc);
return m_Doc;

}

QDomNode DomWalker::walkTree(QDomNode current) {
QDomNodeList dnl = current.childNodes();
for (int i=dnl.count()-1; i >=0; --i)

walkTree(dnl.item(i));

1

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 332



if (current.nodeType() == QDomNode::ElementNode) {
QDomElement ce = current.toElement();
return visit(ce);

}
return current;

}
[ . . . . ]

First process the children recursively.
We only want to process elements, leaving all nodes unchanged.
instead of a typecast

Notice that the walkTree() method, defined in Example 14.9, contains no

pointers or typecasts. The QDom(Node|Element|Document|Attribute)

types are smart-pointers. We “downcast” from QDomNode to QDomElement, or

QDomXXX, using QDomNode::toElement() or toXXX() conversion functions.

When traversing a tree, it is possible to use only the QDomNode interface,
but when operating on an actual XML element, “casting” down to
QDomElement adds some convenient functions for dealing with the
Element as a whole, as well as its attributes (which are themselves
QDomNode child objects).

Even though in this example QDomNode/QDomElement objects are being passed

and returned by value, it is still possible to change the underlying DOM objects

through the temporary copies. Through interface trickery, QDom objects look and

feel like Java-style references, and hold pointers inside, rather than actual data.

Slacker defines how to transform documents from one XML format to

another. It is an extension of DomWalker and overrides just one method,visit().

Defined in Example 14.10, this method has a special rule for each kind of element.

E X A M P L E  1 4 . 1 0 src/xml/domwalker/slacker.cpp

[ . . . . ]
QDomElement Slacker::visit(QDomElement element) {

QString name = element.tagName();
[ . . . . ]

/* Mapping elements: */
if (name == "p") {

element.setTagName("para");
return element;

}

3

2

1

3

2

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

333

continued

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 333



if (name == "ul") {
element.setTagName("unorderedlist");
return element;

}
if (name == "b") {

element.setAttribute("role", "strong");
element.setTagName("emphasis");
return element;

}
/* This transformation is more interesting because we

replace <li> text </li> with
<listitem><para> text </para></listitem>

*/
if (name == "li") {

QDomNode parent = element.parentNode();
QDomElement listitem = createElement("listitem");
parent.replaceChild(listitem, element); /*

remove the li tag, but put a listitem in its place */
element.setTagName("para");
listitem.appendChild(element);
return listitem;

}[ . . . . ]

Recall element is the original <li>text</li> node.

When we run this example, it pops up a tree view of the before/after XML docu-

ments side by side, so we can inspect them, as the next screenshot shows.

1

1

C H A P T E R  1 4 : P A R S I N G  X M L

334

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 334



14.3.2 Generation of XML with DOM

DOM documents are normally created by parsers to represent XML from an input

stream, but DOM can also be used to generate XML structures as output. It is

preferable to generate XML through an API rather than by printing formatted

strings because DOM generation guarantees that the resulting document will be

parsable again.

In Figure 14.5, DocbookDoc is a factory for QDomElements. It is derived

from QDomDocument, and specialized for creating Docbook/XML documents.

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

335

F I G U R E  1 4 . 5 DocbookDoc

QDomDocument

DocbookDoc

+ currentParent : Element
+ currentChapter : Element

+ DocbookDoc(title : QString)
+ title(title : QString, parent : Element) : Element
+ chapter(title : QString) : Element
+ section(title : QString) : Element
+ bold(boldText : QString) : Element
+ formalpara(title : QString, text : QString) : Element
+ para(text : QString) : Element
+ setRole(el : Element, role : QString)

ZenFlesh

+ ZenFlesh()

In the header file for this class, excerpted in Example 14.11, we added a typedef

to improve readability. In the DOM standard, all DOM classes are simply called

Node, Element, Document, and Attribute.

E X A M P L E  1 4 . 1 1 src/libs/docbook/docbookdoc.h

typedef QDomElement Element;

Saves on typing and is consistent with Java DOM.

We can build documents by creating chapters, sections, and paragraphs, as we see

in Example 14.12.

1

1

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 335



E X A M P L E  1 4 . 1 2 src/xml/xmlbuilder/zenflesh.cpp

#include <qstd.h>
using namespace qstd;
#include "../docbook.h"

class ZenFlesh : public DocbookDoc {
public: ZenFlesh();

};

ZenFlesh::ZenFlesh() :
DocbookDoc("Zen Flesh, Zen Bones") {

chapter("101 Zen Stories");
section("A cup of tea");
para("Nan-in served a cup of tea.");
section("Great Waves");
QDomElement p = para("o-nami the wrestler sat in meditation"

"and tried to imagine himself as a bunch of great waves.");
setRole(p, "remark");
chapter("The Gateless Gate");
formalpara("The Gateless Gate",

"In order to enter the gateless gate, you must have a ");
bold(" mindless mind.");

section("Joshu’s dog");
para("Has a dog buddha nature or not?");

section("Haykujo’s Fox");
QDomElement fp = formalpara("This is a special topic",

"Which should have a role= remark attribute");
setRole(fp, "remark");

}

int main() {
ZenFlesh book;
cout << book << endl;

}

The constructor generates a little book in XML, which after pretty-printing, could

look like Example 14.13.

E X A M P L E  1 4 . 1 3 src/xml/zen.xml

<book>
<title>Zen Flesh, Zen Bones</title>
<chapter>

<title>101 Zen Stories</title>
<section>

<title>A cup of tea</title>

C H A P T E R  1 4 : P A R S I N G  X M L

336

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 336



<para>Nan-in served a cup of tea.</para>
</section>
<section>

<title>Great Waves</title>
<para>
o-nami the wrestler sat in meditation and tried
to imagine himself as a bunch of great waves.
</para>

</section>
</chapter>
<chapter>

<title>The Gateless Gate</title>
<formalpara>

<title>The Gateless Gate</title>
In order to enter the gateless gate,
you must have a <emphasis role="strong">
mindless mind</emphasis>

</formalpara>
<section>

<title>Joshu’s dog</title>
<para>Has a dog buddha nature or not?</para>

</section>
<section>

<title>Haykujo’s Fox</title>
<formalpara role="remark">

<title>This is a special topic</title>
Which should have a role="remark" attribute

</formalpara>
</section>

</chapter>
</book>

The advantage of this format is that it can be easily converted into HTML (or PDF,

or LaTeX) using xsltproc and the Docbook/XSL stylesheets [docbookxsl].

Example 14.14 shows the invocation for generating an HTML version.

E X A M P L E  1 4 . 1 4 src/xml/zen2html

#!/bin/sh
# translates zen.xml into index.html
# requires gnu xsltproc and docbook-xsl
xsltproc ../../../docbook-xsl/html/onechunk.xsl zen.xml

Now let’s look at Example 14.15, where the elements are created. Each major

Docbook language element has a corresponding factory method in DocbookDoc.

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

337

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 337



E X A M P L E  1 4 . 1 5 src/libs/docbook/docbookdoc.cpp

[ . . . . ]

DocbookDoc::DocbookDoc(QString titleString) {
Element root = createElement("book");
appendChild(root);
title(titleString, root);
currentParent = root;

}

Element DocbookDoc::bridgehead(QString titleStr) {
Element retval = createElement("bridgehead");
Element titleEl = title(titleStr);
currentParent.appendChild(retval);
return retval;

}

Element DocbookDoc::title(QString name, Element parent) {
Element retval = createElement("title");
QDomText tn = createTextNode(name);
retval.appendChild(tn);
if (parent != Element())

parent.appendChild(retval);
return retval;

}

Element DocbookDoc::chapter(QString titleString) {
Element chapter = createElement("chapter");
title(titleString, chapter);
documentElement().appendChild(chapter);
currentParent = chapter;
currentChapter = chapter;
return chapter;

}

Element DocbookDoc::para(QString textstr) {
QDomText tn = createTextNode(textstr);
Element para = createElement("para");
para.appendChild(tn);
currentParent.appendChild(para);
currentPara = para;
return para;

}

In addition, we have some character-level elements that only modify text, shown

in Example 14.16.

C H A P T E R  1 4 : P A R S I N G  X M L

338

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 338



E X A M P L E  1 4 . 1 6 src/libs/docbook/docbookdoc.cpp

[ . . . . ]

Element DocbookDoc::bold(QString text) {
QDomText tn = createTextNode(text);
Element emphasis = createElement("emphasis");
setRole(emphasis, "strong");
emphasis.appendChild(tn);
currentPara.appendChild(emphasis);
return emphasis;

}

void  DocbookDoc::setRole(Element el, QString role) {
el.setAttribute("role", role);

}

Because each QDomNode must be created by QDomDocument, it makes sense to

extend QDomDocument to write our own DOM factory.

DocbookDoc adds its newly created Elements as children to previously created

Elements, depending on what kind of Element is being created.

E X E R C I S E : X M L , T R E E  S T R U C T U R E S ,
A N D  D O M

Rewrite the Slacker transformer tree-walker so that instead of modifying a DOM

tree in place, it creates a new DOM tree using an Element factory derived from a

QDomDocument. You can use the DocbookDoc class as a starting point.

1 4 . 3 X M L , T R E E  S T R U C T U R E S , A N D  D O M

339

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 339



C H A P T E R  1 4 : P A R S I N G  X M L

340

R E V I E W  Q U E S T I O N S

1. If there is a syntax error in your XML file, how do you determine the

cause and location?

2. SAX is an event-driven parser. What kinds of events does it respond to?

3. Qt (as well as other language frameworks) offers two XML parser APIs,

one is SAX and the other is DOM. Compare and contrast them. Why

would you use one rather than the other?

4. If you have a QDomNode and it is actually “pointing” to a QDomElement,

how do you get a reference to the QDomElement?

5. Explain how DomWalker is an application of the Visitor pattern.

ezus_138004_ch14.qxd  8/4/06  10:03 AM  Page 340



341

15.1 Anti-patterns . . . . . . . . . . . . . . . . . . . . . . . 342

15.2 QMetaObject: The MetaObject 

Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

15.3 Type Identification 

and qobject_cast . . . . . . . . . . . . . . . . . . . 345

15.4 Q_PROPERTY Macro: Describing 

QObject Properties . . . . . . . . . . . . . . . . . 347

15.5 QVariant Class: Accessing 

Properties . . . . . . . . . . . . . . . . . . . . . . . . . 350

15.6 DataObject: An Extension 

of QObject . . . . . . . . . . . . . . . . . . . . . . . . . 353

15.7 Property Containers: PropsMap . . . . . . 355

15C H A P T E R  1 5

Meta Objects, Properties,
and Reflective Programming

In this chapter we introduce the idea of reflection,

the self-examination of an object’s members. Using

reflective programming, it becomes possible to write

general-purpose operations that work on classes of

varied structures. Using QVariant, a generic value-

holder, we can operate on built-in types as well as

other common types in a uniform way.

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 341



15.1 Anti-patterns
Anti-pattern1 is a term first coined by [Gamma95] to mean a common design

pitfall. An anti-pattern is called this because many design patterns are designed to

avoid such pitfalls.

In other words, design patterns are commonly used solutions to anti-patterns,

which are commonly faced problems. Some examples of anti-patterns are:

■ Copy and paste programming: Copying and modifying existing code

without creating more generic solutions.

■ Hard coding: Embedding assumptions about the environment (such as

constant numbers) in multiple parts of the software

■ Interface bloat: Having too many methods, or too many arguments in

functions; in general, refers to a complicated interface that is hard to

reuse or implement

■ Reinventing the (square) wheel: Implementing some code when some-

thing (better) already exists in the available APIs

■ God Object: An object that has too much information or too much

responsibility. This can be the result of having too many functions in a

single class. It can arise from many situations, but often happens when

code for a model and view are combined in the same class.

In Figure 15.1, customer includes member functions for importing and export-

ing its individual data members in XML format. getWidget()provides a special

GUI widget that the user can use to enter data from a graphical application. In

addition, there are custom methods for input/output via iostream.

This class is a model, because it holds onto data and represents some abstract

entity.However, this class also contains view code,because of thecreateWidget()

method. In addition, it contains serialization code specific to the data type. That is

1 http://en.wikipedia.org/wiki/Anti-pattern

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 342



too much responsibility for a data model. It is quickly becoming an example of the

God Object anti-pattern.

As we add other data model classes (Address, ShoppingCart, Catalog,

CatalogItem, etc.), each of them also would need these methods:

■ createWidget()

■ importXML()

■ exportXML()

■ operator<<()

■ operator>>()

This could lead to the use of copy-and-paste programming, another anti-pattern.

If we ever change the data structure, corresponding changes would need to be

made to all presentation and I/O methods. Bugs introduced when maintaining

this code are very likely.

If Customer were reflective, meaning that it had the ability to determine use-

ful things about its own members (e.g.: How many properties? What are their

names? What are their types? How do I load/store them? What are the child

objects?), then we could define a generic way to read and write objects that would

work for Customer and any other similarly reflective class.

1 5 . 1 A N T I - P A T T E R N S

343

F I G U R E  1 5 . 1 Anti-pattern

Customer

  - name : QString
 - address : QString
 - city : QString
 - birthdate : QDate

+ setName(newName : QString)
+ setAddress(newAddress : QString)
+ setCity(newCity : QString)
+ setBirthdate(newDate : const QDate&)
+ getName() : QString
+ getAddress() : QString
+ getCity() : QString
+ getBirthdate() : QDate
+ exportXML(os : ostream&)
+ importXML(is : istream&)
+ createWidget() : QWidget*
+ getWidget() : QWidget*

operator<<(ostream& out, const Customer& cust) : ostream&
operator>>(istream& in, Customer& cust): istream&

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 343



15.2 QMetaObject: The MetaObject Pattern
By abstracting the abstract data type itself, we achieve what is called a MetaObject.
A MetaObject is an object that describes the structure of another object.2

The MetaObject Pattern

The QMetaObject is Qt’s implementation of the MetaObject pattern. It

provides information about properties and methods of a QObject. The

MetaObject pattern is sometimes known as the Reflection pattern.

A class that has a MetaObject supports reflection. This is a feature found in many

object-oriented languages. It does not exist in C++, but Qt’s MetaObject compiler

(moc) generates the code to support this for desired classes.

As long as certain conditions apply,3 each class derived from QObject will

have a QMetaObject generated for it by moc, as shown in Figure 15.2. QObject

has a member function that returns a pointer to the object’s QMetaObject.

QMetaObject* QObject::metaObject () const [virtual]

A QMetaObject can be used to invoke functions such as:

■ className(), which returns the class name as a const char*

■ superClass(), which returns a pointer to the QMetaObject of the

base class if there is one (or 0 if there is not)

■ methodCount(), which returns the number of member functions of

the class

■ Several other useful functions that we will discuss in this chapter

The signal and slot mechanism also relies on the QMetaObject.

By using the QMetaObject and QMetaProperty, it is possible to write code

that is generic enough to handle all self-describing classes.

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

344

2 Meta, the latin root meaning about, is used for its literal definition here.
3 Each class must be defined in a header file, listed in the project file’s HEADERS, and must include the
Q_OBJECT macro in its class definition.

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 344



1 5 . 3 T Y P E  I D E N T I F I C A T I O N  A N D  Q O B J E C T _ C A S T

345

F I G U R E  1 5 . 2 MetaObjects

Customer

+mCustomerId: int
+mBalance: double

QMetaProperty

Address

+mStreet: QString
+mCity: QString
+mState: QString
+mZip: QString

QObject

+metaObject(): QMetaObject*
+property(name:char*): QVariant
+setProperty(name:QString,value:QVariant): bool

QMetaObject

+findProperty(name): QMetaProperty

Customer metaobj

mCustomerid-metaProp

mBalance-metaProp

Address metaobj

mStreet-metaProp

mCity-MetaProp

mState-Metaprop
moc_customer.cpp

moc_address.cpp

15.3 Type Identification and qobject_cast
RTTI, or Run-Time Type Identification, as its name suggests, is a system for

determining at runtime the actual type of an object, to which we may only have a

base class pointer.

In addition to C++’s RTTI operators, dynamic_cast and typeid (Sec-

tion 19.8), Qt provides two mechanisms for run-time type identification.

1. qobject_cast

2. QObject::inherits()

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 345



qobject_cast is an ANSI-style typecast operator (Section 19.7). ANSI typecasts

look a lot like template functions:

DestType* qobject_cast<DestType*> ( QObject * qoptr )

A typecast operator converts an expression from one type to another, following

certain rules and restrictions imposed by the types and the language. Like other

cast operators, qobject_cast takes the destination type as a template parame-

ter. It returns a different-typed pointer to the same object. If at runtime the actual

pointer type cannot be converted to DestType*, then the conversion fails and the

value returned is NULL.

As the signature suggests, qobject_cast is type-restricted to arguments of

type DestType*, where DestType is derived from QObject and the class was fully

processed by moc. Therefore, qobject_cast is actually a downcast operator,

similar to dynamic_cast.

In situations where you have base class pointers to derived class objects, down-

casting makes it possible to call derived class methods that do not exist in the base

class interface. In Example 15.1, we take advantage of the fact that QApplication,

and MyApplication, both derive from QObject.

E X A M P L E  1 5 . 1 src/qtrtti/myapp-classdef.cpp

class MyApplication : public QApplication {
Q_OBJECT   /* Required for Qt RTTI */
public:

static MyApplication* instance();
QString imagesURL() const;
[... other members ...]

};

MyApplication* MyApplication::instance() {
static MyApplication* inst = 0;
if (inst == 0) {

inst = qobject_cast<MyApplication*>(qApp);
}
return inst;

}

Because qApp always points to the currently running QApplication, this func-

tion will return non-zero only if a MyApplication is the current running appli-

cation. The downcast operation, which some say is expensive, happens only once, to

ensure a properly typed MyApplication pointer. Future calls to instance()

will return the previously cast pointer, avoiding repeated calls to expensive run-

time checking operations. Now it becomes possible to obtain the properly typed

MyApplication instance from other locations in the code:

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

346

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 346



.
QString imagePath(QString filename) {

MyApplication* app = MyApplication::instance();
QString path = app->imagesURL() + "/" + filename;  
return path;

}

The same file separator char works on all operating systems that support Qt!

The implementation of qobject_cast makes no use of C++ RTTI. The
code for this operator is generated by the MetaObject Compiler(moc).

QObject also offers a Java-style typechecking function, inherits(). Unlike

qobject_cast, inherits()accepts a char* type name instead of a type

expression. This operation is slower than qobject_cast because it requires an

extra hashtable lookup, but it can be useful if you need input-driven type checking.

Example 15.2 shows some client code that uses inherits().

E X A M P L E  1 5 . 2 src/qtrtti/qtrtti.cpp

[ . . . . ]

//  QWidget* w = &s;

if (w->inherits("QAbstractSlider"))  cout << "Yes, it is ";
else cout << "No, it is not";
cout << "a QAbstractSlider" << endl;

if (w->inherits("QListView")) cout << "Yes, it is ";
else  cout << "No, it is not ";
cout << "a QListView" << endl;

return 0;
}

pointer to some widget

15.4 Q_PROPERTY Macro: Describing 
QObject Properties

The property facility gives us a choice of ways to access data members:

■ Directly, through the classic getters/setters (faster, more efficient)

■ Indirectly, through the QObject/QMetaObject interface (more generic)

1

1

1

1

1 5 . 4 Q _ P R O P E R T Y  M A C R O : D E S C R I B I N G  Q O B J E C T  P R O P E R T I E S

347

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 347



E X A M P L E  1 5 . 3 src/properties/customer-props.h 

[ . . . . ]
class CustProps : public QObject {

Q_OBJECT

/* Each property declaration has the following syntax:

Q_PROPERTY( type name READ getFunction [WRITE setFunction]
[RESET resetFunction] [DESIGNABLE bool]
[SCRIPTABLE bool] [STORED bool] )
*/

Q_PROPERTY( QString Id READ getId WRITE setId );
Q_PROPERTY( QString Name READ getName WRITE setName );
Q_PROPERTY( QString Address READ getAddress WRITE setAddress );
Q_PROPERTY( QString Phone READ getPhone WRITE setPhone);
Q_PROPERTY( QDate DateEstablished

READ getDateEstablished
WRITE setDateEstablished );

Q_PROPERTY( CustPropsType Type READ getType WRITE setType );
Q_ENUMS( CustPropsType ) ;

public:
enum CustPropsType
{ Corporate, Individual, Educational, Government };

CustProps(QObject *parent = 0, const QString name = QString());

QString getId() const {
return m_Id;

}
[ . . . . ]
CustPropsType getType() const {

return m_Type;
}

QString getTypeString() const;
void setId(const QString &newId);

[ . . . . ]
// Overloaded, so we can set the type 2 different ways:

void setType(CustPropsType newType);
void setType(QString newType);

private:
QString m_Id, m_Name, m_Address, m_Phone;
QDate m_Date;
CustPropsType m_Type;

};
[ . . . . ]

macro required for moc to preprocess class
special macro to generate string-to-enum conversion functions
The enum type definition must be in the same class definition as the Q_ENUMS macro.3

2

1

3

2

1

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

348

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 348



In Example 15.3, we have a customer class with a Qt property defined for each data

member. The name of a property must not be the same as any data member name.

We have adopted the common practice of giving each property that corresponds

to a data member a name that is based on the corresponding data member name.

If the data member is m_DataItem, the corresponding property is named

DataItem. We discuss an example of a class that has properties that do not cor-

respond to data members in Section 16.3.3.

Notice the enum CustPropsType that is defined in the public section of

the class CustProps. Just above that definition, the Q_ENUMS macro tells moc

to generate some functions for this property in the QMetaProperty to aid in

string conversions for enum values.

The setters and getters are defined in Example 15.4. They are implemented in

the usual way.

E X A M P L E  1 5 . 4 src/properties/customer-props.cpp 

[ . . . . ]
CustProps::CustProps(QObject *parent, const QString name)

:QObject(parent) {
setObjectName(name);

}

void CustProps::setId(const QString &newId) {
m_Id=newId;

}
[ . . . . ]
void CustProps::setType(CustPropsType theType) {

m_Type=theType;
}

/* Method for setting enum values from Strings. */
void CustProps::setType(QString newType) {

static const QMetaObject* meta = metaObject();
static int propindex = meta->indexOfProperty("Type");
static const QMetaProperty mp = meta->property(propindex);

QMetaEnum menum = mp.enumerator();
const char* ntyp = newType.toAscii().data();
m_Type = static_cast<CustPropsType>(menum.keyToValue(ntyp));

}

QString CustProps::getTypeString() const {
return property("Type").toString();

}
[ . . . . ]

Overloaded version that accepts a string as an argument. Sets value to �1 if unknown.
Because they are static locals, the initializations happen only once.
This code gets executed each time.3

2

1

3

2

1

1 5 . 4 Q _ P R O P E R T Y  M A C R O : D E S C R I B I N G  Q O B J E C T  P R O P E R T I E S

349

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 349



The implementation of the overloaded function setType(QString) takes

advantage of QMetaProperty’s Q_ENUM macro to convert the QString to the

proper enumerated value. To obtain the correct QMetaProperty object for an

enum, we first get the QMetaObject and call functions indexOfProperty()

and property() to find it. QMetaProperty has a function called

enumerator()that you can use to convert strings to enums. If the given

QString argument does not match one of the enumerators, the keyToValue()

function will return the value �1.

Static Local Variables

Observe that we have declared the three local (block scope) variables, meta,

propindex, and mp, to be static.

Each call to this function will require the same QMetaProperty object,

so there is no need to have repeated calls to the QMetaObject functions

require the iteration each time. static local variables are initialized only

once, which is our intention—repeated calls to this function will use the

same QMetaProperty object to do the conversion. Using static local

variables this way in a function can greatly improve the run-time perform-

ance for that function.4

15.5 QVariant Class: Accessing Properties
One frequently encountered problem C++ developers have as they try to make

things more object oriented, arises from the fact that primitive types of C++ (e.g.,

int, float, char*, etc.) do not derive from a common base class. They’re called

primitive because they’re smaller, simpler, and used to compose more complex

things.

We would like to be able to retrieve the value of any property through the fol-

lowing function:

[returntype] QObject::property(QString propertyName);

Templates are one way to address this issue—template functions cause code to be

generated for each used type. In Qt, we have another object-oriented way to solve

the problem: through the use of QVariant.

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

350

4 This depends on how expensive creating the objects are and how often the function is called.

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 350



QVariant is a union wrapper5 for all the basic types, as well as all permitted

Q_PROPERTY types. You can create a QVariant as a wrapper around another

typed value. It remembers its type, and has member functions for getting and set-

ting its value.

QVariant has a rich interface for data conversion and validity checking. In

particular, there is a toString()function that returns a QString representation

for its different types. This class greatly simplifies the property interface.

Example 15.5 shows some client code for the CustProps class defined in

Example 15.3.

E X A M P L E  1 5 . 5 src/properties/testcustomerprops.cpp 

[ . . . . ]

int main() {
CustProps cust;
cust.setName("Falafal Pita");
cust.setAddress("41 Temple Street; Boston, MA; 02114");
cust.setPhone("617-555-1212");
cust.setType("Government");
ASSERT_EQUALS(cust.getType(), CustProps::Government);
QString originalid = "834";
cust.setId(originalid);
QVariant v = cust.property("Id");
QString str = v.toString();
ASSERT_EQUALS(originalid, str);
QDate date(2003, 7, 15);
cust.setProperty("DateEstablished", QVariant(date));
QDate anotherDate = cust.getDateEstablished();
ASSERT_EQUALS(date, anotherDate);
cust.setId(QString("anotherId"));
qDebug() << objToString(&cust);
cust.setType(CustProps::Educational);
qDebug() << " Educational=" << cust.getType();
cust.setType("BogusType");
qDebug() << " Bogus= " << cust.getType();
return 0;

}

7

6

5

4

3

2

1

1 5 . 5 Q V A R I A N T  C L A S S : A C C E S S I N G  P R O P E R T I E S

351

5 A union is a struct that declares several data members that are all allocated at the same address.
This means that the union will occupy only enough memory to accommodate the largest of the
declared data members. When instantiated, a union can only store a value for one of the declared
members.

continued

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 351



setting some simple properties
setting enum property as a string
comparing to enum value
setting a string property
getting it back as a QVariant through the QObject base class method
setting date properties, wrapped in QVariants
The date comes back through the type-specific getter.

In Example 15.6, we show a reflective objToString()method that works on any

class with Qt properties defined. It works by iterating through each property()

value, in a way that is comparable to the java.lang.reflect interface.

E X A M P L E  1 5 . 6 src/properties/testcustomerprops.cpp 

[ . . . . ]

QString objToString(const QObject* obj) {
QStringList result;
const QMetaObject *meta = obj->metaObject();
result += QString("class %1 : public %2 {")

.arg(meta->className())

.arg(meta->superClass()->className());
for (int i=0; i < meta->propertyCount(); ++i) {

const QMetaProperty qmp = meta->property(i);
result += QString("  %1 %2 = %3;")

.arg(qmp.type())

.arg(qmp.name())

.arg(obj->property(qmp.name()).toString());
}
result += "};";
return result.join("\n");

}

We introspect into the object via the QMetaObject.

The program outputs an object’s state in a C++-style format:

src/properties> ./properties
class CustProps : public QObject {

10 objectName = ;
10 Id = anotherId;
10 Name = Falafal Pita;
10 Address = 41 Temple Street; Boston, MA; 02114;
10 Phone = 617-555-1212;
14 DateEstablished = 2003-07-15;
2 Type = 3;

};
Educational= 2
Bogus=  -1

1

1

7

6

5

4

3

2

1

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

352

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 352



1 5 . 6 D A T A O B J E C T : A N  E X T E N S I O N  O F  Q O B J E C T

353

F I G U R E  1 5 . 3 DataObject

15.6 DataObject: An Extension of QObject
We have developed an extension to QObject named DataObject that we can

use as a base class for other data types that require any of the following features:

■ A virtual interface for obtaining properties, MetaProperties, and

metaClass information

■ Convenience functions for copying and comparing property values of

DataObjects

■ A toString()function that returns a presentation of all the properties

of the object in XML format

This improved interface makes DataObject a Façade for QObject.

DataObject, shown in Figure 15.3, is used in several forthcoming examples

to demonstrate various design patterns.

QObject

DataObject

+ DataObject(name : QString)
+ readFrom(source : const QObject&) : bool
+ write To(de st : QObject&) : bool
+ equals(other : const QObject&, compare Children : bool) : bool
+ operator ==(other : const DataObject&) : bool
+ className() : QString
+ propertyNames() : QStringList
+ numProperties() : uint
+ toString(indentlevel : int) : QString
+ property(name : constchar*) : QVariant
+ clone() : DataObject*
+ setProperty(propName : const char*, qv : const QVariant&) : bool

PropsMap

DataObject is Qt-property aware and takes advantage of this interface for read-

ing and writing properties of arbitrary QObjects, as shown in Example 15.7.

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 353



E X A M P L E  1 5 . 7 src/libs/dataobjects/dataobject.cpp 

[ . . . . ]

bool DataObject::readFrom(const QObject& source) {
bool retval = true;
const QMetaObject* meta = source.metaObject();
int count = meta->propertyCount();
for (int i=0; I<count; ++i) {

QMetaProperty metap = meta->property(i);
const char* pname = metap.name();
if (metap.isWritable()) {

retval = setProperty(pname, source.property(pname))
&& retval;

}
}
return retval;

}

[ . . . . ]

bool DataObject::writeTo(QObject& dest) const {
bool result = true;
foreach (QString propname, propertyNames()) {

if (metaProperty(propname).isWritable()) {
QVariant val = property(propname);
result = dest.setProperty(propname.toAscii(), val) 

&& result;
}

}
return result;

}

E X E R C I S E S : M E T A  O B J E C T S , P R O P E R T I E S ,
A N D  R E F L E C T I V E  P R O G R A M M I N G

1. Many people have several pets, each of which require periodic maintenance

(visits to the veterinarian, immunizations, vitamins, grooming, etc.).

■ Derive a class named Pet from DataObject. Supply this class with appro-

priate attributes that can uniquely describe the pet (type, breed, name, ID,

birthday, etc.). For each attribute, you will need a getter and a setter so that

you can set up a Q_PROPERTY.

■ Derive another class from DataObject that you can call Maintenance (if

you can’t think of a better name). This class should have attributes that

uniquely describe a particular maintenance event (type of event, date, cost,

etc.). Maintenance objects will be stored as children of Pet objects.

■ Derive a PetList class from DataObject.Pet objects will be children of

PetList.

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

354

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 354



■ Serialization is facilitated by the DataObject::toString()function.

Find out how to use this for your PetWriter class and how to reverse the

action in your PetReader class.

■ Design a nice GUI for these classes so that the user can enter, store, and dis-

play data.

2. Do the exercise in Section 25.1.

15.7 Property Containers: PropsMap
Some objects, such as FileTagger (see Section 16.3.3) are heavyweight objects,

meaning that creating/copying them requires allocation of external resources (the

ID3_tag object, specifically). If you only wish to capture the object’s proper-

ties without allocating another external resource, this is a form of in-memory

serialization.

PropsMap has its name because it uses a map as a container for name/

property pairs, Perl-style.6 Example 15.8 defines the class, using a QMap to store

the properties.

E X A M P L E  1 5 . 8 src/libs/dataobjects/propsmap.h 

[ . . . . ]
class PropsMap : public DataObject {

Q_OBJECT
public:

PropsMap(QString classn=QString()): m_ClassName(classn) {}
PropsMap(const QObject& other);
virtual QString className() const;
bool readFrom(const QObject& source);
QVariant property(QString key) const {

return m_ValueMap[key];
}
virtual QStringList propertyNames() const {

return m_ValueMap.keys();
}

public slots:
virtual bool setProperty(const QString& key,

const QVariant& value) ;
virtual bool setProperty(const QString& key,

const QString& value) ;

1 5 . 7 P R O P E R T Y  C O N T A I N E R S : P R O P S M A P

355

6 In perl, each “object” is simply a hashtable of key/value pairs with methods on it. All an object’s data
members are stored in the hash table.

continued

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 355



private:
QMap<QString, QVariant> m_ValueMap;
QString m_ClassName;

};
[ . . . . ]

holder of properties
the pseudo-class that the object belongs to

The implementation of these methods, shown in Example 15.9, is straightforward.

E X A M P L E  1 5 . 9 src/libs/dataobjects/propsmap.cpp 

#include <qmetaobject.h>
#include <qvariant.h>
#include "propsmap.h"

PropsMap::PropsMap(const QObject& other) {
readFrom(other);

}

bool PropsMap::readFrom(const QObject& source) {
m_ClassName =source.metaObject()->className();
return DataObject::readFrom(source);

}

QString PropsMap::className() const {
if (m_ClassName != QString())

return m_ClassName;
else

return "PropsMap";
}

bool PropsMap::setProperty(const QString& key,
const QString & value) {

return setProperty(key, QVariant(value));
}
bool PropsMap::setProperty(const QString& key,

const QVariant& value) {
m_ValueMap[key]=value;
return true;

}

As you examine the code in libdataobject, you will find that PropsMap is

used for the following purposes:

1. As a default type to return from ObjectFactory when nothing is

known about the given classname

2. As a temporary container of property information from FileTagger

objects

2

1

2

1

C H A P T E R  1 5 : M E T A  O B J E C T S , P R O P E R T I E S , A N D  R E F L E C T I V E  P R O G R A M M I N G

356

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 356



R E V I E W  Q U E S T I O N S

357

R E V I E W  Q U E S T I O N S

1. What is an anti-pattern? Give two examples.

2. How do you determine the number of properties defined in a QObject?

3. How does the QMetaObject code for each of your QObject-derived

classes get generated?

4. What is a downcast? In what situations do we use them?

5. What are the advantages of defining properties over regular getters and

setters?

6. What does the property()function return? How do we obtain the

actual stored value?

ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 357



ezus_138004_ch15.qxd  8/4/06  10:04 AM  Page 358



359

16.1 Creational Patterns . . . . . . . . . . . . . . . . . 360

16.2 Serializer Pattern Revisited . . . . . . . . . . 373

16.3 The Façade Pattern . . . . . . . . . . . . . . . . . 381

16C H A P T E R  1 6

More Design Patterns

In this chapter, we present design patterns from each

of the three categories: creational, structural, and

behavioral.

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 359



16.1 Creational Patterns
By using creational patterns to manage object creation, we gain flexibility that

makes it possible to choose or change the kinds of objects created or used at run-

time, and also to manage object deletion automatically. Especially in large software

systems, managing the creation of objects is important for flexibility in program

design, maintaining a separation between layers of code and ensuring that objects

are properly deleted when they are no longer needed.

In C++, a factory is a program component, generally a class, that is responsi-

ble for creating objects. The idea of a factory is to separate object creation from

object usage.

A factory class generally has a function that obtains dynamic memory for the

new object and returns a base class pointer to that object. This approach allows

new derived types to be introduced without necessitating changes to the code that

uses the created object.

We will discuss several design patterns that use factories and show examples of

these design patterns.

When the responsibility for heap object creation is delegated to a virtual

function, we call this a Factory method.

By making the factory method pure virtual and writing concrete derived

factory classes, this becomes an abstract factory.

The Abstract Factory pattern provides an interface for defining factories

that share abstract features but differ in concrete details. Client code can

instantiate a particular subfactory and then use the abstract interface to cre-

ate objects.

By imposing creation rules that prevent direct instantiation of a class, we can

force clients to use factory methods to create all instances. When we combine cre-

ation rules with a factory method that always returns the same singleton object,

this is an example of the Singleton pattern.

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 360



The Singleton pattern restricts a class so that only one instance can be

created. This can be accomplished by making its constructor private or

protected and providing an instance() function that creates a new

instance if one does not already exist, but returns a pointer or reference to

that instance if it does.

1 6 . 1 C R E A T I O N A L  P A T T E R N S

361

Consider two ways of creating a Customer:

Customer* c1 = new Customer(name);
Customer* c2 = CustomerFactory::instance()->newCustomer(name)

In the first case, we are hard-coding the class name and calling a constructor

directly. The object will be created in memory using the default heap storage.

Hard-coded class names in client code can limit the reusability of the code.

In the second case, we create a Customer object indirectly using a factory

method called newCustomer(). In fact, newCustomer()is being called on a

singleton CustomerFactory instance. CustomerFactory is a singleton

because only one instance is available to us, via a static factory method,

instance().

16.1.1 Abstract Factory

AbstractFactory, defined in Example 16.1, is a simple class.

E X A M P L E  1 6 . 1 src/libs/dataobjects/abstractfactory.h

[ . . . . ]
class AbstractFactory {

public:
virtual DataObject* newObject (QString className) = 0;
virtual ~AbstractFactory() {}

};
[ . . . . ]

The newObject() method is pure virtual, so it must be overridden in derived

classes. Example 16.2 shows a concrete class derived from AbstractFactory.

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 361



E X A M P L E  1 6 . 2 src/libs/dataobjects/objectfactory.h

[ . . . . ]
class ObjectFactory : public QObject, public AbstractFactory {

Q_OBJECT
public:

static ObjectFactory* instance() ;
virtual DataObject* newObject (QString className);
Address* newAddress (Country::CountryType country =

Country::Undefined);
Address* newAddress (QString countryName = "USA");

protected:
ObjectFactory() {}

};
[ . . . . ]

ObjectFactory knows how to create a couple of concrete types. Since it is pos-

sible for any string to be supplied to newObject(), ObjectFactory handles

the case when an unknown class is passed. This is where PropsMap comes into

play. ObjectFactory creates a PropsMap if it does not recognize the given class

name, as we see in Example 16.3. A PropsMap is a DataObject that holds prop-

erty values in a hash table, Perl-style.

E X A M P L E  1 6 . 3 src/libs/dataobjects/objectfactory.cpp

[ . . . . ]

DataObject* ObjectFactory::newObject(QString className) {
DataObject* retval = 0;
if (className == "UsAddress") {

retval = newAddress(Country::USA);
} else if (className == "CanadaAddress") {

retval = newAddress(Country::Canada);
} else {

qDebug() << QString("Generic PropsMap created for new %1")
.arg(className);

retval = new PropsMap(className);
retval->setParent(this);

}
return retval;

}

Initially set the parent of the new object to the factory.1

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

362

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 362



newObject()returns the address of an object whose parent is initially set to an

ObjectFactory singleton.1 The parent can be changed later but this ensures

that, by default, the object gets deleted with the factory if it’s not managed by

another object. This is an important measure to prevent memory leaks.

16.1.2 Abstract Factories and Libraries

We now discuss two libraries, libdataobjects and libcustomer, each with

its own ObjectFactory, as shown in the UML diagram in Figure 16.1.

1 6 . 1 C R E A T I O N A L  P A T T E R N S

363

CustomerFactory, defined in Example 16.4, extends the functionality of

ObjectFactory.

1 newAddress() also sets the parent to the factory.

lib QT

QObject Libraries and their
dependencies

lib DataObjects

DataObject

AbstractObjectFactory

ObjectFactory

+newObject(className:QString): DataObject*

lib Customer

CustomerFactory

+newObject(className:QString): DataObject*

Customer

F I G U R E  1 6 . 1 Libraries and factories

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 363



E X A M P L E  1 6 . 4 src/libs/customer/customerfactory.h

[ . . . . ]
class CustomerFactory : public ObjectFactory {

Q_OBJECT
public:

static CustomerFactory* instance();
DataObject* newObject(QString classname);
Customer* newCustomer(QString name = "", 

Country::CountryType country=Country::Undefined);
protected:

CustomerFactory() {};
};
[ . . . . ]

CustomerFactory inherits the ability to create Address objects from

ObjectFactory. In addition, it knows how to create Customer objects.

CustomerFactory overrides and extends the newObject(QString)method

to support more types, as shown in Example 16.5.

E X A M P L E  1 6 . 5 src/libs/customer/customerfactory.cpp

[ . . . . ]

DataObject* CustomerFactory::
newObject (QString className) {

qDebug() << QString("CustomerFactory::newObject(%1)")
.arg(className);

if (className == "Customer")
return newCustomer();

if (className == "CustomerList") {
DataObject* retval = new CustomerList();
retval->setParent(this);
return retval;

}
return ObjectFactory::newObject(className);

}

Guarantee the heap memory is freed eventually when this object factory is destroyed, unless
it is reparented and killed sooner.

For each of the three returned objects the parent is set to be the factory. We see this

explicitly in the case of a CustomerList object. If the newCustomer()function

is called, it also returns an object that is parented by the factory, as we see in

Example 16.6.

1

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

364

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 364



E X A M P L E  1 6 . 6 src/libs/customer/customerfactory.cpp

[ . . . . ]

Customer* CustomerFactory::
newCustomer (QString name, Country::CountryType country) {

Customer* cust = new Customer();
cust->setName(name);
cust->setParent(this);
if (country != 0) {

Address* defaultAddress = newAddress(country);
defaultAddress->setParent(cust);
cust->setAddress(defaultAddress);

}
return cust;

}

16.1.3 qApp and Singleton Pattern

As we discussed earlier, the Singleton pattern is a specialized factory that is used in

situations where at most one instance of a class should be created. We use this pat-

tern to manage a singleton ObjectFactory instance. The class definition in

Example 16.7 has two distinctive features that characterize this singleton: a non-

public constructor and a public static instance()function.

E X A M P L E  1 6 . 7 src/libs/dataobjects/objectfactory.h

[ . . . . ]
class ObjectFactory : public QObject, public AbstractFactory {

Q_OBJECT
public:

static ObjectFactory* instance() ;
virtual DataObject* newObject (QString className);
Address* newAddress (Country::CountryType country =

Country::Undefined);
Address* newAddress (QString countryName = "USA");

protected:
ObjectFactory() {}

};
[ . . . . ]

The instance()function, defined in Example 16.8, is our singleton factory. It

creates an object if needed, but only the first time that the function is invoked. It

always returns a pointer to the same object on subsequent calls.

1 6 . 1 C R E A T I O N A L  P A T T E R N S

365

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 365



E X A M P L E  1 6 . 8 src/libs/dataobjects/objectfactory.cpp

[ . . . . ]

ObjectFactory* ObjectFactory::instance() {
static ObjectFactory* singleton = 0;
if (singleton == 0) {

singleton = new ObjectFactory();
singleton->setParent(qApp);

}
return singleton;

}

static
guarantees this object is deleted when the application is done

For the parent of this object, we set it to qApp. This is a pointer to a singleton

instance of a QApplication, which was presumably created in main(). The

QApplication instance exists precisely as long as the application is running.

WHY NOT USE STATIC FOR OUR SINGLETON? If you make the
singleton ObjectFactory a static object instead of a heap object,
then children of the factory object will be destroyed after the
QApplication is destroyed. Unless there is a compelling reason to the
contrary, an application should not do anything after the QApplication
has been destroyed—including object cleanup. Static objects from differ-
ent files of a multi-file application are destroyed in a linker-dependent
order. That order of destruction may cause unintended side-effects (e.g.,
segmentation faults at termination).

To avoid this problem, you should follow this rule: Each QObject
should either be allocated on the stack or be allocated on the heap with
another QObject (or qApp) as its parent.This guarantees that there will
not be any leftover pieces to be destroyed after the QApplication is
destroyed.

If a QObject is allocated on the heap, and its parent is set to qApp,
then it is deleted at the “last possible moment.” Children of this singleton
factory will be deleted just before the factory is deleted.

16.1.4 Creation Rules and friend Functions (What
Friends Are Really For)

You can design a class to have a creation rule, such as: All new Customers must

be created indirectly through a CustomerFactory. You can enforce this rule by

defining only non-public constructors. In particular, make sure that you make the

2

1

2

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

366

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 366



copy constructor and the assignment operator non-public. If you omit them from

the class definition, the compiler will supply public versions of these two member

functions, thus producing two “loopholes” in your creation rule. For example, this

might permit clients to create Customer instances that are not children of your

factory (which could lead to memory leaks). It is important to document this rule

clearly in your class definition, as we did with the comment in Example 16.9.

E X A M P L E  1 6 . 9 src/libs/customer/customer.h

[ . . . . ]

class Customer : public DataObject {
Q_OBJECT

[ . . . . ]

friend class CustomerFactory;
protected:

Customer(QString name=QString()) {
setObjectName(name);

}

Customer(QString name, QString id, CustomerType type);

We declared the constructors of Customer as protected, so all Customer objects must be
created indirectly through a CustomerFactory.

In Example 16.9, the constructors are protected.2 CustomerFactory is

declared to be a friend class inside Customer.This gives CustomerFactory

permission to access the non-public members of Customer. In this way, we have

made it impossible for client code to create Customer objects except through the

CustomerFactory. In Example 16.10, we have a similar setup with the various

Address classes. The base class, Address, is abstract.

E X A M P L E  1 6 . 1 0 src/libs/dataobjects/address.h

[ . . . . ]
class Address : public ConstrainedDataObject {

Q_OBJECT
public:
[ . . . . ]

protected:
Address(QString addressName = QString()) {

setObjectName(addressName);
}

1

1

1

1 6 . 1 C R E A T I O N A L  P A T T E R N S

367

2 This permits us to write derived classes that reuse this constructor.

continued

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 367



public:
virtual Country::CountryType getCountry() = 0;

[ . . . . ]

private:
QString m_Line1, m_Line2, m_City, m_Phone;

};

protected constructor

In the derived classes, defined in Example 16.11, we have protected the

constructors and given friend status to a factory, this time DataObjects::

ObjectFactory. This gives ObjectFactory permission to access the non-

public members of UsAddress and CanadaAddress.

E X A M P L E  1 6 . 1 1 src/libs/dataobjects/address.h

[ . . . . ]

class UsAddress : public Address {
Q_OBJECT

public:
Q_PROPERTY( QString State READ getState WRITE setState );
Q_PROPERTY( QString Zip READ getZip WRITE setZip );
friend class ObjectFactory;

protected:
UsAddress(QString name=QString()) : Address(name) {}
static QString getPhoneFormat();

public:
static void initConstraints() ;

[ . . . . ]

private:
QString m_State, m_Zip;

};

class CanadaAddress : public Address {
Q_OBJECT

public:
Q_PROPERTY( QString Province READ getProvince 

WRITE setProvince );
Q_PROPERTY( QString PostalCode READ getPostalCode 

WRITE setPostalCode );
friend class ObjectFactory;

protected:
CanadaAddress(QString name=QString()): Address(name) {}
static QString getPhoneFormat();

public:
static void initConstraints() ;

[ . . . . ]

2

1

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

368

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 368



private:
QString m_Province, m_PostalCode;

};

All new UsAddress objects must be created indirectly through an ObjectFactory.
All new CanadaAddress objects must be created indirectly through an ObjectFactory.

It is now impossible to create Address objects except through the factory or from

the derived classes.

If you are writing a multi-threaded application that uses an
ObjectFactory, you need to be careful about the ownership of
objects.

Making a QObject the parent of a child in another thread will result in an error mes-
sage such as the following one:

2

1

1 6 . 1 C R E A T I O N A L  P A T T E R N S

369

New parent must be in the same thread as the previous parent", file 
kernel/qobject.cpp, line 1681
Aborted

To make our ObjectFactory work in a multi-threaded environment, we can:

1. Explicitly pass the parent when we create each object (to prevent the default
parenting behavior)

2. Write the factory’s singleton()function to return an object that belongs
to the local thread

16.1.5 Benefits of Using Factories

One of the benefits of factory patterns is that we can ensure that the created

objects are destroyed by assigning them parents before returning them. Any object

created by ObjectFactory is deleted when the ObjectFactory singleton is

destroyed (unless the object’s parent is changed).

As processing continues, we normally expect the created objects to acquire

more appropriate parents. In fact, we can regard created objects that retain the fac-

tory  parent as “unclaimed” objects. We can clean up all of the  heap memory used

by unclaimed objects by iterating through the children of the factory and deleting

them.3

3 This is similar to the way that garbage-collected heaps work.

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 369



Indirect object creation also makes it possible to decide at runtime which class

objects to create. This allows the “plugging in” of replacement classes without

requiring changes in the client code. In Section 16.2, we will see an example of a

method that makes use of factory objects to create trees of connected, client-

defined objects based on the contents of an XML file.

Libraries and Plugins

When constructing a large system we group classes together in libraries when

they share some common features or need to be used together. Substantial

applications generally make use of components from several libraries, some

supplied by the development team and some supplied by third-party devel-

opers (e.g., Qt from Trolltech). Only the public interface of a library class

appears in the client code of reusers. Library designers should be able to

change the implementation of any class without breaking client code. Many

libraries permit the “plugging in” of outside classes by publishing interfaces

and documenting how to implement them. Libraries can facilitate the cre-

ation of such plug-in classes by providing a factory base class from which spe-

cialized factory classes can be derived as needed.

Another benefit of the factory method (or indirect object creation in general) is

that you can enforce post-constructor initialization of objects, including the invo-

cation of virtual functions.

Polymorphism from Constructors

An object is not considered “fully constructed” until the constructor has finished

executing. An object’s vpointer does not point to the correct vtable until the end of

the constructor’s execution. Therefore, calls to methods of this from the con-

structor cannot use polymorphism!

Factory methods are required when any polymorphic behavior is needed dur-

ing object initialization. Example 16.12 demonstrates this problem.

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

370

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 370



E X A M P L E  1 6 . 1 2 src/ctorpoly/ctorpoly.cpp

#include <iostream>
using namespace std;

class A {
public:

A() {
cout << "in A ctor" << endl;
foo();

}
virtual void foo() {

cout << "A's foo()" << endl;
}

};

class B: public A {
public:

B() {
cout << "in B ctor" << endl;

}
void foo() {

cout << "B's foo()" << endl;
}

};

class C: public B {
public:

C() {
cout << "in C ctor" << endl;

}

void foo() {
cout << "C's foo()" << endl;

}
};

int main() {
C* cptr = new C;
cout << "After construction is complete:" << endl;
cptr->foo();
return 0;

}

Its output is given in Example 16.13.

1 6 . 1 C R E A T I O N A L  P A T T E R N S

371

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 371



E X A M P L E  1 6 . 1 3 src/ctorpoly/ctorpoly-output.txt

src/ctorpoly> ./a.out
in A ctor
A's foo()
in B ctor
in C ctor
After construction is complete:
C's foo()
src/ctorpoly>

Notice that the wrong version of foo()was called while the new C object was

being constructed. You can find more discussion on vtables in Section 23.1.

E X E R C I S E S : C R E A T I O N A L  P A T T E R N S

1. Complete the implementation of the Address, Customer, and

CustomerList classes.

Apply the ideas that we discussed in Section 10.6 to write a

CustomerWriter class. Make sure that you use the Q_PROPERTY features of

Customer and Address so that your CustomerWriter class will not need

to be rewritten if you change the implementation of Customer.

Keep in mind that Address objects are stored as children of Customer

objects. Here is one output format that you might consider using:

Customer {
Id=83438
DateEstablished=2004-02-01
Type=Corporate
objectName=Bilbo Baggins
UsAddress {

Line1=52 Shire Road
Line2=Suite 6
City=Brighton
Phone=1234567890
State=MA
Zip=02201
addressName=home

}
}

Another possibility arises if you make use of the Dataobject::toString()

function.

2. Write a CustomerReader class that creates all of its new objects by reusing

the CustomerFactory class that we supplied.

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

372

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 372



Write a CustomerListWriter and a CustomerListReader class that

serialize and deserialize lists of Customer objects. How much of the

CustomerWriter/Reader code can you reuse here?

Write client code to test your classes.

16.2 Serializer Pattern Revisited
In this section, we combine QMetaObjects with the SAX2 parser to show how

one can write a general-purpose XML encoding/decoding tool that works on

QObjects with well-defined Q_PROPERTYs and children. This gives us a nice

example that combines the MetaObject pattern with the Serializer pattern.

To encode and decode DataObjects as XML, we must define a mapping

scheme. Such a mapping must capture not only the QObject’s properties, types,

and values, but it must also capture existing relationships between the object and

its children, between each child and all of its children, and so on.

The parent-child relationships of XML elements naturally map to QObject

parents and children. These relationships define a tree structure.

Consider the class definition for Customer shown in Example 16.14.

E X A M P L E  1 6 . 1 4 src/xml/propchildren/customer.h

1 6 . 2 S E R I A L I Z E R  P A T T E R N  R E V I S I T E D

373

[ . . . . ]
class Customer : public QObject {

Q_OBJECT
public:

Q_PROPERTY( QString Name READ objectName WRITE setObjectName );
Q_PROPERTY( QDate Date READ getDate WRITE setDate );
Q_PROPERTY( int LuckyNumber READ getLuckyNumber 

WRITE setLuckyNumber );
Q_PROPERTY( QString State READ getState WRITE setState );
Q_PROPERTY( QString Zip READ getZip WRITE setZip );
Q_PROPERTY( QString FavoriteFood READ getFavoriteFood 

WRITE setFavoriteFood );
Q_PROPERTY( QString FavoriteDrink READ getFavoriteDrink 

WRITE setFavoriteDrink);

// typical setters and getters
[ . . . . ]

private:
QString m_Name, m_State, m_Zip;
QString m_FavoriteFood, m_FavoriteDrink;
QDate m_Date;
int m_LuckyNumber;

};
[ . . . . ]

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 373



Exploiting the ability of QObject subclasses to maintain a collection of child

objects, we define a CustomerList class in Example 16.15 that stores Customers

as children.

E X A M P L E  1 6 . 1 5 src/xml/propchildren/customerlist.h

#ifndef CUSTOMERLIST_H
#define CUSTOMERLIST_H

#include <QList>
#include "customer.h"

class CustomerList : public QObject {
Q_OBJECT  

public:
CustomerList(QString listname = QString()) {

setObjectName(listname);
}
QList<Customer*> getCustomers();
static CustomerList* sample();

};

#endif

An example of the desired XML format for storing the data of a

CustomerList is shown in Example 16.16.

E X A M P L E  1 6 . 1 6 src/xml/propchildren/customerlist.xml

<object class="CustomerList" name="Customers" >

<object class="Customer" name="Simon" >
<property name="Name" type="QString" value="Simon" />
<property name="Date" type="QDate" value="1963-11-22" />
<property name="LuckyNumber" type="int" value="834" />
<property name="State" type="QString" value="WA" />
<property name="Zip" type="QString" value="12345" />
<property name="FavoriteFood" type="QString" value="Donuts" />
<property name="FavoriteDrink" type="QString" alue="YooHoo"/>

</object>

<object class="Customer" name="Raja" >
<property name="Name" type="QString" value="Raja" />
<property name="Date" type="QDate" value="1969-06-15" />
<property name="LuckyNumber" type="int" value="62" />
<property name="State" type="QString" value="AZ" />
<property name="Zip" type="QString" value="54321" />

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

374

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 374



<property name="FavoriteFood" type="QString" value="Mushrooms" />
<property name="FavoriteDrink" type="QString" value="Jolt" />

</object>

1 6 . 2 S E R I A L I Z E R  P A T T E R N  R E V I S I T E D

375

continued

</object>

With this kind of information in an input file, we should be able to fully recon-

struct not only the properties and their types, but also the tree structure of parent-

child relationships between objects for a CustomerList.

16.2.1 Exporting to XML

We define in Example 16.17 a simplified class that can be used to export the cur-

rent state of a QObject to an XML string with elements that contain, for each

property, its name, type, and value.

E X A M P L E  1 6 . 1 7 src/xml/propchildren/xmlexport.h

[ . . . . ]
class XMLExport {
public:

virtual ~XMLExport() {}
virtual QString objectToXml(const QObject* ptr,

int indentlevel=0);
};
[ . . . . ]

In Example 16.18 we show the definition of objectToXml(), a recursive func-

tion that constructs strings for each of the object’s properties and then iterates

over the object’s children, recursively calling objectToXml()on each child.

E X A M P L E  1 6 . 1 8 src/xml/propchildren/xmlexport.cpp

[ . . . . ]
QString XMLExport::objectToXml(const QObject* doptr,

int indentlevel) {
QStringList result;
QString indentspace;

indentspace.fill(' ', indentlevel*3);
const QMetaObject* meta = doptr->metaObject();
result += QString("\n%1<object class=\"%2\" name=\"%3\" >").

arg(indentspace).
arg(meta->className()).
arg(doptr->objectName());    

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 375



for (int i= 0; i < meta->propertyCount(); ++i) {
QMetaProperty qmp = meta->property(i);
const char* propname = qmp.name();
if (strcmp(propname, "objectName")==0)

continue;
QVariant qv;
if (qmp.isEnumType()) {

QMetaEnum qme = qmp.enumerator();
qv = qme.valueToKey(qv.toInt());

} else {
qv = doptr->property(propname);

}

result += QString (

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

376

"%1 <property name=\"%2\" type=\"%3\" value=\ "%4\" />"
).arg(indentspace).arg(propname). arg(qv.typeName())
.arg(variantToString(qv));

}

QObjectList childlist = doptr->findChildren<QObject*> (QString());

foreach (QObject* objptr, childlist) {
if (objptr->parent()==doptr) {

result += objectToXml(objptr, indentlevel+1);
}

}
result += QString("%1</object>\n").arg(indentspace);  
return result.join("\n");

}
[ . . . . ]

Iterate through each property.
Iterate through the child list.
findChildren also includes grandchildren and great-great grandchildren, so we skip over those.
recursive call

objectToXml()uses Qt’s properties and QMetaObject facilities to reflect on

the class. As it iterates it appends each line to a QStringList. When iteration is

complete, the <object> is closed. The return QString is then produced quickly

by calling QStringList::join("\n").

16.2.2 Importing Objects with an Abstract Factory

Section 14.2

4

3

2

1

4

3

2

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 376



The importing routine is a bit more sophisticated than the exporting routine, and

it has a couple of interesting features.

■ It parses XML using the SAX parser.

■ Depending on the input, it creates objects.

■ The number and types of objects, as well as their parent-child relation-

ships, must be reconstructed from the information in the file.

Example 16.19 shows the class definition for DataObjectReader.

E X A M P L E  1 6 . 1 9 src/libs/dataobjects/dataobjectreader.h

[ . . . . ]
#include <QString>
#include <QStack>
#include <QQueue>
#include <QXmlDefaultHandler>

class AbstractFactory;
class DataObject;
class DataObjectReader : public QXmlDefaultHandler {

public:
DataObjectReader (AbstractFactory* factory=0) : 

m_Factory(factory), m_Current(0) { }
DataObjectReader (QString filename,

AbstractFactory* factory=0);
void parse(QString text);
void parseFile(QString filename);
DataObject* getRoot();
~DataObjectReader();

// callback methods from QXmlDefaultHandler
bool startElement( const QString & namespaceURI,

const QString & name,
const QString & qualifiedName,
const QXmlAttributes & attributes );

bool endElement(  const QString & namespaceURI,
const QString & localName,
const QString & qualifiedName);

bool endDocument();
private:

void addCurrentToQueue();
AbstractFactory* m_Factory;
DataObject* m_Current;
QQueue<DataObject*> m_ObjectList;
QStack<DataObject*> m_ParentStack;

};
[ . . . . ]

Figure 16.2 shows the relationships between the various classes that we will be using.

1 6 . 2 S E R I A L I Z E R  P A T T E R N  R E V I S I T E D

377

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 377



C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

378

<<interface>>
QXmlContentHandler

<<interface>>
QXmlReader

QXmlDefaultHandler QXmlSimpleReader

DataObjectReader

 - m_Factory : AbstractFactory*
 - m_Current : DataObject*
 - m_ObjectList :  QQueue<DataObject*>
 - m_ParentStack : QStack<DataObject*>

+ DataObjectReader()
+ DataObjectReader()
+ parse()
+ parseFile()
+ getRoot()
+ ~ DataObjectReader()
+ startElement()
+ endElement()
+ endDocument()
 - addCurrentToQueue()

AbstractFactory

+ newObject(className : QString) : DataObject*
+ ~ AbstractFactory()

ObjectFactory

+ instance() : ObjectFactory*
+ newObject(className : QString) : DataObject*
+ newAddress(country : Country.CountryType) : Address*
+ newAddress(countryName : QString) : Address*
# ObjectFactory()

0..1

+ m_Factory

F I G U R E  1 6 . 2 DataObjectReader and its related classes

DataObjectReader is derived from QXmlDefaultHandler, which is a 

plugin for the QXmlSimpleReader. AbstractFactory is a plugin for

DataObjectReader. When we create a DataObjectReader, we must supply

it with a concrete class, such as ObjectFactory or DataObjectFactory.

DataObjectReader is now completely separate from the specific types of

objects that it can create. To use it with your own types, just derive a factory from

AbstractFactory for them.

Think about Example 16.16 as you read the code that constructs objects from

it in the code the follows.

startElement()is called when the SAX parser encounters the initial tag of

an XML element. As we see in Example 16.20, the parameters to this function con-

tain all the information we need to create an object. All other objects that are

encountered between startElement()and the matching endElement()are

children of m_Current.

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 378



E X A M P L E  1 6 . 2 0 src/libs/dataobjects/dataobjectreader.cpp

[ . . . . ]

bool DataObjectReader::startElement( const QString &,
const QString & elementName,
const QString &,
const QXmlAttributes & atts) {

if (elementName == "object") {
if (m_Current != 0)                              

m_ParentStack.push(m_Current);                
QString classname = atts.value("class");
QString instancename = atts.value("name");
if (m_Factory ==0) {

m_Current =
ObjectFactory::instance()->newObject(classname);

} else {
m_Current=m_Factory->newObject(classname);

}
m_Current->setObjectName(instancename);
if (!m_ParentStack.empty()) {

m_Current->setParent(m_ParentStack.top());
}
return true;

}
if (elementName == "property") {

QString fieldType = atts.value("type");
QString fieldName = atts.value("name");
QString fieldValue = atts.value("value");
QVariant qv = variantFrom(fieldType, fieldValue);
bool ok = m_Current->setProperty(fieldName, qv);
if (!ok) {

4

3

2

1

1 6 . 2 S E R I A L I Z E R  P A T T E R N  R E V I S I T E D

379

qDebug() << "setProperty(" << fieldName << ") failed";
}

}
return true;

}

Unnamed parameters are a way of avoiding “parameter not used”warnings from the compiler.
It is necessary to include the parameters, even though we do not need them for this applica-
tion, so that the signature matches that of the base class method and polymorphic overrides
will be properly called.
if we are already inside an <object>
Keep track of the current parent.
If this element has a parent, it is on the top of the stack. Set its parent.

The Object is “finished” when we reach endElement(), which is defined in

Example 16.21.

4

3

2

1

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 379



E X A M P L E  1 6 . 2 1 src/libs/dataobjects/dataobjectreader.cpp

[ . . . . ]

bool DataObjectReader::endElement( const QString & , 
const QString & elementName,
const QString & ) { 

if (elementName == "object") {
if (!m_ParentStack.empty())

m_Current = m_ParentStack.pop();
else {

addCurrentToQueue();
}

}
return true;

}

DataObjectReader uses an Abstract Factory to do the actual object creation.

The callback function, newObject(QString className), creates an object

that can hold all of the properties described in className. ObjectFactory

creates “pseudo-objects” that are not exactly the CustomerList and Customer

classes, but they “mimic” them well enough that the export/import process works

round-trip. You can write a concrete factory that returns the proper types for each

classname if you want the de-serialized tree to have the same types as the objects

in the original tree.

Each time a new address type is added to this library, we can add another else

clause to the createObject function, as shown in Example 16.22.

E X A M P L E  1 6 . 2 2 src/libs/dataobjects/objectfactory.cpp

[ . . . . ]

DataObject* ObjectFactory::newObject(QString className) {
DataObject* retval = 0;
if (className == "UsAddress") {

retval = newAddress(Country::USA);
} else if (className == "CanadaAddress") {

retval = newAddress(Country::Canada);
} else {

qDebug() << QString("Generic PropsMap created for new %1 ").
arg(className);
retval = new PropsMap(className);
retval->setParent(this);

}
return retval;

}

Initially set the parent of the new object to the factory.1

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

380

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 380



16.3 The Façade Pattern

A class that uses the Façade pattern provides “a unified interface to a set of

interfaces in a subsystem. Façade defines a higher-level interface that makes

the subsystem easier [and safer] to use.”4 When a class interface is too com-

plicated to use effectively (leads to hard-to-debug errors from improper use)

or does not use a programming style that fits into our larger framework, a

façade should be used. A façade is a class with a clear simple interface that

encapsulates and hides a complicated set of classes and/or functions.

Experience gained from the struggle to reuse classes with difficult interfaces can

provide valuable motivation for designing elegant, friendly, and useful interfaces

for your own classes.

MP3 files have become a popular format for storing songs and other audio

content. Each MP3 file stores audio data which, when processed by a program

such as XMMS, can be output as audio. The file also stores metadata, or struc-

tured information about the audio content. The defacto standard for specifying

MP3 metadata is called ID3.

Using id3lib, an open-source library, the metadata can be loaded into an

object of class ID3_Tag. An ID3_Tag is a collection of ID3_Frame objects plus

file data. An ID3_Frame object consists of a collection of ID3_Field objects. An

ID3_Field can represent three possible types of data: integers, binary data, or

text strings. Figure 16.3 shows the relationships between the types in a collabora-

tion diagram originally generated by Doxygen.

id3lib5 is an old, fast, open-source C/C++ library for reading and writing

ID3v2 tags from mp3 files. Because of its arcane programming style, it is being

shunned by KDE developers in favor of a newer library, taglib,6 which is more

flexible (can handle other file formats as well as MP3) and uses a more modern

programming style.

1 6 . 3 T H E  F A Ç A D E  P A T T E R N

381

4 [Gamma 95]
5 http://id3lib.sourceforge.net/
6 http://developer.kde.org/~wheeler/taglib.html

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 381



ID3 tag information can be used by an MP3 player to display pertinent infor-

mation (e.g., title, performer, etc.) about a selection that is currently being played

or that is being queued for play. It can also be used to organize collections of audio

files or to create playlists.

In Example 16.23 we see some low-level code that uses the id3lib to get pref-

erence data set by the popular commercial program MusicMatch Jukebox, as sug-

gested by the id3lib tutorial.7

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

382

7 http://id3lib.sourceforge.net/api/index.html

F I G U R E  1 6 . 3 ID3_Tag and its related classes

ID3_Header::InfoID3_Flags

ID3_Header Mp3_Headerinfo

ID3_TagHeader Mp3Info

ID3_TagImpl

ID3_Tag

_flags
_info

_hdr

_impl

_mp3_info

_mp3_header_output
_file_tags
_tags_to_parse

ID3_Header::Info ID3_FieldDef DEFAULTID3_Flags

ID3_Header ID3_FrameDef

ID3_FrameHeader

ID3_FrameImpl

ID3_Frame

_flags _info aeFieldDefs

_hdr

_impl

_frame_def

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 382



E X A M P L E  1 6 . 2 3 src/facade/id3lib-usage.cpp

[ . . . . ]
#include <id3/tag.h>
#include <id3/misc_support.h>
#include <QString>

QString getStringField(ID3_Tag &tag, ID3_FrameID id,
ID3_FieldID fieldid) {

static char buffer[256];
const int size=255;

ID3_Frame* myFrame = tag.Find(id);
if (myFrame) {

ID3_Field *myField = myFrame->GetField(fieldid);
if (myField)

myField->Get(buffer, size);
}
return QString(buffer);

}

QString getPreference(QString filename) {
QString retval;

ID3_Tag tag;
tag.Link(filename.toAscii());

QString commentType = getStringField(tag, ID3FID_COMMENT,
ID3FN_DESCRIPTION);

if (commentType == "MusicMatch_Preference")  {
retval = getStringField(tag, ID3FID_COMMENT, ID3FN_TEXT);
return retval;

} else
return "Undefined";

}
[ . . . . ]

gets the MusicMatch preference

The code in Example 16.23 has some style issues that make it hard to fit into our

Qt-style framework.

■ First, char arrays should be avoided whenever possible. We use

QString instead, to support Unicode, improve readability, and reduce

the chance of bugs.

■ Client code should not need to deal with ID3Frame or ID3Field

objects, or their ID enumerators.

■ Class and function capitalization rules of id3lib are inconsistent with

our style guidelines (see Section 3.4).

1

1

1 6 . 3 T H E  F A Ç A D E  P A T T E R N

383

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 383



16.3.1 Functional Façade

id3lib has a collection of convenience functions for getting and setting the more

popular tags without needing to use the enum constants or to deal with frames and

fields. The convenience functions are defined in misc_support.cpp.8 In a sense,

these functions are a façade for the ID3_tag class and related functions.

Unfortunately, the convenience functions are ordinary C functions, which means

they use C-style coding to access ID3 data.

Using these functions instead of the ID3_tag class and functions, client code

does become simpler. For example, to get or add the genre of a song, we can use

these functions:

char * ID3_GetGenre ( const ID3_Tag * tag);
ID3_Frame * ID3_AddGenre (ID3_Tag * tag, size_t genre, bool replace);

The getPreference()function, rewritten to use this library, is also much simpler:

QString getPreference(QString filename) const  {
ID3_Tag tag; 
tag.Link(filename);             
return ID3_GetComment(&tag, "MusicMatch_Preference");

}

So, the advantages to using these functions are

■ They have already been tested and debugged.

■ They have removed the need to use enum constants, frames, or fields.

The disadvantages to using this library directly in C++ client code are 

■ We have an object that maintains the state of an MP3 tag record (ID3_Tag),

but we are no longer using its interface to access and change its values.

■ We are using C coding style in client code.

16.3.2 Smart Pointers: auto_ptr

A wrapper encapsulates and manages at least one other object. If that object is a

heap object, we can use the Standard Library auto_ptr to ensure that the object is

always destroyed when the wrapper is.

auto_ptr is a template type, so it can be instantiated for use with any other

type. In Example 16.24, we work with the Customer type.

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

384

8 http://id3lib.sourceforge.net/api/misc_support.cpp.html

ezus_138004_ch16.qxd  8/4/06  10:05 AM  Page 384



E X A M P L E  1 6 . 2 4 auto_ptr code fragment

for (int i=0; i< someNumber; ++i) {             
auto_ptr<Customer> custPtr;
auto_ptr<Customer> custPtr2 (new Customer());
custPtr = custPtr2;

}

The loop is here to demonstrate how a block of code creates and destroys its local objects on
the stack.
a null auto_ptr
custPtr2 is initialized to point to and manage the new Customer object.
custPtr takes ownership of custPtr2, meaning that custPtr2 will be NULL after this
statement is over.
At the end of each iteration, the local custPtr goes out of scope, and the heap Customer
instance gets destroyed.

An auto_ptr<Customer> is type-restricted, to point to objects derived from

Customer, as specified in the template parameter. An attempt to use this to point

to any other type will result in a compiler error.

When an auto_ptr is destroyed, the pointed-to heap object is deleted.

Therefore, when the above code in Example 16.24 is executed, there will be no

memory leaks, even though the loop created many new heap objects and the code

contains no corresponding delete.

Assignment with auto_ptr is very different from assignment with other types.

Usually, the right side is not changed. However, the auto_ptr on the right side of

an assignment always becomes NULL, while the left side takes ownership of the

pointed-to object. This guarantees that only one auto_ptr is ever pointing to an

object and ensures that the object will get deleted exactly once by its auto_ptr.

Guarded pointers9 such as the auto_ptr are frequently used in wrappers and

façades, as we show in the next example.

16.3.3 FileTagger: Façade Example

In this section, we discuss a Qt-style façade for id3lib. To this end, we employ

another pattern that is closely related to the façade.

5

4

3

2

1

5

4

3

2

1

1 6 . 3 T H E  F A Ç A D E  P A T T E R N

385

9QPointer is another guarded pointer, similar to auto_ptr, but specifically for use on QObjects.
Guarded pointers are discussed in more detail in Section 19.9.

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 385



The Adaptor pattern converts the interface of a class into another interface

that clients expect, so classes that originally had incompatable interfaces can

be used together. Adaptor is also known as the Wrapper pattern.10

Figure 16.4 shows the relationships between the classes that we will use for

FileTagger, a façade for id3lib, and a wrapper for an ID3_Tag.

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

386

QObject

DataObject

ID3_FrameImpl

ID3_TagImpl

ID3_Frame

- _impl : ID3_FrameImpl*

FileTagger

- mTag : ID3_Tag*
- mFilename : QString

Implementation

0..1

+mTag

-_frames 0..*

+_impl 0..1

+_impl 0..1

ID3_Tag

- _impl : ID3_TagImpl*

F I G U R E  1 6 . 4 FileTagger and the classes it fronts for

Here are the requirements for FileTagger.

1. It must safely allocate and free any resources that it uses (such as

ID3_Tag objects from the heap).

2. It should provide a QObject properties interface compatible with moc.

3. It must expose all features of id3lib that we need to use, so that it is

not necessary to include the id3lib headers from any other source code

module.

4. It must provide a clean and simple interface with self-explanatory

function names.

10 When the same pattern is arrived at by different people, and given different names, its importance
is emphasized.

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 386



5. It must have getters and setters for the standard tag items (artist, album,

title, genre, preference, track number) as specified in an abstract class,

Mp3Song.

6. It must hide all of id3lib’s enumerated constants and noncompliant

capitalization conventions from the users of this class.

7. It must not use C-style char arrays to represent strings. Instead, it

should use Unicode QStrings.

8. It should emit signals when its properties are changed.

9. It should define slots for setting properties.

Example 16.25 shows the class definition for the FileTagger class.

E X A M P L E  1 6 . 2 5 src/libs/filetagger/filetagger.h

[ . . . . ]

#include <QString>
#include <memory>
#include <dataobject.h>
#include "mp3song.h"
#include <id3/tag.h>

class FileTagger : public DataObject, public Mp3Song {
Q_OBJECT

public:
Q_PROPERTY( QString Artist READ getArtist 

WRITE setArtist );
Q_PROPERTY( QString TrackTitle READ getTrackTitle 

WRITE setTrackTitle );
Q_PROPERTY( QString AlbumTitle READ getAlbumTitle 

WRITE setAlbumTitle );
Q_PROPERTY( QString TrackNumber READ getTrackNumber 

WRITE setTrackNumber );
Q_PROPERTY( QString Genre READ getGenre 

WRITE setGenre);
Q_PROPERTY( QString Comment READ getComment 

WRITE setComment);
Q_PROPERTY(QString Preference READ getPreference 

WRITE setPreference);
Q_PROPERTY( QString Filename READ getFilename 

WRITE setFilename );
// read only properties
Q_PROPERTY(QString Url READ getUrl);
Q_PROPERTY(int TrackTime READ getTrackTime);

public:
FileTagger(QString filename = "");
~FileTagger();
bool isValid() const;

1 6 . 3 T H E  F A Ç A D E  P A T T E R N

387

continued

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 387



/* getters ...*/
QString getFilename() const {return m_Filename; }
QString getPreference() const;

[ . . . . ]

private:
std::auto_ptr<ID3_Tag> m_Tag; 
QString m_Filename;

};

In Example 16.26 we show the implementation details for some of the member

functions. The setter for m_FileName not only assigns a value to that member but

it also clears the ID3_Tag and establishes a link between that tag and the named file.

auto_ptr works as a smart pointer, managing the memory for us so that the

destructor does not need to delete that memory.

E X A M P L E  1 6 . 2 6 src/libs/filetagger/filetagger.cpp

[ . . . . ]

// macro for converting QSrtings to ASCII
#define ASCII toAscii().data()

bool FileTagger::isValid() const {
if (m_Tag.get() == NULL)

return false;
return m_Tag->HasV1Tag ();

}

void FileTagger::setFilename(const QString & filename) {

std::auto_ptr<ID3_Tag> newTag( new ID3_Tag() );
m_Tag = newTag;
m_Filename = filename;
m_Tag->Link(m_Filename.ASCII);
emit propertyChanged("all", "all");

}

FileTagger::~FileTagger() {
//    delete m_Tag;
}

get() returns the managed pointer.
auto_ptr has an operator-> that lets us use it like a pointer.
We can’t assign an auto_ptr to anything but another auto_ptr.
using ASCII conversion macro
not needed with auto_ptr

The other setters and getters, shown in Example 16.27, make use of the C-style

convenience functions from the ID3 misc_support library. Those functions have

names like ID3_AddSomething() or ID3_GetSomething(), and each takes a

5

4

3

2

1

5

4

3

2

1

C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

388

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 388



regular pointer to an ID3_Tag. The auto_ptr has a get() function for return-

ing that pointer.

E X A M P L E  1 6 . 2 7 src/libs/filetagger/filetagger.cpp

[ . . . . ]

void FileTagger::setPreference(const QString& prefstr) {
ID3_AddComment(m_Tag.get(),  prefstr.ASCII,

"MusicMatch_Preference", "en", true);
}

QString FileTagger::getPreference() const {
return ID3_GetComment(m_Tag.get(), "MusicMatch_Preference");

}

void FileTagger::setGenre(const QString& newGenre) {
ID3_AddGenre(m_Tag.get(), newGenre.ASCII, true);

}

QString FileTagger::getGenre() const {
return ID3_GetGenre(m_Tag.get());

}

Each of the ID3 fields we plan to use is now mapped to a Qt property with a proper

getter and a setter. No char* are needed to work with ID3 tags for any applica-

tion that uses this class.

E X E R C I S E S : T H E  F A Ç A D E  P A T T E R N

1. Build view classes for the Customer and CustomerList classes that you

defined in “Exercises: Creational Patterns” in Section 16.1.6.

CustomerView should display the current values of all Customer

attributes.

CustomerList should only display a list of Customer names. If the user

clicks on a name in that list, the corresponding CustomerView should appear.

2. Compile and install libid3 according to the instructions in Section 25.4. Write

a test program to verify that you can read and write ID3 tags.

P O I N T S  O F  D E P A R T U R E

1. Try to come up with another UserType you might want to add to

QVariant for a new type of InputField.

2. Further discussion of moc and marshalling objects using metaobjects can

be found in Qt Quarterly.11

1 6 . 3 T H E  F A Ç A D E  P A T T E R N

389

11 http://doc.trolltech.com/qq/qq14-metatypes.html

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 389



7 C H A P T E R  1 6 : M O R E  D E S I G N  P A T T E R N S

390

R E V I E W  Q U E S T I O N S

1. How can a creational pattern help manage object destruction?

2. How can properties help us write a more general-purpose Writer?

3. How can an Abstract Factory help us write a more general-purpose

Reader?

4. What is auto_ptr used for?

5. What is special about assignment between auto_ptr objects?

6. We can create a FormModel in a number of ways. One approach is to

create Question objects directly and add them. Another way is to create

a FormModel from a DataObject. Why would we use one technique

instead of the other?

7. Name other examples of façades that we have worked with in the book.

Explain why they are façades (or wrappers).

ezus_138004_ch16.qxd  8/4/06  10:06 AM  Page 390



391

17.1 M-V-C: What about the Controller? . . . 392

17.2 Dynamic Form Models . . . . . . . . . . . . . . 393

17.3 Qt 4 Models and Views . . . . . . . . . . . . . . 409

17.4 Table Models . . . . . . . . . . . . . . . . . . . . . . . 411

17.5 Tree Models . . . . . . . . . . . . . . . . . . . . . . . . 417

17C H A P T E R  1 7

Models and Views

The Model-View pattern describes techniques of

separating the underlying data (the model) from the

class that presents the user with a GUI (the view).

In this chapter we will see a model for a form, and a

couple of ways to view and enter data into it. Qt

model and view classes are discussed, and we will

see examples of lists, trees, and tables.

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 391



In several earlier examples we saw code that maintained a clean separation

between model classes that represent data and view code that presents a user

interface. There are several important reasons for enforcing this separation.

First of all, separating model from view reduces the complexity of each. Model

code and view code have completely different maintenance imperatives—changes

are driven by completely different factors—so it is much easier to maintain each

of them when they are kept separate. Furthermore, the separation of model from

view makes it possible to maintain several different, but consistent, views of the

same data model. The number of sophisticated view classes that can be reused

with well-designed models is constantly growing.

Some older GUI toolkits offer lists, trees, and tables, but they require the devel-

oper to store model data inside them. Storing data inside view classes leads to a

strong dependency between the user interface and the underlying data model. This

dependency makes it very difficult to reuse the view classes.

17.1 M-V-C: What about the Controller?
There is a third tier to the model/view structure: the controller. Controller code is

code that manages the interactions among events, models, and views. Factory

methods, and creation and destruction code in general fall into the realm of the

controller.

Model-View-Controller (MVC), illustrated in Figure 17.1, is a design pattern

that is used for applications in which a variety of views of the same data need to

be maintained. The pattern specifies that the model code (responsible for main-

taining the data), the view code (responsible for displaying all or part of the data

in various ways), and the controller code (responsible for handling events that

impact the data or the model) be kept as separate as possible from one another.

This separation allows views and controllers to be added or removed without

requiring changes in the model.

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 392



F I G U R E  1 7 . 1 Model-View-Controller pattern

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

393

A controller class is a class whose specific purpose is to encapsulate controller

code. A complex application might have multiple controllers for the different sub-

components, or layers, of the application.

Qt 4 classes that are considered controller classes include QApplication,

QAction, and their derived types. Code that connects signals to slots can also

be considered controller code. As we shall see, keeping controller code out of

model and view classes will yield additional design benefits.

17.2 Dynamic Form Models
A collection of questions and blanks to fill in the answers is called a form. Quite

common in GUI applications, a form is used whenever a series of questions needs

to be asked of the user. There are many ways to design and implement forms. In

this section, we will make a model for the form, and then a view for it.

E X A M P L E  1 7 . 1 src/libs/forms/testform.cpp

[ . . . . ]
class BridgeKeeper : public FormModel {

public:
BridgeKeeper();

};

Controller

View1 View2

Model

Controller establishes
connections between
model and views.

Views display
data from model
or accept changes
from user.

Model emits signals
as needed

continued

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 393



BridgeKeeper::BridgeKeeper() {
FormFactory ff;
*this << ff.newQuestion("name", "What is your name?");
*this << ff.newQuestion("quest", "What is your quest?");
QStringList colors;
colors << "red" << "blue" << "green" << "orange";
*this << ff.newQuestion("color", 

"What is your favorite color?",colors);
*this << ff.newQuestion("speed", 

"What is the mean air speed of an unladen swallow?",
QVariant::Int); 

}

The model created in Example 17.1 represents a form containing questions of

different“types,”where the first two are simple string inputs, but the last two are con-

strained to a set of possible values. The main program creates a model and a view,

and hooks them together. In Example 17.2, you can think of main as the controller.

E X A M P L E  1 7 . 2 src/libs/forms/testform.cpp

[ . . . . ]

int main(int argc, char** argv) {
QApplication a(argc, argv);
QMainWindow mw;
BridgeKeeper keeper;
qDebug() << keeper.toString();
FormDialog fv(&keeper);
fv.setWindowTitle("I am the keeper of the Bridge of Death.");
mw.setCentralWidget(&fv);
mw.setVisible(true);
int retval =  a.exec();
QVariant speed = keeper.property("speed");
QVariant color = keeper.property("color");
QVariant quest = keeper.property("quest");
QVariant name = keeper.property("name");    
if (color.toString() == "blue") {

qDebug() << "no, I mean red! aaaaaaahhhhhhhhhhh!" ;
}
else {

qDebug() << "My name is " << name.toString() 
<< ", and I " << quest.toString() 
<< ". My favorite color is " << color.toString()
<< ". The speed is " << speed.toInt();

}
return retval;

}

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

394

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 394



In Example 17.2, you can think of main as the controller.

The FormDialog below is automatically generated from the model above,

even though it does not depend on the specific model.

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

395

The dialog embeds a FormView, which contains the actual input widgets.

1. View classes access Questions only through the public polymorphic

interface.

2. Model classes emit signals to communicate information to views, instead

of invoking objects directly through references or pointers passed around

as function parameters.

3. The code that does depend on both model and view (or on specific types

of Question) is kept separate as controller code.

A FormModel wraps a collection of Questions, which are model classes. A

FormView wraps a collection of InputFields, which are views (because they

derive from QWidget), but encapsulate complex input widgets.

In the Doxygen collaboration diagram in Figure 17.2, there is a 1:1 correspon-

dence between InputField and Question, but the classes are strictly decoupled.1

A Question models (ideally) all of the information needed by FormFactory

to create an appropriate InputField. A FormView is a grouping of input widgets.

An input widget serves as a proxy, or delegate, between Qt input widgets and

Question-derived models.

1 “Strictly decoupled” means that they know nothing about each other.

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 395



The Strategy pattern encapsulates each member of a family of algorithms

so that they can be selected independently by clients. Each encapsulated

algorithm is called a strategy.

Figure 17.3 shows that an InputField can be a variety of things. Because Qt

input widgets2 do not have a common QVariant-based interface for getting and

setting data, the InputField serves as an adaptor, that provides a property-like

interface. InputField uses the Strategy pattern to organize the getters and set-

ters for different types as virtual functions.

With a hierarchy of views, we end up with an extensible framework for adding

other kinds of InputFields later.

E X E R C I S E S : D Y N A M I C  F O R M  M O D E L S

1. Add a DoubleInputField class, derived from InputField, and update the

FormFactory to return it as needed.

2. Write a testcase with a QVariant Question in it, and verify that a

QDoubleSpinBox shows up.

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

396

2 QLineEdit, QComboBox, QDateEdit, QSpinBox

QList< InputField*>

QList< Question*>

QSplitter InputList

mSplitter mFields mModel

mQuestions

mLabelLayout 
mEditLayout

FormView

QVBoxLayout FormModel

QObject QuestionList

F I G U R E  1 7 . 2 Forms

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 396



17.2.1 Form Models

In addition to different kinds of input widgets (for the different data types), there

can also be different kinds of Question models for getting/setting the data in dif-

ferent places.

The FormModel and the Question classes, shown in Figure 17.4, are two

adjoining layers in the model. Because they are models, they are meant to be very

simple classes, holding data but containing no GUI or controller code.

FormModel provides a simple operation, setValues(), for updating all of

its Question’s values, shown in Example 17.3.

E X A M P L E  1 7 . 3 src/libs/forms/formmodel.cpp

[ . . . . ]

bool FormModel::setValues(QList<QVariant> list) {
bool retval = true;
for (int i=0; i<list.size(); ++i) {

QString str = list.at(i).toString();
Question* q = m_Questions.at(i);
retval = q->setValue(str) && retval;

}
emit modelChanged();
return retval;

}

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

397

InputField

+ InputField(name : QString, parent : QObject*) 
+ value() : QVariant 
+ widget() : QWidget* 
+ setView(newValue : QVariant) 
+ newValue(newString : const QString&) 
+ clearView() 
# valueChanged(val : QVariant)

StringInputField

- qle : QLineEdit*

IntInputField

- qspin : QSpinBox*

ChoiceInputField

- qcb : QComboBox*

DateInputField

- qde : QDateTimeEdit*

F I G U R E  1 7 . 3 Input fields

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 397



Question encapsulates all the things that are needed for an interaction with a

user, including the type and value of the expected answer. The constructors,

declared in Example 17.4, are protected because we will use a factory to create

Question objects.

E X A M P L E  1 7 . 4 src/libs/forms/question.h

[ . . . . ]
class Question : public QObject {

Q_OBJECT
protected:

Question(QString name, QString label = QString(),
QVariant::Type type=QVariant::String);

Question(QString name, QString label,
QStringList choices, bool open=false);

Question() {}
public:

virtual Qt::ItemFlags flags() const;
virtual QString toString() const;
virtual QVariant value() const;

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

398

FormModel

 # m_Questions : QuestionList

+ FormModel(name : QString)
+ keys() : QStringList
+ toString() : QString
+ operator <<(q : Question*) : FormModel&
+ questions() : const QuestionList&
+ property(name : QString) : QVariant
+ setValues(vlist : QList) : bool
+ setProperty(name : QString, value : QVariant) : bool
+ question(name : QString) : Question*
+ insert(position : int, q : Question*)
+ remove(name : QString) : bool
# modelChanged()

Question

- m_Label : QString 
- m_Value : QVariant 
- m_Choices : QStringList 
- m_Type : QVariant, Type

+ m_Questions *

F I G U R E  1 7 . 4 FormModel and Question

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 398



virtual QVariant::Type type() const ;
QStringList choices() const ;
QString label() const {return m_Label;}
virtual ~Question() {}

public slots:
virtual bool setValue(QVariant newValue);

signals:
void valueChanged();

protected:
void setType(QVariant::Type type) ;
void setLabel(QString label) ;

private:       
QString m_Label;
QVariant m_Value;
QStringList m_Choices;
QVariant::Type m_Type;

};
[ . . . . ]

When we need a Question instance, FormFactory creates it by using one of the

protected constructors, defined in Example 17.5.

E X A M P L E  1 7 . 5 src/libs/forms/question.cpp

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

399

[ . . . . ]

Question::Question( QString name, QString label, QVariant::Type t):
m_Label(label) {

setObjectName(name);
if (m_Label == QString())

m_Label = name;   
m_Value = QVariant(t);
m_Type = m_Value.type();

}

Question::Question(  QString name, QString label, QStringList choices,
bool) : m_Label(label), m_Choices(choices) {

setObjectName(name);
if (m_Label == QString())

m_Label = name;
m_Type = QVariant::StringList;

}

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 399



The view classes, shown in Figure 17.5, are separated into three layers.

1. FormDialog includes the buttons and actions plus some management/

controller code.

2. FormView is solely responsible for holding layouts for labels and input

widgets.

3. InputField is responsible for a single input widget.

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

400

F I G U R E  1 7 . 5 Form views

FormDialog

 - m_Model : FormModel*
 - m_View : FormView*
 - m_Layout : QVBoxLayout* 
 - m_OkAction : QAction*
 - m_CancelAction : QAction*
 - m_CloseAfterAction : bool

+ FormDialog(model : FormModel*, parent : QWidget*)
+ ~ FormDialog()
+ setModel(mod : FormModel*)
+ cancel()
+ apply() 
+ setCloseAfterAction(closeAfterOk : bool) 
#  questionAdded()
#  FormDialog() 
# createActions()

FormView

# m_LabelLayout : QVBoxLayout*
# m_EditLayout : QVBoxLayout* 
# m_Model : FormModel*
# m_Fields : InputList 

+ fields() : InputList
 # FormView()

0..1 -m_View

InputField

+ InputField(name : QString, parent : QObject*)
+ value() : QVariant
+ widget() : QWidget*
+ setView(newValue : QVariant)
+ clearView()
+ setReadOnly( : bool)
# valueChanged(val : QVariant)

*

17.2.2 Form Views

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 400



FormView can be automatically created from a FormModel without any knowl-

edge of the individual InputField or Question types. This is thanks to the

createEditor Factory method, used in Example 17.6, which returns polymor-

phic objects.

E X A M P L E  1 7 . 6 src/libs/forms/formfactory.cpp

[ . . . . ]

FormView* FormFactory::formView(FormModel* mod) {
FormView* retval = new FormView();
retval->m_Model = mod;
retval->m_LabelLayout = new QVBoxLayout();
retval->m_EditLayout = new QVBoxLayout();
foreach (Question* q, mod->questions()) {

QLabel* label = new QLabel(q->label());
retval->m_LabelLayout->addWidget(label);
InputField* editField = createEditor(q);  
retval->m_Fields += editField;
label->setBuddy(editField->widget());
retval->m_EditLayout->addWidget(editField->widget());

}
QWidget* labels = new QWidget();
labels->setLayout(retval->m_LabelLayout);
QWidget* edits = new QWidget();
edits->setLayout(retval->m_EditLayout);
retval->addWidget(labels);
retval->addWidget(edits);
return retval;

}

This is a factory method that returns polymorphic concrete instances.

The specific InputField types that get created depend on the type of the

Question passed in, and that is determined in FormFactory, shown in

Example 17.7.

E X A M P L E  1 7 . 7 src/libs/forms/formfactory.cpp

[ . . . . ]

InputField* FormFactory::createEditor(Question* q) {
QVariant::Type type = q->type();
InputField* retval = 0;
switch(type) {
case QVariant::StringList:

retval = new ChoiceInputField(
q->objectName(), q->choices());

1

1

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

401

continued

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 401



break;
case QVariant::String:

retval = new StringInputField(q->objectName());
break;

case QVariant::Int:
retval =  new IntInputField(q->objectName());
break;

case Variant::Dir:
retval = new DirInputField(q->objectName());
break;

default:
retval=new StringInputField(q->objectName(), 0);
qDebug() << QString("Unknown property type %1").arg(type);

}
if (q->flags() != Qt::ItemIsEditable) {

retval->setReadOnly(true);
}

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

402

return retval;
}

In Example 17.7, notice the switch statement, which is normally to be avoided in

object-oriented code. We have it here to map polymorphically from the

QVariant::Type (an enumerated value) to an InputField class. This makes

it possible for us to use the Strategy pattern on InputField (which provides

input and output in various ways, on various types).

By default, createEditor()returns a StringInputField, shown in

Example 17.8. It has a simple QLineEdit as its input widget.

E X A M P L E  1 7 . 8 src/libs/forms/inputfields.h

[ . . . . ]

class StringInputField : public InputField {
Q_OBJECT

public:
StringInputField(QString name, QWidget* parent = 0);
QVariant value() const ;
QWidget* widget() const ;

public slots:
void setReadOnly(bool v);
void setView(QVariant qv);
void clearView();

protected:
QLineEdit *qle;

};

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 402



17.2.3 Unforseen Types

It is possible there will be other “types” of data that correspond to different kinds

of input widgets, but are not among those defined in QVariant. In Example 17.9,

we introduce user-defined enumerated values above QVariant (127) that will

not share a value with those already predefined in QVariant::Type.

E X A M P L E  1 7 . 9 src/libs/dataobjects/variant.h

#ifndef VARIANT_H
#define VARIANT_H
#include <QVariant>

namespace Variant {
const QVariant::Type File = static_cast<QVariant::Type(128);
const QVariant::Type Dir = static_cast<QVariant::Type(129);

}

#endif

A directory can be encoded and decoded as a QString quite naturally, but a

Question with a Variant::Directory as its type gives a hint to the

FormFactory that the input widget it creates should be a QFileDialog that is

already in “directory-chooser” mode.

E X A M P L E  1 7 . 1 0 src/libs/forms/dirinputfield.h

[ . . . . ]
class DirInputField : public StringInputField {

Q_OBJECT
public:

DirInputField(QString name);
QWidget* widget() const;
void clearView();
static void setFileDialog(QFileDialog* fd) {

sFileDialog = fd;
}

public slots:
void browse();
private:
QHBoxLayout *m_Layout;
QPushButton *m_Button;
QWidget *m_Widget;
static QFileDialog* sFileDialog;

};
[ . . . . ]

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

403

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 403



TheDirInputField,defined in Example 17.10,extends theStringInputField

and still has the QLineEdit for accepting a string from the user. In addition, there is

aBrowse button, which when clicked will pop up aQFileDialog pre-set to accept

only a directory as a valid selection.

17.2.4 Controlling Actions

In this section, we discuss issues of synchronizing data between the model and the

view. Since these methods depend on both model and view, we are going to isolate

them from both, in their own controller classes. In Example 17.11, we derived two

custom QAction classes, each responsible for synchronizing in one direction.

E X A M P L E  1 7 . 1 1 src/libs/forms/formactions.h

[ . . . . ]
class OkAction : public QAction {

Q_OBJECT
public:

OkAction(FormModel* model, FormView* view);
public slots:

void ok();
private:

FormModel *m_Model;
FormView *m_View;

};

class CancelAction : public QAction {
Q_OBJECT

public slots:
void cancel();

[ . . . . ]

OkAction (or apply) should send the data from the view to the model.

CancelAction, in the case where the dialog is not to be closed afterwards,

should do the opposite (send the data from the model back to the view, to restore

old or set default values). Their definitions are in Example 17.12.

E X A M P L E  1 7 . 1 2 src/libs/forms/formactions.cpp

#include <QDebug>
#include "formactions.h"
#include "formmodel.h"
#include "formview.h"
#include "inputfield.h"
#include "question.h"

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

404

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 404



OkAction::OkAction(FormModel* model, FormView* view) :
QAction( tr("&Ok"), view), m_Model(model), m_View(view) {
connect (this, SIGNAL(triggered()), this, SLOT(ok()));

}

void OkAction::ok() {
qDebug() << "OK()" << endl;
QList<QVariant> values;
InputList fields = m_View->fields();
foreach (InputField* field, fields) {

QVariant v = field->value();
qDebug() << "submitting value: " << v.toString();
values += v;

}
m_Model->setValues(values);
qDebug() << m_Model->toString();

}

CancelAction::CancelAction(FormModel* model, FormView* view) :
QAction( tr("&Cancel"), view), m_Model(model), m_View(view) {
connect (this, SIGNAL(triggered()), this, SLOT(cancel()));

}

void CancelAction::cancel() {
qDebug() << "Cancel() " << endl;
QList<Question*> qlist = m_Model->questions();
InputList fields = m_View->fields();
for (int i=qlist.size()-1; i>-1; --i) {

Question* q = qlist.at(i);
InputField* f = fields.at(i);
qDebug() << QString(" name: %1  val: %2")

.arg(q->objectName())

.arg(q->value().toString());
f->setView(q->value());

}

}

These actions are in fact delegates, and perform a similar function to Qt’s

QItemDelegate.

17.2.5 DataObject Form Model

In Example 17.1, we extended FormModel, and in the constructor we created and

added Question objects to compose a custom form. The FormModel itself can

be used in other ways, including those listed below.

1. Creating a FormModel from a DataObject (one Question per 

property)

2. Connecting fields of a FormModel to QSettings values, to give 

persistence

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

405

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 405



PropQuestion, shown in Figure 17.6, serves as a proxy or delegate between a

DataObject property and an InputField widget. We see this in Example 17.13:

Most of the methods simply pass on the request to the underlying DataObject,

mDest.

E X A M P L E  1 7 . 1 3 src/libs/forms/propquestion.cpp

#include "propquestion.h"
#include <QMetaProperty>
#include <QVariant>

PropQuestion::PropQuestion(QString name, DataObject* dest):
m_Dest(dest) {
setObjectName(name);

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

406

3 This is how Designer recreates its GUIs.
4 Basically, this is similar to importing and exporting in XML, except that the tags we use, <form>
and <input>, are specified by the W3C [w3c]. By using this format, we can create XHTML forms
and load them in as FormModels.

3. Importing and exporting in XML3

4. Importing and exporting in HTML4

5. Can you think of others?

We wish to create a FormModel from a DataObject, so this means that another

function goes into the ModelFactory. We extended Question, the basic

FormModel building block, so that it would get/set values from/to a DataObject

property instead of its own m_Value.

QObject

QString

QStringList

QVariantQuestion

DataObject

PropQuestion

+m_Dest

+m_Choices

+m_Prop

+m_Label

+m_Value

0..1

QMetaProperty

F I G U R E  1 7 . 6 Rephrasing the question

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 406



E X A M P L E  1 7 . 1 4 src/libs/forms/testform2.cpp

#include <QMainWindow>
#include <QApplication>
#include "formfactory.h"
#include "formdialog.h"
#include "formmodel.h"
#include "filetagger.h"

int main(int argc, char** argv) {
QApplication a(argc, argv);
QMainWindow mw;

1 7 . 2 D Y N A M I C  F O R M  M O D E L S

407

m_Prop = m_Dest->metaProperty(name);
setLabel(name);
setType(m_Prop.type());

}

Qt::ItemFlags PropQuestion::flags() const {
if (m_Prop.isWritable()) return Qt::ItemIsEditable;
else return Qt::ItemIsSelectable;

}

QVariant PropQuestion::value() const {
return m_Dest->property(objectName());

}

bool PropQuestion::setValue(QVariant newValue) {
return m_Dest->setProperty(objectName(), newValue);

}

Example 17.14 uses the DataObject model applied to the FileTagger class to

auto-generate a form, which looks like Figure 17.7.

F I G U R E  1 7 . 7 Auto-generated FileTagger form

continued

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 407



FileTagger ft;
FormModel* mod = FormFactory::newForm(&ft);
FormDialog dialog(mod);
mw.setCentralWidget(&dialog);
mw.setVisible(true);
return a.exec();

}

The newForm Factory method defined in Example 17.15 simply returns a

PropQuestion instead of a Question when it is creating the FormModel from

a DataObject.

E X A M P L E  1 7 . 1 5 src/libs/forms/formfactory.cpp

[ . . . . ]

FormModel* FormFactory::newForm(DataObject* dobj) {
QStringList props = dobj->propertyNames();
FormModel *mod = new FormModel(dobj->className());
foreach (QString prop, props) {

if (prop == "objectName")
continue;

PropQuestion *pq = new PropQuestion(prop, dobj);
*mod << pq;

}
return mod;

}

E X E R C I S E S : D A T A O B J E C T  F O R M  M O D E L

1. Example 17.16 is an XHTML [w3c] fragment that contains three different kinds

of input widgets and roughly represents the form we’ve seen earlier.

E X A M P L E  1 7 . 1 6 src/modelview/html/bridgekeeper.html

<form>
<title> I am the keeper of the bridge of death </title>
<p> Answer these questions three and you can proceed over the
bridge. </p>
<label for="name">What is your name? </label>
<input name="name" type="text">

<label for="quest">What is your quest? </label>
<input name="quest" type="text" />

<label for="color">What is your favorite color? </label>
<select name="color">

<option value="blue">blue</option>
<option value="green">green</option>

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

408

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 408



<option value="orange">orange</option>
<option value="burgundy">burgundy</option>
<option value="crimson">crimson</option>

</select>

<input type="submit" name="ok" value="ok" />
<input type="submit" name="cancel" value="cancel" />
</form>

It is possible to preview it in a browser by opening it as a file. It doesn’t look

fancy without any css styling, but you can use it as a sanity check for your files.

Write a FormReader class that can read an XML file of the above format.

(Do not worry about handling XHTML elements or formats that are not shown

in Example 17.16.)

2. Write a FormWriter class that can write a FormModel to an XML file in the

same format.

3. Write a Mad Libs game that asks the user for a bunch of nouns, verbs, adjectives,

and adverbs such that when the form is submitted, it sticks the strings into a

paragraph and shows the result to the user. The passage of text should be at

least two paragraphs long, and contain at least ten blanks to be filled in.

17.3 Qt 4 Models and Views
Qt 4 offers general-purpose view classes for the most common types of views: lists,

trees, and tables. This includes abstract and concrete data models that can be

extended and customized to hold different kinds of data.

Figure 17.8 shows the four main types of classes in the Qt 4 model-view

framework. Each class has a specific role.

1. Item models are objects for representing a data model for multiple items.

Item models store the actual data that is to be viewed/manipulated.

2. Views are objects for acquiring, changing, and displaying the data. Each

view holds a pointer to a model. View classes make frequent calls to item

model methods to get and set data.

3. Selection models are objects that describe which items in the model are

selected in the view. Each view has a selection model.

4. QModelIndex acts like a cursor, or a smart pointer, providing a uniform

way to iterate through list, tree, or table items inside the model.

1 7 . 3 Q T  4  M O D E L S  A N D  V I E W S

409

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 409



The code fragment below shows how to create and connect a view to a model.

class MyTableModel : public QDefaultTableModel   {...};
// ...
myModel = new MyTableModel();
myView = new QTableView();
myView->setModel(myModel);

After setModel()is called, the view should automatically update itself whenever

the model changes (assuming the model is written properly).

As we write the implementation of MyTableModel, we are once again imple-

menting a passive interface, and there is an inversion of control. All the methods

we override in MyTableModel are called from QTableView or QModelIndex.

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

410

QAbstractItemModel

Cursor or smart-pointer to model

QAbstractItemView

QListViewQTreeView

QItemSelectionModel

Which items are selected in the view

Abstract types for displaying in the view

Different ways to view the model

Concrete model for relational database tables

Concrete model for items in a tree/table

QStandardItemModel

concrete list model

QStringListModel

QAbstractListModel QAbstractTableModel

QSqlRelationalTableModel

QTableView

QModelIndex

F I G U R E  1 7 . 8 Qt 4 Model/View classes

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 410



ABSTRACT OR DEFAULT? When extendingQAbstractxxxModel,
derived classes need to override all of the pure virtual methods and define
a full implementation for the model. In contrast, by extending one of the
QDefaultxxxModel classes, a derived class inherits a default imple-
mentation that does not require overrides of all methods. Each method
has an empty stub in the default base class.

Views

A View class encapsulates the components of a graphical user interface that

accesses the data in a model. Views come in a variety of different sizes and shapes.

In general, they are usually

■ Lists in various arrangements

■ Tables, perhaps with interactive elements

■ Trees representing objects in a parent-child hierarchy

■ Graphs and charts

Model Index

The QModelIndex class provides a generic access system that works for all classes

derived from QAbstractItemModel. This system treats model data as if it were

arranged in a rectangular array with row and column indices, regardless of what

underlying data structure actually holds the data.

QModelIndex objects, created by the model, can be used by model, view, or

delegate code to locate particular items in the data model. QModelIndex objects

have short life spans and can become invalid shortly after being created, so they

should be used immediately and then discarded.

QModelIndex::isValid()should be called before using a QModelIndex

object that has existed for more than a few operations.QPersistentModelIndex

objects have longer life spans but still should be checked with isValid() before

being used.

17.4 Table Models
It would be useful to have an editable QTableView for viewing and editing a col-

lection of DataObjects. For this, we extend and customize the QAbstractTable

Model. See Example 17.17.

1 7 . 4 T A B L E  M O D E L S

411

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 411



E X A M P L E  1 7 . 1 7 src/libs/dataobjects/dataobjecttablemodel.h

[ . . . . ]

class DataObjectTableModel : public QAbstractTableModel {
Q_OBJECT

public:
DataObjectTableModel(DataObject* headerModel = 0);
virtual DataObject* record(int rowNum) const ;
virtual bool insertRecord(DataObject* newRecord, 

int position = -1,
const QModelIndex& = QModelIndex());

QStringList toStringList() const;
QString toString() const;
virtual int fieldIndex(QString fieldName) const;
virtual ~DataObjectTableModel();

[ . . . . ]

public slots:
void reset();
void checkDirty();

protected slots: 
void changeProperty(const QString&, const QVariant&);

protected:
QList<DataObject*> m_Data;
QStringList m_Headers;
DataObject* m_Original;
QTimer m_Timer;
bool m_Dirty;
void extractHeaders(DataObject* hmodel);

public:
DataObjectTableModel& operator<<(DataObject* newObj) {

insertRecord(newObj);
return *this;

}
};

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

412

The name, DataObjectTableModel, is quite self-descriptive: a table of

DataObjects. Using this class to group DataObjects makes creating editable views

reasonably simple. Example 17.18 shows the client code that produced the screen-

shot above.

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 412



E X A M P L E  1 7 . 1 8 src/modelview/tablemodel/tablemodel.cpp

#include "dataobjecttablemodel.h"
#include "customerfactory.h"
#include "country.h"

DataObjectTableModel* model() {
CustomerFactory* fac = CustomerFactory::instance();

1 7 . 4 T A B L E  M O D E L S

413

continued

Customer* cust1 = fac->newCustomer("luke skywalker", Country::USA);
DataObjectTableModel* retval = new
DataObjectTableModel(cust1);  
cust1->setId("14123");
*retval << cust1;          
*retval << fac->newCustomer("Ben Kenobi", Country::Canada);
*retval << fac->newCustomer("Princess Leia", Country::USA);    
return retval;

}

#include <QTableView>
#include <QApplication>
#include <QMainWindow>
#include <QDebug>

int main(int argc, char** argv) {
QApplication app(argc, argv);
DataObjectTableModel *mod = model();
QMainWindow mainwin;
QTableView view ;
view.setModel(mod);
mainwin.setCentralWidget(&view);
mainwin.setVisible(true);
int retval =  app.exec();
qDebug() << "Application Exited. " << endl;
qDebug() << mod->toString() << endl;
delete mod;
return retval;

}

2

1

header model
Insert row into table.

In the public interface, we want convenient functions for operating on rows as

DataObject records. See Example 17.19.

E X A M P L E  1 7 . 1 9 src/libs/dataobjects/dataobjecttablemodel.cpp

[ . . . . ]

bool DataObjectTableModel::
insertRecord(DataObject* newRow, int position, 

const QModelIndex &parent) {

2

1

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 413



if (position==-1)
position=rowCount()-1;

connect (newRow, SIGNAL(propertyChanged(const QString&,
const QVariant&)),

this, SLOT(changeProperty(const QString&,
const QVariant&)));

beginInsertRows(parent, position, position);
m_Data.insert(position, newRow);
endInsertRows();
return true;

}

DataObject* DataObjectTableModel::
record(int rowNum) const {

return m_Data.at(rowNum);
}

But How Does It Work?

QAbstractTableModel has a series of pure virtual functions, declared in

Example 17.20, which must be overridden, because they are invoked by

QTableView to get and set data.

E X A M P L E  1 7 . 2 0 src/libs/dataobjects/dataobjecttablemodel.h

[ . . . . ]

/* Methods which are required to be overridden
because of QAbstractTableModel */

int rowCount(const QModelIndex& parent = QModelIndex()) const;
int columnCount(const QModelIndex& parent = QModelIndex())

const;
QVariant data(const QModelIndex& index, int role) const;
QVariant headerData(int section, Qt::Orientation orientation,

int role = DisplayRole) const;
ItemFlags flags(const QModelIndex &index) const;
bool setData(const QModelIndex &index, const QVariant &value,

int role = EditRole);
bool insertRows(int position, int rows,

const QModelIndex &index = QModelIndex());
bool removeRows(int position, int rows,

const QModelIndex &index = QModelIndex());

Example 17.21 shows the methods used to get data in and out of the model.

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

414

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 414



E X A M P L E  1 7 . 2 1 src/libs/dataobjects/dataobjecttablemodel.cpp

[ . . . . ]

QVariant DataObjectTableModel::
data(const QModelIndex &index, int role) const {

if (!index.isValid())
return QVariant();

if (role == DisplayRole) {
int row(index.row()), col(index.column());
DataObject* lineItem(m_Data.at(row));
return lineItem->property(m_Headers.at(col));

} else
return QVariant();

}

bool DataObjectTableModel::
setData(const QModelIndex &index, const QVariant &value,

int role) {
bool changed=false;
if (index.isValid() && role == EditRole) {

int row(index.row()), col(index.column());

1 7 . 4 T A B L E  M O D E L S

415

return changed;
}

This is a mapping layer from objects to tables. Since the tables need to show

header data, the table model has one DataObject, designated the header model,

which it uses to obtain headers. Example 17.22 defines headerData, the method

that table models call, which we can override to provide the proper header names.

E X A M P L E  1 7 . 2 2 src/libs/dataobjects/dataobjecttablemodel.cpp

[ . . . . ]

QVariant DataObjectTableModel::
headerData(int section, Qt::Orientation orientation,

int role) const {
if (role != DisplayRole)

return QVariant();
if(orientation == Qt::Vertical)

return QVariant(section);
if (m_Headers.size() ==0)

return QVariant();
return m_Headers.at(section);

}

DataObject* lineItem(m_Data.at(row));
changed = lineItem->setProperty(m_Headers.at(col), value);
if(changed)

emit dataChanged(index, index);
}

continued

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 415



C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

416

int DataObjectTableModel::rowCount(const QModelIndex&) const  {
return m_Data.count();

}

int DataObjectTableModel::
columnCount(const QModelIndex &parent) const {

Q_UNUSED(parent);
return m_Headers.size();

}

The other methods in the abstract interface, shown in Example 17.23, tell views

which items are editable (flags()), or allow client code to insert and remove rows.

E X A M P L E  1 7 . 2 3 src/libs/dataobjects/dataobjecttablemodel.cpp

[ . . . . ]

ItemFlags DataObjectTableModel::
flags(const QModelIndex &index) const {

if (!index.isValid())
return ItemIsEnabled;

// TODO - check the metaProperty to see if it is read/write
return QAbstractItemModel::flags(index) | ItemIsEditable;

}

void DataObjectTableModel::
reset() {

QModelIndex br = index(rowCount()-1, columnCount()-1);
QModelIndex tl = index(0,0);
emit dataChanged(tl, br);
m_Dirty = false;

}

bool DataObjectTableModel::
insertRows(int position, int rows, const QModelIndex &parent) {

beginInsertRows(parent, position, position+rows-1);
for (int row = 0; row < rows; ++row) {

DataObject* dobj = m_Original->clone();
m_Data.insert(position, dobj);

}
endInsertRows();
return true;

}

bool DataObjectTableModel::
removeRows(int position, int rows, const QModelIndex& parent) {

for (int row = 0; row < rows; ++row) {
delete m_Data.at(position);
m_Data.removeAt(position);

}
QModelIndex topLeft(index(position, 0, parent));

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 416



1 7 . 5 T R E E  M O D E L S

417

QModelIndex bottomRight(index(position + 1, columnCount(), parent));
emit dataChanged(topLeft, bottomRight);
return true;

continued

}

17.5 Tree Models
To represent data for a hierarchy of widgets (parents and children), Qt offers two

choices of models:

1. QAbstractItemModel is a general-purpose, but very complex class, that

can be used with QTreeView as well as QListView and QTableView.

2. QTreeWidgetItem is a simpler model, specifically for use with

QTreeWidget.

The QTreeWidgetItem class is a tree node that can be instantiated or extended.

The widget items need to be connected together in a tree-like fashion, similar to

QObject children (Section 9.2) or QDomNodes (Section 14.3). In fact,

QTreeWidgetItem is another implementation of the Composite pattern.

E X A M P L E  1 7 . 2 4 src/widgets/trees/treedemo.cpp

#include <QTreeWidget>
#include <QTreeWidgetItem>
#include <QApplication>

QTreeWidgetItem *item(QString name, QTreeWidgetItem* parent=0) {
QTreeWidgetItem *retval = new QTreeWidgetItem(parent);
retval->setFlags(Qt::ItemIsSelectable | Qt::ItemIsEditable

| Qt::ItemIsDragEnabled | Qt::ItemIsDropEnabled |
Qt::ItemIsEnabled);

retval->setText(0, name);
return retval;

}

int main(int argc, char** argv) {
QApplication app(argc, argv);
QTreeWidgetItem *root = item("root");
QTreeWidgetItem *colors = item("colors", root);
item("blue", colors);
item("red", colors);
item("orange", colors);

QTreeWidgetItem *sports = item("sports", root);
item("baseball", sports);
item("hockey", sports);
item("curling", sports);

QTreeWidgetItem *food = item("food", root);
item("rutabega", food);

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 417



item("macademia nuts", food);
item("bok-choy", food);

QTreeWidget *tree = new QTreeWidget();
tree->addTopLevelItem(root);
tree->setColumnCount(1);
tree->setVisible(true);
return app.exec();

}

Example 17.24 is a simple main program that creates a tree model and a view for

it. When you run it, you should see a tree widget that looks like Figure 17.9.

C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

418

F I G U R E  1 7 . 9 Tree Widget

Because the items are editable, you can edit them with the F2 key. You might notice

that other familiar keyboard shortcuts (cut, copy, paste, ctrl+cursor keys, etc.) from

your window environment will also work inside these list widgets and text areas.

17.5.1 Extended Tree Widget Items 

This section discusses the design behind the qjots application. qjots has a

TreeView on the left, and it allows you to organize your notes and Web bookmarks

in a tree-like fashion. The figure that follows demonstrates this.

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 418



The main idea behind this application is that whenever an item is selected in the

tree on the left, the appropriate view should be shown on the right. This is actu-

ally a typical feature for most GUI applications.

The QTreeWidgetItem is a natural base class to extend for abstract data

types. However, it is not a QObject, so it does not support signals or slots (which

we need on this model). Therefore, we will use multiple inheritance (Section 23.3)

to bring both classes together. Notice in Example 17.25 that this class is abstract,

because of a pure virtual function. We plan to extend this class further for the

specific types of data to display.

E X A M P L E  1 7 . 2 5 src/modelview/qjots/item.h

[ . . . . ]
class Item : public DataObject, public QTreeWidgetItem {
Q_OBJECT
Q_PROPERTY( QString Name READ name WRITE setName );

public:
Item();
virtual ~Item() {}
QTreeWidgetItem* parent() const {

return QTreeWidgetItem::parent();
}
virtual void setName(QString name) ;
virtual QDomElement element( QDomDocument doc)=0;
virtual QWidget* detailView() =0;
virtual QString name() const ;

};
[ . . . . ]

Required to eliminate the conflict between the two base class versions.

Notice that parent() must be defined in Item to eliminate the conflict between

the two base class definitions. What is nice about extending the Item class is that

you can initialize each instance with default flags, like we see in Example 17.26.

E X A M P L E  1 7 . 2 6 src/modelview/qjots/item.cpp

[ . . . . ]
Item::Item() {

setFlags(Qt::ItemIsSelectable | Qt::ItemIsEditable
| Qt::ItemIsDragEnabled | Qt::ItemIsDropEnabled
| Qt::ItemIsEnabled );

}
[ . . . . ]

1

1

1 7 . 5 T R E E  M O D E L S

419

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 419



C H A P T E R  1 7 : M O D E L S  A N D  V I E W S

420

DataObject

Folder NoteProject Bookmark

QTreeWidgetItem

Item

E X E R C I S E S : T R E E  M O D E L S

Your assignment is to write a qjots application that permits the user to create,

select, view, and edit at least three different “kinds” of items in a TreeWidget. If you

want, you can use bookmarks, notes, and folders, as shown in the diagram below.

Alternately, you can make up your own data model or adapt one from a previous

assignment.

1. Use a QSplitter to separate the left and the right sides of your

QMainWindow.

2. Write serializers so that the entire tree can be loaded and saved to disk.

3. Allow the user to select items in a tree on the left, so that they are visible/

editable in a “detailed view” on the right side.

4. Allow the user to add and delete items from the tree.

qjots Data Types

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 420



R E V I E W  Q U E S T I O N S

421

R E V I E W  Q U E S T I O N S

1. What is controller code? Which Qt classes are controller classes?

2. What pattern(s) is/are used in the design of InputField?

3. Because there is a 1:1 correspondence between InputField and

Question, we could easily combine the two classes into one. What

would you call that class? Explain the advantages or disadvantages of this

design.

4. How do you determine what item(s) is/are selected in a QListView?

5. If we wanted to iterate through items in an QAbstractItemModel,

what would be a good class to use?

6. There are two distinct model-view class pairs for storing and displaying

tree-like data. What are they called? Why would you use one versus the

other?

ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 421



ezus_138004_ch17.qxd  8/3/06  4:30 PM  Page 422



423

18.1 Introduction to MySQL . . . . . . . . . . . . . . 424

18.2 Queries and Result Sets . . . . . . . . . . . . . 427

18.3 Database Models . . . . . . . . . . . . . . . . . . . 429

18C H A P T E R  1 8

Qt SQL Classes

This chapter gives a general introduction to the capa-

bilities of Qt’s SQL classes, using MySQL as an exam-

ple back end.

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 423



Qt 4 provides a platform-neutral database interface similar to JDBC but without

the annoying mandatory exception-handling code. You can use Qt to connect to a

variety of different SQL databases, including Oracle, PostgreSQL, and SybaseSQL.

In the examples that follow, we use MySQL1 because it

1. Is open source

2. Is available on all platforms

3. Comes pre-installed on most Linux distributions

4. Has excellent documentation

5. Is very widely used

18.1 Introduction to MySQL
After you have installed MySQL on your system, you can create a database from its

shell by entering mysql as the “root” or admin user, as shown here.2

/home/files> mysql -u root
Welcome to the MySQL monitor.  Commands end with ; or \g.
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Next, cut and paste the following lines from Example 18.1 into the MySQL shell.

E X A M P L E  1 8 . 1 src/sql/dbcreate.sql

create database mp3db;
use mp3db;

1 http://dev.mysql.com/doc/
2 If you did not install MySQL yourself, then you may need to ask a system admin to create a MySQL
account for you.

grant all on mp3db.* to 'mp3user'@'localhost' identified by 'mp3dbpw';
grant all on mp3db.* to mp3user identified by 'mp3dbpw';

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 424



The last two lines grant user permissions for mp3user, which is the userid we will

use for all subsequent operations on the data.

Connecting to MySQL from Qt

Connecting initially to the database requires four pieces of information: user, pass-

word, database, and host, as shown in Example 18.2.

E X A M P L E  1 8 . 2 src/sql/mp3db.cpp

[ . . . . ]

bool Mp3db::connect()
{

QSqlDatabase db;
db = QSqlDatabase::addDatabase("QMYSQL");
db.setDatabaseName("mp3user");
db.setUserName("mp3db");
db.setPassword("mp3dbpw");
if (!db.open()) {

qCritical("Cannot open database: %s (%s)", 
db.lastError().text().toLatin1().data(),
qt_error_string().toLocal8Bit().data());

return false;
}
return true;

}

After the database connection has been opened, we use a very powerful class called

QSqlQuery, which has a member function exec() that enables us to submit

standard SQL statements to the database.

Defining a Table

Each database has a collection of tables. A table is very much like an array of

struct, where each column corresponds to a data member. To define a table, we

must describe each of the columns, which can also be thought of as fields, prop-

erties, or data members.

1 8 . 1 I N T R O D U C T I O N  T O  M Y S Q L

425

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 425



E X A M P L E  1 8 . 3 src/sql/filetagger.sql

CREATE TABLE FileTagger (
Artist     varchar(100),
TrackTitle  varchar(100),
AlbumTitle  varchar(100),
TrackNumber    varchar(10),
Genre         varchar(20),
Comment          varchar(200),
Preference     varchar(20),
Filename       varchar(200),
PRIMARY KEY(Filename),
INDEX(Preference),
INDEX(Genre)

);

Example 18.3 defines a single table in SQL called FileTagger. This table has

a structure that includes columns for each of the properties of the FileTagger

class. There are three ways you can create this table.

1. Cut and paste the contents of Example 18.3 into the mysql shell.

2. Source the file from the mysql shell.

> mysql mp3db -u mp3user -p

Enter password: XXXXX

mysql> source filetagger.sql

3. Pass it as a string to QSqlQuery::exec().

If you don’t want to keep reentering the db/user/pw each time you run
mysql’s command line shell, you can set default values in ~/.my.cnf
(*nix) or c:\mysql\my.cnf (Win32).

[mysql]
user=mp3user
password=mp3dbpw
database=mp3db

Inserting Rows

We wish to extract data from the ID3 tags of MP3 files and import them into the

FileTagger table. The first step is to prepare an SQL statement for inserting the

data, as shown in Example 18.4. Prepared statements are useful when we must

C H A P T E R  1 8 : Q T  S Q L  C L A S S E S

426

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 426



execute the same SQL statement repeatedly—the server only needs to parse the

string once.

E X A M P L E  1 8 . 4 src/sql/mp3db.cpp

[ . . . . ]

Mp3db::Mp3db()  {
connect();
m_insertQuery.prepare("INSERT INTO FileTagger ("

"Artist, TrackTitle, AlbumTitle,
TrackNumber, Genre, "
"Comment, Preference, Filename) VALUES
(?,?,?,?,?,?,?,?)");

}

We left the ? character in the parts of the SQL prepared statement where we later

wish to bind values. When we have a FileTagger object with the desired data to

import, we call addFile(), shown in Example 18.5. This method binds the val-

ues into the prepared statement.

E X A M P L E  1 8 . 5 src/sql/mp3db.cpp

[ . . . . ]

void Mp3db::addFile(FileTagger* song) {
m_insertQuery.addBindValue(song->getArtist());
m_insertQuery.addBindValue(song->getTrackTitle());
m_insertQuery.addBindValue(song->getAlbumTitle());
m_insertQuery.addBindValue(song->getTrackNumber());
m_insertQuery.addBindValue(song->getGenre());
m_insertQuery.addBindValue(song->getComment());
m_insertQuery.addBindValue(song->getPreference());
m_insertQuery.addBindValue(song->getFilename());
m_insertQuery.exec();

}

18.2 Queries and Result Sets
In Example 18.6, we define a function that queries an existing amaroK3 MySQL

database. amaroK is a jukebox program for KDE that can use a variety of different

back ends for storing its Mp3 metadata. Instead of storing all tag data for a song

1 8 . 2 Q U E R I E S  A N D  R E S U L T  S E T S

427

3 http://amarok.kde.org/

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 427



in a single row, like we did in Example 18.5, amaroK spreads the tag data across

many tables with relatively fewer rows. import () will query the “tags” table

and, for each URL, insert a row of preference data into the “statistics” table.

E X A M P L E  1 8 . 6 src/mmjbamarok/tool.cpp

[ . . . . ]
void import() {

using namespace qstd;
RatingMapper mapper;
FileTagger ft;
QSqlDatabase db = connect();

QSqlQuery insert;
int entries=0;
insert.prepare("INSERT INTO statistics (rating, url)"

" VALUES (?, ?) "
" ON DUPLICATE KEY UPDATE rating=? ");  

QSqlQuery query;
query.exec("select url from tags");         
while (query.next()) {                   

QString filename = query.value(0).toString();
ft.setFilename(filename);
QString preference = ft.getPreference();
int rating = mapper.toRating(preference); 
if (rating == 0) continue; 
insert.addBindValue(rating);          
insert.addBindValue(filename);
insert.addBindValue(rating);
if (insert.exec()) {

cerr << rating << " : " << filename << endl;
entries++;

}
else {

cerr << "Error inserting " << filename  << endl;
}

}
cerr << "Entries imported:" << entries << endl;

}

Prepare an SQL statement that inserts a new (rating, url) record or updates the current record
(new rating) if the record is already there. Each ? is a positional parameter to which we later
addBindValue().
Find all urls in the “tags” table. There is one for each song.
Iterate through result set.
first positional parameter4

3

2

1

4

3

2

1

C H A P T E R  1 8 : Q T  S Q L  C L A S S E S

428

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 428



In this example, a JDBC programmer might observe that QSqlQuery serves the

purpose of at least two JDBC classes. It is being used in two ways.

1. As a PreparedStatement—something to store the query, add bind values

to, etc.

2. As a cursor into the ResultSet—something to iterate through the query

results

The function iterates through all songs that are in amaroK’s library. For each song,

it extracts the preference string from a MusicMatch ID3v2 tag and, with the help

of RatingMapper, translates the preference string into an integer number

of “stars.” Finally, the number of stars is inserted into amaroK’s statistics table,

under the “rating” column.

18.3 Database Models
Qt 4 provides database model classes that extend the QAbstractTableModel

but operate on SQL data instead of objects in memory.

Figure 18.1 shows the UML design for a minimal application that displays a

view of a table. The DbViewApp is responsible for initializing and connecting the

objects in our application. We will create a QTableView of an SQL table called

“FileTagger.” Example 18.7 establishes the database connection.

1 8 . 3 D A T A B A S E  M O D E L S

429

DbViewApp

 - model : QSqlTableModel*
 - view : QTableView*

+ createConnection() : bool
+ DbViewApp(argc : int, argv[] : char*)
+ ~ DbViewApp()

Controller QTableView

QSqlTableModel

F I G U R E  1 8 . 1 DbViewApp

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 429



E X A M P L E  1 8 . 7 src/modelview/database/dbviewapp.cpp

[ . . . . ]

//#include "mp3tablemodel.h"

#include "dbviewapp.h"
#include <QSqlTableModel>
#include <QSqlRelationalDelegate>
#include <QDebug>
#include <QTableView>
#include <QSqlTableModel>
#include <QSqlError>

bool DbViewApp::createConnection() 
{

QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");
db.setDatabaseName("mp3db"); 
db.setUserName("mp3user");
db.setPassword("mp3dbpw");  

if (!db.open()) {
qCritical("Cannot open database: %s (%s)",

db.lastError().text().toLatin1().data(),
qt_error_string().toLocal8Bit().data());

return false;
}
else {

qDebug() << "Database Opened";
return true;

}

}

It would be better to get this information from an encrypted file, rather than hardcoded in the
source.

By setting an EditStrategy on the model, it is possible for views of the data to

provide editable text fields. OnManualSubmit means that the changes that are

made in the view are not sent to the server until submitAll()is called.

QTableView has functions that allow us to customize the selection behavior

and mode for the view. The parameters we set, shown in Example 18.8, permit

only a single row selection.

1

1

C H A P T E R  1 8 : Q T  S Q L  C L A S S E S

430

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 430



E X A M P L E  1 8 . 8 src/modelview/database/dbviewapp.cpp

[ . . . . ]

DbViewApp::DbViewApp(int argc, char* argv[]) :
QApplication(argc, argv) {

createConnection();  
model = new QSqlTableModel(this);
model->setTable("FileTagger");   
model->setEditStrategy(QSqlTableModel::OnManualSubmit);

view = new QTableView();
view->setWindowTitle("Mp3s in the Database");
view->setModel(model);      
view->setSelectionBehavior(QAbstractItemView::SelectRows);
view->setSelectionMode(QTableView::SingleSelection);
model->select();
view->setVisible(true);
qDebug() << "DbViewApp()";

}

The connection must be created before any models are created.

When you run the application, it will permit viewing and editing of the

FileTagger SQL table of the mp3db database, as shown in the following

screenshot.

1

1

1 8 . 3 D A T A B A S E  M O D E L S

431

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 431



C H A P T E R  1 8 : Q T  S Q L  C L A S S E S

432

Because there is no “submit” button, there is no way to actually change the data,

so changes to text fields will not be persistent.

There is no actual SQL code in Example 18.8, because the Qt class provides a

higher-level interface. The model class performs database reflection to determine

which columns to display.

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 432



R E V I E W  Q U E S T I O N S

433

R E V I E W  Q U E S T I O N S

1. QSqlQuery is a multipurpose class. Explain some of the ways it can be

used.

2. What view classes are suitable for displaying a database model?

ezus_138004_ch18.qxd  8/4/06  10:06 AM  Page 433



P A R T  I I I  

C++ Language
Reference

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 434



Chapter 19. Types and Expressions . . . . . . . . . 437

Chapter 20. Scope and Storage Class . . . . . . . . 463

Chapter 21. Statements and Control 

Structures . . . . . . . . . . . . . . . . . . . . . 479

Chapter 22. Memory Access . . . . . . . . . . . . . . . . 503

Chapter 23. Inheritance in Detail . . . . . . . . . . . 523

Chapter 24. Miscellaneous Topics . . . . . . . . . . . 541

435

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 435



ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 436



437

19C H A P T E R  1 9

Types and Expressions

This chapter seeks to provide a deeper understand-

ing of C++’s strong typing system, and shows how

expressions are evaluated and converted.

19.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 438

19.2 Evaluation of Logical Expressions . . . . 443

19.3 Enumerations . . . . . . . . . . . . . . . . . . . . . . 443

19.4 Signed and Unsigned 

Integral Types . . . . . . . . . . . . . . . . . . . . . . 445

19.5 Standard Expression Conversions . . . . 447

19.6 Explicit Conversions. . . . . . . . . . . . . . . . . 449

19.7 Safer Typecasting Using 

ANSI C++ Typecasts . . . . . . . . . . . . . . . . . 450

19.8 Run-Time Type 

Identification (RTTI) . . . . . . . . . . . . . . . . . 454

19.9 Member Selection Operators . . . . . . . . 457

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 437



Here we formally define some terms that we have been using. Operators are

special kinds of functions that perform calculations on operands and return

results. Operands are the arguments supplied to the operator.

Operators can be thought of as ordinary functions, except that it is possible

to call them using operator symbols (e.g.,+, -, *, /, etc.) in addition to the longer

function-call syntax.

An expression consists of a single operand, multiple operands with operators

interspersed, or functions with arguments. Each expression has a type and a value.

The value is obtained by applying the definitions of the operators and/or functions

to the operands (and/or arguments).

19.1 Operators
Operators fall into broad classifications according to their primary use.

Assignment operators =, +=, *=, ...

Arithmetic operators +, -, *, /, %

Relational operators <, <=, >, >=, ==, !=

Logical operators &&, ||, !

Bitwise operators &, |, ^, ~, <<, >>

Memory management operators new, delete, sizeof

Pointer and access operators *, &, ., ->, []

Scope resolution operators ::

Miscellaneous operators conditional (?:), comma (,)

Operators have predefined meanings for built-in types, but not all operators are

defined for all built-in types.

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 438



Operator Characteristics

Operators have the following special characteristics:

■ Precedence

■ Associativity

■ Number of required operands

Table 19.1 lists all the C++ operators and their characteristics, grouped by prece-

dence and purpose, with groups of highest precedence listed first.

■ The Operands column contains the number of operands that the opera-

tor requires.

■ The Description column contains the conventional meaning of the oper-

ator for built-in types.

■ The Assoc column indicates the associativity that governs how an expres-

sion is evaluated if the same operator occurs more than once.

■ L indicates left-to-right associativity. Example:

d = a + b + c;  // a+b is evaluated first, then (a+b)+c

assignment is evaluated last because of lower precedence.

■ R indicates right-to-left associativity:

c = b = a;     // a is assigned to b, then to c.

■ The Ovl column indicates whether or not the operator may be over-

loaded (redefined) for custom types.

■ The possible values for that column are:

■ Y: This operator can be overloaded as a global or member function.

■ M: This operator can be overloaded only as a class member function.

■ N: This operator cannot be overloaded.

1 9 . 1 O P E R A T O R S

439

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 439



T
A

B
L

E
 1

9
.1

C
+

+
 O

p
er

at
o

rs

O
p

er
at

o
r

O
p

er
an

d
s

D
es

cr
ip

ti
o

n
Ex

am
p

le
A

ss
o

c
O

vl

:
:

o
n

e
G

lo
b

al
 S

co
p

e 
Re

so
lu

ti
o

n
:
:
 
n
a
m
e

R
N

:
:

tw
o

C
la

ss
/n

am
es

p
ac

e 
sc

o
p

e 
re

so
lu

ti
o

n
c
l
a
s
s
N
a
m
e
:
:
m
e
m
b
e
r
N
a
m
e

L
N

-
>

tw
o

M
em

b
er

 s
el

ec
to

r 
vi

a 
p

tr
p
t
r
-
>
m
e
m
b
e
r
N
a
m
e

L
N

.
tw

o
M

em
b

er
 s

el
ec

to
r 

vi
a 

o
b

j
o
b
j
.
m
e
m
b
e
r
N
a
m
e

L
N

-
>

o
n

e
Sm

ar
t 

p
tr

o
b
j
-
>
m
e
m
b
e
r

R
M

[
 
]

tw
o

Su
b

sc
ri

p
t 

o
p

er
at

o
r

p
t
r
[
e
x
p
r
]

L
M

(
 
)

an
ya

Fu
n

ct
io

n
 c

al
l

f
u
n
c
t
i
o
n
(
a
r
g
L
i
s
t
)

L
N

(
 
)

an
y

Va
lu

e 
co

n
st

ru
ct

io
n

c
l
a
s
s
N
a
m
e
(
a
r
g
L
i
s
t
)

L
M

+
+

o
n

e
Po

st
 in

cr
em

en
t

v
a
r
N
a
m
e
+
+

R
Y

-
-

o
n

e
Po

st
 d

ec
re

m
en

t
v
a
r
N
a
m
e
-
-

R
Y

t
y
p
e
i
d

o
n

e
Ty

p
e 

id
en

ti
fic

at
io

n
t
y
p
e
i
d
(
t
y
p
e
)

o
r 
t
y
p
e
i
d
(
e
x
p
r
)

R
N

d
y
n
a
m
i
c
_
c
a
s
t

tw
o

ru
n

ti
m

e 
ch

ec
ke

d
 c

o
nv

d
y
n
a
m
i
c
_
c
a
s
t
<
t
y
p
e
>
(
e
x
p
r
)

L
N

s
t
a
t
i
c
_
c
a
s
t

tw
o

co
m

p
ile

 t
im

e 
ch

ec
ke

d
 c

o
nv

s
t
a
t
i
c
_
c
a
s
t
<
t
y
p
e
>
(
e
x
p
r
)

L
N

r
e
i
n
t
e
r
p
r
e
t
_
c
a
s
t

tw
o

u
n

ch
ec

ke
d

 c
o

nv
r
e
i
n
t
e
r
p
r
e
t
_
c
a
s
t
<
t
y
p
e
>
(
e
x
p
r
)

L
N

c
o
n
s
t
_
c
a
s
t

tw
o

co
n

st
 c

o
nv

c
o
n
s
t
_
c
a
s
t
<
t
y
p
e
>
(
e
x
p
r
)

L
N

s
i
z
e
o
f

o
n

e
Si

ze
 in

 b
yt

es
s
i
z
e
o
f
 
e
x
p
r

o
r 
s
i
z
e
o
f
(
t
y
p
e
)

R
N

+
+

o
n

e
Pr

e 
In

cr
em

en
t

+
+
v
a
r
N
a
m
e

R
Y

-
-

o
n

e
Pr

e 
D

ec
re

m
en

t
-
-
v
a
r
N
a
m
e

R
Y

~
o

n
e

B
it

w
is

e 
n

eg
at

io
n

~
e
x
p
r

R
Y

!
o

n
e

Lo
g

ic
al

 n
eg

at
io

n
!

e
x
p
r

R
Y

+
,
 
-

o
n

e
U

n
ar

y 
p

lu
s,

u
n

ar
y 

m
in

u
s

+
e
x
p
r

o
r 
-
e
x
p
r

R
Y

440

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 440



*
o

n
e

Po
in

te
r 

d
er

ef
er

en
ce

* 
pt

r
R

Y

&
o

n
e

A
d

d
re

ss
-o

f
&

 lv
al

ue
R

Y

n
e
w

o
n

e
A

llo
ca

te
n
e
w
 
t
y
p
e

o
r 
n
e
w
 
t
y
p
e
(
e
x
p
r
-
l
i
s
t
)

R
Y

n
e
w
 
[
 
]

tw
o

A
llo

ca
te

 a
rr

ay
n
e
w
 
t
y
p
e
 
[

s
i
z
e
 
]

L
Y

d
e
l
e
t
e

o
n

e
D

ea
llo

ca
te

d
e
l
e
t
e
 
p
t
r

R
Y

d
e
l
e
t
e
 
[
 
]

o
n

e
D

ea
llo

ca
te

 a
rr

ay
d
e
l
e
t
e
 
[
 
]
 
p
t
r

R
M

(
 
)

tw
o

C
-s

ty
le

 t
yp

e 
ca

st
(

t
y
p
e
 
)

e
x
p
r

R
N

b

-
>
*

tw
o

M
em

b
er

 p
tr

 s
el

ec
to

r 
vi

a 
p

tr
p
t
r
-
>
*
p
t
r
T
o
M
e
m
b
e
r

L
M

.
*

tw
o

M
em

b
er

 p
tr

 s
el

ec
to

r 
vi

a 
o

b
j

o
b
j
.
*
p
t
r
T
o
M
e
m
b
e
r

L
N

*
tw

o
M

u
lt

ip
ly

e
x
p
r
1
 
*

e
x
p
r
2

L
Y

/
tw

o
D

iv
id

e
e
x
p
r
1
 
/

e
x
p
r
2

L
Y

%
tw

o
Re

m
ai

n
d

er
e
x
p
r
1
 
%

e
x
p
r
2

L
Y

+
tw

o
A

d
d

e
x
p
r
1
 
+

e
x
p
r
2

L
Y

-
tw

o
Su

b
tr

ac
t

e
x
p
r
1
 
-
 
e
x
p
r
2

L
Y

<
<

tw
o

B
it

w
is

e 
le

ft
 s

h
ift

e
x
p
r
 
<
<

s
h
i
f
t
A
m
t

L
Y

>
>

tw
o

B
it

w
is

e 
ri

g
h

t 
sh

ift
e
x
p
r

>
>
 
s
h
i
f
t
A
m
t

L
Y

<
tw

o
Le

ss
 t

h
an

e
x
p
r
1

<
 
e
x
p
r
2

L
Y

<
=

tw
o

Le
ss

 o
r 

eq
u

al
e
x
p
r
1

<
=
 
e
x
p
r
2

L
Y

>
tw

o
G

re
at

er
e
x
p
r
1

>
 
e
x
p
r
2

L
Y

>
=

tw
o

G
re

at
er

 o
r 

eq
u

al
e
x
p
r
1

>
=
 
e
x
p
r
2

L
Y

=
=

tw
o

Eq
u

al
c

e
x
p
r
1

=
=
 
e
x
p
r
2

L
Y

!
=

tw
o

N
o

t 
eq

u
al

e
x
p
r
1

!
=
 
e
x
p
r
2

L
Y

&
tw

o
B

it
w

is
e 

A
N

D
e
x
p
r
1

&
 
e
x
p
r
2

L
Y

441

co
nt

in
ue

d

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 441



T
A

B
L

E
 1

9
.1

(C
o

n
ti

n
u

ed
)

O
p

er
at

o
r

O
p

er
an

d
s

D
es

cr
ip

ti
o

n
Ex

am
p

le
A

ss
o

c
O

vl

^
tw

o
B

it
w

is
e 

XO
R 

(e
xc

lu
si

ve
 O

R)
e
x
p
r
1

^
 
e
2

L
Y

|
tw

o
B

it
w

is
e 

O
R 

(in
cl

u
si

ve
 O

R)
e
x
p
r
1

|
 
e
x
p
r
2

L
Y

&
&

tw
o

Lo
g

ic
al

 A
N

D
e
x
p
r
1

&
&
 
e
x
p
r
2

L
Y

|
|

tw
o

Lo
g

ic
al

 O
R

e
x
p
r
1

|
|
 
e
x
p
r
2

L
Y

=
tw

o
A

ss
ig

n
e
x
p
r
1

=
 
e
x
p
r
2

R
Y

*
=

tw
o

M
u

lt
ip

ly
 a

n
d

 a
ss

ig
n

e
x
p
r
1

*
=
 
e
x
p
r
2

R
Y

/
=

tw
o

D
iv

id
e 

an
d

 a
ss

ig
n

e
x
p
r
1

/
=
 
e
x
p
r
2

R
Y

%
=

tw
o

M
o

d
u

lo
 a

n
d

 a
ss

ig
n

e
x
p
r
1

%
=
 
e
x
p
r
2

R
Y

+
=

tw
o

A
d

d
 a

n
d

 a
ss

ig
n

e
x
p
r
1

+
=
 
e
x
p
r
2

R
Y

-
=

tw
o

Su
b

tr
ac

t 
an

d
 a

ss
ig

n
e
x
p
r
1

-
=
 
e
x
p
r
2

R
Y

<
<
=

tw
o

Le
ft

 s
h

ift
 a

n
d

 a
ss

ig
n

e
x
p
r
1

<
<
=
 
e
x
p
r
2

R
Y

>
>
=

tw
o

R
ig

h
t 

sh
ift

 a
n

d
 a

ss
ig

n
e
x
p
r
1

>
>
=
 
e
x
p
r
2

R
Y

&
=

tw
o

A
n

d
 a

n
d

 a
ss

ig
n

e
x
p
r
1

&
=
 
e
x
p
r
2

R
Y

|
=

tw
o

In
cl

u
si

ve
 o

r 
an

d
 a

ss
ig

n
e
x
p
r
1

|
=
 
e
x
p
r
2

R
Y

*
=

tw
o

Ex
cl

u
si

ve
 o

r 
an

d
 a

ss
ig

n
e
x
p
r
1

^
=
 
e
x
p
r
2

R
Y

?
 
:

th
re

e
C

o
n

d
it

io
n

al
 e

xp
re

ss
io

n
b
o
o
l

?
 
e
x
p
r

:
 
e
x
p
r

L
N

t
h
r
o
w

o
n

e
Th

ro
w

 e
xc

ep
ti

o
n

t
h
r
o
w
 
e
x
p
r

R
N

,
tw

o
Se

q
u

en
ti

al
 E

va
lu

at
io

n
 (c

o
m

m
a)

e
x
p
r

,
 
e
x
p
r

L
Y

a
Th

e 
fu

n
ct

io
n

 c
al

l o
p

er
at

o
r 

m
ay

 b
e 

d
ec

la
re

d
 t

o
 t

ak
e 

an
y 

n
u

m
b

er
 o

f o
p

er
an

d
s.

b
Th

e 
ty

p
e-

ca
st

 o
p

er
at

o
r 

m
ay

 u
se

 c
o

n
st

ru
ct

o
rs

 o
r 

co
nv

er
si

o
n

 o
p

er
at

o
rs

 t
o

 c
o

nv
er

t 
cu

st
o

m
 t

yp
es

.
c

N
o

te
 t

h
at

 fo
r 
f
l
o
a
t

an
d
d
o
u
b
l
e

,t
h

is
 o

p
er

at
o

r 
sh

o
u

ld
 n

o
t 

b
e 

u
se

d,
as

 it
 r

eq
u

ir
es

 a
n

 “e
xa

ct
”m

at
ch

,w
h

ic
h

 is
 a

rc
h

it
ec

tu
re

-d
ep

en
d

en
t,

an
d

 n
o

t 
al

w
ay

s
re

lia
b

le
.

442

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 442



19.2 Evaluation of Logical Expressions
In C and C++, evaluation of a logical expression stops as soon as the logical value

of the entire expression is determined. This shortcut mechanism may leave some

operands unevaluated. The value of an expression of the form

expr1 && expr2 && ... && exprn

is true if and only if all of the operands are true. If one or more of the operands

is false, the value of the expression is false. Evaluation of the expression

proceeds sequentially, from left to right, and is guaranteed to stop (and return the

value false) if it encounters an operand that has the value false.

Similarly, an expression of the form

expr1 || expr2 || ... || exprn

is false if and only if all of the operands are false. Evaluation of the expression

proceeds sequentially, from left to right, and is guaranteed to stop (and return the

value true) if it encounters an operand that has the value true.

Programmers often exploit this system with statements like:

if( x != 0 &&  y/x < z) { 
// do something ...

}
else {

// do something else ...
}

If x were equal to 0, evaluating the second expression would produce a run-time

error. Fortunately, that cannot happen.

Logical expressions often make use of both && and ||. It is important to

remember that && has higher precedence than ||. In other words, x || y && z

means x || (y && z), not (x || y) && z.

19.3 Enumerations
In Chapter 2 we discussed at some length how we can add new types to the C++

language by defining classes. Another way to add new types to C++ deserves some

more discussion.

The keyword enum is used for assigning integral values to C++ identifiers. For

example, when designing data structures that perform bitwise operations, it is very

convenient to give names to the various bitmasks. The main purpose for an enum

is to make the code more readable and, hence, easier to maintain. For example,

enum {UNKNOWN, JAN, FEB, MAR };

1 9 . 3 E N U M E R A T I O N S

443

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 443



defines three constant identifiers, numbered in ascending order, starting at 0. It is

equivalent to

enum {UNKNOWN=0, JAN=1, FEB=2, MAR=3};

The identifiers, JAN, FEB, and MAR are called enumerators.

They can be defined and initialized to arbitrary integer values.

enum Ages {manny = 10, moe, jack = 23, 
scooter = jack + 10};

If the first enumerator, manny, had not been initialized, it would have been given

the value 0. Since we initialized manny to 10 and we did not assign a value to moe,

the value of moe is 11. The values of enumerators need not be distinct.

When an enum has a tag name, then a new type is defined. For example,

enum Winter {JAN=1, FEB, MAR, MARCH = MAR };

The name Winter is called a tag name. Now, we can declare variables of type

Winter.

Winter m = JAN;
int i = JAN; // OK - enum can be implicitly converted to int
m = i;         // ERROR! An explicit cast is required.
m = static_cast<Winter>(i);  // OK
i = m;         // OK
m = 4;         // ERROR

The tag name and the enumerators must be distinct identifiers within their scope.

Enumerations can be implicitly converted to ordinary integer types, but the

reverse is not possible without an explicit cast. Example 19.1 demonstrates the use

of enum and also shows how the compiler symbols look when they are printed out.

E X A M P L E  1 9 . 1 src/enums/enumtst.cpp

#include <iostream>
using namespace std;

int main(int, char** ) {
enum Signal { off, on } sig;        
sig = on;
enum Answer { no, yes, maybe = -1 };  
Answer ans = no;                   
enum { lazy, hazy, crazy } why;     
int  i, j = on;                    
sig = off;  
i = ans; 
// ans = sig;                      
ans = static_cast<Answer>(sig);     
ans = (sig ? no : yes);
why = hazy;
cout << "sig, ans, i, j, why "

<< sig << ans << i << j << why << endl;

7

6

5

4

3

2

1

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

444

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 444



return 0;
}

Output:

OOP> gpp enumtest.cc
a, b, i, j, why 01011
OOP>

a new type, two new enum identifiers, and a variable definition all in one line
just the type/enum definitions
an instance of an enum
a typeless enum variable
An enum can always convert to int.
Conversions between enum types cannot be done implicitly.
Conversion is okay with a cast.

19.4 Signed and Unsigned Integral Types
This section explains the differences between signed and unsigned integral types.

The underlying binary representation of an object x of any integral type looks

like this (assuming n-bit storage):

dn–1dn–2...d2d1d0

where each di is either 0 or 1. The computation of the decimal equivalent value of

x depends on whether x is an unsigned or signed type. If x is unsigned, the deci-

mal equivalent value is

dn–1*2
n–1 + dn–2*2

n–2 +...+ d2*2
2 + d1*2

1 + d0*2
0

The largest (positive) value that can be expressed by an unsigned integer is, therefore,

2n – 1 = 1*2n–1 + 1*2n–2 +...+ 1*22 + 1*21 + 1*20

If x is signed, the decimal equivalent value is

dn–1*-(2
n–1) + dn–2*2

n–2 +...+ d2*2
2 + d1*2

1 + d0*2
0

The largest (positive) value that can be expressed by a signed integer is

2n–1 – 1 = 0*-(2n–1) + 1*2n–2 +...+ 1*22 + 1*21 + 1*20

This is called “two’s complement” representation. To determine the representation

of the negative of a signed integer,

1. Compute the “one’s complement” of the number (i.e., replace each bit

with its complement).

2. Add 1 to the “one’s complement” produced in the first step.

8-Bit Integer Example

Suppose that we have a tiny system that uses only 8 bits to represent a number. On

this system, the largest unsigned integer would be

11111111 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

7

6

5

4

3

2

1

1 9 . 4 S I G N E D  A N D  U N S I G N E D  I N T E G R A L  T Y P E S

445

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 445



But that same number, interpreted as a signed integer, would be

11111111 = –128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = –1

E X E R C I S E S : S I G N E D  A N D  U N S I G N E D
I N T E G R A L  T Y P E S

You be the computer …

For these exercises, simulate the action of the computer as it executes the given

code and specify what you think the output will be. You can always compile and

run the code yourself to see if your output is correct. If you disagree with the com-

puter, try to explain why.

1. #include <iostream>
using namespace std;
int main() { 

unsigned n1 = 10;
unsigned n2 = 9;
char *cp;
cp = new char[n2 – n1];
if(cp == 0)

cout << "That's all!" << endl;
cout << "bye bye!" << endl;

}

2. #include <iostream>
using namespace std;

int main() {
int x(7), y = 11;
char ch = 'B';
double z(1.34);
ch += x;
cout << ch << endl;
cout << y + z << endl;
cout << x + y * z << endl;
cout << x / y * z << endl;

}

3. #include <iostream>
using namespace std;

bool test(int x, int y)
{ return x / y; }

int main()
{ int m = 17, n = 18;

cout << test(m,n) << endl;
cout << test(n,m) << endl;
m += n;
n /= 5;
cout << test(m,n) << endl;

}

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

446

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 446



19.5 Standard Expression Conversions
Expression conversions, including implicit type conversions through promotion

or demotion, and explicit casting through a variety of casting mechanisms are dis-

cussed in this section.

Suppose x and y are numeric variables. An expression of the form x op y has

both a value and a type. When this expression is evaluated, temporary copies of x

and y are used. If x and y have different types, the one with the shorter type may

need to be converted (widened) before the operation can be performed. An implicit

conversion of a number that preserves its value is called a promotion.

Automatic Expression Conversion 
Rules for x op y

1. Any bool, char, signed char, unsigned char, enum, short int,

or unsigned short int is promoted to int. This is called an integral
promotion.

2. If, after the first step, the expression is of mixed type, then the operand of

smaller type is promoted to that of the larger type, and the value of the

expression has that type.

3. The hierarchy of types is indicated by the arrows in Figure 19.1.

1 9 . 5 S T A N D A R D  E X P R E S S I O N  C O N V E R S I O N S

447

F I G U R E  1 9 . 1 Hierarchy of basic types

bool

int

unsigned int

if int is the same 
size as long int

float

unsigned longlong int

char (signed or unsigned)

long doubledouble

if short int 
is the same 
size as int

short int

unsigned short

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 447



We note that the relationship between unsigned and long depends on the

implementation. For example, on a system that implements int with the same

number of bytes as long, it would not be possible to promote unsigned to

long, so the promotion process would bypass long and promote unsigned to

unsigned long. Now assume that we have the following declarations:

double d;
int i;

In general, a promotion such as d = i; will be well behaved. An assignment that

causes a demotion such as i = d; will result in a loss of information. Assuming

the compiler permits the assignment, the fractional part of d would be discarded.

Example 19.2 demonstrates some of the conversions we have discussed.

E X A M P L E  1 9 . 2 src/mixed-types.cpp

#include <iostream>
using namespace std;

int main() {
int i, j = 88;
double d = 12314.8723497;
cout << "initially d = " << d

<< "  and j = " << j << endl;
cout << "The sum is: " << d + i << endl;
i = d;
cout << "after demoting d,  i = " << i << endl;
d = j;
cout << "after promoting j,  d = " << d << endl;

}

Here is the compile and run.

src> g++ mixed-types.cpp
mixed-types.cpp: In function 'int main()':
mixed-types.cpp:10: warning: converting to 'int' from 'double'
src> ./a.out
initially d = 12314.9  and j = 88
The sum is: 1.34527e+08
after demoting d,  i = 12314
after promoting j,  d = 88
src>

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

448

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 448



E X E R C I S E : S T A N D A R D  E X P R E S S I O N
C O N V E R S I O N S

Assume that we have the following declarations:

double d = 123.456;
int i = 789, j = –1;
uint k = 10;

■ What is the type and what is the value of d + i?

■ What is the type and what is the value of j + k?

■ What happens with a promotion such as  d = i;?

■ What happens with a demotion such as i = d;?

19.6 Explicit Conversions
Explicit conversions are called casts. Casting is sometimes necessary, but it tends

to be overused and can be a major source of errors. In fact, Bjarne Stroupstrup, the

creator of C++, is on record recommending that they be used as little as possible.

Because of its roots in the C language, C++ supports the old-style (unsafe) 

C-style casting (type)expr:

double d=3.14;
int i = (int) d;

C++ also supports an alternate constructor-style syntax for casts:

Type t = Type(arglist)

A cast causes a temporary value of the specified type to be created and pushed

onto the program stack. If Type is a class, a temporary object is created and ini-

tialized by the appropriate conversion constructor. If Type is a native type,

Type(arg) is equivalent to (Type) arg. The temporary is kept on the stack just

long enough to evaluate the expression it is in. After that, it is destroyed.

For example,

double d = 3.14;
Complex c = Complex(d);

1 9 . 6 E X P L I C I T  C O N V E R S I O N S

449

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 449



19.7 Safer Typecasting Using 
ANSI C++ Typecasts

ANSI C++ adds four cast operators, with template-style syntax, that more clearly

express the intentions of the programmer and make casts easier to spot in the

code. These ANSI typecasts are:

■ static_cast<type>(expr)—for converting between related types

■ const_cast<type> expr—for casting away const or volatile

■ dynamic_cast<type>(expr)—for safe navigation through an inher-

itance hierarchy

■ reinterpret_cast<type>(expr)—for type conversions of point-

ers, between unrelated types

19.7.1 static_cast and const_cast

static_cast<DestType>(expr)converts the value expr to type DestType,

provided that the compiler knows of an implicit conversion from expr to DestType.

All type-checking is done at compile time.

static_cast<char>('A' + 1.0);
static_cast<double>(static_cast<int>(y) + 1);

The static_cast operator converts between related types such as one pointer

type to another, an enumeration type to an integral type, or a floating-point type

to an integral type. These conversions are well defined, portable, and invertible.

The compiler can apply some minimal type checking for each static_cast.

static_cast cannot cast away constness. For that you must use

const_cast<DestType>(expr), which creates a non-const version of expr.

In that case, the DestType can differ from the type of expr only in the presence

or absence of const/volatile.

For an int i, static_cast<double>(i)will create a temporary of type

double, which has the value of i. The variable i itself is not changed by this cast.

Example 19.3 contains both kinds of casts.

E X A M P L E  1 9 . 3 src/ansicast/m2k.cpp

// Miles are converted to kilometers.
#include <QTextStream>

QTextStream cin(stdin, QIODevice::ReadOnly);
QTextStream cout(stdout, QIODevice::WriteOnly);
QTextStream cerr(stderr, QIODevice::WriteOnly);

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

450

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 450



const double  m2k = 1.609;    // conversion constant

inline double mi2km(int miles) {
return (miles * m2k);

}

int main() {
int  miles;
double kilometers;
cout << "Enter distance in miles: " << flush;
cin >> miles ;  
kilometers = mi2km(miles);
cout << "This is approximately "

<<  static_cast<int>(kilometers)
<< "km."<< endl;

cout << "Without the cast, kilometers = "
<< kilometers << endl;

double* dp = const_cast<double*>(&m2k); 
cout << "m2k: " << m2k << endl;
cout << "&m2k: " << &m2k << "  dp: " << dp << endl;
cout << "*dp: " << *dp << endl;
*dp = 1.892;  
cout << "Can we reach this statement? " << endl;
return 0;

}

Output:

Enter distance in miles: 23
This is approximately 37km.
Without the cast, kilometers = 37.007
m2k: 1.609
&m2k: 0x8049048  dp: 0x8049048
*dp: 1.609
Segmentation fault

What are we attempting to do here?

Here are some observations regarding the previous example.

■ The mixed expression miles * m2k is implicitly widened to double.

■ The safe cast static_cast<int>(kilometres)truncates the

double value to int.

■ The cast did not change the variable kilometres.

■ The results of our attempt to assign to *dp are undefined.

Casting Away const

In general, const_cast is only used for const-references and pointers to non-

const objects. Using const_cast to change const objects has undefined

1

1

1 9 . 7 S A F E R  T Y P E C A S T I N G  U S I N G  A N S I  C + +  T Y P E C A S T S

451

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 451



behavior because const objects may be stored in read-only memory (which the

operating system protects). In the case of const int, trying to change it by cast-

ing away const depends on compiler optimization techniques, which frequently

optimize them out of existance (by doing pre-compilation value replacement).

Consider Example 19.4.

E X A M P L E  1 9 . 4 src/casts/constcast1.cpp

#include <iostream>
using namespace std;

int main() {
const int N = 22;
int * pN = const_cast<int*>(&N);
*pN = 33;
cout << N << '\t' << &N << endl;
cout << *pN << '\t' << pN << endl;

}

Output:

22      0xbf91cfa0
33      0xbf91cfa0

The above output, obtained with gcc version 4.0.3, could be different on your sys-

tem, because the behavior is undefined.

In this example we used const_cast to obtain a regular pointer to a const

int. Because the const int is in stack storage class, we don’t get a segmentation

fault by attempting to change the memory. The compiler is unable to “optimize

out” the int, and the const_cast tells it not to even try.

E X E R C I S E S : S T A T I C _ C A S T  A N D  C O N S T _ C A S T

1. In Example 19.4, try moving the

const int N = 22;

above or below

int main() {

Observe and explain the difference in output.

2. Predict the output of Example 19.5.

Remove the const_cast from the call to f2()inside f1(), and predict

the output again.

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

452

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 452



E X A M P L E  1 9 . 5 src/casts/constcast2.cpp

#include <iostream>

void f2(int& n) {
++n;

}

void f1(const int& n, int m) {
if(n < m) 

f2(const_cast<int&>(n));
}

using namespace std;

int main() {
int num1(10), num2(20);
f1(num1, num2);
cout << num1 << endl;

}

19.7.2 reinterpret_cast

reinterpret_cast is used for casts that are representation- or system-

dependent; examples are conversions between unrelated types such as int to

pointer or between unrelated pointer types such as int* to double*. It cannot

cast away const. reinterpret_casts are dangerous, generally not portable,

and should be avoided.

Consider the following situation.

Spam spam;
Egg* eggP;
eggP = reinterpret_cast<Egg*>(&spam);
eggP->scramble();   

reinterpret_cast takes some spam and gives us an Egg-shaped pointer, with-

out any concern for type compatibility.

By using eggP, we are reinterpreting the bits of spam as if they were bits of egg.

In some countries, this would be sacrilege!

1 9 . 7 S A F E R  T Y P E C A S T I N G  U S I N G  A N S I  C + +  T Y P E C A S T S

453

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 453



What Is It Really Used For?

Sometimes, a C function returns a void* pointing to a type that is known to the

developer. In such a case, a typecast from void* to the actual type is needed. If

you are sure it is pointing to an Egg, reinterpret_cast<Egg*> is the appro-

priate cast to use. There is no compiler or runtime checking on such a cast.

19.7.3 Why Not Use C-style Casts?

C-style casts are deprecated and should not be used anymore. Consider the fol-

lowing situation, quite similar to the previous example.

Apple apple;
Orange* orangeP;
// other processing steps ...
orangeP = (Orange*) &apple;
orangeP->squeeze();

The problem is that we can not tell from looking at this code whether the devel-

oper is aware that an Apple is not compatible with an Orange. From looking at it,

it is unclear whether this is a proper type conversion or a non-portable pointer

conversion.

Errors caused by such a cast can be very difficult to understand and correct. If

a system-dependent cast is necessary, it is preferable to use reinterpret_cast

over a C-style cast so that, when troubles arise, it will be easier to spot the likely

source of those troubles in the code.

19.8 Run-Time Type Identification (RTTI)
This section covers dynamic_cast and typeid, two operators that enable

runtime type identification (RTTI).

When operating on hierarchies of types, sometimes it is necessary to downcast

a pointer to a more specific type. Without a downcast, only the interface of the

pointer type (the base class) is available. One common situation where downcast-

ing is used is inside functions that accept base class pointers.

The conversion of a base class pointer to a derived class pointer is called

downcasting because casting from the base class to a derived class is considered

moving down the class hierarchy.

RTTI allows programmers to safely convert pointers and references to objects

from base to derived types.

dynamic_cast<D*>(ptr) takes two operands: a pointer type D* and a

pointer ptr of a polymorphic type B*. If D is a base class of B (or if B is the same as

D), dynamic_cast<D*>(ptr) is an upcast (or not a cast at all) and is equivalent

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

454

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 454



to static_cast<D*>(ptr). But if ptr has the address of an object of type D,

where D is derived from B, the operator returns a downcast pointer of type D*,

pointing to the same object. If the cast is not possible, then a null pointer is

returned.

dynamic_cast performs runtime checking to determine whether the pointer/

reference conversion is valid.

Example 19.6 shows operations on a collection of QWidgets. In fact, we wish

to operate only buttons and sliders, leaving the rest alone.

E X A M P L E  1 9 . 6 src/rtti/dynamic_cast.cpp

[ . . . . ]
int processWidget(QWidget* wid) {

if (widpointer->inherits("QAbstractSpinBox")) {  
QAbstractSpinBox* qasbp = 

static_cast <QAbstractSpinBox*> (widpointer);
qasbp->setAlignment(Qt::AlignHCenter);

}
else {

QAbstractButton* buttonPtr = 
dynamic_cast<QAbstractButton*>(widpointer);

if (buttonPtr) {                        
buttonPtr->click();
qDebug() << QString("I clicked on the %1 button:")

.arg(buttonPtr->text());
}
return 1;

}
return 0;

}
[ . . . . ]
QVector<QWidget*> widvect;

widvect.append(new QPushButton("Ok"));
widvect.append(new QCheckBox("Checked"));
widvect.append(new QComboBox());
widvect.append(new QMenuBar());
widvect.append(new QCheckBox("With Fries"));
widvect.append(new QPushButton("Nooo!!!!"));
widvect.append(new QDateTimeEdit());
widvect.append(new QDoubleSpinBox());
foreach (QWidget* widpointer, widvect) {

processWidget(widPointer);
}

return 0;
}

only for QObjects processed by moc
If non-null, it’s a valid QAbstractButton.2

1

2

1

1 9 . 8 R U N - T I M E  T Y P E  I D E N T I F I C A T I O N  ( R T T I )

455

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 455



qobject_cast (see Section 15.3) is faster than dynamic_cast, but
only works on QObject-derived types.

In terms of run-time cost, dynamic_cast is considerably more expensive, per-

haps 10 to 50 times the cost of a static_cast. However, they are not inter-

changable operations and are used in very different situations.

19.8.1 typeid Operator

Another operator that is part of RTTI is typeid(), which returns type informa-

tion about its argument. For example:

void f(Person& pRef) {
if(typeid(pRef) == typeid(Student) {

// pRef is actually a reference to a Student object.
// Proceed with Student specific processing.

}
else {

// The Object referred to by pRef is not a Student.
// Do whatever alternative stuff is required.
}

}

typeid()returns a type_info object that corresponds to the argument’s type.

If two objects are the same type, their type_info objects should be equal.

The typeid()operator can be used for polymorphic types or non-polymorphic

types. It can also be used on basic types as well as custom classes. Furthermore, the

arguments to typeid()can be type names or object names.

This is one possible implementation of the type_info class.

class type_info {
private:

type_info(const type_info& ); 
// cannot be copied by users
type_info& operator=(const type_info&);
// implementation dependent representation

public:
virtual ~type_info();
bool operator==(const type_info&) const;
bool operator!=(const type_info&) const;
bool before(const type_info& rhs) const;
const char* name() const;
// returns a pointer to the name of the type

}

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

456

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 456



19.9 Member Selection Operators
There are two forms of the member selection operator:

1. pointer->memberName

2. object->memberName

They look the same, but differ in the following ways.

1. The first is binary, the second is unary.

2. The first is global and not overloadable, the second is an overloadable

member function.

When it is defined for a class, the unary operator->()should return a pointer

to an object that has a member whose name is memberName.

An object that implements operator-> is typically called a smart pointer.

Smart pointers are so called because they can be programmed to be “smarter” than

ordinary pointers. For example, a QPointer is automatically set to 0 when the

referenced object is destroyed. Examples of smart pointers include

1. STL style iterators

2. auto_ptr—the STL smart pointer

3. QPointer—the Qt 4 smart pointer

All of these smart pointers are template classes.

Example 19.7 shows the source code for QPointer.

E X A M P L E  1 9 . 7 src/pointers/autoptr/qpointer.h

1 9 . 9 M E M B E R  S E L E C T I O N  O P E R A T O R S

457

continued

[ . . . . ]
template <class T>
class QPointer
{

QObject *o;
public:

inline QPointer() : o(0) {}
inline QPointer(T *p) : o(p)

{ QMetaObject::addGuard(&o); }
inline QPointer(const QPointer<T> &p) : o(p.o)

{ QMetaObject::addGuard(&o); }
inline ~QPointer()

{ QMetaObject::removeGuard(&o); }
inline QPointer<T> &operator=(const QPointer<T> &p)

{ if (this != &p) QMetaObject::changeGuard(&o, p.o); return 
*this; }

inline QPointer<T> &operator=(T* p)
{ if (o != p) QMetaObject::changeGuard(&o, p); return *this; }

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 457



inline bool isNull() const
{ return !o; }

inline T* operator->() const
{ return static_cast<T*>(const_cast<QObject*>(o)); }

[ . . . . ]

The operators make use of two ANSI-style typecasts (Section 19.7): static_cast

and const_cast. const_cast is required because the function is const, and it

must return a non-const pointer. RTTI is not necessary here because the template

ensures that the actual pointer stored was a T*. Therefore, static_cast can be

used instead of dynamic_cast.

A QPointer<T> is said to be a guarded pointer to a QObject of type T. By

guarded we mean that the QPointer is automatically set to 0 if the object that it

is pointing to is destroyed. Here is a code fragment that demonstrates how a

QPointer can be used.

[. . .]
QPointer<QIntValidator> val = new QIntValidator(someParent);
val->setRange(20, 60);
[. . .]

In that second line of code, val-> returns a pointer to the newly allocated object,

and that pointer is used to access the setRange()member function.

P O I N T  O F  D E P A R T U R E

Guarded pointers are discussed further in Qt Quarterly.1

E X E R C I S E S : T Y P E S  A N D  E X P R E S S I O N S

1. Imagine you are required to use a library of classes that have been poorly writ-

ten and you have no way to improve them. (It could happen!) The code in

Example 19.8 includes one such badly written example class and a small pro-

gram that uses it. The program logic shows some objects being created and

passed to a function that receives them as const references (an implicit vow

not to change them) and then prints an arithmetic result. Unfortunately,

because the class was badly written, something goes wrong along the way.

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

458

1 http://doc.trolltech.com/qq/qq14-guardedpointers.html

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 458



E X A M P L E  1 9 . 8 src/const/cast/const.cc

#include <iostream>
using namespace std;

class Snafu {
public:

Snafu(int x) : mData(x) {}
void showSum(Snafu & other) const {

cout << mData + other.mData << endl; 
}

private:
int mData;

};

void foo(const Snafu & myObject1,
const Snafu & myObject2) {

// [ . . . ]  
myObject1.showSum(myObject2);

}

int main() {

Snafu myObject1(12345);
Snafu myObject2(54321);

foo(myObject1, myObject2);

}

Answer these questions.

a. What went wrong?

b. What change to the class would fix it?

Unfortunately, you can’t change the class. Come up with at least two ways to fix

the program without changing the class definition. What would be the best of

these and why?

2. The code in Example 19.9 is an incomplete attempt to create a class that

counts, for each instantiation, the number of times an object’s data are printed.

Review the program and then make it work properly.

1 9 . 9 M E M B E R  S E L E C T I O N  O P E R A T O R S

459

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 459



E X A M P L E  1 9 . 9 src/const/cast/const2.cc

#include <iostream>
using namespace std;

class Quux {
public:

Quux(int initializer) :
mData(initializer), printcounter(0) {}

void print() const;
void showprintcounter() const {

cout << printcounter << endl; 
}

private:
int mData;
int printcounter;

};

void Quux::print() const {
cout << mData << endl; 

}

int main() {
Quux a(45);
a.print();
a.print();
a.print();
a.showprintcounter();
const Quux b(246);
b.print();
b.print();
b.showprintcounter();
return 0;

}

C H A P T E R  1 9 : T Y P E S  A N D  E X P R E S S I O N S

460

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 460



R E V I E W  Q U E S T I O N S

461

R E V I E W  Q U E S T I O N S

1. What is the difference between a statement and an expression?

2. What is the difference between an overloaded operator and a function?

3. What ways can you introduce a new type into C++?

4. Which cast operator is best suited for numeric values?

5. What happens when you assign an int variable to a double value?

6. Which cast operator is best suited for downcasting through polymorphic

hierarchies?

7. Why are ANSI casts preferred over C-style casts?

8. What is a situation in which you might find the reinterpret_cast

used in a reasonable way?

ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 461



ezus_138004_ch19.qxd  8/3/06  4:33 PM  Page 462



463

20.1 Declarations and Definitions . . . . . . . . 464

20.2 Identifier Scope . . . . . . . . . . . . . . . . . . . . 465

20.3 Storage Class . . . . . . . . . . . . . . . . . . . . . . 470

20.4 Namespaces . . . . . . . . . . . . . . . . . . . . . . . 473

20C H A P T E R  2 0

Scope and Storage Class

Identifiers have scope, objects have a storage class,

and variables have both. In this chapter, we discuss

the difference between declarations and definitions,

and how to determine the scope of identifiers and

the storage class of objects.

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 463



20.1 Declarations and Definitions
Any identifier must be declared or defined before it is used.

Declaring a name means telling the compiler what type to associate with that

name. The location of the declaration determines its scope. Scope is a region of

code where an identifier can be used.

Defining an object, or variable, means allocating space and (optionally)

assigning an initial value. For example,

double x, y, z;
char* p;
int i = 0; 
QString message("Hello");

Defining a function means completely describing its behavior in a block of C++

statements. For example,

int max(int a, int b) {
return a > b ? a : b;

}

Defining a class means specifying its structure in a sequence of declarations of

function and data members.

E X A M P L E  2 0 . 1 src/early-examples/decldef/point.h

class Point {                      
public:

Point(int x, int y, int z);     
int distance(Point other);      
double norm() const {           

return distance(Point(0,0,0));
} 

private:
int m_Xcoord, m_Ycoord, m_Zcoord;  

};

a class definition
a constructor declaration
a function declaration
declaration and definition
data member declaration

Example 20.2 contains some declarations that are not definitions.

5

4

3

2

1

5

4

3

2

1

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 464



E X A M P L E  2 0 . 2 src/early-examples/decldef/point.cpp

extern int step;      
class Map;           
int max(int a, int b);

an object (variable) declaration
a class declaration
a global (non-member) function declaration

In each case, there is an implicit promise to the compiler (which will be enforced by

the linker) that the declared name will be defined somewhere else in the program.

Each definition is a declaration. There can be only one definition of any name

in any scope, but there can be multiple declarations.

Variable initialization is optional in C++. Nevertheless, it is strongly recom-
mended that an initial value be provided for all variable definitions, other-
wise invalid results or strange runtime errors can occur that are often
difficult to locate. It is worth repeating this rule: All objects and variables
should be properly initialized at creation time.

20.2 Identifier Scope
Every identifier has a scope that is determined by where it is declared. Identifier
Scope in a program is the region(s) of the program within which the identifier can

be used. Using a name outside of its scope is an error.

The same name may declared/used in different scopes. Ambiguities are resolved

as follows:

1. The name from the most local scope is used.

2. If the name is not defined in the most local scope, the same name

defined in the nearest enclosing scope will be used.

3. If the name is not defined in any enclosing scope, then the compiler will

report an error.

There are five possible scopes in C++.

1. Block scope (local to a block of statements)

2. Function scope (the entire extent of a function)1

3

2

1

3

2

1

2 0 . 2 I D E N T I F I E R  S C O P E

465

1 Only labels have function scope.

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 465



3. Class scope (the entire extent of a class, including its member functions)

4. File scope (the entire extent of a source code file)

5. Global scope (the entire extent of a program)

Because the compiler only deals with one source file at a time, only the Linker

can tell the difference between global and file scope, as Example 20.3 shows.

E X A M P L E  2 0 . 3 Global versus File scope

// In File 1:
int g1;        // global
int g2;        // global
static int g3; // keyword static limits g3 to file scope
(etc.)

// In File 2:
int g1;          // linker error!
extern int g2;    // okay, share variable space
static int g3;    // okay: 2 different variable spaces
(etc.)

20.2.1 Default Scope of Identifiers: A Summary

Let’s look at the five scopes in a bit more detail.

1. Block scope. An identifier declared inside curly braces (excluding

namespace blocks) { . . . } or in a function parameter list has block scope.

Block scope extends from the declaration to the enclosing right brace.

2. Function scope. Labels in C/C++ have their own scope. They are accessi-

ble before and after their declaration, for the whole function. C supports

a very rarely used and often shunned goto statement that requires a

label. The thing that makes its scope unique is that the label (the declara-

tion) can appear after the first goto that uses it. Example 20.4 shows an

example of its use. goto is seldom used by serious programmers but

labels, because they exist, sometimes pop up in code and are used to

solve various compatibility problems.2

Avoid goto and labels in your code.

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

466

2 Such as preventing the C++ compiler from choking on the signals: and slots: declarations.

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 466



3. Class scope. An identifier that is declared inside a class definition has

class scope. Class scope is anywhere in the class definition3 or in the

bodies of member functions.4

4. File scope. This is basically the same as global scope, except that file

scope variables are not exported to the linker. The keyword static hides

an identifier from other source files and gives it file scope. File scope

variables cannot be declared extern and accessed from another file.

File scope variables, because they are not exported, do not pollute the

global namespace. They are often used in C programs because C has no

concept of private class members.

File scope is available in C++ for backward compatibility with C, but we
prefer to use namespaces or static class members instead.

5. Global scope. An identifier whose declaration is not in between

braces (round or curly) has global scope. The scope of such an

identifier begins at the declaration and extends from there to the

bottom of the source code file. extern declarations may be used to access

global definitions in other source files.

An identifier in a namespace is available from other scopes through the

using keyword. It is also available globally through the use of the scope

resolution :: operator. Namespace variables and static class members are

accessible globally and have static storage, like global variables, except that

they do not enlarge the global namespace. See Section 20.4 for more details.

Use of global scope for variables is unnecessary in C++. In general, only
classes and namespaces should be defined in global scope. If you need a
“global” variable, you can achieve something similar through the use of
public static class member or a namespace member.

E X A M P L E  2 0 . 4 src/goto/goto.cpp

[ . . . . ]
int look() {

int i=0;
for (i=0; i<10; ++i) {

2 0 . 2 I D E N T I F I E R  S C O P E

467

3 Including inline function definitions above the declarations of referred members
4 Keeping in mind that the scope of non-static members excludes the bodies of static member
functions

continued

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 467



if (i == rand() % 20)
goto found;  

}
return -1;

found:                 
return i;

}
[ . . . . ]

It would be better to use break or continue.
goto serves as a forward declaration to a label.

20.2.2 File Scope versus Block Scope and operator::

We have seen and used the scope resolution operator to extend the scope of a class

or access its members with  ClassName::. A similar syntax is used to access the

individual symbols in a namespace with NamespaceName::. C++ also has a

(unary) file scope resolution operator, ::, that provides access to global, name-

space, or file scope objects from inside an enclosed scope. The following exercise

deals with the use of this operator with various scopes.

E X E R C I S E : F I L E  S C O P E  V E R S U S  B L O C K
S C O P E  A N D  O P E R A T O R : :

Determine the scope of each of the variables in Example 20.5. Then be the com-

puter and predict the output of the program.

E X A M P L E  2 0 . 5 src/early-examples/scopex.cpp

#include <iostream>
using namespace std;

long x = 17;
float y = 7.3;          
static int z = 11;      

class Thing {
int m_Num;         

public:
static int sm_Count;
Thing(int n = 0) : m_Num(n) {++sm_Count;}
~Thing() {--sm_Count;}
int getNum() { return m_Num; }

};

4

3

2

1

2

1

2

1

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

468

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 468



int Thing::sm_Count = 0;
Thing t(11);

int fn(char c, int x) { 
int z = 5;         
double y = 6.933; 
{ 

char y;   
Thing z(4);        
y = c + 3; 
::y += 0.3;        
cout << y << endl;  

}
cout << Thing::sm_Count

<< endl;      
y /= 3.0;          
::z++;             
cout << y << endl;
return x + z;

}

int main() {
int x, y = 10; 
char ch = 'B';     
x = fn(ch, y); 
cout << x << endl; 
cout << ::y << endl;       
cout << ::x / 2 << endl;
cout << ::z << endl;

}

Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________
Scope: ________________15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

2 0 . 2 I D E N T I F I E R  S C O P E

469

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 469



20.3 Storage Class
Whenever an object is created, space is allocated in one of four possible places.

Each of these places is called a storage class.

While scope refers to a region of code where an identifier is accessible, storage

class refers to a location in memory.

1. The static area: Global variables, static locals, and static data mem-

bers are all stored in the static storage area. The lifetime of a static

object begins when its object module loads and ends when the program

terminates.

It is used often for pointers, simple types, and string constants, less

often for complex objects.

2. The program stack (automatic storage—auto5): Local variables, func-

tion parameters, and temporary objects are all stored on the stack. For

local (block-scope) variables, the lifetime is determined by the brackets

around the code that is executed.

Objects on the stack include function parameters, return values, local

or temporary variables. Stack storage is allocated automatically when an

object definition is executed. Objects in this storage class are local to a

function or a block of statements.6

3. The heap or free storage (dynamic storage): Objects created via new are

examples.

The lifetime of a heap object is determined entirely by the use of new

and delete.

In general, the allocation and freeing of heap objects should be in

carefully encapsulated classes.

4. Another storage class, left over from C, is called register. It is a special-

ized form of automatic storage. This category of storage can be requested

by using the keyword, register in the variable declaration. Most C++

compilers ignore this keyword and put such variables on the stack. Using

this storage class for an object means that you cannot take its address.

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

470

5 The optional keyword auto is almost never used.
6 Or to a member of another object that is

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 470



20.3.1 Globals, statics, and QObject

Global objects need to be “global” for two reasons.

1. They need a lifetime that is the same as the application.

2. They need to be available from many different places in the application.

In C++, we avoid the use of global scope at all costs, in favor of other approaches.

We still use global scope identifiers for the following:

1. Class names

2. Namespace names

3. The global pointer qApp, which points to the running QApplication

object

By turning a global object into a static class member, or a namespace member,

we can avoid increasing the size of the global namespace while keeping the object

accessible from other source code modules.

statics and QObject

When creating QObject or other interesting classes,7 it is important that

their destructors do not get called after the QApplication has been

destroyed (after main()is finished).

static QObjects (and other complex objects) cleaned up after a

QApplication has been destroyed could have difficulties in clean-up

code. This is because QApplication, when it is destroyed, takes a lot of

other objects with it.

In general, we want to have control over the order of destruction of all

complex objects. One way to ensure this is to make each QObject allocated

on the stack, or on the heap, and then added as a child/grandchild of another

QObject already on the stack.

The QApplication (or its derived instance) is the “rootiest” stack object

of them all, so we try to make it the “last QObject standing.”

20.3.1.1 Globals and const

The scope of const variables is slightly different from the scope of regular globals.

A global object that has been declared const has file scope, by default. It may

be exported to other files by declaring it extern at the point where it is initialized.

2 0 . 3 S T O R A G E  C L A S S

471

7 By “interesting” we mean any class with a destructor that has some important cleaning up to do.

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 471



For example, in one file, we could have this:

const int NN = 10;      //must be initialized

//declaration and definition - allocates storage
extern const int QQ = 7;   

int main() {
NN = 12;       // Error!
int array[NN];  // OK
QQ++;           // Error!
return 0;

}

In another file, we might have

const int NN = 33;      // a different constant

// declare global constant - storage allocated elsewhere
extern const int QQ;    // external declaration 
...

The second file has a const int NN that is separate and distinct from the const

with the same name in the first file. The second file can share the use of the const

int QQ because of the extern modifier.

E X E R C I S E : S T O R A G E  C L A S S

In Example 20.6, identify the scope/storage class of each of object’s creation/

definition. If there is a name clash, indicate there is an error with the definition.

E X A M P L E  2 0 . 6 src/storage/storage.cpp

#include <qstd.h>
using namespace qstd;

int i;                                   
static int j;                            
extern int k;                            
const int l=10;                           
extern const int m=20;                    

class Point                              
{

public:
QString name;                        
QString toString() const;
private:
static int count;
int x, y;                            

};

int Point::count = 0;                     9

8

7

6

5

4

3

2

1

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

472

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 472



QString Point::toString() const {
return QString("(%1,%2)").arg(x).arg(y);  

}

int main(int argc, char** argv)            
{

int j;                               
register int d;
int* ip = 0;                         
ip = new int(4);                      
Point p;                             
Point* p2 = new Point();              

}

Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
S/SC of argc and argv: _________________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________
Scope: ______________   Storage class: ____________

20.4 Namespaces
In C and C++ there is one global scope that contains

■ The names of all global functions and variables

■ Class and type names that are commonly available to all programs

Classes are one way of grouping names (members) under a common heading (the

classname), but sometimes it is desirable to have a higher level grouping of names.

The namespace mechanism provides a way to partition the global scope into

individually named sub-scopes. This helps avoid naming conflicts that can arise

when developing a program that uses modules with name conflicts.

The syntax for defining a namespace is

namespace namespaceName { decl1, decl2, ...}

Any legal identifier can be used for the optional namespaceName.

Examples 20.7 and 20.8 define two separate namespaces in different files, each

containing functions with the same name.

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

16

15

14

13

12

11

10

2 0 . 4 N A M E S P A C E S

473

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 473



E X A M P L E  2 0 . 7 src/namespace/a.h

#include <iostream>
namespace A {

using namespace std;
void f() {

cout << "f from A\n";
}

void g() {
cout << "g from A\n";

}
}

E X A M P L E  2 0 . 8 src/namespace/b.h

#include <iostream>

namespace B {
using namespace std;
void f() {

cout << "f from B\n";
}

void g() {
cout << "g from B\n";

}
}

Example 20.9 includes both header files and uses scope resolution to call functions

declared in either file.

E X A M P L E  2 0 . 9 src/namespace/namespace1.cc

#include "a.h"
#include "b.h"

int main() {
A::f();
B::g();

}

Output:

f from A
g from B

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

474

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 474



The using keyword permits individual members of a namespace to be referenced

without scoping. The syntax can take two forms.

1. The using directive: using namespace namespaceName—imports

the entire namespace into the current scope

2. The using declaration: using namespaceName::identifier—imports a

particular identifier from that namespace

Care must be exercised to make sure that ambiguities are not produced when iden-

tifiers are present in more than one included namespace. We show an example of

such an ambiguous function call in Example 20.10.

E X A M P L E  2 0 . 1 0 src/namespace/namespace2.cc

#include "a.h"
#include "b.h"

int main() {
using A::f;      
f();
using namespace B;  
g();             
f();             

}

Output:

f from A
g from B
f from A

declaration—brings A::f() into scope
directive—brings all of B into scope
okay
ambiguous

NAMESPACE ALIASES To make the names of various namespaces
unique, programmers sometimes produce extremely long namespace
names. One can easily introduce an alias for a long namespace name
with a command such as:
namespace xyz = verylongcomplicatednamespacename;

4

3

2

1

4

3

2

1

2 0 . 4 N A M E S P A C E S

475

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 475



20.4.1 Anonymous Namespaces

A namespace without a name is an anonymous namespace. This is similar to

static global, or file scope identifier. It is accessible from that point down to the

end of the file.8

Example 20.11 shows how anonymous namespaces can eliminate the need for

static globals.

E X A M P L E  2 0 . 1 1 src/namespace/anonymouse.h

namespace {
const int MAXSIZE = 256;

}

void f1() {
int s[MAXSIZE];

}

20.4.2 Open Namespaces

Any namespace definition is open in the sense that you can add members to an

existing namespace by declaring a second namespace with the same name but with

new items. The new items will be appended to the namespace in the order in

which the namespace declarations are encountered by the compiler.

Classes are similar to namespaces but classes are not open because they serve as

a pattern for the creation of objects.

The using directive does not extend the scope in which it is used; it imports

names from the specified namespace into the current scope.

Names locally defined take precedence over names from the namespace (which

are still accessible using the scope resolution operator).

20.4.3 Namespace, static Objects and extern

Objects declared inside namespaces are implicitly static, meaning that they are

created once for the entire application. The initialization of a static object must

exist in only one C++ module. To declare a static object (global or

namespace) without defining it, use the keyword extern.9 Example 20.12 shows

how to declare namespace variables.

C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

476

8 Unless it appears inside another namespace (which the language permits), in which case the scope
is further narrowed by the brackets of its enclosing namespace.
9 Even inside namespaces!

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 476



E X A M P L E  2 0 . 1 2 src/libs/utils/qstd.h

[ . . . . ]
namespace qstd {

extern QTextStream cin;  
extern QTextStream cout;
extern QTextStream cerr;
bool yes(QString yesNoQuestion);
bool more(QString prompt);
int promptInt(int base = 10);
double promptDouble();
void promptOutputFile(QFile& outfile);
void promptInputFile(QFile& infile);

[ . . . . ]

declared only—defined in the .cpp file

Each variable must be defined in a .cpp file, as shown in Example 20.13.

E X A M P L E  2 0 . 1 3 src/libs/utils/qstd.cpp

[ . . . . ]
QTextStream qstd::cin(stdin, QIODevice::ReadOnly);
QTextStream qstd::cout(stdout, QIODevice::WriteOnly);
QTextStream qstd::cerr(stderr, QIODevice::WriteOnly);

1

1

2 0 . 4 N A M E S P A C E S

477

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 477



C H A P T E R  2 0 : S C O P E  A N D  S T O R A G E  C L A S S

478

R E V I E W  Q U E S T I O N S

1. What is a scope? What kinds of “things” have a scope?

2. What is a storage class? What kinds of “things” have a storage class?

3. When are static objects initialized? Be sure to mention both globals

and block-scope objects.

4. How does const act as a scope modifier?

5. What does extern mean?

6. The keyword static has many meanings depending upon where it is

used.

a. Explain how static can be used as a scope modifier.

b. Explain how static can be used as a storage-class modifier.

c. Give another use for the keyword static.

ezus_138004_ch20.qxd  8/4/06  10:07 AM  Page 478



479

21.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . 480

21.2 Selection Statements . . . . . . . . . . . . . . . 480

21.3 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

21.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 485

21C H A P T E R  2 1

Statements and Control
Structures

Programs consist of statements of various kinds.

Control structures are statements that control the

way other statements are executed. This chapter for-

mally defines the language elements and shows

what kind of control structures are available.

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 479



21.1 Statements
A C++ program contains statements that alter the state of the storage managed by

the program and determine the flow of program execution. There are several types

of C++ statements, most of which are inherited from the C language. First, there

is the simple statement, terminated with a semicolon, such as

x = y + z;

Next, there is the compound statement, or block, consisting of a sequence of

statements enclosed in curly braces.

{
int temp = x;
x = y;
y = temp;

}

The above example is a single compound statement that contains three simple

statements. The variable temp is local to the block and is destroyed when the end

of the block is reached.

In general, a compound statement can be placed wherever a simple statement

can go. The reverse is not always true, however. In particular, the function definition

double area(double length, double width) {
return length * width;

}

cannot be replaced by

double area(double length, double width)
return length * width;

The body of a function definition must always include a block.

21.2 Selection Statements
Every programming language has at least one control structure that allows the

flow of the program to branch depending on the outcome of a boolean condition.

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 480



In C and C++ we have if and switch. The if statement typically has the

following form.

if(boolExpression)
statement

It can have an optional else attached.

if(boolExpression)
statement1

else
statement2

Conditional statements can be nested, which means that they can get quite compli-

cated. A very important rule to keep in mind is that an else or else if clause is

activated when the boolExpression of the immediately preceding open if evalu-

ates to false.This can be confusing when your program logic allows you to omit

some else clauses.Consider the following badly indented example,wherex is anint.

2 1 . 2 S E L E C T I O N  S T A T E M E N T S

481

if (x>0)
if (x > 100)

cout << "x is over a hundred";
else

if (x == 0) // no! this cannot be true -the indentation is misleading
cout << "x is 0";

else
cout << "x is negative"; // no! x is between 1 and 100 inclusive!

We can clarify and repair this logic with braces.

if (x>0) {
if (x > 100)

cout << "x is over a hundred";
}
else

if (x == 0)  // now this is possible.
cout << "x is 0";

else
cout << "x is negative";

An if without an else can be closed by enclosing the if statement in braces {},

making it a compound statement.

switch is another branching construct, which permits the execution of dif-

ferent code depending the value of a parameter.

switch(integralExpression) {
case value1:

statement1;
break;

case value2:
statement2;
break;
...

continued

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 481



case valuen:
statementn;
break;

default:
defaultStatement;

}
nextStatement;

The switch statement is a computed goto statement. Each case is followed by

a unique case label value, which is compared to the integralExpression.

When the switch causes a jump to a case label whose value matches the

integralExpression, statements are executed from that point on until the end of the

switch block or a branching statement (e.g., break) is reached.

The optional default label is the jump destination when the integralExpression

does not match any case label value. If default is omitted, and no matching

case label exists, then the switch block is skipped.

The integralExpression must be an expression that evaluates to an integer. Each

case label, except default, must be an integer constant.1

Any switch statement such as the one above can be rewritten as a long

if ... else statement. However, the runtime performance of a switch is con-

siderably better because it requires only a single comparison and performs only

one branch.

if(integralExpression == value1)
statement1;

else if(integralExpression == value2)
statement2;

...
else if(integralExpression == valuen)

statementn;
else

defaultStatement;

Long compound conditional statements and switch statements
should to be avoided in object-oriented programming (unless they are
isolated in factory code), because they tend to make functions complex
and hard to maintain.

If each case can be rewritten as a method of a different class, you
can use the Strategy pattern (and the virtual table) instead of writing
your own switch statement.

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

482

1 case labels are not the same as goto labels that are used as destinations for the infamous goto
statement. goto labels must be identifiers. In particular, they cannot be integers.

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 482



E X E R C I S E : S E L E C T I O N  S T A T E M E N T S

Be the computer and predict the output of the program in Exercise 21.1. Then run

it and compare your predicted output with the output produced by the computer.

E X A M P L E  2 1 . 1 src/early-examples/nestedif.cpp

#include <iostream>
using namespace std;

void nestedif1 () {
int m = 5, n = 8, p = 11;
if (m > n)

if (p > n)
cout << "red" << endl;

else
cout << "blue" << endl;

}

void nestedif2() {
int m = 5, n = 8,  p = 11;
if (m > n) {

if (p > n)
cout << "red"  << endl;

} else
cout << "blue" << endl;

}

int main() {
nestedif1();
nestedif2();
return 0;

}

21.3 Iteration
C++ provides three iteration structures.

1. while

while ( loopCondition ) {
loopBody

}

a. Evaluate loopCondition first.

b. Execute loopBody repeatedly until loopCondition is false.

2 1 . 3 I T E R A T I O N

483

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 483



2. do..while:

do {
loopBody

} while ( loopCondition ) ;

a. Execute loopBody first.

b. Evaluate loopCondition.

c. Execute loopBody repeatedly until loopCondition is false.

3. for loop:

for ( initStatement; loopCondition; incrStmt ) {
loopBody

}

a. Execute initStatement first.

b. Execute loopBody repeatedly until loopCondition is false.

c. After each execution of loopBody, execute incrStmt.

With each of these iteration structures, the loopBody code gets repeated as long as

loopCondition evaluates to boolean true. The do loop differs from the other two

in that its loopCondition gets checked at the bottom of the loop, so its loopBody is

always executed at least once.

A common programming error is to place a semicolon after the while.

while (notFinished());
doSomething();

The first semicolon terminates the while statement entirely and produces a loop

with an empty loopBody. Even though doSomething() is indented, it does not

get executed inside the loop. The loopBody is responsible for changing the

loopCondition. If notFinished() is initially true, then the empty loopBody

will cause an infinite loop. If notFinished() is initially false, then the loop ter-

minates immediately and doSomething() gets executed exactly once.

C++ provides break and continue for finer control over code executed

inside loops.

while ( moreWorkToDo ) {
statement1;
if ( specialCase ) continue;
statement2;
if ( noMoreInput ) break;
statement3;

// continue jumps here
}
// break jumps here

■ break jumps out of the current control structure, whether it is a

switch, for, while, or do..while.

■ continue only operates inside loops, and it skips the rest of the current

iteration to the check if there is moreWorkToDo.

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

484

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 484



E X E R C I S E S : I T E R A T I O N

1. Write the function isPrime(int n)that returns true if n is prime and false

otherwise. Supply an interactive main()to test your function.

2. Write the function primesBetween(int min, int max) that displays on

the screen all the prime numbers that are between min and max. Supply an

interactive main()to test your function.

3. Write the function power2(int n)that computes and returns the value of 2

raised to the power n. Supply an interactive main()to test your function.

4. Write a binary logarithm function binLog(int n)that computes and returns

an int equal to the integral part of log2(n), where n is positive. This is equiv-

alent to finding the exponent of the largest power of 2 that is less than or equal

to n. For example,binLog(25)is 4. There are at least two simple, iterative ways

to do this computation. Supply an interactive main()to test your function.

21.4 Exceptions
We all know that things sometimes break and that improbable or unforseen events

can mess up the most carefully laid plans. This is especially true with program-

ming and might explain why programmers have such great respect for Murphy’s

Law.2 When we write programs we try to anticipate the things that can go wrong

and make allowances for them, so we try to make our programs foolproof. This

may seem inconsistent with a very important corollary to Murphy’s law,3 but we

persevere anyway.

Exception handling permits the program to respond to an exceptional situa-

tion by invoking a procedure that is specifically designed to handle it. This can

allow the program to recover from a condition that might normally cause it to

crash or get into a bad state.

Exception handling was added to C++ relatively late in the development of the

language. As with any good thing, there is a cost associated with exception handling.

Enabling exception handling adds a significant amount of additional code to the

executable, which can degrade run-time performance. Some developers avoid this

feature completely. Qt 4 library code, for example, does not require any exception

handling by client code.

2 1 . 4 E X C E P T I O N S

485

2 Whatever can go wrong will go wrong.
3 It is impossible to make anything foolproof because fools are too clever.

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 485



21.4.1 Exception Handling

Here is a summary of how exception handling works in C++. An exception is an

object or piece of data that is thrown from one place (the location of the error) to

another (a catch statement that contains the appropriate code for handling the

situation). The context for exception handling is a try block, which is followed by

one or more catch statements. Here is an arrangement that might be used to han-

dle exceptions.

try {
// to do something

}
catch ( ExceptionType1 & refName ) {

// handle one ExceptionType
}
...
catch ( ExceptionTypeN & optionalParam ) {
// statements for processing one of the possible thrown exceptions.

}

21.4.2 Exception Types

The keyword throw can be followed by an expression of any type. In particular,

this includes

■ Standard exceptions

■ Built-in types

■ Custom classes

The exception-handling mechanism can transmit information about a run-time

problem. Even though it is perfectly legal to throw a piece of data of a simple type

(e.g., int), this is not regarded as good practice. Instead, it is best to work with

std::exception objects of classes with descriptive names and a consistent

interface that can be used by client code to increase the informational value of

catch statements.

Example 21.2 contains some custom exception types.

E X A M P L E  2 1 . 2 src/exceptions/example/exceptions.h

[ . . . . ]
/* a custom exception with no data */
class SizeMatchError {

public:
SizeMatchError() {}

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

486

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 486



QString what() {
return "Size mismatch for Vector addition!";

}
};
class BadSizeError {/* a custom exception with data */

public:
BadSizeError(int sz): m_Sz(sz) {}
QString what() const {

return QString("Invalid size for Vector: %1").arg(m_Sz);
}
int m_Sz;

};

#include <stdexcept>
using std::exception;
class RangeError : public exception { /* a custom exception 
extending from std::exception */

public:
RangeError() {}
const char* what() const throw() {  

return "Subscript out of range!";
}

};
[ . . . . ]

Matches base class virtual signature.

21.4.3 throwing Things Around

Generally, throw statements occur inside function definitions and transmit infor-

mation to the client code about an exceptional circumstance. The expression

inside the throw is copied into a temporary buffer, making it possible to throw

temporary stack objects. A throw statement resembles a function call, but really

it is more like an express-return. This is why.

■ A throw statement always returns information to a position we were

before—further back on the stack.

■ There is no way to go “back” to the location of the throw, because

throw is going “back” already.

■ The stack is unwound, meaning that all stack objects are cleaned up, until

we reach the stack frame corresponding to a try/catch block with a

compatible catch parameter.

■ If a matching catch statement is found, its code is executed.

■ If no matching catch is found, the default handler (terminate()or

abort()) is called, which results in the program terminating.

1

1

2 1 . 4 E X C E P T I O N S

487

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 487



throwing from Constructors and Destructors

For a variety of reasons, exceptions do not mix well with constructors and

destructors.

1. Throwing from a destructor is a very bad idea, especially if one of those

objects is being cleaned up as a result of another throw.

2. Throwing an exception from a constructor means that the object’s

destructor will never be called.

To avoid this, these functions should be exception-safe, meaning that they

catch and handle any possible exceptions that might be thrown.

throw() in a Function Signature

The ANSI/ISO standard permits member function declarations in class definitions

to specify which exceptions might be thrown when the function is called. This dec-

laration syntax informs the authors of client code so that they can place try

blocks and catch statements appropriately. A throw()expression in a function

declaration is part of that function’s signature.

The template-based Vector class defined in Example 21.3 throws a variety of

different kinds of exceptions and demonstrates this feature.

E X A M P L E  2 1 . 3 src/exceptions/example/vector.h

[ . . . . ]

#include "exceptions.h"
using std::bad_alloc;

template <class T> class Vector {
public:

typedef T* iterator;
explicit Vector(int n = 100) throw(BadSizeError, bad_alloc);
Vector(const Vector & v) throw(bad_alloc);
Vector(const T* a, int n) throw(BadSizeError, bad_alloc);
~Vector();
void display() const;
iterator begin() const {

return m_P;
}
iterator end() const {

return m_P + m_Size;
}
T& operator[](int i) throw(RangeError);
Vector& operator=(const Vector& v) throw(bad_alloc);

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

488

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 488



Vector operator+(const Vector& v) const throw(SizeMatchError);
private:

int m_Size;
T* m_P;
void copy(const T* a, int n) throw(BadSizeError, bad_alloc);

};

The conditions for each throw are specified in the member function definitions,

shown in Example 21.4. Notice we have function definitions in a header file; this

is because they are template functions (see Section 10.1).

E X A M P L E  2 1 . 4 src/exceptions/example/vector.h

[ . . . . ]

template <class T> Vector<T>::
Vector(int n) throw(BadSizeError, bad_alloc) : m_Size(n) {

if(n <= 0)
throw BadSizeError(n);

m_P = new T[m_Size];  
}
[ . . . . ]

template <class T> T& Vector<T>::
operator[](int i) throw(RangeError) {

if(i >= 0 && i < m_Size )
return (m_P[i]);

else
throw RangeError();

}
[ . . . . ]

template <class T> Vector<T> Vector<T>::
operator+(const Vector& v) const throw(SizeMatchError) {

if(m_Size != v.m_Size) {
throw SizeMatchError();

} else {
Vector sum(m_Size);
for(int i = 0; i < m_Size; ++i)

sum.m_P[i] = m_P[i] + v.m_P[i];
return sum;

}
}

new will throw bad_alloc if it fails.1

1

2 1 . 4 E X C E P T I O N S

489

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 489



21.4.4 try and catch

Exceptions are raised when certain kinds of operations fail during the execution of

a function. If an exception is thrown from within a try block (perhaps deeply

nested within the block), it can be handled by a catch statement with a parame-

ter that is compatible with the exception type.

The syntax of a try block has the following form:

try compoundStatement handlerList

The order in which handlers are defined determines the order that they will be

tested against the type of the thrown expression. It is an error to list handlers in an

order that prevents any of them from being called.4

The throw expression matches the catch parameter type if it is assignment-

compatible with that type.

The syntax of a handler has the following form:

catch ( formalArgument ) compoundStatement

A catch statement looks like the definition of a function that has one parameter

but no return type. It is a good idea to declare the formalArgument as a reference,

to avoid making an unnecessary copy.

If a thrown exception is not caught by an appropriate handler, the default han-

dler will abort the program.

E X A M P L E  2 1 . 5 src/exceptions/catch.cpp

#include <iostream>
#include <stdlib.h>

using namespace std;

void foo() {
int i, j;
i = 14;
j = 15;
throw i;

}

void call_foo() {
int k;
k = 12;
foo();
throw ("This is from call_foo");

}

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

490

4 An example would be having a catch(QObject&)before a catch(QWidget&). Since only one
catch gets executed and the QObject is more general than the QWidget, it makes no sense to have
the catch(QWidget&)unless it appears before the catch(QObject&).

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 490



void call_foo2() {
double x = 1.3;
unsigned m = 1234;
throw (x);
throw m;

}

int main() {
try {

call_foo();
call_foo2();

}
catch(const char* message) {  

cerr << message << endl;
exit(1);

}
catch(int &n) {

cout << "caught int " << n << endl;
}
catch(double& d) {         

cout << "caught a double:" << d << endl;
}
catch( ... ) {             

cerr << "ellipsis catch" << endl;
abort();

}
}

Output:

# with the first throw commented out
src/generic> g++ catch.cpp
src/generic> ./a.out
This is from call_foo
src/generic>

# with the first two throws commented out
src/generic> g++ catch.cpp
src/generic> ./a.out
caught a double
src/generic>

# with the first three throws commented out
src/generic> g++ catch.cpp
src/generic> ./a.out
ellipsis catch
Aborted
src/generic>

# with all the throws enabled
src/generic> g++ catch.cpp
src/generic> ./a.out
caught int 14
src/generic>

3

2

1

2 1 . 4 E X C E P T I O N S

491

continued

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 491



Is const necessary here?
abstract parameter
default action to be taken

Example 21.5 demonstrates a few interesting possibilities for handlers. The formal

parameter of catch()can be abstract (i.e., it can have type information without

a variable name). The final catch(...)can use an ellipsis and matches any

exception type.

The system calls clean-up functions, including destructors for stack objects

and for objects local to the try block. When the handler has completed execution,

if the program has not been terminated, then execution will resume at the first

statement following the try block.

Example 21.6 shows some client code for the Vector template class and excep-

tion classes that we defined in the preceding sections. Depending on how much

system memory you have on your computer, you may need to adjust the initial

values of BIGSIZE and WASTERS to get this program to run properly. The output

is included after the code.

E X A M P L E  2 1 . 6 src/exceptions/example/exceptions.cpp

#include "vector.h"
#include <qstd.h>
using namespace qstd;

void g (int m) {
static int counter(0);
static const int BIGSIZE(50000000), WASTERS(6);
++counter;
try {

Vector<int> a(m), b(m), c(m);
cerr << "in try block, doing vector calculations. m= "

<< m << endl;
for (int i = 0; i < m; ++i) {

a[i] = i;
b[i] = 2 * i + 1;

}
c = a + b;
c.display();
if (counter == 2)

int value = c[m];                
if(counter ==3) {

Vector<int> d(2*m);
for(int i = 0; i < 2*m; ++i)

d[i] = i * 3;
c = a + d;                    

}
2

1

3

2

1

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

492

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 492



if(counter == 4) {
for(int i = 0; i < WASTERS; ++i)  

double* ptr = new double(BIGSIZE);
Vector<int> d(100 * BIGSIZE);
Vector<int> e(100 * BIGSIZE);   
for(int i = 0; i < BIGSIZE; ++i)

d[i] = 3 * i;
}

}
catch(BadSizeError& bse) {              

cerr << bse.what() << endl;
}
catch(RangeError& rer) {

cerr << rer.what() << endl;
}
catch(SizeMatchError& sme) {

cerr << sme.what() << endl;
}
catch(...) {

cerr << "Unhandled error! Aborting..." << endl;
abort();

}
cerr << "This is what happens after the try block." << endl;

}

int main() {
g(-5);                                
g(5);
g(7);
g(9);

}

Output:

src/exceptions/example> ./example
Invalid size for Vector: -5
This is what happens after the try block.
in try block, doing vector calculations. m= 5
<1, 4, 7, 10, 13>
Subscript out of range!
This is what happens after the try block.
in try block, doing vector calculations. m= 7
<1, 4, 7, 10, 13, 16, 19>
Size mismatch for Vector addition!
This is what happens after the try block.
in try block, doing vector calculations. m= 9
<1, 4, 7, 10, 13, 16, 19, 22, 25>
Unhandled error! Aborting...
Aborted
src/exceptions/example>

6

5

4

3

2 1 . 4 E X C E P T I O N S

493

continued

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 493



Expect RangeError to be thrown.
Expect SizeMatchError to be thrown.
Use up most of the available memory.
Expect bad_alloc to be thrown.
Always catch exception objects by reference.
Expect BadSizeError to be thrown.

Because we did not have a handler for the bad_alloc exception, the default han-

dler was called.

E X E R C I S E : T R Y / C A T C H

Do some experiments with the code in Example 21.6. For example:

1. What happens if we omit the default handler?

2. What happens if we omit one of the exception types from the throw()list in

the member function header?

21.4.5 More about throw

Syntactically, throw can be used in three ways:

1. throw expression. This form raises an exception. The innermost try

block in which an exception is raised is used to select the catch state-

ment that handles the exception.

2. throw. This form, with no argument, is used inside a catch to rethrow

the current exception. It is typically used when you want to propagate the

exception to the next outer level.

3. returnType functionName(arglist) throw (exceptionType list). An excep-

tion specification is part of the function signature. A throw following a

function prototype indicates that the exception could be thrown from

inside the function body and, therefore, should be handled by client code.

This construct is somewhat controversial. The C++ developer commu-

nity is split about when it is a good idea to use exception specifications.

In Example 21.7, we make use of the fact that C++ allows composite objects to be

thrown. We define a class specifically so that we can throw an object of that type if

necessary. We use the quadratic formula to compute one of the roots of a quad-

ratic equation, and we must be careful not to allow a negative value to be passed

to the square root function.

6

5

4

3

2

1

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

494

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 494



E X A M P L E  2 1 . 7 src/exceptions/throw0/throw0.cpp

[....]

class NegArg {
public:

NegArg(double d) : m_Val(d), m_Msg("Negative value") {}
QString getMsg() {

return QString("%1: %2").arg(m_Msg).arg(m_Val);
}

private:
double m_Val;
QString m_Msg;

} ;

double discr(double a, double b, double c) {
double d = b * b - 4 * a * c;
if(d < 0)

throw NegArg(d);
return d;

}

double quadratic_root1(double a, double b, double c) {
return (-b + sqrt(discr(a,b,c))/(2 * a));

}

int main() {
try {

cout << quadratic_root1(1, 3, 1) << endl;
cout << quadratic_root1(1, 1, 1) << endl;

}
catch(NegArg& narg) {

cout << "Attempt to take square root of "
<< narg.getMsg() << endl;

}
cout << "Just below the try block." << endl;

}

Output:

-1.88197
Attempt to take square root of Negative value: -3
Just below the try block.

The NegArg object thrown by the discr()function persists until the handler

with the appropriate signature, catch(NegArg), exits. The NegArg object is

available for use inside the handler—in this case to display some information

about the problem. In this example, the throw prevented the program from

attempting to compute the square root of a negative number.

2 1 . 4 E X C E P T I O N S

495

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 495



When a nested function throws an exception, the process stack is “unwound”

until an exception handler with the right signature is found.

21.4.6 Rethrown Exceptions

Using throw without an expression rethrows a caught exception. The catch that

rethrows the exception presumably cannot complete the handling of the existing

exception, so it passes control to the nearest surrounding try block where a suit-

able handler with the same signature (or ellipsis) is invoked. The exception expres-

sion continues to exist until all handling is completed.

If the exception handler does not terminate the execution of the program, exe-

cution resumes below the outermost try block that last handled the rethrown

expression. See Example 21.8.

E X A M P L E  2 1 . 8 src/exceptions/throw2/throw2.cpp

#include <iostream>

void foo() {
int i, j;
i = 14;
j = 15;
throw i;

}

void call_foo() {
int k;
k = 12;
foo();

}

int main() {
using namespace std;
try {

cout << "In the outer try block" << endl;
try {

call_foo();  
}
catch(int n) {

cout << "I can’t handle this exception!" << endl;
throw;

}
}
catch(float z) {

cout << "Wrong catch!" << endl;
}
catch(char s) {

cout << "This is also wrong!" << endl;
}

1

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

496

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 496



catch(int n) {
cout << "\ncaught it " << n << endl;

}
cout << "Just below the outermost try block." << endl;

}

Output:

In the outer try block
I can’t handle this exception!

caught it 14
Just below the outermost try block.

foo exited with i and j destroyed.

Remember that we do not recommend throwing basic types such as int,
float, and char. A single number or character conveys little information
and does not explain itself to someone reading the code.We violate that
rule in some of our examples only to keep them as simple and brief as
possible.

21.4.7 Exception Expressions

As we just saw, it is often a good idea to package exception information as an object

of a class. The thrown expression can then provide information that the handler

can use when it executes. For example, such a class could have several constructors.

The throw can supply appropriate arguments for the particular constructor that

fits the exception.

1

2 1 . 4 E X C E P T I O N S

497

class VectError {
private:

int m_Ub, m_Index, m_Size;
public:

VectError(Error er, int ix, int ub); // subscript out of bounds
VectError(Error er, int sz);         // out of memory
enum Error { BOUNDS, HEAP, OTHER }  m_ErrType;
. . .

};

With such a class definition, an exception can be thrown as follows:

throw VectError(VectError::BOUNDS, i, ub);
or
throw VectError(VectError::HEAP, size);

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 497



Notice that this is a temporary object that is being "thrown," but the
throw unwinds all stack objects until it gets a matching handler. How
can this work?

Exception objects are copied into a special location (not the stack) before the stack

is unwound.

It is possible to nest try blocks. If no matching handler is available in the

immediate try block, the search continues, stepwise, in each of the surrounding

try blocks. If no handler can be found that matches, then the default handler is

used, for example, terminate().

E X E R C I S E S : E X C E P T I O N S  

1. It is often a good idea to organize exception types in hierarchies. This is done

for the same reasons that we organize any classes in hierarchies.

Assume that DerivedTypeError is derived from BaseTypeError. How

many errors can you find in the following sequence of handlers?

catch(void*)            // any char* would match
catch(char*)
catch(BaseTypeError&)   // any DerivedTypeError& would match
catch(DerivedTypeError&)

2. As we have seen, you can throw standard exceptions, custom classes, or even

basic types (but please don’t throw those). Example 21.9 demonstrates the use

of custom exceptions inside the scope of a named namespace. This

namespace contains the main class definitions.

E X A M P L E  2 1 . 9 src/exceptions/registrar/registrar.h

[ . . . . ]
#include "exceptions.h"
#include <QStringList>

namespace Registrar_Namespace {

class Student {
public:

Student(const QString& name);
long getNumber() const;
QString getName() const;
// other members as needed ...

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

498

ezus_138004_ch21.qxd  8/4/06  10:08 AM  Page 498



private:
long m_Number;             
QString m_Name;
static long nextNumber();   

};

class Registrar {
public:

static Registrar& instance();
void insert(const Student& stu) throw (DupNumberException);
void insert(const QString& name);
void remove(const Student& stu) throw (NoStudentException);
void remove(const long num)    throw (NoNumberException);
bool isInList(const Student& stu) const;
bool isInList(const QString& name) const;

QStringList report(QString name="all");

// other members as needed
private:

Registrar() {};
Registrar(const Registrar&);  
Registrar& operator=(const Registrar&);
QList<Student> m_List;

};
}
[ . . . . ]

3

2

1

2 1 . 4 E X C E P T I O N S

499

student number
used by constructor
private constructors

In the next fragment, shown in Example 21.10, we added some exceptions to

the same namespace from another header file.

E X A M P L E  2 1 . 1 0 src/exceptions/registrar/exceptions.h

#ifndef EXCEPTIONS_H
#define EXCEPTIONS_H

#include <QString>

namespace Registrar_Namespace {

class Exception {
public:

Exception (const QString& reason);
virtual ~Exception () { }
QString what () const;

private:
QString m_Reason;

};

3

2

1

continued

ezus_138004_ch21.qxd  8/4/06  10:09 AM  Page 499



class NoNumberException : public Exception {
public:

NoNumberException(const QString& reason);
};

class NoStudentException : public Exception {
public:

NoStudentException(const QString& reason);
};

class DupNumberException : public Exception {
public:

DupNumberException(const QString& reason);
};

}

#endif        //  #ifndef EXCEPTIONS_H

The implementation file shown in Example 21.11 is not complete but there is

enough code to get you started.

E X A M P L E  2 1 . 1 1 src/exceptions/registrar/registrar.cpp

/*  Selected implementation examples
This file is not complete! */

#include "registrar.h"

namespace Registrar_Namespace {

long Student::nextNumber() {      
static long number = 1000000;
return ++number;

}

Registrar& Registrar::instance() {  

static Registrar onlyInstance;
return onlyInstance;

}

Exception::
Exception(const QString& reason) : m_Reason(reason) {}

QString Exception::what() const {
return m_Reason;

}

NoNumberException::
NoNumberException(const QString& reason) : Exception(reason) {}

NoStudentException::
NoStudentException(const QString& reason) : Exception(reason) {}

2

1

C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

500

ezus_138004_ch21.qxd  8/4/06  10:09 AM  Page 500



DupNumberException::
DupNumberException(const QString& reason) : Exception(reason) {}

}

Without the above using decl, this would be “long Registrar_Namespace::Student::nextNumber.”
Implementation of Singleton factory method: This is the only way clients can create instances of
this Registrar.

Example 21.12 gives some client code to test these classes.

E X A M P L E  2 1 . 1 2 src/exceptions/registrar/registrarClientCode.cpp

#include "registrar.h"
#include <qstd.h>

int main() {
using namespace qstd;
using namespace Registrar_Namespace;
Registrar& reg = Registrar::instance();
while(1) {

try {
reg.insert("George");
reg.insert("Peter");
reg.insert("Mildred");
Student s("George");
reg.insert(s);
reg.remove(1000004);
reg.remove(1000004);
reg.remove(s);
QStringList report = reg.report();
foreach (QString line, report) {

cout << line << endl;
}

} catch (NoStudentException& nse) {
cout << nse.what() << endl;

}
catch (NoNumberException& nne) {

cout << nne.what() << endl;
}
catch (DupNumberException& dne) {

cout << dne.what() << endl;
}

}
}

a. There are missing function definitions, which need to be defined before this

application is built. Define the missing functions.

b. Complete and test the client code, and ensure that it works under exceptional

circumstances.

2

1

2 1 . 4 E X C E P T I O N S

501

ezus_138004_ch21.qxd  8/4/06  10:09 AM  Page 501



C H A P T E R  2 1 : S T A T E M E N T S  A N D  C O N T R O L  S T R U C T U R E S

502

R E V I E W  Q U E S T I O N S

1. What is the difference between a compound statement and a simple

statement?

2. How can you guarantee that at least one case will be executed for any

given switch value?

3. What are the advantages and disadvantages of the three iteration struc-

tures? For each, discuss the kinds of situations that would lead you to

prefer using it rather than the other two.

4. What happens if a thrown exception is not caught?

5. How can an author of client code know what exceptions need to be

handled from a function?

6. How can you catch an unforseen exception?

7. In response to a throw, what happens to the stack?

8. After an exception is handled, how do we return to the location of the

throw?

9. Why should we always catch objects by reference or pointer?

10. What happens when a destructor throws an exception?

11. What happens when a constructor throws an exception?

12. Which types are preferable for throwing, basic types or object types?

Explain the advantages of one over the other.

ezus_138004_ch21.qxd  8/4/06  10:09 AM  Page 502



503

22.1 Pointer Pathology . . . . . . . . . . . . . . . . . 504

22.2 Further Pointer Pathology 

with Heap Memory . . . . . . . . . . . . . . . . 506

22.3 Memory Access Summary . . . . . . . . . . 509

22.4 Introduction to Arrays . . . . . . . . . . . . . 509

22.5 Pointer Arithmetic . . . . . . . . . . . . . . . . . 510

22.6 Arrays, Functions, and 

Return Values . . . . . . . . . . . . . . . . . . . . . 511

22.7 Different Kinds of Arrays . . . . . . . . . . . 513

22.8 Valid Pointer Operations . . . . . . . . . . . 513

22.9 What Happens If new Fails? . . . . . . . . 515

22.10 Chapter Summary . . . . . . . . . . . . . . . . . 519

22C H A P T E R  2 2

Memory Access

Arrays and pointers are low-level building blocks of

C programs that provide fast access to hardware

memory. This chapter discusses the different ways to

organize and access memory.

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 503



Direct manipulation of memory entails some serious risks and requires good

practices and thorough testing to avoid serious errors. Improper use of pointers

and dynamic memory can cause program crashes that result from heap corrup-

tion and memory leaks. Heap corruption is especially difficult to debug because it

generally leads to segmentation faults that halt the program at a point in the code

that may be far from the point at which the heap became corrupted.

Both Qt and Standard Library container classes permit the safe use of dynamic

memory without adversely affecting performance.1 Arrays are used to implement

most container classes but are hidden from client code. The safety factors come

from the careful design of each container API so that actions that might produce

memory problems are not permitted.

Qt offers many containers, ranging from high-level template classes such as the

ones we discussed in Section 10.2 to low-level containers such as QBitArray and

QByteArray.

Generally, when writing applications that reuse those containers, it is easy to

avoid the use of arrays entirely. When Qt is not available, or when you are writing

an interface to C code, you may need to use arrays and pointers and work directly

with allocated memory.

22.1 Pointer Pathology
In Section 1.12 we introduced pointers and demonstrated some of the basics of

working with them. We now look at two short code examples to demonstrate some

of the weird and dangerous things that can happen when pointers are not handled

correctly.

E X A M P L E  2 2 . 1 src/pointers/pathology/pathologydecls1.cpp

[ . . . . ]
int main() {

int a, b, c; 
int* d, e, f;  2

1

1 In the sequel, whenever we use the term container, with no further qualification, we mean Qt or
Standard Library container.

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 504



int *g, *h;  
int* i, * j; 

return 0;
}

As expected, this line creates three ints.
This line creates one pointer to an int and two ints. (!)
This line creates two pointers to int.
This line also creates two pointers to int.

Example 22.1 shows a few of the many ways one can declare pointers. A beginner

would be forgiven for thinking the second line of main()creates three pointers—

after all, in line one, similar syntax creates three integers. However, when multiple

variables are declared on one line, the * type modifier symbol applies only to the

variable that immediately follows it, not the type that precedes it. Since whitespace is

ignored by the compiler, the location of whitespace can help or confuse the reader.

E X A M P L E  2 2 . 2 src/pointers/pathology/pathologydecls2.cpp

[ . . . . ]
int main() {

int myint = 5;
int *ptr1 = &myint;
cout << "*ptr1 = " << *ptr1 << endl;
int anotherint = 6;

//    *ptr1 = &anotherint;  

int *ptr2;             
cout << "*ptr2 = " << *ptr2 << endl;
*ptr2 = anotherint;   

int yetanotherint = 7;
int *ptr3;
ptr3 = &yetanotherint;  
cout << "*ptr3 = " << *ptr3 << endl;
*ptr1 = *ptr2;       
cout << "*ptr1 = " << *ptr1 << endl;

return 0;
}
[ . . . . ]

error—invalid conversion from int* to int
uninitialized pointer
unpredictable results
regular assignment
dangerous assignment!5

4

3

2

1

5

4

3

2

1

4

3

2

1

4

3

2 2 . 1 P O I N T E R  P A T H O L O G Y

505

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 505



Example 22.2 is broken up into three sections. Only the first and third sections are

equivalent; the second contains a common beginner’s mistake.

src/pointers/pathology> g++ pathologydecls2.cpp
pathologydecls.cpp: In function 'int main()':
pathologydecls.cpp:17: error: invalid conversion from 'int*' to 'int'
src/pointers/pathology>

After commenting out the invalid conversion, we can try again.

*ptr1 = 5
*ptr2 = 1256764
*ptr3 = 7
*ptr1 = 6

The value of *ptr2 is unpredictable.

Dereferencing uninitialized pointers for read purposes is bad enough, but then

we wrote to it. This is a form of memory corruption, which can cause problems

later in the program’s execution. Notice the inconsistent value that *ptr1 obtained

from *ptr2.

22.2 Further Pointer Pathology 
with Heap Memory

The result of applying delete to a pointer that holds the address of a valid object

in the heap is to change the status of that heap memory from “in use” to “available.”

After delete has been applied to a pointer, the state of that pointer itself is

undefined. The pointer may or may not still store the address of that deleted mem-

ory, so a second application of delete to the same pointer may cause run-time

problems—possibly heap corruption.

In general, the compiler cannot detect attempts to apply delete repeatedly to

the same object, especially if that piece of memory (or a part thereof) has since

been reallocated. To help avoid the very undesirable consequences of a repeated

delete, it is good practice to assign NULL to a pointer immediately after it has

been deleted.

If delete is applied to a null pointer, there is no action and no error.

Applying delete to a non-null pointer that was not returned by new produces

undefined results. In general, the compiler will not be able to determine whether

the pointer was or was not returned by new, so undefined run-time behavior can

result. Bottom line: It is the programmer’s responsibility to use delete correctly.

One of the richest sources of run-time errors is the production of memory
leaks. A memory leak is produced when a program causes memory to be allocated

and then loses track of that memory so that it can neither be accessed nor deleted.

C H A P T E R  2 2 : M E M O R Y  A C C E S S

506

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 506



An object that is not properly deleted will occupy memory until the process

terminates.

Some programs (e.g., operating systems) stay active for a long time. Suppose

such a program contains a frequently executed routine that produces a memory

leak each time it is run. The heap will gradually become perforated with blocks of

inaccessable, undeleted memory. At some point a routine that needs a substantial

amount of contiguous dynamic memory may have its request denied. If the pro-

gram was not expecting an event like that, it may not be able to continue.

The operators new and delete give the C++ programmer increased power as

well as increased responsibility.

Here is some sample code that illustrates a memory leak. After defining a cou-

ple of pointers, memory will look a little like Figure 22.1.

int* ip = new int;        // allocate space for an int
int* jp = new int(13);    // allocate and initialize
cout << ip  << '\t'  <<  jp  << endl;

2 2 . 2 F U R T H E R  P O I N T E R  P A T H O L O G Y  W I T H  H E A P  M E M O R Y

507

F I G U R E  2 2 . 1 Initial values of memory 

Now we add one more line of code.

jp = new int(3);   // reassign the pointer - MEMORY LEAK!!

After executing the single line above, our memory looks like Figure 22.2.

F I G U R E  2 2 . 2 Memory after leak

0x8049d38

0x8049e48

jp

ip Location: 0x8049d38

Location: 0x8049e48

13

?

0x8049d38

0x8049e58

jp

ip Location: 0x8049d38

Memory leak. 
Allocated memory with 
nothing pointing to it.

Location: 0x8049e48

13

Location: 0x8049e58

3

?

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 507



E X A M P L E  2 2 . 3 src/pointers/pathology/pathologydemo1.cpp

#include <iostream>
using namespace std;

int main() {
int* jp = new int(13);  
cout << jp << '\t' << *jp << endl;
delete jp;
delete jp;           
jp = new int(3);      
cout << jp << '\t' << *jp << endl;
jp = new int(10);    
cout << jp << '\t' << *jp << endl;
int* kp = new int(17);
cout << kp << '\t' << *kp << endl;
return 0;

}

Output:

OOP> g++ pathologydemo1.cpp
OOP> ./a.out
0x8049e08       13
0x8049e08       3
0x8049e08       10
Segmentation fault
OOP>

allocate and initialize
error: pointer already deleted
Reassign the pointer—MEMORY LEAK!
Reassign the pointer—MEMORY LEAK!

In Example 22.3, we deleted the pointer jp twice. The second deletion is a serious

error but the compiler did not catch it. That error corrupted the heap, made any fur-

ther memory allocation impossible, and made the behavior of the program beyond

that point undefined. For example, notice that when we attempted to produce a

memory leak by reassigning the pointer jp, we did not get any new memory. When

we attempted to introduce another pointer variable we got a segmentation fault.

This is all undefined behavior and may be different on another platform or with

another compiler.

4

3

2

1

4

3

2

1

C H A P T E R  2 2 : M E M O R Y  A C C E S S

508

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 508



22.3 Memory Access Summary
Here is a list of the most important points that we have raised about memory access.

■ The operators new and delete give the C++ programmer increased

power as well as increased responsibility.

■ Improper use of pointers and dynamic memory can cause program

crashes that result from heap corruption and memory leaks.

■ Qt and STL container classes permit the safe use of dynamic memory

without adversely affecting performance.

■ In a multiple variable declaration, the unary * operator applies only to

the variable that immediately follows it, not the type that precedes it.

■ Dereferencing an uninitialized pointer is a serious error that may not be

caught by the compiler.

■ After delete has been applied to a pointer, the state of that pointer is

undefined.

■ It is good practice to assign NULL to a pointer immediately after it has

been deleted.

■ Applying delete to a non-null pointer that was not returned by new

produces undefined results.

■ The compiler cannot be relied upon to detect the improper use of

delete, so it is the programmer’s responsibility to use delete correctly.

■ A memory leak is produced when a program causes memory to be allo-

cated and then loses track of that memory so that it can neither be

accessed nor deleted.

22.4 Introduction to Arrays
An array is a sequence of contiguous memory cells, all of the same size. Each cell

is called an array element, or entry.

When an array is declared, the size of the array must be made known. This can

be done by explicitly or by initialization:

int a[10]; // explicitly creates uninitialized cells a[0], 
// a[1],..., a[9]

int b[] = {1, 3, 5, 7}; // implicitly creates and initializes 
// b[0],..., b[3]

The array name is an alias for a const typed pointer to the first cell of the array.

A pointer declaration such as

int* ptr; 

2 2 . 4 I N T R O D U C T I O N  T O  A R R A Y S

509

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 509



only creates the pointer variable. There is no automatic default initialization of

pointer variables. It is an error to attempt to dereference an uninitialized pointer.

Array indices are relative offsets from the base address:

a[k] is equivalent to *(a + k) 

The following bit of code demonstrates an interesting aspect of array indices.

#include <iostream.h>
int main(){

int a[] = {10, 11, 12, 13, 14, 15};
int* b = a + 1;
cout << "a[3] = " << a[3] << endl

<< "b[3] = " << b[3] << endl;
}

Its output looks like this.

a[3] = 13
b[3] = 14

Notice that b was not declared as an array, but we can use the [] operator anyway.

There is a special syntax for defining a dynamic array consisting of a given

number of elements of some type.

uint n;
ArrayType* pt;
pt = new ArrayType[n];

This version of new allocates n contiguous blocks of memory, each of size

sizeof(ArrayType) and returns a pointer to the first block. Each element of

the newly allocated array is given default initialization. To properly deallocate this

array, it is necessary to use the syntax:

delete[] pt;

Using delete without the empty brackets to delete a dynamic array produces

undefined results.

22.5 Pointer Arithmetic
The result of applying the operators +, -, ++, or -- to a pointer depends on the

type of object pointed to. When an arithmetic operator is applied to a pointer p of

type T*, p is assumed to point to an element of an array of objects of type T.

■ p+1 points to the next element of the array.

■ p-1 points to the preceding element of the array.

■ In general, the address p+k is k*sizeof(T) bytes larger than the

address p.

Subtraction of pointers is defined only when both pointers point to elements of

the same array. In this case the difference is an int equal to the number of array

elements between the two elements.

C H A P T E R  2 2 : M E M O R Y  A C C E S S

510

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 510



The results of pointer arithmetic are undefined outside the context of an array.

It is the responsibility of the programmer to ensure that pointer arithmetic is used

appropriately.

E X A M P L E  2 2 . 4 src/arrays/pointerArith.cpp

[ . . . . ]
int main()  {

using namespace std;
int y[] = {3, 6, 9};
int x = 23;
int* px;
px = &y;  
px = y; 
cout << "What's next: " << *++px << endl;
cout << "What's next: " << *++px << endl;
cout << "What's next: " << *++px << endl;
cout << "What's next: " << *++px << endl;
return 0;

}

The & is redundant here.
y, or any array name, is an “alias” for a pointer to the first element in the array.

If we ran the above example, we might2 see something like this:

What's next: 6
What's next: 9
What's next: 23
What's next: -1073751080

Notice that neither the compiler nor the run-time system reported an error mes-

sage. C++ happily reads from arbitrary memory addresses and reports them in the

type of your choice, giving the C++ developer great power and many opportunities

to make great errors.

22.6 Arrays, Functions, and Return Values
As in C, the declared return type of a function cannot be array (e.g., it cannot look

like int[]or char[]or Point[]). Returning (addresses to) arrays from func-

tions that are pointer-typed is allowed. However, this is not recommended in the

public interface of a class.

An array is a piece of unprotected memory. A class that encapsulates that

memory should not have public member functions that return pointers to it.

Doing so opens up the possibility for incorrect use of the memory by client code.

2

1

2

1

2 2 . 6 A R R A Y S , F U N C T I O N S , A N D  R E T U R N  V A L U E S

511

2 In general, accessing memory beyond the boundary of an array is nonportable, and since that is what
we are doing (on purpose), the results will also be nonportable.

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 511



A properly designed class completely encapsulates all interactions with any arrays

used in the implementation of that class.

Arrays are never passed to functions by value—the array elements will not be

copied. If a function is called with an array in its argument list, for example,

int a[] = {10, 11, 12, 13, 14, 15};
[ ... ]
f(a[]);
[ ... ]

then the array expression is interpreted as a pointer to the first element in the

array.

E X A M P L E  2 2 . 5 src/arrays/returningpointers.cpp

#include <assert.h>

int paramSize;

void bar(int *integers) {
integers[2]=3;                   

}

int* foo(int arrayparameter[]) {
using namespace std;
paramSize = sizeof(arrayparameter);
bar(arrayparameter);                
return arrayparameter;            

}

int main(int argc, char** argv) {
int intarray2[40] = {9,9,9,9,9,9,9,2,1};
char chararray[20] = "Hello World";  
int intarray1[20];             
int* retval;                  

//    intarray1 = foo(intarray2);       

retval = foo(intarray2);
assert (retval[2] == 3);
assert (retval[2] = intarray2[2]);
assert (retval == intarray2);
int refSize = getSize(intarray2);
assert(refSize == paramSize);
return 0;

}

Change the third element in the incoming array.
Pass an array by pointer to a function.
Return an array as a pointer from a function.
special syntax for initializing char array
uninitialized memory
uninitialized pointer
Error—intarray1 is like a // char* const. It cannot be assigned to.7

6

5

4

3

2

1

7

6

5

4

3

2

1

C H A P T E R  2 2 : M E M O R Y  A C C E S S

512

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 512



22.7 Different Kinds of Arrays
Arrays of primitive types, such as int, char, and byte, are used to implement

caches. Arrays of objects are supported in the C++ language for backward com-

patibility with C’s arrays of structs, but are only used for uniform collections of

identical structures, rather than collections of similar polymorphic objects.

If you need random access to the stored items, QList (from Qt) or vector

(from STL) can be used instead of an array. Both are implemented as dynamic arrays

under the covers. It is preferable to use those containers in favor of arrays whenever

possible, because containers correctly and safely allocate and free memory for you.

22.8 Valid Pointer Operations
Here is a list of the operations that can properly be performed with pointers.

Creation The initial value of a pointer has three possible sources:

■ A const pointer such as an array name

■ An address obtained by using the address-of operator, &

■ A value obtained by a dynamic memory allocation operator (e.g., new)

Assignment

■ A pointer can be assigned the address stored by a pointer of the same

type or of a derived type.

■ A variable of type void* can be assigned a pointer of any type without an

explicit cast.

■ A (non-void*) pointer can be assigned the address stored by a pointer of

a different (and non-derived) type only with an explicit cast.

■ An array name is a const pointer and cannot be assigned to.

■ A NULL pointer (value 0) can always be assigned to any pointer. (Note:

Stroustrup recommends that 0 be used instead of NULL.)

Arithmetic

■ Incrementing and decrementing a pointer: p++ and p--

■ Adding or subtracting an integer: p + k and p - k

■ Such expressions are defined only if the resulting pointer value is within

the range of the same array. The only exception to this rule is that a

pointer is allowed to point to the memory cell that is one position

beyond the end of the array as long as no attempt is made to dereference

that address.

2 2 . 8 V A L I D  P O I N T E R  O P E R A T I O N S

513

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 513



■ For subtraction, two pointers that point to two members of an array can

be subtracted, yielding an int that represents the number of array ele-

ments between the two members.

Comparison

■ Pointers to entries of the same array can be compared with ==, !=, <, >,

etc.

■ Any pointer can be compared with 0.

Indirection

■ If p is a pointer of type T*, then *p is a variable of type T and can be

used on the left side of an assignment.

Indexing

■ A pointer p can be used with an array index operator p[i] where i is 

an int.

■ The compiler interprets such an expression as *(p+i).

■ Indexing makes sense and is defined only in the context of an array, but

the compiler will not prevent its use with non-array pointers where the

results are undefined.

The following bit of code in Example 22.6 demonstrates this last point rather

clearly.

E X A M P L E  2 2 . 6 src/arrays/pointerIndex.cpp

#include <iostream>
using namespace std;

int main()  {
int x = 23;
int* px = &x;
cout << "px[0] = " << px[0] << endl;
cout << "px[1] = " << px[1] << endl;
cout << "px[-1] = " << px[-1] << endl;
return 0;

}

Output:

src/arays> g++ pointerIndex.cc // compile & run on a Sun station
src/arays> a.out
px[0] = 23
px[1] = 5
px[-1] = -268437516

src/arays> g++ pointerIndex.cc // compile & run on a Linux box
src/arays> ./a.out

C H A P T E R  2 2 : M E M O R Y  A C C E S S

514

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 514



px[0] = 23
px[1] = -1073743784
px[-1] = -1073743852
src/arays>

22.9 What Happens If new Fails?

Section 21.4

Every book on C++ has a section on handling new failures. The accepted wisdom

for how to handle such failures tends to vary, because the behavior of a C++ pro-

gram when it runs out of memory is not the same from one platform to another.

We begin our discussion with a caveat. When a C++ program has a memory

leak and runs for a long time, eventually there will be no memory available to it.

You might think that would cause an exception to be thrown. However most mod-

ern operating systems (including *nix and Win32) implement virtual memory,
which permits the operating system, when its random access memory (RAM) fills

up beyond some preset level, to copy the contents of memory that has not been

used recently to a special place on the system disk drive. This substitution of rela-

tively slow memory (disk storage) for fast memory (RAM) is generally invisible to

the user (except for the performance degradation). If the demands on the system

RAM are especially heavy, the OS will use virtual memory to keep satisfying allo-

cation requests until the system starts thrashing.3 When this happens, the whole

system grinds to a halt until the system administrator can intervene and kill the

memory-eating process. At no point will any of the memory allocation failure-

handling code be reached in the errant process. It is for this reason that memory

allocation errors are handled differently, or not at all, in various applications.

Having said this, the ANSI/ISO standard does specify that the free store oper-

ator new should throw a bad_alloc exception instead of returning NULL if it

cannot carry out an allocation request. If a thrown bad_alloc exception is not

caught by a catch()block, the default exception handler is called, which could be

either abort()or terminate().

Example 22.7 demonstrates this feature of C++.

2 2 . 9 W H A T  H A P P E N S  I F  N E W  F A I L S ?

515

3 When a system is constantly swapping memory back and forth to disk, preventing other I/O from
happening, we call that “thrashing.”

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 515



E X A M P L E  2 2 . 7 src/newfailure/bad-alloc1.cpp

#include <iostream>
#include <new>
using namespace std;

void memoryEater() {
int i = 0;
double* ptr;
try {

while(1) {
ptr = new double[50000000];
cerr << ++i << '\t' ;

}
} catch (bad_alloc& excpt) {

cerr << "\nException occurred: "
<< excpt.what() << endl;

}
}

int main() {
memoryEater();  
cout << "Done!" << endl;
return 0;

}

Output:

src/newfailure> g++ bad-alloc1.cpp
src/newfailure> ./a.out
1       2       3       4       5       6       7
Exception occurred: St9bad_alloc
Done!
src/newfailure>

Try to use up the memory.

22.9.1 set_new_handler(): Another Approach 
to new Failures

We can specify what new should do when there is not enough memory to satisfy

an allocation request. When new fails, it first calls the function specified by

set_new_handler(). If new_handler has not been set, a bad_alloc object

is thrown that can be queried, as shown in Example 22.7, for more information by

calling one of its member functions. Example 22.8 shows how to specify our own

new_handler.

1

1

C H A P T E R  2 2 : M E M O R Y  A C C E S S

516

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 516



E X A M P L E  2 2 . 8 src/newfailure/setnewhandler.cpp

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

void memoryEater() {
int i = 0;
double* ptr;
while(1) {

ptr = new double[50000000];
cerr << ++i << '\t' ;

}
}

void out_of_store() {
cerr << "\noperator new failed: out of store\n";
exit(1);

}

int main() {
set_new_handler(out_of_store);
memoryEater(); 
cout << "Done!" << endl;
return 0;

}

Output:

src/newfailure> g++ setnewhandler.cpp
src/newfailure> ./a.out
1       2       3       4       5       6       7
operator new failed: out of store
OOP>

Note the absence of a try block.

E X E R C I S E : S E T _ N E W _ H A N D L E R ( ) — A N O T H E R
A P P R O A C H  T O  N E W  F A I L U R E S

What happens if the last command in the out_of_store()function is not

exit()?

22.9.2 Using set_new_handler and bad_alloc

Example 22.9 throws a standard exception from the new_handler.

2 2 . 9 W H A T  H A P P E N S  I F  N E W  F A I L S ?

517

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 517



E X A M P L E  2 2 . 9 src/newfailure/bad-alloc2.cpp

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

void memoryEater() {
int i = 0;
double* ptr;
try {

while(1) {
ptr = new double[50000000];
cerr << ++i << '\t' ;

}
} catch(bad_alloc& excpt) {

cerr << "\nException occurred: "
<< excpt.what() << endl;

}
}

void out_of_store() {
cerr << "\noperator new failed: out of store\n";
throw bad_alloc();

}

int main() {
set_new_handler(out_of_store);
memoryEater(); 
cout << "Done!" << endl;
return 0;

}

Output:

src/newfailure> g++ bad-alloc2.cpp
src/newfailure> ./a.out
1       2       3       4       5       6       7
operator new failed: out of store

Exception occurred: St9bad_alloc
Done!
src/newfailure>

22.9.3 Checking for null: The Updated Way 
to Test for new Failures

You may encounter the old null-checking style for detecting failures of new in

legacy code. That’s a sure sign that there are going to be problems with mainte-

nance. Fortunately, there is a simple way to update that old approach.

C H A P T E R  2 2 : M E M O R Y  A C C E S S

518

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 518



In Example 22.10, we add the qualifier (nothrow)to the allocation statement.

As its name suggests, this qualifier suppresses the throwing of bad_alloc and

allows new to return a 0 pointer if it fails.

E X A M P L E  2 2 . 1 0 src/newfailure/nullchecking.cpp

#include <iostream>
#include <new>
using namespace std;

void memoryEater() {
int i = 0;
double* ptr;
while(1) {

ptr = new (nothrow) double[50000000];
if (ptr == 0)

return;
cerr << ++i << '\t' ;

}
}

int main() {
memoryEater(); 
cout << "Done!" << endl;
return 0;

}

Output:

src/newfailure> g++ nullchecking.cpp
src/newfailure> ./a.out
1       2       3       4       5       6       7      Done!
src/newfailure>

22.10 Chapter Summary
Here is a list of the most important points that we have raised in this chapter.

■ An array is a sequence of contiguous memory cells, all of the same size.

■ The array name is an alias for a const-typed pointer to the first cell of the

array.

■ There is no automatic default initialization of pointer variables.

■ Array indices are relative offsets from the base address.

■ Array subscripts are valid only when used to access members of an array

and only within the declared limits of the array.

2 2 . 1 0 C H A P T E R  S U M M A R Y

519

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 519



■ The standard does not guarantee that the compiler will catch attempts to

use the subscript operator with a pointer that is not an array.

■ Arrays are passed to and returned from functions as pointers.

■ It is possible to apply the arithmetic operators +, -, ++, and -- to an

array pointer, subject to sensible limitations.

■ The results of pointer arithmetic are undefined outside the context of an

array.

■ The standard does not guarantee that the compiler will catch attempts to

misuse pointer arithmetic.

■ Pointers can acquire values only in the following ways:

■ by initialization when they are first created

■ by assignment after they exist

■ as a result of pointer arithmetic

■ A dynamic array of size elements of type T is allocated using the syntax

uint size;
T* pt;
pt = new T[size] ;

■ Each element of the dynamic array is given default initialization when

the array is allocated.

■ To deallocate such a dynamic array it is necessary to use the syntax

delete[] pt;

■ The ANSI/ISO standard requires the free store operator new to throw a

bad_alloc exception instead of returning NULL if it cannot carry out an

allocation request.

■ The qualified operator new (nothrow)will return 0 if it cannot carry

out an allocation request.

■ Dynamic arrays should be carefully encapsulated in classes that are

designed with proper destructors, copy constructors, and copy assignment

operators.

C H A P T E R  2 2 : M E M O R Y  A C C E S S

520

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 520



R E V I E W  Q U E S T I O N S

521

R E V I E W  Q U E S T I O N S

1. What is defined in the following statement?

int* p, q;

2. What is a memory leak? How does it happen?

3. How do the +, -, ++, and -- operators work differently on pointers

versus regular numbers?

4. What happens if delete is applied to a pointer that has just been deleted?

5. When an array is passed to a function as a parameter, what is being

copied onto the stack?

6. What is dynamic memory? How do you obtain it in C++?

7. What happens when a program runs out of memory? How can a

program recover from such a situation?

8. Under what situations is it appropriate to check whether a value from

new is null?

ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 521



ezus_138004_ch22.qxd  8/4/06  10:09 AM  Page 522



523

23.1 Virtual Pointers and Virtual Tables. . . . 524

23.2 Polymorphism and virtual 

Destructors . . . . . . . . . . . . . . . . . . . . . . . . 526

23.3 Multiple Inheritance . . . . . . . . . . . . . . . . 528

23.4 public, protected, and private 

Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 536

23C H A P T E R  2 3

Inheritance in Detail

This chapter formalizes and details some of the con-

cepts introduced earlier in Chapter 6. We explain how

constructors, destructors, and copy assignment oper-

ators are generated and used by derived classes. We

discuss how the keywords public, private, and

protected can be used for base classes as well as

class members. We also provide examples of multiple

inheritance.

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 523



23.1 Virtual Pointers and Virtual Tables
Each class that contains methods (virtual functions) has a virtual jump table,

or vtable, which is generated as part of the “lightweight” C++ execution environ-

ment. The vtable can be implemented in a number of ways, but the simplest

implementation (which is often the fastest and most lightweight) contains a list of

pointers to all methods of that class. Depending on the optimization policies, it

may contain additional information to aid in debugging. The compiler substitutes

function names with indirect (relative to the vtable list) references to method calls.

With this in mind, we can define polymorphic type explicitly as a class that

contains one or more methods and, thus, requires the use of a vtable. Each

instance of a polymorphic type has a typeid, which can be quite naturally imple-

mented as the address of the vtable for the class.

vtable instead of switch

To implement indirect method calling through vtables, the compiler gener-

ates a jump table, which is similar to a switch statement, for each polymor-

phic class. Programmers can often exploit vtables instead of writing their

own switch statements or large compound conditionals. This is implicit in

a number of design patterns such as the Command, Visitor, Interpreter, and

Strategy patterns.

A vtable cannot be built for a class unless the method definitions for all overrides

are fully defined and findable by the linker.

The typeid of an object is set after the object’s constructor has executed. If

there are base classes, the typeid for an object may be set multiple times, after

each base class initialization. We will use the classes defined in Example 23.1 to

demonstrate that calling a virtual function from a constructor or destructor

can have unexpected consequences.

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 524



E X A M P L E  2 3 . 1 src/derivation/typeid/vtable.h

[ . . . . ]
class Base {
protected:

int m_X, m_Y;
public:

Base();
virtual ~Base();
virtual void virtualFun() const;

};

class Derived : public Base {
int m_Z;

public:
Derived();
~Derived();
void virtualFun() const ;

};
[ . . . . ]

Example 23.2 shows what happens when a virtual function is called from a

base class constructor or destructor.

E X A M P L E  2 3 . 2 src/derivation/typeid/vtable.cpp

#include <QString>
#include <qstd.h>
using namespace qstd;
#include "vtable.h"

Base::Base() {
m_X = 4;
m_Y = 12;
cout << " Base::Base: " ;
virtualFun();

}

Derived::Derived() {
m_X = 5;
m_Y = 13;
m_Z = 22;

}

void Base::virtualFun() const {
QString val=QString("[%1,%2]").arg(m_X).arg(m_Y);
cout << " VF: the opposite of Acid: " << val << endl;

}

void Derived::virtualFun() const {
QString val=QString("[%1,%2,%3)")

2 3 . 1 V I R T U A L  P O I N T E R S  A N D  V I R T U A L  T A B L E S

525

continued

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 525



.arg(m_X).arg(m_Y).arg(m_Z);
cout << " VF: add some treble: " << val << endl;

}

Base::~Base() {
cout << " ~Base() " << endl;
virtualFun();

}

Derived::~Derived() {
cout << " ~Derived() " << endl;

}

int main() {
Base b;
Derived d;

}

In the output that follows, we see that the derived VF: does not get called from

Base::Base(), because the base class initializer is inside an object that is not yet a

Derived instance.

Base::Base:  VF: the opposite of Acid: [4,12]
Base::Base:  VF: the opposite of Acid: [4,12]
~Derived()
~Base()
VF: the opposite of Acid: [5,13]
~Base()
VF: the opposite of Acid: [4,12]

Calling virtual methods from destructors is also not recommended. In the pre-

ceding output, we can see that the base virtualFun is always called from the base

class constructors or destructor. Dynamic binding does not happen inside con-

structors or destructors.

23.2 Polymorphism and virtual Destructors
When operating on classes in inheritance hierarchies, we often maintain contain-

ers of base class pointers that hold addresses of derived objects.

Example 23.3 defines a Bank class that has a container of various kinds of

Account.

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

526

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 526



E X A M P L E  2 3 . 3 src/derivation/assigcopy/bank.h

#ifndef BANK_H
#define BANK_H
#include <QList>
class Account;

class Bank {
public:

Bank& operator<< (Account* acct);  
~Bank();

private:
QList<Account*> m_Accounts;

};
#endif

This is how we add object ptrs into m_Accounts.

Bank is able to perform uniform operations on its collected Accounts by calling

virtual methods on each one.

E X A M P L E  2 3 . 4 src/derivation/assigcopy/bank.cpp

[ . . . . ]

#include "bank.h"
#include "account.h"

Bank::~Bank() {
foreach (Account* acct, m_Accounts) {

delete acct;
}
m_Accounts.clear();

}

In Example 23.4, delete acct causes an indirect call to the destructor of

Account, as well as the subsequent release of allocated memory. However, while

every address in the list is an Account, some (perhaps all) might point to derived-

class objects and therefore require derived-class destructor calls.

If the destructor is virtual, the compiler allows run-time binding on the

destructor call, instead of simply calling Account::~Account()on each one.

1

1

2 3 . 2 P O L Y M O R P H I S M  A N D  V I R T U A L  D E S T R U C T O R S

527

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 527



E X A M P L E  2 3 . 5 src/derivation/assigcopy/bank.cpp

[ . . . . ]

Bank& Bank::operator<< (Account* acct) {
m_Accounts << acct;
return *this;   

}

int main(int argc, char* argv[]) { 
Bank b;
Account* a1 = new Account(1, 423, "Gene Kelly");
JointAccount *a2 = new JointAccount(2, 1541, "Fred Astaire",
"Ginger Rodgers");
b << a1;
b << a2;

}

At this point, the bank and all the accounts are destroyed.

Without declaring ~Account()to be virtual in the base class, we would get an

incorrect result from running Example 23.5.1

Closing Acct - sending e-mail to primary acctholder:Gene Kelly
Closing Acct - sending e-mail to primary acctholder:Fred Astaire

By making the destructor virtual, both types of Account will get destroyed

properly and, in this example, both account holders of a joint account will get

proper e-mail notifications when the Bank is destroyed.

Closing Acct - sending e-mail to primary acctholder:Gene Kelly
Closing Joint Acct - sending e-mail to joint acctholder:Ginger
Rodgers
Closing Acct - sending e-mail to primary acctholder:Fred Astaire

If you declare one or more virtual methods in a class, you should
define a virtual destructor for that class, even if it has an empty body.

23.3 Multiple Inheritance
Multiple inheritance is a form of inheritance in which a class inherits the struc-

ture and behavior of more than one base class.

1

1

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

528

1 Compilers report a missing virtual in the destructor as a warning, and the behavior is undefined,
so you may not see the same thing on your system.

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 528



Common uses of multiple inheritance:

■ For crossing the functionality of very different classes with little overlap,

such as in Figure 23.1.

■ For implementing a common “pure interface” (class with only pure

virtual functions) in a variety of different ways.2

2 3 . 3 M U L T I P L E  I N H E R I T A N C E

529

2 As we see in Section 23.3.2.

F I G U R E  2 3 . 1 QWidget’s inheritance

Multiple inheritance hierarchies are more complex and are harder to design, imple-

ment, and understand than single inheritance hierarchies. They can be used to solve

some difficult design problems, but should not be used if a simpler approach (such

as aggregation) is feasible. As with single inheritance, multiple inheritance defines

a static relationship among classes. It cannot be changed at runtime.

23.3.1 Multiple Inheritance Syntax

The example in this section demonstrates multiple inheritance syntax and usage.

F I G U R E  2 3 . 2 Window and ScreenRegion

The two base classes shown in Figure 23.2, Rectangle and ScreenRegion,

each have particular roles to play on the screen. One class is concerned with shape

and location, while the other is concerned with color and visibility characteristics.

A Window must be a Rectangle and a ScreenRegion. They are defined in

Example 23.6.

QWidget

QPaintDeviceQObject

Window

RectangleScreenRegion

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 529



E X A M P L E  2 3 . 6 src/multinheritance/window.h

#include "color.h"
#include "point.h"

class Rectangle {
public:

Rectangle( Const Point& ul, int length, int width);
Rectangle( const Rectangle& r) ;
void move (const Point &newpoint);

private:
Point m_UpperLeft;
int m_Length, m_Width;

};

class ScreenRegion {
public:

ScreenRegion( Color c=White);
ScreenRegion (const ScreenRegion& sr);
virtual color Fill( Color newColor) ;
void show();
void hide();

private:
Color m_Color;
// other members...

};

class Window: public Rectangle, public ScreenRegion {
public:

Window( const Point& ul, int len, int wid, Color c)
: Rectangle(ul, len, wid), ScreenRegion(c) {}  

Window( const Rectangle& rect, const ScreenRegion& sr)
: Rectangle(rect), ScreenRegion(sr) {}       

// Other useful member functions ...
};

Use base class ctors.
Use base class copy ctors.

There are some syntax items in the classHead of the derived class that deserve some

attention.

■ An access specifier, e.g., public or protected, must appear before

each base class name if the derivation is not private.

■ Default derivation is private.

■ It is possible to have a mixture of public, protected, and private

derivations.

2

1

2

1

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

530

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 530



■ The comma (,) character separates the base classes.

■ The order of base class initialization is the order in which the base classes

are listed in the classHead.

Client code to put a Window on the screen is shown in Example 23.7.

E X A M P L E  2 3 . 7 src/multinheritance/window.cpp

#include "window.h"

int main() {
Window w(Point(15,99), 50, 100, Color(22));
w.show();          
w.move (Point(4,6));  
return 0;

}

calls ScreenRegion::show();
calls Rectangle::move();

Member Initialization

Default initialization or assignment proceeds member by member in the order

that data members are declared in the class definition: First, base classes; then,

derived class members.

23.3.2 Multiple Inheritance with Abstract Interfaces

One situation where it is appropriate to use multiple inheritance is when more

than one abstract interface is needed. Figure 23.3 shows a class diagram based on

the MP3 Data Model assignment in Section 25.1. FileTagger inherits the

DataObject/QObject for its signals and slots, as well as for its property()

and setProperty()functions. FileTagger also needs the Mp3Song interface

that defines all of the fields for which an ID3 tag should have getters/setters.

Similarly, Mp3File needs both the DataObject and the Mp3Song interfaces,

even though it is not connected to a physical MP3 file.

2

1

2

1

2 3 . 3 M U L T I P L E  I N H E R I T A N C E

531

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 531



Multiple inheritance can help reduce dependencies for client code. For exam-

ple, a client function can have an Mp3Song parameter without needing id3lib or

Qt in order to exploit the Mp3Song interface. Mp3Song, with only pure virtual

functions, enforces the interface on all derived classes. Separating the interface from

different implementations makes plugin-frameworks possible.

In Figure 23.3,QObject is one of the base classes that is multiply inher-
ited. One restriction Qt has is that QObject must only be inherited once
by each class; further, the QObject-derived base must be listed first in
the list of base classes. Breaking this rule will lead to strange errors from
the code generated by moc, the MetaObject compiler.

P O I N T  O F  D E P A R T U R E

Multiple inheritance with QObject is discussed further in Qt Quarterly.3

23.3.3 Resolving Multiple Inheritance Conflicts

Figure 23.4 shows a UML diagram where multiple inheritance is being used incor-

rectly, for both interface and implementation. To make things even more compli-

cated, we are inheriting from the same base class twice.

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

532

F I G U R E  2 3 . 3 MP3 data model

PlayListModel

Mp3Song

QObject

DataObject

Mp3FileFileTagger

- mTag : ID3_Tag*
- mFilename : QString

*

3 http://doc.trolltech.com/qq/qq15-academic.html#multipleinheritance

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 532



F I G U R E  2 3 . 4 Person–Student–Teacher

2 3 . 3 M U L T I P L E  I N H E R I T A N C E

533

Here, the class GradTeachingFellow is derived from two classes: Student and

Teacher.

class GradTeachingFellow : public Student,
public Teacher {

// class member functions and data members
};

Name conflicts and design problems can arise from the improper use of multiple

inheritance. In the above example, getDepartment() function exists in both

Student and Teacher. The student could be studying in one department and

teaching in another, for example.

What happens when you call getDepartment() on a
GraduateTeachingFellow?

Person

+mName
+mBirthDate
+mSex

+getName()
+getBirthDate()
+getSex()

GradTeachingFellow

+getSupervisor()

Teacher

+getRank()
+getDepartment()
+getCourseInfo()

Student

+getAddress()
+getDepartment()

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 533



GraduateTeachingFellow gtf;
Person* pptr = &gtf;
Student * sptr = &gtf;;
Teacher* tptr = &gtf;
gtf.Teacher::getDepartment(); 
gtf.Student::getDepartment();
sptr->getDepartment() 
tptr->getDepartment() 
pptr->getDepartment(); // ambiguous - run-time error if virtual
gtf.getDepartment(); // Compiler error - ambiguous function call

The problem, of course, is that we have provided no getDepartment() func-

tion in the GradTeachingFellow class. When the compiler looks for a

getDepartment()function, Student and Teacher have equal priority.

Inheritance conflicts like these should be avoided because they lead to much

design confusion later. However, in this case they can also be resolved with the aid

of scope resolution.

23.3.3.1 virtual Inheritance

In Figure 23.4, we inherited more than once from the same base class. There is

another problem with that model: redundancy. When we create instances of this

multiply inherited class, they might look like Figure 23.5.

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

534

F I G U R E  2 3 . 5 GradTeachingFellow—nonvirtual

Person has attributes that we wish to inherit only once. It makes no sense for 

a GradTeachingFellow to have two birthdates and two names. virtual
inheritance allows us to avoid the redundancy.

GradTeachingFellow

Student

Teacher

Grad T. F.

+mName
+mBirthDate
+mSex
+mAddress
+mDepartment
+mName
+mBirthDate
+mSex
+mRank
+mDepartment
+mCourseInfo
+mSupervisor

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 534



The strange problems that can arise when multiple inheritance is used in con-

troversial ways, especially with the added complexities of virtual versus nonvirtual

inheritance/functions, seem to have prompted the designers of Java to exclude

multiple inheritance from their language. Instead, Java allows the programmer to

define an interface, which consists only of abstract (pure virtual) functions.

A Java class can then use the implements clause to implement as many interfaces

as it needs.

23.3.3.2 virtual Base Classes

A base class may be declared virtual. A virtual base class shares its represen-

tation with all other classes that have the same virtual base class.

Add the keyword virtual in the classHead as shown in Example 23.8,

leaving all the other details of the class definitions the same.

E X A M P L E  2 3 . 8 src/multinheritance/people.h

#include "qdatetime.h"

class Person {
public:

Person(QString name, QDate birthdate)
QObject(name.ascii()),
m_Birthdate(birthdate) {}

Person(const Person& p) : QObject(p),
m_Birthdate(p.m_Birthdate) {}

private:
QDate m_Birthdate;

};

class Student : virtual public Person {  
// other class members

};

class Teacher : virtual public Person {  
// other class members

}

class GraduateTeachingFellow :
public Student, public Teacher {     

public:
GraduateTeachingFellow(const Person& p,

const Student& s, const Teacher& t):
Person(p), Students(s), Teacher(t) {}  

}
4

3

2

1

2 3 . 3 M U L T I P L E  I N H E R I T A N C E

535

continued

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 535



C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

536

F I G U R E  2 3 . 6 GradTeachingFellow—virtual

Each instance of a class that virtually inherits from another has a pointer (or a

variable offset) to its virtual base class subobject. The virtual base class pointer
is invisible to the programmer and, in general, not necessary to change.

With multiple inheritance, each virtual base class pointer points to the same

object, effectively allowing the base class object to be shared among all of the

derived-class “parts.”

For any class with a virtual base among its base classes, a member initial-

ization entry for that virtual base must appear in the member initialization for

that class. Otherwise, the virtual base gets default initialization.

23.4 public, protected, and private Derivation
Most of the time, you will see classes using public derivation. For example,

class Square : public Shape {
// ...
};

public derivation describes an interface relationship between two classes. This

means that the interface (public part) of the base class merges with the interface

mName 
mBirthdate 
mSex

mAddress 
mDepartment

mRank 
mDepartment 
mCourseInfo

mSupervisor

Person

Student

Teacher

GradTeachingFellow

Note keyword virtual here.
virtual inheritance
Virtual not needed here.
It is necessary to initialize all virtual base classes explicitly in multiply-derived classes, to resolve
ambiguity about how they should be initialized.

After using virtual inheritance, an instance of GradTeachingFellow

might look like Figure 23.6.

4

3

2

1

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 536



of the derived class. When there is an is-a relationship between the derived and

base class types, public derivation is appropriate.

Much less commonly you will see protected or private derivation. This is

considered an implementation relationship, rather than an is-a relationship. The

base class interface (public part) gets merged with the implementation

(private or protected, depending on the kind of derivation) of the derived

class. In effect, private derivation is like adding an extra object as a private

data member to your class.

Similarly, protected derivation is like adding an object as a protected

data member to the derived class that shares its this pointer.

Example 23.9 is a concrete example of a situation in which private deriva-

tion might be appropriate. The template class Stack is privately derived from

QList. The rationale for doing this is that a stack is, by definition, a datastructure

that limits access to the top item. The class QStack, which is publicly derived from

QVector, has the expected public interface for a stack but it also allows client code

unlimited access to the items in the stack because it contains the entire public

interface of QVector. Our Stack class is privately derived from QList, so its

public interface limits client code access to the handful of stack operations that are

consistent with the definition of that data structure.

E X A M P L E  2 3 . 9 src/privatederiv/stack.h

#ifndef _STACK_H_
#define _STACK_H_

#include <QList>

template<class T>
class Stack : private QList<T> { 
public:

bool isEmpty() const {
return QList<T>::isEmpty();

}
T pop() {

return takeFirst();
}
void push(const T& value) {

prepend(value);
}
const T& top() const {

return first();
}

2 3 . 4 P U B L I C , P R O T E C T E D , A N D  P R I V A T E  D E R I V A T I O N

537

continued

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 537



int size() const {
return QList<T>::size();

}
void clear() {

QList<T>::clear();
}

};
#endif 

Example 23.10 shows that an attempt by client code to make use of the Stack’s

base class (QList) interface is not allowed.

E X A M P L E  2 3 . 1 0 src/privatederiv/stack-test.cpp

#include "stack.h"
#include <QString>
#include <qstd.h>
using namespace qstd;

int main() {
Stack<QString> strs;
strs.push("hic");
strs.push("haec");
strs.push("hoc");

//strs.removeAt(2);  
int n = strs.size();
cout << n << " items in stack" << endl;
for(int i = 0; i < n; ++i)

cout << strs.pop() << endl;
}

Error—inherited QList methods are private.

So, private derivation provides a way to hide the public interface of a base class

that was only needed for implementation purposes. What about protected

derivation?

Suppose we wish to derive XStack, a particular kind of stack, from the Stack

class. With Stack privately derived from QList, we will not be able to make use

of any QList member functions when we implement XStack.

If we need to use some of the QList functions when we implement XStack,

then we must use protected derivation when we derive Stack from QList.

protected derivation makes the public interface of QList protected in

Stack.

Internally, this allows classes derived from Stack to make use of the inherited

QList protected interface.

1

1

C H A P T E R  2 3 : I N H E R I T A N C E  I N  D E T A I L

538

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 538



R E V I E W  Q U E S T I O N S

539

R E V I E W  Q U E S T I O N S

1. What is a vtable?

2. What is a polymorphic type?

3. Which kinds of member functions are not inherited? Why?

4. Under what circumstances should we have virtual destructors?

5. What happens when a virtual function is called from a base-class

constructor?

6. What is virtual inheritance? What problems can it be used to solve?

7. Why would one use non-public derivation?

ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 539



ezus_138004_ch23.qxd  8/3/06  4:34 PM  Page 540



541

24.1 Functions with Variable-Length 

Argument Lists . . . . . . . . . . . . . . . . . . . . . 542

24.2 Resource Sharing . . . . . . . . . . . . . . . . . . . 543

24C H A P T E R  2 4  

Miscellaneous Topics

Variable length argument lists are referenced, but not

completely explained earlier in the book, so they are

discussed in this chapter. An example of resource

sharing is also presented.

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 541



24.1 Functions with Variable-Length 
Argument Lists

In C and in C++ it is possible to define functions that have parameter lists ending

with an ellipsis (. . .). The ellipsis allows the number of parameters and their types

to be specified by the caller. The usual example of such a function is from

<stdio.h>.

int printf(char* formatstr, ...)

This flexible mechanism permits calls such as

printf("Eschew Obfuscation!\n");
printf("%d days hath %s\n", 30, "September");

To define a function that uses the ellipsis you need to

#include <cstdarg>

which adds to the std namespace a set of macros for accessing the items in the

argument list. There must be at least one parameter other than the ellipsis in the

parameter list. A variable, usually named ap (argument pointer), of type

va_list is used to traverse the list of unnamed arguments. The macro

va_start(ap, p)

where p is the last named parameter in the list, initializes ap so that it points to the

first of the unnamed arguments. The macro

va_arg(ap, typename)

returns the argument that ap is pointing to and uses the typename to determine

(i.e., with sizeof) how large a step to take to find the next argument. The macro

va_end(ap)

must be called after all of the unnamed arguments have been processed. It cleans

up the unnamed argument stack and ensures that the program will behave prop-

erly after the function has terminated.

Example 24.1 shows how to use these features.

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 542



E X A M P L E  2 4 . 1 src/ellipsis/ellipsis.cpp

#include <cstdarg>
#include <iostream>
using namespace std;

double mean(int n ...) {  
va_list ap;        
double sum(0);
int count(n);
va_start(ap, n);  
for(int i = 0; i < count; ++i) {

sum += va_arg(ap, double);
}
va_end(ap);        
return sum / count;

}

4

3

2

1

2 4 . 2 R E S O U R C E  S H A R I N G

543

int main() {
cout << mean(4, 11.3, 22.5, 33.7, 44.9) << endl;
cout << mean (5, 13.4, 22.5, 123.45, 421.33, 2525.353) << endl;

}

First parameter is number of args.
Sequentially points to each unnamed arg.
ap now points to first unnamed arg.
Clean up before returning.

24.2 Resource Sharing
Garbage collection is a process that recovers heap memory that is no longer being

referenced. Languages such as LISP, Smalltalk, and Java have built-in garbage col-

lectors that run in the background and track object references. When an object is

no longer referenced it is deleted, and the memory that it occupied is made avail-

able for use by other objects.

The next examples show a way of building garbage collection into the design

of a class by means of reference counting. Reference counting is an example of

resource sharing.

Each object keeps track of its active references. When an object is created, its ref-

erence counter is set to 1. Each time the object is newly referenced, the reference

counter is incremented. Each time it loses a reference, the reference counter is

decremented. When the reference count becomes 0, the shared object can be deal-

located.

4

3

2

1

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 543



WHAT ABOUT CHANGES? If the object is about to be changed (e.g.,
a non-const member function is called) and its reference count is
greater than 1, it must be cloned first so that it is no longer shared.

In Example 24.2, we define a homemade string class, MyString, that contains a

private inner class, MyStringPrivate, which is responsible for the creation of

dynamic arrays and for maintaining a reference count.

An inner class is simply a class defined inside another class. Inner classes are

“private” classes, meant to be used only by the containing class.

E X A M P L E  2 4 . 2 src/mystring/refcount/refcount.h

[ . . . . ]

class MyString {
class MyStringPrivate {

friend class MyString;  
public:

MyStringPrivate() : m_Len(0), m_RefCount(1) {
m_Chars = new (nothrow) char[1] ;
m_Chars[0] = 0;

}
MyStringPrivate(const char* p) : m_RefCount(1) {

m_Len = strlen(p);
m_Chars = new (nothrow) char[m_Len + 1];
if (m_Chars)

strncpy(m_Chars, p, m_Len + 1);
else 

cerr << "Out of memory in MyStringPrivate ctor!"
<< endl;

}
~MyStringPrivate() {

delete []m_Chars;
}

private:
int    m_Len, m_RefCount;
char*  m_Chars;

};

public:
MyString()  : m_Impl(new MyStringPrivate) {}
MyString(const char* p)

: m_Impl(new MyStringPrivate(p)) {}
MyString(const MyString& str);
~MyString();

1

C H A P T E R  2 4 : M I S C E L L A N E O U S  T O P I C S

544

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 544



void operator=(const MyString& str);
void display() const ;
int length() const;

private:
MyStringPrivate*  m_Impl;

};
[ . . . . ]

Even though this is an inner class, we need to give friend permissions to the containing class.

nothrow

We used the nothrow qualifier for new (Section 22.9.3) to avoid having to

add exception handling code to the example.

The public class MyString, because it manages shared instances of

MyStringPrivate, is sometimes called a handler class. It is responsible for

maintaining the correct value of the reference counter, and for deleting the pointer

when the counter reaches zero.

In Example 24.3, we have output statements in the definitions of three mem-

ber functions to show the reference counter as objects are created and destroyed.

E X A M P L E  2 4 . 3 src/mystring/refcount/refcount.cpp

1

2 4 . 2 R E S O U R C E  S H A R I N G

545

[ . . . . ]
MyString::MyString(const MyString& str) : m_St(str.m_St) {

m_St -> m_RefCount++;
cout << m_St->m_S << "::refcount: " << m_St->m_RefCount << endl;

}

MyString::~MyString() {
cout << m_St->m_S << "::refcount: " << m_St->m_RefCount << endl;
if (--m_St -> m_RefCount == 0) {

cout << m_St->m_S << "::memory released" << endl;
delete m_St;

}
}

void MyString::operator=(const MyString& str) {
if (str.m_St != m_St) {

if (--m_St -> m_RefCount == 0)
delete m_St;

m_St = str.m_St;  1

continued

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 545



++(m_St->m_RefCount);
}

}
[ . . . . ]

Just copy the address.

The client code shown in Example 24.4 contains a function with a value parame-

ter and a main()with an inner block. Inside the block, objects are created, copied,

and destroyed.

E X A M P L E  2 4 . 4 src/mystring/refcount/refcount-test.cpp 

#include "refcount.h"
void fiddle(MyString lstr1) {

cout << "inside fiddle()" << endl;
MyString lstr2(lstr1);
MyString lstr3;
lstr3 = lstr2;

}

int main() {
MyString  str1("AABBCCDD");
{

cout << "local block begins" << endl;
MyString str2(str1);
fiddle(str2);
cout << "back from fiddle()" << endl;

} 
cout << "local block ends" << endl;
str1.display();
cout << endl;
return 0;

}

1

C H A P T E R  2 4 : M I S C E L L A N E O U S  T O P I C S

546

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 546



The output that follows dispassionately shows the entire saga of birth and death as

the process races from opening brace to closing brace.

local block begins
AABBCCDD::refcount: 2
AABBCCDD::refcount: 3
inside fiddle()
AABBCCDD::refcount: 4
AABBCCDD::refcount: 5
AABBCCDD::refcount: 4
AABBCCDD::refcount: 3
back from fiddle()
AABBCCDD::refcount: 2
local block ends
AABBCCDD
AABBCCDD::refcount: 1
AABBCCDD::memory released
src/mystring>

E X E R C I S E S : R E S O U R C E  S H A R I N G

1. Example 24.3 demonstrates reference counting but does not deal with the

question of what to do if a MyString object needs to have its value changed

when its reference counter is greater than 1. How would you implement the

cloning of a MyString object when necessary (but only when necessary)?

Implement your solution and test it.

2. Implement a thread-safe version using QMutex.

3. Rewrite MyString using QSharedData and QSharedDataPointer.

2 4 . 2 R E S O U R C E  S H A R I N G

547

ezus_138004_ch24.qxd  8/3/06  4:36 PM  Page 547



P A R T  I V

Programming
Assignments

ezus_138004_ch25.qxd  8/3/06  4:38 PM  Page 548



Chapter 25. MP3 Jukebox Assignments . . . . . 551

549

ezus_138004_ch25.qxd  8/3/06  4:38 PM  Page 549



ezus_138004_ch25.qxd  8/3/06  4:38 PM  Page 550



551

25C H A P T E R  2 5  

MP3 Jukebox Assignments

In the assignments in this chapter, we will write,

in stages, a program that serves as an MP3 playlist

generator and database manager. It will generate

and play selections of MP3 songs based on what it

can find on our file system and it will permit filter-

queries based on data stored in ID3v2 (meta) tag

information.

25.1 Data Model: Mp3File . . . . . . . . . . . . . . . . 553

25.2 Visitor: Generating Playlists . . . . . . . . . . 555

25.3 Preference: An Enumerated Type . . . . . 556

25.4 Reusing id3lib . . . . . . . . . . . . . . . . . . . . . . 559

25.5 PlayListModel Serialization . . . . . . . . . . 560

25.6 Testing Mp3File Related Classes . . . . . . 561

25.7 Simple Queries and Filters . . . . . . . . . . . 561

25.8 Mp3PlayerView . . . . . . . . . . . . . . . . . . . . . 563

25.9 Models and Views: PlayList . . . . . . . . . . 565

25.10 Source Selector. . . . . . . . . . . . . . . . . . . . 566

25.11 Persistent Settings. . . . . . . . . . . . . . . . . 567

25.12 Edit Form View for FileTagger . . . . . . . 568

25.13 Database View . . . . . . . . . . . . . . . . . . . . 569

ezus_138004_ch25.qxd  8/3/06  4:38 PM  Page 551



The features we will implement are inspired by open-source programs such

as amaroK and Juk (and commercial programs such as iTunes and MusicMatch

Jukebox). These programs all provide similar features and similar styles of user

interface.

The code that does the actual file-tagging is taken from an open-source library,

id3lib1 version 3.8.3. This is the same library that is used by MusicMatch Jukebox.

1 http://sourceforge.net/projects/id3lib

F I G U R E  2 5 . 1 Example screenshot

The media player shown in Figure 25.1 has three major components.

1. A player view that shows the user what is currently playing and provides

some controls for changing volume or position of the song

2. A selector that permits the user to choose (and create new) playlists for

manipulating or playback

3. A song list view, for displaying a list of songs in a tabular form

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 552



Each of these major components has a view for displaying the data and a model

for storing the data.

■ The model for a Mp3PlayerView consists of Mp3Player plus a

FileTagger.

■ The model for a source selector is a tree, and you can use either

QTreeWidgetItem or QAbstractItemModel as the base class for this.

■ To start with, the model for a song list view will be a simple PlayList.

Later in the chapter, we will implement another model based on

QSqlRelationalTableModel.

Figure 25.2 shows a high-level UML diagram of the major components of this

project. We can see that the Controller class, derived from QApplication,

owns all other objects.

2 5 . 1 D A T A  M O D E L : M P 3 F I L E

553

F I G U R E  2 5 . 2 The Controller and its managed objects

25.1 Data Model: Mp3File

■ Abstract base classes (Section 6.3)

■ Multiple inheritance (Section 23.3)

QApplication

QWidget

Controller

SourceSelector

QDockWidgetQProcess

QMainWindow

MainWindow

Mp3Player

- mElapsed : double 
- mRemaining : double

Mp3PlayerView

+ Mp3PlayerView() 
+ ~ Mp3PlayerView() 
+ playListMenu() 
+ addWidget() 
+ setNowPlaying() 
+ updateView() 
+ addActions()

- mMgr

+ mPlayer

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 553



Figure 25.3 shows a UML diagram of the data model for our MP3 player applica-

tion, at the lowest level.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

554

F I G U R E  2 5 . 3 Initial data model

Mp3Song is an abstract class (which is why it is italicized in the UML diagram).

This interface is meant to describe a common set of features for different imple-

mentations of the Mp3Song interface.

E X A M P L E  2 5 . 1 ../src/libs/filetagger/mp3song.h

#ifndef _MP3SONG_H
#define _MP3SONG_H

#include <qobject.h>
#include <qstring.h>
#include <QStringList>

class Mp3Song {

public:
static QStringList fields();
virtual ~Mp3Song();

virtual QString getGenre() const =0;
virtual QString getArtist() const =0;
virtual QString getAlbumTitle() const =0;
virtual QString getTrackTitle() const =0;
virtual QString getTrackNumber() const =0;
virtual int getTrackTime() const =0;
virtual QString getComment() const =0;
virtual QString getPreference() const =0 ;
virtual QString toString() const =0;
virtual QString getUrl() const =0;
virtual QString getFilename() const = 0;

PlayListModel

Mp3Song

QObject

DataObject

Mp3FileFileTagger

- mTag : ID3_Tag* 
- mFilename : QString

* 

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 554



virtual void setPreference(const QString & newPref) = 0;
virtual void setGenre (const QString& newGenre) =0;
virtual void setArtist (const QString&  newArtist) =0;
virtual void setTrackNumber (const QString& trackNum) = 0;
virtual void setTrackTitle (const QString& newTitle) = 0;
virtual void setAlbumTitle (const QString& newAlbumTitle) = 0;
virtual void setComment (const QString& newComment) = 0;
virtual void setFilename (const QString& newFilename) =0 ;

2 5 . 2 V I S I T O R : G E N E R A T I N G  P L A Y L I S T S

555

};

#endif

Note also that there is a getTrackTime()function but no setTrackTime()

method. This is because m_TrackTime is a calculated value, a read-only property.

Derived classes will override this method and return the actual time of the song.

The Assignment

■ Define a class Mp3File that implements the Mp3Song interface but

allows you to store and retrieve the values in data members.

■ Define a PlayListModel, a collection of Mp3Songs. Reuse a

QList<Mp3Song*> to hold pointers to heap Mp3File objects.

■ Write the implementations to the classes described in the UML diagram

in Figure 25.3. This includes data members, getters and setters, and a

toString()method for Mp3File.

25.2 Visitor: Generating Playlists

■ Command line arguments (Section 1.8.1)

■ Visitor pattern (Section 8.1)

In the http://oop.mcs.suffolk.edu/dist folder, you will find filetagger.tar.gz,

which contains interfaces PlayListModel and Mp3Song, as well as other classes

you might reuse for future assignments. The assignment is to write a Playlist

class and a program that generates instances of them by scanning directories for

MP3 files. The program should be called playgen. Figure 25.4 shows how the

interfaces are related to PlayList.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 555



playgen (the application) should have a class called PlayGen, containing a

PlayList* scan(QString dirname)that returns a new PlayList containing

references to each song.

Usage:

playgen dirname

The program should print out the name of each file that it finds (on a line by

itself). But it should do this by first loading the PlayList and then displaying the

string produced by PlayList::toString().

Classes you can reuse: QFile and QFileInfo, or FileVisitor.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

556

F I G U R E  2 5 . 4 PlayList and PlayListModel

PlayListModel

+ addFile(s : QString) 
+ toString() : QString 
+ objectName() : QString 
+ clear() 
+ reset() 
+ ~ PlayListModel() 
+ name() : QString 
+ size() : int 
+ get(index : int) : Mp3Song* 

PlayList

Mp3Song*

25.3 Preference: An Enumerated Type

■ Enumerations (Section 19.3)

■ Types (Section 19.5)

■ Conversions (Section 19.6)

Your assignment is to design, implement, and test a Preference class.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 556



2 5 . 3 P R E F E R E N C E : A N  E N U M E R A T E D  T Y P E

557

Preference is a class that models one field in an ID3 tag. It is intended to

permit the user to specify the quality of an MP3 file (e.g., excellent, good, fair,

poor). We need a uniform preference system that will enumerate a fixed set of

value choices so that comparisons and subrange queries are possible.

Here is the public interface of the class definition to get you started.

public:
Preference(int value=0);
Preference(QString prefstr);
/**
If possible, set the host value from the given string and
@return true. Otherwise return false.
*/
bool fromString(QString);
/**

@return a list of all the acceptable Preference names,
ordered by value (increasing)

*/
virtual QStringList getNames() const;

The Assignment

■ Complete the class definition in preference.h.

■ Implement all the functions in preference.cpp so that your class can

pass the test case below.

■ Write a main.cpp that calls this test case and tests your Preference

class.

■ Generate or write a qmake project file that can build the application.

■ Verify that make dist creates a dist target (a tarball).

A test case that shows how the Preference class must work is provided in

Example 25.2. Your Preference class must pass that test.

E X A M P L E  2 5 . 2 ../src/libs/filetagger/testpreference.cpp

#include "testpreference.h"
#include "preference.h"
#include "qstd.h"
using namespace qstd;

void TestPreference::test() {

Preference verygood("Very Good");
Preference verygood2("Very Good");
Preference excellent("Excellent");
Preference fair("Fair");
Preference good("Good");

continued

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 557



Preference none("None");
Preference poor("Poor");
Preference badtaste("Bad Taste");
Preference undefined("undefined");
ASSERT_EQUALS(verygood, verygood2);
ASSERT_NOTEQUALS(verygood, fair);

ASSERT_EQUALS(undefined, 0);
ASSERT_TRUE(none > undefined);
ASSERT_TRUE(poor < none);
ASSERT_TRUE(badtaste  < poor);
ASSERT_TRUE(verygood > good);
ASSERT_TRUE(good > fair);
ASSERT_TRUE(fair > none);
ASSERT_TRUE(fair < verygood);
ASSERT_TRUE(verygood < excellent);

ASSERT_EQUALS(verygood.toString(), "Very Good");

qDebug() << verygood.toString();
Preference q("notsogood");
ASSERT_EQUALS(0, (int)q);
qDebug() << q.getNames().join(", ");

/* Optional - Case Ignore conversions? */

// Does this print "fair is fair" or "fair is 4"?
cout << "Fair is " << fair;

Preference verygoodlc("very good");
ASSERT_EQUALS(verygood, verygoodlc);

}

The header file is provided to you in Example 25.3 for completeness.

E X A M P L E  2 5 . 3 ../src/libs/filetagger/testpreference.h

#include <testcase.h>
#include <assertequals.h>

class TestPreference : public TestCase {
TestPreference() : TestCase("TestPreference") {}

protected:
virtual void test() ;

};

When the test case is run, the output should look like this.

<testcase>
Very Good
Undefined, Bad Taste, Poor, None, Fair, Good, Very Good, Excellent

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

558

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 558



./testpreference.cpp:44: assertequalsfailed: 
expr var="verygood" val="6"  ,   expr var="verygoodlc" val="0" 

<testcaseinfo classname="TestCase" name="unnamed" status="passed" />
</testcase>
Fair is Fair

2 5 . 4 R E U S I N G  I D 3 L I B

559

25.4 Reusing id3lib
Each MP3 file contains meta-data called “ID3 tags” that can be accessed and

manipulated through low-level file operations, or via a higher-level interface. We

saw two interfaces for using the library in Section 16.3. For this exercise, we have

provided you with classes from three libraries (http://oop.mcs.suffolk.edu/dist)

and you are to write a program that reuses them all.

■ Reusing libraries (Chapter 7)

■ Visitor pattern (Section 8.1)

■ Command line arguments (Section 6.7.1)

■ id3lib (Section 16.3) 

■ playgen (Section 25.2)

ID3 tags enable you to read and store meta-information about MP3 songs in a

special part of the MP3 file itself. To manipulate MP3 files as though they were

C++ objects, getting and setting properties that persist in the ID3 tags, we reuse an

ID3 library. You will be provided with a FileTagger class that depends on

id3lib, but implements the Mp3Song interface.

Check out some of the executables that come with id3lib: id3info,
id3convert,id3tag,id3cp. They all have man pages.

The Assignment

1. Install id3lib.

2. Build filetagger.cpp with TestFileTagger.cpp and run it on a

folder with some junk MP3 files that you do not care about. Verify that

the test case passes.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 559



3. Enhance the playgen program so that its output playlist includes ID3

tag information in the playlist.

playgen [directory]
playgen [file1.mp3] [file2.mp3] ...

playgen generates a playlist of all MP3 files in the directory, or of all MP3 files

supplied on the list of command line arguments. It should read the id3tag

information from each file it visits and display each song in the format shown in

Example 25.4.

E X A M P L E  2 5 . 4 filetagger-examplefiles/test-winamp-playlist.m3u

#EXTM3U
#EXTINF:134,Tom Lehrer - Vatican Rag
Tom Lehrer\YearThatWas\14_Vatican Rag_Tom Lehrer.mp3
#EXTINF:131,Tom Lehrer - Folk Song Army
Tom Lehrer\YearThatWas\04_Folk Song Army_Tom Lehrer.mp3
#EXTINF:155,Tom Lehrer - National Brotherhood Week
Tom Lehrer\YearThatWas\01_National Brotherhood Week_Tom Lehrer.mp3

It is suggested you use ArgumentList to process command line options, and

FileVisitor to visit each file.

25.5 PlayListModel Serialization

■ Streams and files (Section 1.10)

■ Serializer pattern (Section 10.6)

Most MP3 players load/save their playlists from/to a file with an M3U extension.

There is simple M3U and extended M3U (EXTM3U). Simple M3U is just a list of

filenames separated by newlines. Extended M3U contains extra information fol-

lowing a # sign on the preceding line. If you use this format, your program will

immediately work with the most popular MP3 players.

Serialization, as we discussed in Section 10.6, is the process of taking an object

and expressing its state information in a format that allows it to be sent across a

network or saved to a storage device such as a file or a database. Deserialization is

the process of reconstructing the object from the serialized state information to its

original state.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

560

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 560



2 5 . 7 S I M P L E  Q U E R I E S  A N D  F I L T E R S

561

25.6 Testing Mp3File Related Classes
■ Define a class TestMp3File and a member function, test().

■ The test case should do the following:

1. Using the classes from playgen, create a PlayList from a direc-

tory specified on the command line, visiting each file.

2. Using PlayListWriter, write the PlayList to a file.

3. Using PlayListReader, read the file into another PlayList

instance.

4. Write an equals()function for PlayList that tests that each

property of the Mp3File in the collection has the same value as the

corresponding one in the original.

25.7 Simple Queries and Filters

■ Abstract Factory (Section 16.1)

■ Regular expressions (Section 13.2)

■ Visitor (Section 8.1)

This exercise is to enhance playgen, so that it generates a PlayList based on

the tag values of visited Mp3Files. To achieve this, we need multi-dimensional

property constraints.

Two classes from libdataobjects can help you solve this problem.

ConstraintGroup is a class you can reuse for multidimensional Constraints.

F I G U R E  2 5 . 5 Serialization classes for PlayListModel

PlayListReader

+ read(filename : QString) : PlayListModel*

PlayListWriter

+ write(model : PlayListModel, Filename : QString)

Now that we have a simple data object, we want to be able to serialize and dese-

rialize it. Write two classes,PlayListReader and PlayListWriter for reading/

writing playlist data.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 561



usage: playgen [options] filespec 
[options] are optional.
filespec can be a directory to scan, 

or a list of mp3 files to add to playlist.
Directories are recursed. Additional options can be: 

(filter options) 
-p Good - filter on Preference
-p 5 - equivalent to preference Good
-p "Very Good" - Need double quotes around this one 
-g Chill - filter on Chill genre
-a ".*gabriel.*" - regex filter on artists - need

doublequotes around regex
-b albumpattern - filter on album title
-s songpattern - filter on song title

Advanced queries:
If the same switch appears multiple times, OR the 
values together.

-p Excellent -p "Very Good" (either can be true)
If different switches appear on the same query 
AND them together.

-p Excellent -g Ambient (both must be true).

-p "6,7" - Allow preferences 6 and 7 only
-p "4:9" - Filter on preferences of the subrange 4 to 9
-p "0,5:" - filter on preferences undefined, or anything

better than "good"
-p "1,2,3" - only preferences "badtaste", "poor" and "none"

example:
playgen ./music/comedy/weirdal

make a playlist of all the songs in that directory, without any
filtering, and send to standard output.

playgen -o "weirdalsbest.m3u" -p "Excellent" ./music/
comedy/weirdal

Should go into the weirdal directory and spit out only
the "Excellent" tracks, saving them to a file.

playgen -g "(Rock|Classical|Dub)" ./music/techno

Filter on genres - since you're using regular expressions
to match, you have the full regular expression query 
language here.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

562

In Figure 25.6, the UML diagram shows one possible way of organizing your code.

You are free to deviate from this diagram as you design your own solution.

You might think of your program in the following way.

1. Given an ArgumentList, create an object that represents the collection

of field/value pairs as a set of constraints.

2. Use FileVisitor to visit each file in filespec.

Each Constraint is a piece of a query, so a query can be represented by a

ConstraintGroup.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 562



2 5 . 8 M P 3 P L A Y E R V I E W

563

3. Use FileTagger to extract the ID3 information of each MP3 file.

4. After you have extracted the ID3 information, check whether the object

satisfies the constraints specified.

5. If the object satisfies your constraints, we want to make a copy of the

FileTagger’s attributes in a new Mp3File object and add the

Mp3File to the PlayList returned by playgen (instead of adding the

actual FileTagger, which we will reuse for the next visited file).

6. Return a PlayList with the selected songs.

7. Write a factory for Query objects, called QueryFactory, and a func-

tion, called newQuery, to handle all instance creation.

class QueryFactory {
Query * QueryFactory::newQuery(QStringList2 args);

};

25.8 Mp3PlayerView

■ Widgets (Chapter 11)

■ Signals and slots (Section 9.3.3)

■ QProcess (Section 12.1)

F I G U R E  2 5 . 6 PlayListGenerator with constraints

ConstraintGroup

+ value()
+ hasConstraint()
+ toString()
+ filter()
+ getConstraint()
+ setConstraint()

Constraint

- mAlways : bool

+ Constraint(always : bool)
+ accepts(value : QVariant) : bool
+ toString() : QString

PlayGen

FileVisitor

*

2 or ArgumentList

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 563



The minimal MP3 player view has the following features:

■ Buttons: play, stop, next, and previous

■ Sliders: volume control and song progress

■ Label: to display “now playing” information

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

564

F I G U R E  2 5 . 7 Mp3Player

An example Mp3Player class based on Figure 25.7 is supplied to you. This par-

ticular implementation works by creating QProcess objects, running command-

line programs, passing options, parsing the output, and displaying information

based on it. It uses mpg3213 (for MP3 decoding) and alsaplayer4 (for volume

control). You can reuse this class if you are using Linux.

QProcess

Mp3Player

+ Mp3Player() 
+ ~ Mp3Player() 
+ play(filename : const QString&) 
+ setVolume(percent : int) 
+ stop() 
+ setPosition(percent : int) 

3 http://mpg321.sourceforge.net
4 http://www.alsaplayer.org

1. Write another Mp3Player-derived class, better suited to your own

platform or personal needs. It can be based on

http://www.music.mcgill.ca/~gary/rtaudio/index.html#license or

http://www.speech.kth.se/snack, two open-source libraries for playing

media files. Alternately, you can write it as a plugin for an already exist-

ing media player, such as xmms or Winamp.

2. Write a front-end to this Mp3Player class that allows you to load songs,

start/stop, change volume, and see the play progress advance in the slider.

3. Enhance Mp3Player and PlayerView so that you can change the

position of the song playing by manipulating the song progress slider.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 564



25.9 Models and Views: PlayList

■ Qt 4 models and views (Section 17.3)

■ QActions and QMenus (Section 11.6)

This application has a “central widget” that should display the current playlist.

Sometimes it will be a view of a PlayList, but other times, it will show us the

contents of a Database. One approach, shown in Figure 25.8 is to make both

classes multiply-inherit from QAbstractTableModel, so they can both be

viewed in a QTableView.

2 5 . 9 M O D E L S  A N D  V I E W S : P L A Y L I S T

565

F I G U R E  2 5 . 8 PlayListTableModel

PlayListModel

+ addFile(s : QString) 
+ toString() : QString 
+ objectName() : QString 
+ clear() 
+ reset() 
+ ~ PlayListModel() 
+ name() : QString 
+ size() : int 
+ get(index : int) : Mp3Song* 

PlayList

QAbstractItemModel

QSQIRelationalTableModel

QAbstractTableModel

DataObjectTableModel

# mData : QList< DataObject* > 
# mPropModel : DataObject*

Database

To model a collection of DataObjects as a table, you can reuse

DataObjectTableModel. This class determines what to display in each column

based on Qt properties. This makes PlayListView much easier to write.

1. Write a PlayListView class. You do not need to write any code for

databases, but keep the design considerations of Figure 25.8 in mind as

you write it.

2. Enhance the GUI you wrote in Section 25.8, by adding a load playlist

button. Add a QAction-derived class called LoadPlayListAction.

Write the action so that it fills up the contents of the PlayListView.

3. Make the Mp3Player work so that it can automatically play one song

after another in the loaded playlist.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 565



25.10 Source Selector
Being able to select from a variety of different “sources” is what makes a player very

powerful and useful. A source could be any of the following:

■ A playlist

■ A database

■ A list of online radio stations

■ Tracks on a CD

Any of these can be considered an input source. The other interesting thing they all

have in common is that they can all be represented by a PlayListModel (a col-

lection of songs).

The SourceSelector widget, shown docked on the left in Figure 25.9, per-

mits the user to select the currently playing “source,” which in this case corre-

sponds to a PlayListModel. However, the SourceSelector manages a

mapping of models to views, to make switching views easy and fast.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

566

F I G U R E  2 5 . 9 Source Selector view

Clicking on one of the sources in the selector tree should change the currently

visible table or list view in the central widget. Figure 25.10 shows one possible way

of designing the classes that provides a view and a selector of a collection of

sources.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 566



2 5 . 1 1 P E R S I S T E N T  S E T T I N G S

567

F I G U R E  2 5 . 1 0 SourceSelector and related classes

SourceSelector

- mSourceList : SourceListModel* 
- mViews : QMap< QAbstractItemModel*, QWidget* > 
- mSourceView : QListView* 
- mContextMenu : QMenu* 
- mFormView : Mp3FormView* 
- mDatabaseView : DatabaseView* 
- mCurrentModel : PlayListModel* 
- mSongSelection : QItemSelectionModel* 
- mCursor : QModelIndex 

DatabaseView

+ DatabaseView(title : QString) 
+ contextMenuEvent(event : QContextMenuEvent*)

QListView

QStringListModel

QAbstractItemModel

SourceListModel

- mSources : QMap< QString, QAbstractItemModel* >

QTableView

+ mSourceView 0..1
Manages the list of Sources

*

*

Each source is also a PlayListModel

+ mViews

+ mDatabaseView

Provides a mapping of Models to Views

0..1

25.11 Persistent Settings

QSettings (Section 11.2.1)

Suppose you want to be able to support multiple playlist formats and also remem-

ber the last format used. Or, suppose you want to remember the last opened direc-

tory for MP3 files and, independently, the last opened directory for playlist files.

Settings are simply a persistent mapping of name-value pairs. The names can

be anything we like, but using meaningful hierarchical names will aid greatly in

organization. In Qt on *nix, people tend to use the slash (“/”) as a namespace

delimiter—in contrast to Java, which uses a dot (“.”).

In this exercise, we will implement persistent settings by reusing QSettings.

A QSettings object reads/stores its settings from/to different places depending

on the operating system.

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 567



The first three settings that the program needs to remember across executions

are listed below. Write a TestCase of the settings class that loads, changes, saves,

loads again, and checks whether the values were changed.

■ playlistmgr/outputformat=(extm3u|xml)

■ playlistmgr/lastopendir=last opened directory

■ playlistmgr/playlistdir=last opened playlist directory

Think of other properties/settings you might want to set from the application that

must persist across executions.

25.12 Edit Form View for FileTagger
Whenever an MP3 song is selected, we want to be able to execute an action on it:

edit tag. This choice should go in context menus for all playlist views, as well as in

the MP3 pull-down menu.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

568

Write a form view for FileTagger, called Mp3TagForm, that provides the user

with editable, viewable information about all of the song’s properties. We need

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 568



action buttons as follows:

■ Ok: Perform a commit() on the FileTagger (which stores changes to the

actual id3tag in your MP3 file) and return to main screen (hide form).

■ Reload: Discard changes and reload tag info.

■ Cancel: Discard changes and return to main screen (hide form).

■ Play: Play the track.

When editing a song, it should use a QLineEdit for each QString field and a

QComboBox for the preference values. Keep in mind that the URL, filename, and

track length are non-editable fields. Finally, you can use Designer or hand-code

your dialog.

25.13 Database View
A database view is not very different from an ordinary playlist view except that it

permits you to see a larger collection of songs, organized in different ways to aid

in the selection process.

Typically, a database view can be achieved with a table, a tree of lists, or a table

of lists. The simplest way is to use the QTableView and then connect it to a model

that represents the data.

Qt, when it is built with the correct options, can access SQL databases, so that

we can use QSqlTableModel. Using this with the regular QTableView gives

you an editable tabular view of a database table. The database view shown in

Figure 25.11 looks like an ordinary table view, because it is! It’s just hooked up to

a database model.

2 5 . 1 3 D A T A B A S E  V I E W

569

F I G U R E  2 5 . 1 1 QTableView of a database

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 569



E X A M P L E  2 5 . 5 ../src/libs/filetagger/filetagger.sql

create database mp3db;
use mp3db;
grant all on mp3db.* to 'mp3db'@'localhost' identified by 'mp3dbpw';
grant all on mp3db.* to mp3db identified by 'mp3dbpw';

drop table FileTagger;
CREATE TABLE FileTagger (

Artist      varchar(100),
TrackTitle varchar(100),
AlbumTitle varchar(100),
TrackNumber    varchar(10),
Genre         varchar(20),
Comment          varchar(200),
Preference     varchar(20),
Filename       varchar(200),
PRIMARY KEY(Filename),
INDEX(Preference),
INDEX(Artist),
INDEX(Genre)

);

Example 25.5 contains the SQL table definition, and Figure 25.12 contains a sug-

gested initial design for the model.

1. Extend the Mp3TableModel so that it derives from PlayListModel

and fits into your larger program.

2. Write a Library menu with an option to “import songs into library,”

which imports the songs into the database and updates the view.

C H A P T E R  2 5 : M P 3  J U K E B O X  A S S I G N M E N T S

570

F I G U R E  2 5 . 1 2 Database table model

QSqlRelationalTableModel

Mp3TableModel

- insertQuery : QSqlQuery
- mFileVisitor : FileVisitor
- mSelectionModel : QItemSelectionModel*
- ft : FileTagger

+ Mp3TableModel()
+ createConnection() : bool
+ reset()
+ toString() : QString
+ addFile(filename : QString)
+ clear()

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 570



P O I N T S  O F  D E P A R T U R E

If you reached this point, you have a strong understanding of the benefits and dif-

ficulties of model-view programming. If you compare your application to some-

thing like juK or amaroK, you can come up with ideas for other features to add.

This might be a good time to download and examine source code of these and

other existing KDE projects—you will notice most of them are Qt 3 based, and

you should be able to understand the code now. If you feel confident enough, you

might want to help in the maintenance or porting of existing KDE projects over

to Qt 4 / KDE4. Join the mailing lists for your favorite projects.

2 5 . 1 3 D A T A B A S E  V I E W

571

ezus_138004_ch25.qxd  8/3/06  4:39 PM  Page 571



P A R T  V

Appendices

ezus_138004_appA.qxd  8/4/06  9:55 AM  Page 572



Appendix A. C++ Reserved Keywords . . . . . . . 575

Appendix B. Standard Headers . . . . . . . . . . . . . 577

Appendix C. The Development 

Environment . . . . . . . . . . . . . . . . . 579

ezus_138004_appA.qxd  8/4/06  9:55 AM  Page 573



ezus_138004_appA.qxd  8/4/06  9:55 AM  Page 574



Appendix A: C++ Reserved
Keywords

Keywords are identifiers that are part of the basic syntax of the language. These

names have fixed meanings and cannot be used in any way that attempts to change

those meanings.

Here is a list of keywords in C++. Those that are shown in bold are also part

of ANSI C89.

575

and

and_eq

asm

auto

bitand

bitor

bool

break

case

catch

char

class

compl

const

const_cast

continue

default

delete

do

double

dynamic_cast

else

enum

explicit

export

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

not

not_eq

operator

or

or_eq

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_cast

struct

switch

template

this

throw

true

ezus_138004_appA.qxd  8/4/06  9:55 AM  Page 575



576

A P P E N D I X  A : C + +  R E S E R V E D  K E Y W O R D S

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

xor

xor_eq

ezus_138004_appA.qxd  8/4/06  9:55 AM  Page 576



Appendix B: Standard Headers

This book uses a small subset of the Standard Template Library (STL; also called

the Standard Library). The standard header files we use are all listed here.

To use these classes and functions effectively, it is useful to know where to look

for documentation.

Table B.1 lists standard header files. For some header files, there is a man page

for the whole file. In other cases, you might find a man page for the individual

function also.

If you are using Microsoft Developer’s Studio, the documentation for the stan-

dard libraries comes with the MSDN documentation.

For open-source platforms, it helps to have one but you don’t need a local copy

of man or the man pages since there are many copies of the documentation1 avail-

able on the Web.

577

1 For examples, see cplusplus.com [http://www.cplusplus.com/ref/] or Dinkumware [http://www
.dinkumware.com/manuals/reader.aspx?lib=cpp].

ezus_138004_appB.qxd  8/4/06  9:56 AM  Page 577



T A B L E  B . 1 Standard headers

Header file Library Man pages

C++ STL

string STL strings type std::string

sstream stringstream, for writing std::stringstream
to strings as if they are 
streams

iostream C++ standard stream std::ios, 
library std::iostream

memory C++ memory-related std::bad_alloc, 
routines std::auto_ptr

C Standard Library

cstring, functions for C char* string, strcpy, 
string.h strings strcmp

cstdlib, c Standard Library random, srandom, 
stdlib.h getenv, setenv

cstdio, stdio.h standard input/output stdin, stdout, 
printf, scanf

cassert assert macros assert

By default, the C++ Standard Library documentation might not be
installed on your system. Search for the string libstdc with your favorite
package manager, so you can install something like libstdc++5-3.
3-doc or libstdc++6-4.0-doc.

578

A P P E N D I X  B : S T A N D A R D  H E A D E R S

ezus_138004_appB.qxd  8/4/06  9:56 AM  Page 578



Appendix C: The Development
Environment

C.1 The Preprocessor: For #including Files
This appendix explains some of the mysteries of the C preprocessor, class declara-

tions versus including headers, and some best practices to reduce dependencies

between header files.

In C++, code reuse is indicated by the presence of a preprocessor directive,

#include, in source code and header files. We #include header files that con-

tain things like class or namespace definitions, const definitions, function proto-

types, and so forth. These files are literally included in our own files before the

compiler begins to translate our code.

The compiler will report an error if it sees any identifier defined more than

once. It will tolerate repeated declarations but not repeated definitions.1 To pre-

vent repeated definitions, we are always careful to use an #ifndef wrapper

around each header file. This tells the C preprocessor to skip the contents if it has

already seen them. Let’s examine the following class definition in Example C.1.

579

1 We discuss the difference between declaration and definition in Section 20.1.

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 579



E X A M P L E  C . 1 src/preprocessor/constraintmap.h

#ifndef CONSTRAINTMAP_H
#define CONSTRAINTMAP_H

/* included class definitions: */
#include <QHash>
#include <QString>

class Constraint;                                      

class ConstraintMap : public QHash<QString, Constraint*> {  

private:
Constraint* m_Constraintptr;                        

//    Constraint m_ConstraintObj;                       
void addConstraint(Constraint& c); 

};

#endif        //  #ifndef CONSTRAINTMAP_H

a forward declaration
Needs definitions of QHash and QString, but only the declaration of Constraint, because it’s a
pointer.
No problem—it’s just a pointer.
error—incomplete type

As you can see, as long as we use pointers or references, a forward declaration will

suffice. The pointer dereferencing and member accessing operations are performed

in the implementation file, which needs the full definition of all types it uses.

E X A M P L E  C . 2 src/preprocessor/including.cpp

#include "constraintmap.h"

ConstraintMap map;  

/* redundant but harmless if #ifndef wrapped */
#include "constraintmap.h"

// Constraint p;  
#include <constraint.h>
Constraint q;

Okay—ConstraintMap already included.
error—incomplete type
Now it is a complete type.3

2

1

3

2

1

4

3

2

1

4

3

2

1

580

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 580



Here are some guidelines to help decide whether you need a forward declaration

or the full header file to #include in your header file:

■ If ClassA derives from ClassB, the definition of ClassB must be known by

the compiler when it processes the definition of ClassA. Therefore, the

header file for ClassA must to the header file for ClassB.

■ If the definition of ClassA contains a member that is an object of ClassD,

the header file for ClassA must #include the header file for ClassD. If the

definition of ClassA contains a function that has a parameter or a return

object of ClassD, the header file for ClassA must #include the header file

for ClassD.

■ If the definition of ClassA only contains non-dereferenced ClassE point-

ers, then a forward declaration of ClassE is sufficient in the ClassA

header file:

class ClassE;

A class that is declared but not defined is considered an incomplete type. Any

attempt to dereference a pointer or define an object of an incomplete type will

result in a compiler error.2

The implementation file, classa.cpp, for ClassA should #include

"classa.h" and also #include the header file for each class that is used by

ClassA (unless that header file has already been included in classa.h). All

pointer dereferencing should be performed in the .cpp file. This helps reduce

dependencies between classes and improves compilation speed.

A .cpp file should never #include another .cpp file. A header file should

#include as few other header files as possible so that it can be included more

quickly and with fewer dependencies. A header file should always be #ifndef

wrapped to prevent it from being included more than once.

C . 1 T H E  P R E P R O C E S S O R : F O R  # I N C L U D I N G  F I L E S

581

2 The actual error message may not always be clear, and with QObjects, it might come from the
MOC-generated code rather than your own code.

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 581



Circular Dependencies

Whenever one file #includes another, there is a strong dependency cre-

ated between the files. When a dependency like this exists between header

files, it cannot be bidirectional: The preprocessor is unable to cope with a

circular dependency between header files, where each one #includes the

other. One of the #include statements must be replaced by a forward class

declaration.

Forward declarations help remove circular dependencies between

classes and, in the process, enable bidirectional relationships to exist

between them.

C.2 Understanding the Linker
Figure C.1 shows how the linker accepts binary files, which were generated by the

compiler, and creates executable binaries as its output. The linker executable, on

*nix machines is simply called ld, and it is run by g++ after all source files are

compiled successfully.

All of these steps are performed when you run make, which prints out every

command before it executes. By reading the output of make, you can see what

arguments are being passed to the compiler and linker. When an error occurs, it

immediately follows the command line that produced the error.

Example C.3 shows the command line options passed to g++, and attempts to

show how g++ runs the linker, known as ld, and also passes some arguments to it.

E X A M P L E  C . 3 linker-invocation.txt

g++ -Wl,-rpath,/usr/local/qt-x11-free-3.2.3/lib           
-o hw7                                           
.obj/address.o .obj/ca_address.o .obj/constraintgroup.o
.obj/customer.o .obj/dataobject.o .obj/dataobjectfactory.o
.obj/hw07-demo.o .obj/us_address.o .obj/moc_address.o
.obj/moc_ca_address.o .obj/moc_customer.o .obj/moc_dataobject.o
.obj/moc_us_address.o
-L/usr/local/qt-x11-free-3.2.3/lib  -L/usr/X11R6/lib 
-L/usr/local/utils/lib                            
-lutils -lqt -lXext -lX11 -lm 5

4

3

2

1

582

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 582



Tells g++ to run the linker, and pass these options to ld.
Specify the output to be called hw7.
Link these object files into the executable.
Add another location for the linker to search for libraries.
Link this app with five more libraries: qt utils, ext, X11, and m5

4

3

2

1

C . 2 U N D E R S T A N D I N G  T H E  L I N K E R

583

F I G U R E  C . 1 The linker’s inputs and outputs

g++ linker

main.o address.o

g++ -c 
(compile only)

Your executable

main.cpp, .h address.cpp, 
constraintmgr.cpp

Linking entails the following:

■ For each library name passed with the -l switch, find the corresponding

library file, searching the library path, as well as all -L switched argu-

ments (which were generated by qmake from the LIB qmake variable).

■ For static libraries, it contains the code to be linked into the executable.

■ For dynamic libraries, it is a catalog listing (often in readable ascii for-

mat) that describes where the actual shared objects are for each label

definition. The linker will check to make sure the shared object is where

it should be, and report an error if not.

■ For each function that is called from any place in the code we are link-

ing, find the object where that code is located and do a simple, fast check

to determine that there is, indeed, a completely defined function with the

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 583



proper name/signature at that location. Report an error if it can’t be

found or isn’t the correct type/name/size.

■ For each reference to a variable name, find the object-address where that

variable is located and do a simple, fast check to make sure the address is

a valid one for an object of that type.

This is the general idea. The linker resolves references to names by finding their

real addresses in files and checking the addresses to determine whether they’re

valid for the type id. It’s like a directory look-up service for C++ compilers.

C.2.1 Common Linker Error Messages

C++ programmers sometimes spend lots of time trying to understand and repair

compiler and linker errors. If you can’t understand the message, you’re stuck. With

a compiler error, the problem is easier to diagnose because it is related to the com-

pilation of one source code module and the header files it includes. The compiler

generally tells you the exact location of any error that it detects. With a linker error,

the problem is related to how your source code modules link together. When the

linker stage is reached, all the individual modules have compiled without errors.

Linker errors can be caused by bugs in C++ code, but they can also be a result of

mistakes in the project file.

C.2.1.1 Unable to Find libxxx.so.x 

For Win32 Users 

At build-time, your IDE needs to be able to find the .DLL. To configure it, drill

into your menu structure until you find project -> properties ->

c/c++ build -> libraries. Here you can add a third-party library, and

you’ll be asked in a dialog for the location of headers and DLL files.

At runtime, your PATH system environment variable must contain the

directory where the required DLLs are located.

Installing a library means making it available for more than a single user on a

system. It is also possible to reuse a library without installing it. All libraries that

you reuse must either be installed or placed in a directory listed in your

LD_LIBRARY_PATH.

584

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 584



When you are reusing a library for the first time, you will probably see this

error message. It means that the linker cannot find the library. When the gnu

linker looks for a shared object, it checks at least two places:

1. The directories specified in LD_LIBRARY_PATH

2. Installed libraries referenced from a cache file called /etc/ld.so.cache

The Cache File ld.so.cache

The cache file provides fast lookup of shared objects found in the directories

specified in /etc/ld.so.conf. Some directories you might find there are

/lib

/usr/lib

/usr/X11R6/lib

/usr/i486-linuxlibc1/lib

/usr/local/lib

/usr/lib/mozilla

If you use a Linux package installer to install a library, it will probably make the

proper changes to ld.so.conf and rebuild your cache file. However, if you

manually compile and install libraries, it may be necessary for you to edit this

file. Afterwards, you can rebuild the cache file with the command ldconfig.

C.2.1.2 Undefined Reference to [identifier]

This is the most common and probably the most annoying linker error of all. It

means that the linker cannot find the definition of some named entity in your

code. Here is some output from make.

.obj/ca_address.o(.gnu.linkonce.t._ZN10DataObject16getConstraint-
MgrEv+0x4):
In function 'DataObject::getConstraintMgr()':
/usr/local/qt-x11-free-3.2.3/include/qshared.h:50:
undefined reference to 'DataObject::sm_Cm'
collect2: ld returned 1 exit status
make: *** [hw7] Error 1

C . 2 U N D E R S T A N D I N G  T H E  L I N K E R

585

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 585



The compiler found the declaration, but the linker can’t find the corresponding

definition. In some part of your code, you are referencing a symbol, but there is no

definition found. The useful bits of information are

■ The symbol it can’t find is DataObject::sm_Cm.

■ The function that is trying to use it is

DataObject::getConstraintMgr.

The first step is to determine whether we, as humans, can find the missing defini-

tion. If we can’t, how can the linker? If we find it in a .cpp file, we must make sure

that

■ Both the .cpp and the .h file are mentioned in the project 

■ The file is included in a library with which we are linking

Because we are using good naming conventions (see Section 3.4), we can immedi-

ately tell that sm_Cm is a static data member of class DataObject. The compiler

found the declaration, but the linker can’t find the definition.

Because it is static (Section 2.10), the definition for sm_Cm belongs in

dataobject.cpp. The compiler expects to find a definition statement of the

form:

ConstraintMgr DataObject::sm_Cm;

If it’s there and the linker still can’t find it, the most likely causes for this error are

■ The .cpp file that contains the definition is not listed in qmake’s

SOURCES in the .project file.

■ The code is located in another library but the linker can’t find the library.

This is solved by adding a missing LIBS argument in the project file.

■ -lmylib adds a library to be linked.

■ -Lmylibdir adds a directory to the linker’s lib search path list.

C.2.1.3 Undefined Reference to vtable for ClassName 

This is one of the most confusing errors. It generally means that a virtual function

definition is missing. Literally, the vtable for that class (which has addresses of each

the virtual functions) is unable to be fully constructed.

586

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 586



This error can arise from missing function definitions in your code, but it can

also be caused by a missing HEADERS or SOURCES entry in your make/project file.

The resolution is to double-check that all files are listed properly in the project file

before you delve too deeply into your C++ code.

All-inline Classes

For polymorphic classes,3 there should be at least one non-inline definition

(function or static member) in a source (.cpp) file for that header file. Without

this, many linkers will not be able to find any of its virtual method definitions.

All-inline classes are legal in C++, but they do not work in their intended

way when mixed with polymorphism.

C.3 Debugging
The compiler can locate and describe syntax errors. The linker can reveal the exis-

tence of inconsistencies among program components and give some help as to

how to locate them. One of the most challenging aspects to using C++ is learning

how to find and fix various kinds of run-time errors.

Run-time errors are logical errors that can exist in a program that is syntacti-

cally correct and contains no undefined objects or functions. Effective use of a

debugger, a program specifically designed for tracking down runtime errors, can

greatly reduce the amount of time spent dealing with these kinds of errors.

A debugger permits the stepwise execution of your code, as well as the inspec-

tion of object values. Since debuggers work with compiled code, the early versions

could only be used by programmers who were familiar with assembly language.

Modern debuggers are able to step concurrently through the compiled machine

code and the original source code. The GNU family of developer tools includes

gdb, the source-level GNU debugger, which we can use for C/C++ applications.

gdb has been designed with a command-line interface that is quite powerful but

not particularly user-friendly. Fortunately, there are several open-source graphical

facades for gdb, one of which we will discuss below. Commercial C++ IDEs (e.g.,

Visual Studio) generally have built-in source-level debuggers.

C . 3 D E B U G G I N G

587

3 classes with at least one virtual method 

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 587



C.3.1 Building a Debuggable Target

For gdb to work, debugging symbols must be built into the code at compile time.

Otherwise, the machine instructions will not be mapped to locations in C++

source files. This is easily accomplished by using the appropriate command-line

switch (-g) when invoking the compiler:

g++ -g filename.cpp

This often results in a significantly larger executable file. Generally, the growth is pro-

portional to the size and complexity of the source code files. The expanded executable

contains symbol table information that the debugger can use to find source code that

corresponds to machine instructions. To get qmake to generate makefiles with the

-g switch passed along to g++, add the following line to your qmake project file:

CONFIG += debug

When the Qt library has been built with debugging symbols, you can step through

the Qt source code just as easily as your own code. You may need to build Qt with

debugging symbols to debug certain programs that contain code directly called

from the Qt library.

BUILDING QT WITH DEBUGGING SYMBOLS In Win32, it’s a menu
choice you can click on. On *nix platforms, after unpacking the source
code tarball, pass a parameter to the configure script before building
and your Qt library will be built with debug symbols.

./configure --enable-debug
make
make install

E X E R C I S E : B U I L D I N G  A  D E B U G G A B L E
T A R G E T

■ Compare the size of an executable file created with and without the CONFIG +=

debug line in the project file.

■ Make a mental note to try this again later with a more complex application.

588

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 588



C . 3 D E B U G G I N G

589

4 r is the command for “run.”

C.3.2 gdb Quickstart

Imagine you are running a program and, for some mysterious reason, it crashes.

[lazarus] app> ./playlistmgr
Segmentation fault
[lazarus] app> 

When your app aborts, or crashes, it is helpful to know (as quickly as possible)

exactly where it happened. We can use gdb to locate the trouble spot quickly and

easily.

[lazarus] app> gdb playlistmgr
GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
This GDB was configured as "i386-linux"...Using host libthread_db
library "/lib/tls/libthread_db.so.1".

(gdb) r4

Starting program: ftgui/app/playlistmgr
[Thread debugging using libthread_db enabled]
[New Thread -1227622176 (LWP 17021)]
Qt: gdb: -nograb added to command-line options.

Use the -dograb option to enforce grabbing.
This is a debug message

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread -1227622176 (LWP 17021)]
0xb7f03320 in FormDialog::createActions (this=0x80ae2a0) at 
formdialog.cpp:53
53          delete m_OkAction;
(gdb)

gdb shows you not only the filename, and line number, but also the corre-

sponding line in the source code. However, we still might want to get some context

for this error. The command list shows you the surrounding source code for the

current file:

(gdb) list
51     void FormDialog::createActions() {
52
53         delete m_OkAction;
54         delete m_CancelAction;
55         m_OkAction = new OkAction(m_Model, m_View);
56         m_CancelAction = new CancelAction(m_Model, m_View);
57         QHBoxLayout *buttons = new QHBoxLayout(0);
(gdb)                                               

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 589



The command where shows you the stack trace, or how we got there.

(gdb) where
#0  0xb7f03320 in FormDialog::createActions (this=0x80ae2a0) at
formdialog.cpp:53
#1  0xb7f03058 in FormDialog::setModel (this=0x80ae2a0,
fmodel=0x80c80d0)

at formdialog.cpp:34
#2  0x080664bd in SettingsDialog (this=0x80ae2a0, parent=0x0) at
settingsdialog.cpp:14
#3  0x0805f313 in MainWindow (this=0xbfffdec8) at
mainwindow.cpp:42
#4  0x08066f14 in Controller (this=0xbfffdec0, argc=1,
argv=0xbfffdfe4) at controller.cpp:25
#5  0x0805a8a4 in main (argc=1, argv=0xbfffdfe4) at main.cpp:7
(gdb)     

Most open-source IDEs use gdb under the hood. They each offer a user interface

that makes certain features easier to learn and use. Four open-source apps that

provide a front-end for gdb are: Eclipse, kdevelop, kdbg, and ddd.

VIEWING QSTRINGS INSIDE THE DEBUGGER QStrings are hard
to see inside some debuggers because they are indirect pointers
to Unicode data. The debugger needs to know extra things about a
QString in order to display it properly.

Download these Qt 4 helper macros from the KDE subversion repos-
itory5 and put this in your ~/.gdbinit:

source /path/to/kde/kde-devel-gdb
define pqs

printq4string $arg0
end

Now you should be able to print qstrings with the pqs macro.

C.3.3 Finding Memory Errors

Memory errors are very difficult to track down without the aid of a run-time

analysis tool. A program that analyzes the running performance of a program is

called a profiler. valgrind is an open-source profiling tool for Linux that tracks

590

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

5 http://websvn.kde.org/*checkout*/trunk/KDE/kdesdk/scripts/kde-devel-gdb

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 590



the memory and CPU usage of your code and detects a variety of errors. These

include

■ Memory leaks—memory that is no longer accessible but which has not

been deleted

■ Invalid pointer use for heap memory, such as

■ Out of bounds index

■ Mismatches between allocation and deallocation syntax (e.g., allocating

with new[] but deallocating with delete)

■ Use of uninitialized memory

Each of the errors just listed can cause catastrophic results in a piece of software.

Profilers can also be used for performance tuning and determining which code is

responsible for slowing down a program (i.e., finding bottlenecks).

Example C.4 shows a short program that contains a deliberate memory usage

error.

E X A M P L E  C . 4 src/debugging/wrongdelete.cpp

void badpointer1(int* ip, int n) {
ip = new int[n];
delete ip;  

}

int main() {
int* iptr;
int num(4);
badpointer1(iptr, num);

}

wrong delete syntax

For the output to be human readable, we compile with debugging symbols (-g).

debugging/wrongdelete> g++ -g -pedantic -Wall wrongdelete.cpp
debugging/wrongdelete> ./a.out
debugging/wrongdelete>

The compiler didn’t complain, and even after running the program, no error

behavior is exhibited. However, memory is corrupted by this program.

1

1

C . 3 D E B U G G I N G

591

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 591



Here is a (slightly abbreviated) look at valgrind’s analysis of our program. We

have removed the process id of the valgrind job from the beginning of each line.

The process id will, of course, be different each time you run valgrind.

src/debugging> valgrind a.out
--3332-- DWARF2 CFI reader: unhandled CFI instruction 0:50
--3332-- DWARF2 CFI reader: unhandled CFI instruction 0:50
Mismatched free() / delete / delete []

at 0x401C1CB: operator delete(void*) (vg_replace_malloc.c:246)
by 0x80484BD: badpointer1(int*, int) (wrongdelete.cpp:3)
by 0x80484F4: main (wrongdelete.cpp:9)

Address 0x4277028 is 0 bytes inside a block of size 16 alloc'd
at 0x401BBF4: operator new[](unsigned)
(vg_replace_malloc.c:197)
by 0x80484AC: badpointer1(int*, int) (wrongdelete.cpp:2)
by 0x80484F4: main (wrongdelete.cpp:9)

valgrind found the errors and, with debugging symbols, could point us to the

location of the problem code. Example C.5 is a little more interesting because it

contains memory leaks and array index errors.

E X A M P L E  C . 5 src/debugging/valgrind-test.cpp

#include <iostream>

int badpointer2(int k) {
int* ip = new int[3];
ip[0] = k;
return ip[3];   

}                

int main() {
using namespace std;
int* iptr;
int num(4), k;  
/* what is the state of iptr? */
cout << iptr[num-1] << endl;
cout << badpointer2(k) << endl;

}

out of bounds index
memory leak
k is uninitialized.3

2

1

3

2

1

592

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 592



Running Example C.5 through valgrind shows us the exact locations of some

errors.

C . 4 Q T  A S S I S T A N T  A N D  D E S I G N E R

593

For more details, rerun with: -v

--2164-- DWARF2 CFI reader: unhandled CFI instruction 0:50
--2164-- DWARF2 CFI reader: unhandled CFI instruction 0:50
Use of uninitialised value of size 4

at 0x80486AF: main (valgrind-test.cpp:17)
68500558

Invalid read of size 4
at 0x804867C: badpointer2(int) (valgrind-test.cpp:8)
by 0x80486DD: main (valgrind-test.cpp:18)

Address 0x4277034 is 0 bytes after a block of size 12 alloc'd
at 0x401BBF4: operator new[](unsigned) (vg_replace_malloc.c:197)
by 0x8048667: badpointer2(int) (valgrind-test.cpp:6)
by 0x80486DD: main (valgrind-test.cpp:18)

0

ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 19 from 1)
malloc/free: in use at exit: 12 bytes in 1 blocks.
malloc/free: 1 allocs, 0 frees, 12 bytes allocated.
For counts of detected errors, rerun with: -v
searching for pointers to 1 not-freed blocks.
checked 120,048 bytes.

LEAK SUMMARY:
definitely lost: 12 bytes in 1 blocks.
possibly lost: 0 bytes in 0 blocks.

still reachable: 0 bytes in 0 blocks.
suppressed: 0  bytes in 0 blocks.

Use --leak-check=full to see details of leaked memory.

If this is not enough information to find where the memory leak is, we can rerun

valgrind with the switch --leak-check=full.

C.4 Qt Assistant and Designer
Qt comes with two developer’s tools: assistant and designer.

Assistant is an extensible help browser, similar to a Web browser, but it sup-

ports various built-in search and index capabilities.

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 593



Designer not only showcases most of Qt’s widgets, it also permits you to cre-

ate and lay out customized dialogs and widgets. After you are finished designing

your UI, Designer can write the following files for you:

widgetName.ui An xml file that represents a tree of objects and properties.

uic, or the “UI compiler,” comes with Qt and generates

C++ code from this xml file. uic gets run automatically

from make, because qmake generates a Makefile that

runs uic on all .ui files in the project.

projectName.pro Designer can open and manipulate qmake project files,

adding forms to the projects.

widgetName.ui.h C++ source code that is meant to be inserted into gener-

ated code by uic.

Qt Assistant provides tutorials for using the latest version of Qt Designer.

C.5 Open-Source IDEs and Development Tools
It is not practical to do object-oriented development with an ordinary text editor.

Object-oriented development involves working with many classes and many more

files (headers and sources). Writing code in an edit window is just a small part of

the development process. A good programmer’s editor or IDE (integrated devel-
opment environment) should support many of the following features:

■ Tree-like structured navigation to object/members in any file

■ Refactoring assistance for moving/renaming members

■ Integrated debugger

■ Context-sensitive help linked to API documentation

■ A built-in command-line shell window so you can run programs without

leaving your environment

■ A project manager to help manage groups and subgroups of related files

■ Editing modes in other programming languages

■ Easy keyboard customization—the ability to make any keystroke per-

form any task (cursor movement especially, but also window movement)

■ An open plug-in architecture so you can add other components

■ Integration with a version-control facility is desirable, especially in

windows environments. Look for CVS,6 Subversion,7 or Darcs8.

594

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

6 https://www.cvshome.org/
7 http://subversion.tigris.org/
8 http://darcs.net/

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 594



■ Learnable, scriptable macros

■ Easy language-aware navigation to your different files (with shortcuts

such as “find declaration,” “find definition,” and “find references”)

An open-source option for Win32 users is Dev C++9 from Bloodshed Software,

which works quite well with MinGW and cygwin.

KDE users can use KDevelop3,10 a feature-rich, open-source IDE with excellent

C++ and code navigation features. It has built-in support for importing Qt’s

qmake project files. Simply select Project -> Import Existing Project from the menu

and choose the .pro file you wish to work with.

For all platforms, there is Eclipse,11 a free Java-based open-source IDE. You can

download plugins for C++ development,12 as well as Qt/KDE development.13 The

latter allows you to import qmake .pro files into Eclipse as projects directly.

C . 5 O P E N - S O U R C E  I D E S  A N D  D E V E L O P M E N T  T O O L S

595

9 http://www.bloodshed.net/devcpp.html
10 http://www.kdevelop.org
11 http://www.eclipse.org
12 http://www.eclipse.org/cdt/
13 http://kde-eclipse.pwsp.net/index.php
14 http://kate.kde.org/

Maximum Code Reuse: KDevelop

An interesting thing about KDevelop is that it embeds stand-alone applica-

tions and “plugs them in” to the QMainWindow as dock widgets. If you

already use KDE and some of the common *nix development tools, you will

find some familiar apps already available inside the dock windows. In the case

of KDevelop:

■ The debugger is a KDE front end to gdb, similar to kdbg.

■ For CVS browsing, KDevelop has integrated cervisia.

■ By default, KDevelop uses Kate14 (the “KDE Advanced Text Editor”) for

editing.

(continued )

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 595



596

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

15 http://konsole.kde.org/

■ The designer for creating widgets is a customized version of Qt’s

Designer.

■ The command-line shell is a dockable window inside KDevelop. It’s the

regular KDE Konsole15 xterminal.

Because KDevelop is built on top of KDE libraries, and KDE libraries are based

on Qt, using KDevelop will unable you to become more accustomed to how

various Qt widgets work. See Figure C.2.

F I G U R E  C . 2 KDevelop

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 596



C.5.1 UML Modeling Tools

For creating diagrams in this book using the Unified Modeling Language, we use

two open-source tools, Umbrello16 and Dia.17 Each tool uses an XML dialect as its

native file format.

Umbrello is the KDE UML Modeler. It can directly import C++ code, making it

very easy to drag and drop imported classes into diagrams, as shown in Figure C.3.

C . 5 O P E N - S O U R C E  I D E S  A N D  D E V E L O P M E N T  T O O L S

597

16 http://uml.sourceforge.net/index.php
17 http://www.gnome.org/projects/dia/

F I G U R E  C . 3 Umbrello screenshot

Dia is a more general-purpose diagram tool with some UML features. There are

many plugins and utilities that let you import code and export diagrams to and

from Dia to other languages and formats.

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 597



C.5.2 jEdit

jEdit18 is a mature, open-source, programmer’s text editor. Because it is written

entirely in Java, it works on all platforms. Its keyboard configurability is very

flexible—any action can be bound to a primary and an alternate shortcut.

To install it, first download a recent (5.0) version of the Java Development

Kit (JDK) from http://java.sun.com, and then download the latest development

version of jEdit.

Before using it very much, it is recommended you install some additional pro-

grams for development in C++:

■ Plugins: Navigator, Project Viewer, Optional, FastOpen, Info Viewer,

Console, Code Browser, XML

■ Exuberant ctags version 5.5 or later (for use with Code Browser)

■ ToggleHeaderSource version 0.419 or later for (easy switching between

header/source)

598

A P P E N D I X  C : T H E  D E V E L O P M E N T  E N V I R O N M E N T

18 http://www.jedit.org
19 http://community.jedit.org/?q=filestore/browse/34

F I G U R E  C . 4 jEdit screenshot

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 598



Check the keyboard configurability, Global Options ->

Shortcuts. Notice that all the plugins and macros have their own
shortcut-able actions. And after you have included some plugins, check
out the Global Options -> Docking and dock some of the plug-
in’s dockables to the sides of your edit window.

C . 5 O P E N - S O U R C E  I D E S  A N D  D E V E L O P M E N T  T O O L S

599

ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 599



ezus_138004_appC.qxd  8/3/06  4:41 PM  Page 600



Bibliography

C++ References

[Josuttis99] The C++ Standard Library. Nicolai Josuttis. 1999. Addison-Wesley
0-201-37926-0.

[Meyers] Effective C++. Scott Meyers. 1999. Addison-Wesley. 0-201-56364-9.

[Stroustrup97] The C++ Programming Language, Special Edition. Bjarne Stroustrup.
2000. Addison-Wesley. 0-201-70073-5.

Qt References

[Blanchette06] C++ GUI Programming with Qt 4. Jasmin Blanchette and Mark
Summerfield. 2006. Prentice Hall. 0-13-187249-4.

[Blanchette04] C++ GUI Programming with Qt 3. Jasmin Blanchette and Mark
Summerfield. 2004. Prentice Hall. 0-13-124072-2.

[qtapistyle] Designing Qt-Style C++ APIs. Matthias Ettrich. 2005. Trolltech.
http://doc.trolltech.com/qq/qq13-apis.html.

[qttestlib] Writing Unittests for Qt 4 and KDE4 with QtTestLib. Brad Harris. 2005.
developer.kde.org.

OOP References 

[Buschmann96] Pattern-Oriented Software Architecture. Frank Buschmann, Regine
Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. John Wiley &
Sons. 0-471-95869-7.

601

ezus_138004_bib.qxd  8/4/06  9:57 AM  Page 601



[Fowler04] UML Distilled, Third Edition. Martin Fowler. 2004. Addison-Wesley.
0-321-19368-7.

[Gamma95] Design Patterns. Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. 1995. Addison-Wesley.
0-201-63361-2.

[Martin98] Pattern Languages of Program Design 3. Robert C. Martin, Dirk Riehle,
and Frank Buschmann. 1998. Addison-Wesley. pp. 293–312. 0-201-31011-2.

Docbook References 

[docbook] Docbook: The Definitive Guide. Norman Walsh. 2005. O’Reilly Associates.
http://www.docbook.org/tdg/en/html/docbook.html

[docbookxsl] Docbook XSL: The Complete Guide. Bob Stayton. 2005. SageHill
Enterprises. http://www.sagehill.net/docbookxsl/

Miscellaneous References 

[w3c] w3c Recommendation: XHTML 1.0 The Extensible HyperText Markup Language.
2005. W3C (World Wide Web Consortium). http://www.w3.org/TR/xhtml1/

[Friedl98] Mastering Regular Expression, Second Edition. Jeffrey Friedl. 1998.
O’Reilly. 1-56592-257-3.

[Rehman03] The Linux Development Platform. Rafeeq Ur Rehman and Christopher
Paul. 2003. Prentice Hall. 0-13-009115-4.

See Element Reference @ W3Schools.com (http://www.w3schools.com/
tags/default.asp) for a good quick reference guide.

602

B I B L I O G R A P H Y

ezus_138004_bib.qxd  8/4/06  9:57 AM  Page 602



Index

Symbols and Numbers
–ansi switch, 13–14
–pedantic switch, 14
–Wall switch, 14
—(double dash), unary decrement 

operator, 26, 510
#(pound character), for preprocessor 

directives, 15
#define macro, 127
#ifndef wrapper, 579
#include

customizing using inheritance, 186–189
finding header files, 85–86
overview of, 15
preprocessor and, 579–581
unnecessary dependencies produced

by, 174–175
$ (dollar sign), anchoring characters, 312
% (percent sign), modulus operator, 26–27
& (ampersand)

reference parameters using, 118
type modifier, 44
unary address-of operator, 36–38

* (asterisk)
multiplication operator, 26
quantifier expressions, 311
unary deference operator, 37

/* and */, in comments, 15
*nix platform

fixing linker path, 177
installing libraries on, 176–178
open source development tools, 7–9
USER environment variable, 280
viewing manual pages, 14

(...) (ellipsis), 542
:/., pathname formats and, 250

:: (file scope resolution operator), 468
[ ] (square brackets), in command-line 

arguments, 158
^ (caret), anchoring characters, 312
+ (plus sign), addition operator, 25, 510
++ (double plus sign), unary increment

operator, 26, 510
< (less than), 27
< > (angle brackets), #include directive,

85–86
� (insertion operator), 16
<= (less than or equal to), 27
= (assignment operator). See Assignment

operators
!= (not equal to), 27
== (equal to), 27
> (greater than), 27
>= (greater than or equal to), 27
� (input operator), 16
. (dot)

in bash shell, 178
member access and, 118
regular expression meta-character, 310
operator overloading and, 115

! (exclamation), unary not operator, 27
? (question mark), quantifier 

expressions, 311
/ (slash)

division operator, 26
as namespace delimiter, 567

– (subtraction operator), 25, 510
, (comma operator), 115
( ) parentheses

grouping and capturing characters, 312
macros and, 128

8-bit integer, 445–446

603

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 603



A
Abstract base classes, 148–152
Abstract Factory pattern

benefits of, 369–372
creating rules and friend functions,

366–369
defined, 360
exercises, 372–373
importing objects, 376–380
and libraries, 363–365
overview of, 361–363
qApp and Singleton pattern, 365–366

Abstract interfaces, multiple inheritance
with, 531–532

Accessibility, 52
actionEvent( ), 265–266
Adaptor pattern, 386–389
addAction( ), 262, 264
Addition (+) operator, 25
AddLayout, widgets, 251–252
Address of (&), unary operators, 36–38
Addresses, pass-by-reference, 119
addSpacing( ), 254–255
addStretch( ), 254–255
addStrut( ), 254–255
addWidget( ), 251
Aggregate containers, 222–224
Aggregate relationships

defined, 100
pointer containers and, 221–224

Algorithms, generic, 225–227
Aliases, namespace, 475
amaroK, 427–428
American National Standards Institute.

See ANSI (American National
Standards Institute)

Ampersand character (&), reference 
parameters using, 44, 118

Ampersand character (&), urnary 
operator, 36–38

Anchoring characters, regular 
expressions, 312

Animation, QThread, 290–294
Anonymous namespaces, 476
ANSI (American National Standards

Institute)
ANSI C89, 575
ANSI/ISO Draft Standard for C++, 6–7
new operator, 515
typecasts, 346, 450

Anti-patterns, 342–343
API (Application Programmer’s 

Interface), 179
Applications, reusable components, 171
ArgumentList, 159–163
Arguments, processing command-line,

158–163
Arithmetic operators

addition, 25, 510
division, 26
modulus, 26–27
multiplication, 26
overview of, 24–25
pointers and, 510–511, 513–514
subtraction, 25
symbols for, 438

Array elements, 509
Arrays

functions and return values and,
511–512

kinds of, 513
new failures and, 515–519
overview of, 509–510
reasons to avoid using in C++, 96
review questions, 521
summary, 519–520

Assignable data types, 221
Assignment operators

with auto_ptr, 385
copy, 64–67, 156
for implicitly shared classes, 224
pointers and, 513
symbols for, 438

Assistant, Qt, 593–594
Associations, 101
Attributes

Qt naming conventions, 90
XML tags, 324

auto_ptr, 384–385, 388–389

B
Base classes, 136–140

derivation from abstract, 148–152
extending, 140–142
inheritance and, 136
initializing, 531
member initialization for, 140
order of initialization, 156
overloading, function hiding, and 

overriding, 154–155

604

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 604



parent objects vs., 193
subclasses derived from, 137
virtual, 535–536

Bash scripts, 178
Behavioral patterns, 182
Bi-directional association, in QObject, 193
Binary operators, 115
Binding

compile-time, 144
run-time, 142, 144

Bitwise operators, 438
Block scope

vs. file scope, 468–469
identifier, 466
overview of, 52–53, 465
statics defined inside, 63

Block statements, 480
Boolean

expressions, 480–481
operators, 27–28
types, 22–24

boost, 179
break

from loops, 484
from switch, 481

Button widgets, 239
byte, arrays, 513

C
C

C++ as extension of, 6
preprocessor, 579
standard Library, 578

“C with Objects,” 6
C++, 5–46

arithmetic operators, 25–29
brief history of, 6–7
const, 34–35, 40–43
first example, 12–16
identifiers, 19–22
input and output, 16–19
literals, 19–22
main( ) and command line 

arguments, 24–25
overview of, 6
pointers and memory access, 36–40
preprocessor, 579
reference materials for, 601
reference variables, 43–44
reserved keywords, 575–576 

scope options, 465–466
simple types, 22–24
standard Library, 578
standard library strings, 30–31
streams, 31–34
types, 19–22
variable initialization, 465

The C++ Programming Language
(Stroustrup), 6–7

Callbacks
defined, 327
importing objects with Abstract 

Factory, 380
case labels, 482
CaseIgnoreStrings, 227
Case-sensitivity, Qt naming conventions, 90
Casts, Casting. See Typecasting
catch statements

overview of, 490–494
rethrowing caught exceptions, 496
throw and, 502

Categories, QWidgets, 239–240
Central widget, 270–272
cerr

global stream, 31–34
input and output, 16

char
arrays, 381, 513
throwing, 497

Character sets, regular expressions, 312
Character types, 22–24
characters( ), 329
Children, QObject

Composite pattern, 196–199
environment variables, 281–282
finding, 199
management of, 194–196
overview of, 192–193
QProcess, 279
QWidgets interacting with, 238
widget layout, 202–204, 252

Children, XML elements, 324
cin

global stream, 31–34
input and output, 16–19

cinclude2dot, 175
Circular dependencies, 582
class definitions

friend declarations within, 56
overview of, 49–51

I N D E X

605

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 605



Class scope
defined, 51
identifier, 467
overview of, 466

Class templates, generating generic 
containers, 216–219

Classes, 47–79
const member functions, 68–78
constructors, 56–58
conversions, 67–68
copy constructors and assignment 

operators and, 64–67
definitions, 49–51, 464
destructors, 60
encapsulation, 54
form views, 400
friends of, 55–56
member access specifiers, 51–53
Qt naming conventions, 90
reusable components, 171
static keyword, 61–64
structs, 48–49
subobjects, 58–59
templates, 216–219
UML, 54–55

className( ), 344
Client code, 51–53
Code containers, 170–171
Code reuse, 579
CodeVisitor

customizing using inheritance,
186–189

decoupling, 188–189
Comma operator (,), 115
Command line arguments

main( ) function and, 24–25
processing, 158–163

Command pattern, 262–267
Comments, 15
Comparison, pointer operations, 514
Compilers

GNU C compiler (Gcc), 13–15
moc (Meta Object Compiler),

209–210
switches, 13–14
syntax errors, 587

Compile-time
binding, 144
dependency, 173

Complex numbers, 112–114

Components
Composite pattern, 196–197
frameworks with reusable, 179
library, 179

Composite pattern
DOM as application of, 330
managed containers and, 221–224
overview of, 196–197
QTreeWidgetItem as implementation of,

417–418
Composition relationships, UML

defined, 55, 99
pointer containers and, 221–224

Compound statements, 480
Concrete class, 148
Concurrency, 277–305

QProcess. See QProcess
QThread. See QThread

Conditional
statements, 481–482
expressions, 28

Conflicts, resolving multiple inheritance
conflicts, 532–534

Connect to slots, 203–204, 292
const

const* and *const, 40–43
declaring reference parameter to be,

121–122
and globals, 471–472
implicitly shared classes vs., 225
members, 68–78
overloading on const-ness,

124–126
overview of, 34–35
pointers, 40–43, 513

const_cast, 450–453
Constructors (ctor)

conversion, 67–68
copy constructors, 64–67
exceptions and, 488
inheritance and, 155–157
overview of, 56–58
polymorphism from, 370–372

Container widgets, 240
Containers

arrays and, 513
class templates generating, 216–219
code, 170–171
defined, 96, 219
exercises and review questions, 233–235

606

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 606



generics and, 219–221
implicitly shared, 224–225
managed, 221–224
overview of, 96–97
property, 355–356
Qt, 504
Serializer pattern, 227–229
sorted map example, 229–232

Context menus, 261
continue, loops, 484
Control, inversion of, 325
Control structures

defined, 479
exception expressions, 497–501
exception handling, 486
exceptions, 485
iteration structures, 483–485
rethrown exceptions and, 496–497
review questions, 502
throw statements, 486–488
try and catch statements, 490–494

Controller classes
defined, 284, 393
GUI development, 240
MP3 player, 553

Controller code, 392, 394–395
Controlling actions, 404–405
Convenience functions, ID3Lib, 384
Conversions

expressions, 447–449
overview of, 67–68

Copy assignment operators,
65–67, 156

Copy constructors
assignment operators and, 64–67
for implicitly shared classes, 224
never inherited, 156–157
not public in QObject, 192

Core module, Qt, 91
cout

global stream, 31–34
input and output, 16

.cpp extension, class definitions, 50
CPPLIBS

as environment variable, 280
reusing other libraries, 171–172

Creational patterns, 360–372
applying, 360–361
benefits of, 369–372
defined, 182

exercises, 372–373
libraries and, 363–365
overview of, 361–363
qApp and Singleton pattern, 365–366
review questions, 390
rules and friend functions, 366–369

Cross-language mechanism, 280–281
ctor. See Constructors (ctor)
CustomerFactory, Abstract Factories,

363–365
Cycle, 175
Cygwin, 12

D
Data members, Qt naming conventions, 90
Data model, Mp3File, 553–555
Data types

assignable, 221
GUI development and, 240
literals of, 20

Database models
GUI development and, 240
Qt SQL, 429–432

Database view, MP3 player, 569–571
DataObject

encoding/decoding as XML, 373–375
form model, 405–409
overview of, 353–354

DataObjectReader, 377–380
DataObjectTableModel, 412–417
Debugging

building debuggable target, 588–589
GNU debugger, 589–590
with loggers, 296–297
memory errors, 591–593
overview of, 587–588

Declarations
applying, 475
definitions compared with, 465
names, 464–465

Decoupling, 188–189
Decrement (—), unary operators, 26
Default arguments, 109
Default constructors, 57–58
Default labels, 482
Deference (*), unary operators, 37
Definitions

class, 49–51, 56, 464
declarations compared with, 465
environment variables on *nix, 178

I N D E X

607

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 607



Definitions (continued)
object, function, and class, 464–465
polymorphic types, 524
private, protected, and public 

members, 52
Serializer pattern, 227–229
tables in MySQL, 425–426
template definitions in header files, 217
undefined pointers, 508
undefined reference to [identifier],

586–587
delegates 360, 395, 405, 406
delete operator

applying to pointers, 506–507
heap objects and, 470
overview of, 39

Dependencies
circular, 582
compile-time, 173
customizing using inheritance, 187–188
defined, 173
managing library, 173–175

Derivation
from abstract base class, 148–152
from ArgumentList, 160–163
kinds of, 138
polymorphism and, 142–147
public, protected, and private, 536–538
simple, 136–140

Derived classes
employing inheritance using, 137–138
order of initialization, 156
overloading, function hiding, and 

overriding, 154–155
Deserialization, playlists, 560
Design, inheritance, 152–153
Design patterns, 182–190

Abstract Factory pattern, 360, 361–363
Adaptor pattern, 386–389
anti-patterns, 342–343
Behavorial patterns, 182
Command pattern, 262–267
Composite pattern, 196–199, 330
Creational pattern, 189–190
Façade pattern. See Façade patterns
implementing frameworks with, 179
Interpreter pattern, 524
Iteration and Visitor pattern,

customizing, 184–189
MetaObject pattern, 344–345

Model-View-Controller (MVC),
392–393

Monostate pattern, 242
Observer (publish-subscribe) pattern, 200
overview of, 182
Reflection pattern, 344
Serializer pattern, 227–229, 373–380
Strategy pattern, 396
Visitor pattern, 182–189, 331–334
Wrapper pattern, 386

Designer, Qt, 593–594
DESTDIR variable, 176, 249
Destructors (dtor)

exceptions and, 488
never inherited, 158
overview of, 60
static keyword and, 61–64
virtual, 526–528

DevC++, 595
Devel package, reusable components, 171
Development environment, 579–599

building debuggable target, 588–589
debugging, 587–588
GNU debugger and, 588–590
jEdit, 598–599
linker, 582–584
linker error messages, 584–587
open source IDEs and development tools,

594–597
preprocessor, 579–581
Qt assistant and designer, 593–594
UML modeling tools, 597

Development tools, open source, 594–597
Dia, UML modeling tools, 597
Dialogs

exercise, 248
input dialogs and widgets, 246–247
overview of, 244–246

Directives, preprocessor, 475
Directories

installing libraries in, 176
visiting code for, 183

Display widgets, 240
distort( ), 300
Division (/) operator, 26
.dll file, 176
do

loop, 484
Docbook, 323, 602 
DocbookDoc class, 335–339

608

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 608



DockWindows, 270–272
DOM (Document Object Model)

classes, 330
defined, 329
SAX vs., 330

DomWalker, 332
Dot (.)

in bash shell, 178
operator overloading and, 115

do . . . while, iteration structures, 484
Downcasting. See RTTI
dtor. See Destructors (dtor)
Dynamic form models, 393–397
Dynamic memory, 511–512
Dynamic run-time binding, 144
dynamic_cast. See also Typecasting

defined, 345
qobject_cast similar to, 346
typecasting, 454–456

E
Eclipse, 595
Editing, with macro expansion, 128
Editors, XML, 324
Elements, array, 509
Ellipsis (. . .), 542
else, conditional statement, 481
emit, 201, 205
Encapsulation, 54
Encryption, 130–132
endElement( ), 378–379
endl, as manipulator, 17
Entries (array elements), 509
enum

converting strings to, 350
keyword, 443–445

Enumerations, 443–445
enumerator( ), 350
Env command, 10
Environment variables

on *nix platform, 178
processes and, 280–281

Equivalence relation, 233–234
Errors

liability of macro expansion, 128–129
linker error messages, 584–587

Event loop, 201. See also QApplication, and
event loop

Event-driven parsing, XML, 325–329
eventfilter( ), Qonsole, 286–288

Events
Qonsole with keyboard, 286–288
QWidgets handling of, 238

Exception
expressions, 497–501
handling, 486
overview of, 485
rethrown, 496–497
safety, 302
throw( ) in function signature, 488–489
throw statements, 486–488
try statements, 490–494

Explicit conversions (casts), 449
explicit keyword, 68
Exporting, to XML, 375–376
Expressions

evaluating logical expressions, 443
explicit conversions (typecasts), 449
standard conversions, 447–449

Extended regular expressions,
Perl-style, 310–311

Extending, 140–141
eXtensible Markup Language. See XML

(eXtensible Markup Language)
extern keyword

declaring static objects, 476–477
file scope and, 467
global scope and, 466

F
Façade patterns

exercises, 389
Filetagger example, 385–389
functional, 384
overview of, 381–383
review questions, 390
smart pointers, 384–385

Factories
creating questions for forms with,

398–399
defined, 360

Factory method, 360
fifo (incoming message queue), 298
File formats, MP3 player, 560
File scope

vs. block scope, 468–469
vs. global scope, 466
overview of, 466

Filenames, finding header files, 86
Files, visiting code for, 183

I N D E X

609

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 609



FileTagger
auto-generated form, 407
façade example, 386–389
MP3 player, 553, 568
SQL table, 426

FileVisitor
customizing using inheritance, 186–189
making into reusable tool, 184–186

Filters, MP3 player, 561–563
findChildren( ), 199
Floating point numbers, 22–24
flush, as manipulator, 17
for loops, iteration structures, 484
Form views

dynamic form models, 395
for MP3 player, 568–569
overview of, 400–402

FormDialog, 400
FormFactory, 399
FormModel, 397–399, 405–409
Forms

defined, 393
dynamic model, 393–397

FormView, 395, 400–402
Forward declarations, 175, 580–582
Frameworks, library, 178–179
friend 

keyword, 55–56
functions, 366–369

Functions, 105–133
declaring, 106–107
declaring inline, 126–127
defining, 464
ellipsis (. . .) and, 542
exceptions, 488–489
exercises and review questions, 130–133
global, 114
hiding, 154–155
inline vs. macro expansion, 127–130
invoking with QMetaObject, 344
main( ), 24–25
operator overloading as, 111–116
with optional arguments, 109–111
overloading, 107–109, 154
overloading on const-ness, 124–126
overriding, 154
overview of, 105
passing parameters by reference, 118–121
passing parameters by value, 116–117
prototypes, 106–107

public, 54
QObjects can never be passed by value 

to any, 192
Qt naming conventions, 90
references to const, 121–122
return values, 122
returning references from, 122–124
scope, 465, 467
templates, 214–216
with variable-length argument 

lists, 542–543
virtual, 414

G
Garbage collection, 543
Gcc (GNU C compiler), 13–15
gdb (GNU debugger), 588–590
Generalization, 137
Generic containers, 96
Generics. See also Templates

algorithms and operators, 225–227
defined, 96
exercises and review questions, 233–235
templates, 214–219

getChar( ), 279
getClassName( ), 138–139
getline( ) function, 31
getSwitch( ), 161
Global functions, 114
Global scope, 471

vs. file scope, 466
identifier, 466
partitioning into sub-scopes, 473

GNU C compiler (Gcc), 13–15
GNU debugger (gdb), 588–590
goto

avoiding in code, 468
switch statement and, 482

Graphic images, 248–251
Grouping characters, regular expressions, 312
Gui module, Qt, 91

H
handler, invoking parser, 325–326
Handler classes, 545
Header files

class definition defined in, 49–50
finding with #include, 85–86
libraries packaged as lib+, 170

610

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 610



reusable components, 171
template definitions in, 217

Heap arrays, 96
Heap memory

benefits of factories, 369
corruption, 504
garbage collection and, 543
new operator allocating storage 

from, 38
pointer problems and, 506–508
storage class and, 470

Heavyweight objects, 355
Hiding functions, 154–155
Hierarchy, types, 22, 447
HOME, environment variable, 280
Host object, 68
HOSTNAME, environment variable, 280
HTML (HyperText Markup Language)

converting XML into, 335–336
uses of, 323
XML vs., 322–323

I
ID3 tags, 381–383

reusing, 559–560
ID3Lib

convenience functions, 384
façade example, 385–389
overview of, 381–383

Identifiers
overview of, 19–22
scope of, 51, 465

Identity, QObject, 192–193
IDEs (integrated development environments)

finding header files within, 86
open source, 594–597

if statement, 481
Images, QWidgets, 248–251
Implementation

class definitions, 50–51
of encapsulation, 54
relationships, 537

Implicitly shared containers, 224–225
Importing objects, with Abstract 

Factory, 376–380
Importing objects with Abstract Factory,

SAX parser, 377
Include path, files, 85–86
Incomplete types, 581
Increment (++), unary operators, 26

Indexing, pointer operations, 514
indexOfProperty( ), 350
Indirection

defined, 38
pointer operations, 514

Info command, 14
Inheritance, 135–165, 523–539. See also

Multiple inheritance
base classes and, 136
client code example, 141–142
command-line arguments, processing,

158–160
constructors and, 155–157
copy assignment operators and, 156
copy constructors and, 156–157
defined, 136
derivation and ArgumentList, 160–163
derivation from abstract base 

class, 148–152
derivation with polymorphism,

142–147
design, 152–153
destructors and, 158
exercises and review questions, 163–165
function hiding, 154–155
member initialization and, 140, 531
multiple, 528–532
order of initialization, 156
overloading, 154
overriding, 154
polymorphism and virtual destructors,

526–528
public, protected, and private derivation,

536–538
QStringList and, 97–99
resolving multiple inheritance conflicts,

532–534
review questions, 539
simple derivation, 136–140
virtual base classes and, 535–536
virtual inheritance, 534–535
virtual pointers and virtual tables and,

524–526
visitor customization with, 186–189

inherits( ), 347
Initialization

base class members, 140
class members, 531
static, 63–64
validators, 309

I N D E X

611

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 611



Inline functions
#define macro vs., 127
macro expansion vs., 127–129
overview of, 126–127

Input and output, 16–19
Input dialogs

exercise, 248
and widgets, 246–247

Input widgets
defined, 239
dynamic form models, 396
form views, 402
overview of, 308–309
unforeseen types, 403–404

InputField
dynamic forms, 396–397
form views, 400–402

Insertion operator (�), 16
installEventFilter( ), 288
instance( )

AbstractFactory and, 361
Singleton pattern, 365

Instances, class definitions, 49
Instantiated, template, 215
int, Integer Types

arrays and, 512
enumerating, 443
overview of, 22–24
promotion, 447
signed and unsigned, 445–446
throwing, 497

Integrated development 
environments (IDEs)

finding header files within, 86
open source, 594–597

Interface
generic containers, 96
relationships between classes, 536–537

Internationalization, QObject and, 211
Inversion of control, 325
iostream, 31
is-a relationships, 537
ISO, ANSI/ISO Draft Standard 

for C++, 7
istream, 16–19
Item models, Qt 4, 409
Iteration

defined, 16
exercises, 101–103, 485
overview of, 97

QStringList and, 97–99
structures, 483–484

Iteration, and Visitor pattern, 182–190
customizing with inheritance, 186–189
exercises and review questions, 189–190
overview of, 184–186
QDir and QFileInfo (directories 

and files), 183

J
JDBC classes, 429
JEdit, 598–599
join( ), 97–99

K
kdbg, 271
KDE 3.x (K Desktop Environment), 7
KDE debugger, 271
KDevelop, 595–596
Keyboard events, Qonsole with, 286–288
keyToValue( ), 350
Keywords

C++ reserved, 575–576
const, 34–35
enum, 443–445
explicit, 68
extern, 467, 476–477
friend, 55–56
modifying simple types, 22
static, 61–64, 467
using, 475
virtual, 142–147

L
Late run-time binding, 144
Layouts

GUI development, 240
QObject, 202–203
QWidgets. See QLayout, widgets

LD_LIBRARY_PATH, 176–177
Leaf nodes, Composite pattern, 197
lib files, 170
libcustomer, 363–365
libdataobjects, 363–365
libgtk++, 179
Libraries, 169–180

Abstract Factories and, 363–365
code containers, 170–171

612

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 612



components, 179
defined, 169
dependency management, 173–175
finding header files within, 86
frameworks, 178–179
graphic image, 248–251
ID3Lib, 381–383
installing, 176–178, 585
overview of, 170
and plugins, 370
QWidget and, 239
reusing, 171–172
review questions, 180

LIBS variable, 172
libutils, 171
Linker

arguments to, 583
error messages, 584–587
linking process, 584
overview of, 582–584
path, 177
switches, 172

Link-time dependency, 173
The Linux Development Platform 

(Rehman and Paul), 84
List view, media player, 552
Lists, 95–103

containers, 96–97
exercises and review questions,

101–103
iterators, 97–99
overview of, 95
relationships, 99–101

Literals, 19–22
Local variables, 350
Loggers

debugging with, 296–297
defined, 296

Logical expressions, evaluating, 443
Logical operators, 438
LogWindow, 296
loops

break and continue, 484
for, 484

lupdate tool, 211
Lvalue, 43

M
M3U file format, 560
Macro expansion, 127–129

main( )
overview of, 24–25
QObject child management, 194–196
QSettings, 243

make command
cleaning up files, 88–89
handling project files with, 84–85
overview of, 86–88

make dist command, 89
makedep dependency generator, 175
Makefile

cleaning up files, 89
example of qmake building, 86–88
overview of, 84
replaced in Qt by qmake, 85

man command, 14
Managed containers

implicitly shared, 224–225
overview of, 221–224

Manipulators
defined, 17
stream, 31–32

Manual pages, viewing on nix system, 14
Mapping layer, 415
Media players

components, 552–553
MP3 player view features, 563–564

Member access specifiers, 51–53
Member functions, 114
Member initialization, 57–58, 531
Member selection operators, 457–458
Memory access, 503–509

arrays and. See Arrays
overview of, 504
pointer problems and, 504–506
pointer problems with heap 

memory, 506–508
pointers, 36–40
review questions, 521
summary, 509

Memory allocation, thrashing and, 515
Memory corruption, 506
Memory heap. See Heap memory
Memory leaks, 506–507
Memory management operators, 438
Meta Object Compiler (moc), 209–210
Meta-characters, regular expression, 310–312
Metadata, MP3 songs, 381, 559
MetaObject pattern, 344–345, 373–375
methodCount( ), 344

I N D E X

613

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 613



MinGW (Minimalist Gnu for Windows), 12
Mixed expressions, 27
moc (Meta Object Compiler), 209–210
modal attribute, 244
Models and views, 391–421

controller code, 392
controlling actions, 404–405
DataObject form model, 405–409
dynamic form models, 393–397
form models, 397–399
form views, 400–402
GUI development, 240
Model-View-Controller (MVC), 392–393
Qt 4, 409–411
review questions, 421
separating models from views, 392
table models, 411–417
tree models, 417–420
unforeseen types, 403–404

Model-View-Controller (MVC), 392–393
Modules, Qt 4, 91
Modulus (%) operator, 26–27
mono, 179
Monostate pattern, 242
Movie player

QPixmap and animation, 290–294
with QTimer, 294–295

MovieThread, QPixmap and animation,
290–294

MP3 files, 381, 553–555
MP3 jukebox assignments

data model:Mp3File, 553–555
database view, 569–571
form view for FileTagger, 568–569
ID3 tags, reusing, 559–560
media player, 552–553
MP3 player view features, 563–564
persistent settings, 567–568
play list models, 565
play list serialization, 560
Preference class, enumerating, 556–559
queries and filters, 561–563
source selector, 566–567
testing Mp3File related classes, 561
visitor generating playlists, 555–556

MSYS (from Minimalist Gnu for 
Windows), 12

Multiple inheritance
with abstract interfaces, 531–532
overview of, 528–529

QWidgets using, 238
resolving conflicts, 532–534
syntax, 529–531

Multiple threads, 296–302
Multiplication (*) operator, 26
Multithreaded environments, 369
MVC (Model-View-Controller), 392–393
MySQL, 424–427

connecting from Qt, 425
overview of, 424–425
row insertion, 426–427
table definition, 425–426

N
Namespaces

aliases, 475
anonymous, 476
delimiter for, 567
open, 476
overview of, 15
partitioning global scope into 

sub-scopes, 473
reusable components, 171
scope identifier, 467
static objects and extern keyword and,

476–477
using keyword and, 475

Naming conventions
destructors, 60
Qt guidelines, 90–91

Net module, Qt, 91
new operator

failures, 515–519
heap objects and, 470
memory leaks and, 507
overview of, 38–39

newObject( ), 361–365, 380
nix platform. See *nix platform
Nodes, XML, 324, 330
Non-const reference parameters, 118–119
Not (!), unary operator, 27
nothrow, 544
NULL

new failures and, 518–519
pointers, 36, 506

O
Object files, 170
Object module, 171

614

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 614



Object oriented programming (OOP),
601–602

ObjectFactory
Abstract Factories and libraries and,

362–365
managing singleton instance of, 365–366
in multithreaded applications, 369

Objects
changes to, 544–547
class definitions, 49, 464
defined, 36
global, 471
resource sharing and, 543
subobjects, 58–59

objectToXML ( ), 375–376
Observer (publish-subscribe) pattern, 200
Observer pattern, 200
OkAction, 404–405
One-to-many relationship, 99
One-to-one relationship, 99
Online resources

ANSI/ISO Draft Standard for C++, 7
downloading open source tarball, 9–11
gcc documentation, 14
qmake, 89
Qt, 89
Qt 4 Thread Support, 302
shell scripting, 178

OOP (object oriented programming),
601–602

Open namespaces, 476
Open source

defining, 7
downloading from source, 9–11
IDEs and development tools, 594–597
requiring Qt 4, 7–9

Operations, with pointers, 513–514
Operators, 438–442

arithmetic. See Arithmetic operators
assignment. See Assignment operators
binary, 115
boolean, 27–28
characteristics of, 439
classified by use, 438
delete, 39, 470, 506–507
generic, 225–227
insertion, 16
list of C++ operators, 440–442
member selection, 457–458
modulus, 26–27

new, 38–39, 470, 507, 515–519
overloading, 111–116
Run-Time Type Identification, 345–347
scope resolution, 50, 468
Serializer pattern and overloaded i/o,

227–229
shortcut, 26
sizeof( ), 23–24
typecast, 346
typeid, 345
unary, 26–27, 36–38, 115

Optional arguments
enclosing in square brackets, 158
functions with, 109–111

Ostream, input and output, 16–19
Output. See Input and output
Overloading

on const-ness, 124–126
functions, 107–109, 154
operators, 111–116
unary operators and, 115

Overriding functions, 154

P
Parameters

command-line arguments, 158
function prototypes using, 106–107
optional arguments and, 109–111
QSettings string, 242
reference, declaring to be const, 121–122
reference, overview of, 118–121
template vs. function, 214
value, 116–117

Parents, QObject
base classes vs., 193
Composite pattern, 196–199
layout of widgets, 251
overview of, 192–193
QProcess, 279
QWidgets interacting with, 238

Parents, XML elements, 324
parse( ), 325–326, 329
Parse event handler, 327
Parsers

event-driven, 325–329
SAX, 330–334, 377
XML, 327

Partitioning, global scope into 
sub-scopes, 473

I N D E X

615

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 615



Pass-by-pointer, 120–121
Pass-by-reference, 120–121
Passive interface, 201, 326–327
PATH

as environment variable, 280
fixing linker path in Windows, 176–177

Paths, finding header files, 85–86
Patterns. See Design patterns
Performance, inline functions and, 126–127
Perl, regular expressions, 311
Persistent settings, MP3 player, 567–568
Play lists, MP3 player, 555–556, 561
Player view, MP3 player, 552, 563–564
Plug-ins

and libraries, 370
parsing XML with, 327

Pointers
arithmetic operators and, 510–511
const, 513
containers, 221
heap memory problems and, 506–508
memory access and, 36–40
operations with, 513–514
overview of, 22–24
problems due to improper handling of,

504–506
to QObject children, 192
smart, 39, 457
symbols for, 438

Polymorphism
from constructors, 370–372
defining polymorphic type, 524
derivation with, 142–147
exercises and review questions, 163–165
virtual destructors and, 526–528

POSIX (Portable Operating System Interface
for UNIX), 7–9

Preference class, enumerating for MP3 player,
556–559

Prepared statements, 427
Preprocessor

development environment, 579–581
directives, 15
macros, 35

Primitives, 350
private derivation, 530, 536–538
private member, 52, 55
.pro file, 89
process( ), 300
Process control. See QProcess

processDir( ), 186
processFile( ), 184–186, 187
Profiler, finding memory errors, 591–593
Program stack, storage class and, 470
Programming style, Qt guidelines, 90–91
Project files

cleaning up, 88–89
defined, 83
finding header files, 85–86
handling with make command,

83–85, 86–88
Promotion, expression conversion, 447
Properties

accessing, 350–352
containers (PropsMap), 355–356
describing QObject, 347–350

property( ), 352
PropQuestion, 406, 408
PropsMap, 355–356, 362
protected derivation, 530, 536–538
protected member, 52, 137
public derivation, 530, 536–538
public functions, 54
Public interface, 54
public member, 52, 55
Pure virtual functions, in abstract base 

classes, 149–152
push( ), 218

Q
Q_ENUM macro, 350
Q_PROPERTY macro, 347–350, 351
QAbstractItemModel, 417
QAbstractTableModel, 411–412, 414, 429
QAbstractxxxModel, 411
QActionGroups, 262–267
QActions

exercises, 267–269
implementing Command pattern,

262–267
QMenu, QMenuBar and, 260–262
Qtoolbars, QActionGroups and,

262–270
synchronizing data between model and

view, 403–404
qApp

defined, 203
signals and slots, 204–209
Singleton pattern and, 365–366

616

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 616



QApplication, and event loop, 200–209
connecting to slots, 203–204
layouts, 202–203
overview of, 200–202
signals and slots, 204–209

QApplication, example creating, 82–83
QBoxLayout, 251
QByteArray, QSettings, 242–243
QCache<Key,T>, 220
QCoreApplication functions, 242
QDate member functions, 92–93
QDefaultxxxModel, 411
qDeleteAll ( ), 222
QDialog, 244–247
QDir, 183
QDockWidgets, 270–272
QDomDocument, 330, 339
QDomElement, 330, 333, 335–336
QDomNode, 330–331, 333, 339
QDoubleValidator, 308–309
QEvents, 200–202, 286
QFileInfo, 183
QGridLayout, 251–260
QHash<Key,T>, 220
QHBoxLayout, 251
QImage, 249
QIntValidator, 308–309
qjots application, 418–420
QLabel, 82–83, 253
QLayout, widgets, 251–260

exercises, 258–260
moving widgets across layouts, 256–258
overview of, 202–203, 251–254
spacing, stretching and struts, 254–255

QLineEdit, 402
QLinkedList<T>, 220
QList, 96–97, 102
QList<QString>, 220
QList<T>, 219
QListView, 417
QMainWindow

managing dock window regions,
270–272

overview of, 240–241
QSettings and, 242–243
restoreState( ), 243
saveState( ), 242

qmake
cleaning up files, 89
example of, 86–88

installing libraries, 176–177
online guide to, 89
overview of, 85
reusing other libraries, 172
downloading from source, 10
Win32 setup, 12

QMap
example of, 229–234
implementing property containers,

355–356
QMap<Key,T>, 220
QMenu, 260–262, 267–270
QMenuBar, 260–262, 267–270
QMessageBox, 244–246
QMetaObject, 344–345
QMetaProperty

accessing properties, 352
describing QObject properties, 349–350
overview of, 344–345

QModelIndex, 409, 411
QMultiMap<Key,T>, 220
QMutex, 302
qobject_cast, 345–347
QObject::inherits( ), 345
QObjectList, 192
QObjects, 191–212

child management in, 194–196
Composite pattern, 196–199
connecting to slots, 203–204
DataObject extension of, 353–354
defined, 192
layouts, 202–203
moc and, 209–210
overview of, 192–193
QApplication and event loop, 200–209
QWidgets as, 238
review questions, 212
signals and slots, 204–209
storage class, 471
thread safety and, 302
tr( ) and internationalization, 211
values and objects, 210

Qonsole
with keyboard events, 286–288
writing Xterm in Qt, 284–286

QPaintDevice, 238
QPicture, 249
QPixmap

animation, 290–294
handling images, 249–251

I N D E X

617

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 617



QProcess, 278–289
exercises, 288–289
overview of, 278–280
processes and environment, 280–283
Qonsole, 284–288
QThread vs., 304
review questions, 305

.qrc resource files, 248
QRegExp

overview of, 310–312
phone number recognition, 313–316
regular expression validation, 316–317

QRegExpValidator, 316–317
QSemaphore, 302
QSet<T>, 220
QSettings, 242–243, 405
QSlider widget, 293
qSort( ), 225–227
QSplitter, 296
QSqlQuery, 429
QStack<T>, 220
QStackedLayout, 251
QStackedWidget, 251
QString::arg( ), 211
QStringList

adding CaseIgnoreStrings to, 227
defined, 220
derivation and ArgumentList, 160–163
as implicitly shared classes, 225
input dialogs and widgets, 246–247
and iteration, 97–99, 101–102
processing command-line 

arguments, 160
views of, 272–274

QStrings
debugging and, 590
example using, 82–83
as implicitly shared classes, 225
input dialogs and widgets, 246–247
processing command-line arguments, 160

Qt, 233–235
assistant and designer, 593–594
building with debugging symbols, 588
connecting to MySQL, 425
containers, 504
core modules, 91
dates, 91–93
defined, 81
exercises and review questions, 93–94
getting help online, 89

heap memory cleanup, 39
lists, 96
Makefile, 82–85
namespace delimiter, 567
project files, 83–89
QApplication and QLabel, 82–83
QDir and QFileInfo for visiting files, 183
qmake, 85
reference material, 601
setup, open source platforms, 7–11
setup, Win32, 12
streams, 91–93
style guides and naming conventions, 90
widgets. See QWidgets
XML Module, 325

Qt 3, 7
Qt 4

installing from packages, 8–9
models and views, 409–411
modules, 91
nix open source platform requiring, 7
reusable components of, 179
viewing version installed on your 

system, 8
Qt Interest Mailing List, 89
Qt source tarball, 10
Qt SQL, 424–433

database models, 429–432
introduction to MySQL, 424–427
queries and result sets, 427–429
review questions, 433

QTableView, 411–412, 414, 417,
429–431, 565, 569

QtCentre, 89
QTextStream, 31, 82–83, 91–93
QThread, 290–304

exercises and review questions, 303–305
movie player with QTimer, 294–295
multiple threads, queues and loggers,

296–302
overview of, 290
QPixmap and animation, 290–294
QProcess vs., 304
thread safety and QObjects, 302
using QTimer vs., 295

QTimer, 294–295
QToolBar, 262–267
QTreeView, 417
QTreeWidgetItem, 417, 419
Quantifiers, regular expressions, 311

618

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 618



Queries
MP3 player, 561–563
Qt SQL, 427–429

Questions
dynamic form models, 395
form models, 397–399
rephrasing, 406

Queues, 296–302
QValidator, 308
QVariant, 350–352
QVBoxLayout, 251
QVector<T>, 220
QWaitCondition, 302
QWidget::addLayout, 251
QWidgets

categories, 239–240
defined, 238
dialogs, 244–248
images and resources, 248–251
layouts, 202–203, 251–260
overview of, 238–239
QActions, QMenu and QMenuBar,

260–262
QActions, Qtoolbars, and

QActionGroups, 262–270
QMainWindow, 240–241
QSettings, 242–243
regions and QDockWidgets, 270–272
review questions, 275
sending QEvents, 201
signals and slots, 205–209
views of QStringList, 272–274

QXmlContentHandler, 326–327, 328
QXmlDefaultHandler, 328, 378
QXmlSimpleReader, 326–327
QXMLSimpleReader, 378

R
rcc, resource compiler, 249
read( ), 279
readAllStandardOutput( ), 279
reader, invoking parser, 325–326
Reading strings, 33–34
readLine( ), 279
readyReadStandardOutput( ), 279
Refactoring, 136
Reference counting, 543
Reference parameters

declaring to be const, 121–122
overview of, 43–44, 118–121

Reference returns, from functions, 122–124
Reflective, defined, 343
Reflective programming, 341–358

anti-patterns, 342–343
DataObject, 353–355
exercises, 354–355
PropsMap, 355
Q_PROPERTY macro, 347–350
QMetaObject, 344–345
QVariant class, 350–352
review questions, 357
RTTI and qobject_cast, 345–347

Reflection pattern, 344
regex. See Regular expressions (regex)
Regions, QDockWidgets and, 270–272
Register, storage class, 470
Regular expressions (regex)

exercises and review questions, 318–319
overview of, 310–311
phone number recognition, 313–316
syntax, 311–312
validation, 316–317

reinterpret_cast, 453–454
Relational operators, 438
Relationships

defined, 55
exercises, 101
overview of, 99–101
review questions, 103

Reparenting, in QObject, 193
Required arguments, 158
Reserved keywords, C++, 575–576
Resource Collection File, 248
Resources

QWidgets, 248–251
sharing, 543, 547

restoreState( ), QMainWindow, 243
Result sets, Qt SQL, 427–429
Rethrown, exceptions, 496–497
Return values

arrays, 511–512
functions, 122

Returning references, from functions, 122
Reusing, other libraries, 171–172
Root, of tree, 197
Row insertion, MySQL, 426–427
RTTI (run-time type identification), 454–458

dynamic_cast, 454–456
qobject_cast and, 345–347
typeid( ), 456

I N D E X

619

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 619



run( ),
QProcess, 292
QThread, 300

Run-time binding
dynamic or late, 144
enabling with virtual keyword, 142

Run-time errors, debugging, 588
run-time type identification. See

RTTI (run-time type 
identification)

S
saveState( ), QMainWindow, 242
SAX parser

DOM vs., 330
importing objects with Abstract 

Factory, 377
overview of, 331–334

Scope
block, 52–53
class, 51
declaration determining, 464
file scope vs. block scope, 468–469
function, 465, 467
global, 471
identifier, 51, 465, 467
resolution operators, 50, 438
review questions, 478
storage class compared with, 470
types of, 465–468

Searches, finding header files, 85–86
Selection models, Qt 4, 409
Selection statements

defined, 15
exercise, 483
overview of, 480–482

Selector, media player, 552
Serialization, playlist, 560
Serializer pattern, 373–380

defining, 227–229
exporting to XML, 375–376
importing objects with Abstract Factory,

376–380
overview of, 373–375
review questions, 390

setApplicationName( ), 242
setContent( ), 330
setGeometry( ) function, 250
setOrganizationName( ), 242
setReadChannel( ), 279

Setup
open source platforms, 7–11
Win32, 12

setupForm( ), 309
setValue( )

form models, 397–398
QSettings, 242

Sharing resources, 543, 547
Shell scripting, 178
Shortcut operators, 26
Shout button, 202
Signals

defined, 204
making concurrent code easier to 

read, 279
QMetaObject, 344
QObject, 204–209
slots and, 204–209
speaking with, 297–302
synchronous or asynchronous, 208
transmitting data to objects across 

threads, 292
Signatures, function, 107
Signed integral types, 445–446
Simple statements, 480
Simple types, 22–24, 29–30
SimpleListApp, 272–274
Singleton pattern

defined, 360–361
qApp and, 365–366

Size, pointers, 24
sizeof( ) operator, 23–24
Slacker class, DOM tree walking, 332–334
Slacker’s DocBook, 323
Slash (/), as namespace delimiter, 567
Slots

connecting signals with, 301–302
connections to, 203–204
defined, 204
making concurrent code easier to 

read, 279
QMetaObject, 344
signals and, 204–209

Smart pointers, 39
auto_ptr, 384–385
member selection, 457

Sorting, qSort( ), 225–227
Source code

libraries packaged as, 170
reusable components, 171

620

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 620



Source selector, MP3 player, 553,
566–567

Spacing, widget layout, 254–255
Special characters, regular 

expressions, 310
split( ), QStringList and iteration,

97–99
SQL, Qt, 424–433

database models, 429–432
introduction to MySQL, 424–427
overview of, 91
queries and result sets, 427–429
review questions, 433

Standard headers, 577–578
Standard Library (STL)

dynamic memory and, 504
finding header files within, 86
heap memory cleanup, 39
lists, 96
standard headers, 577–578
strings, 30–31

Standards, C++, 6–7
start( )

processes, 278–279
threads, 291

startElement( ), 378–379
State of the object, 49
Statements

block, 480
compound, 480
conditional, 481–482
connect( ), 292
defined, 479
overview of, 480
prepared, 427
review questions, 502
selection, 15, 480–483
simple, 480
switch, 481–482
throw, 486–488, 497–498
try and catch, 490–494

static
binding, 144
block-scope, 63
keyword, 61–64, 467
local variables, 350
storage area, 470
using in Singleton pattern, 365
declaring, 476
namespaces and, 476–477

static_cast, 450
stderr, 279
std::list, 96
stdout, 279
STL (Standard Template Library). See

Standard Library (STL)
Storage class

const, 471–472
exercise, 472–473
globals, statics, and QObjects, 471
overview of, 470
register, 470
review questions, 478

Strategy pattern, 396
Streams, 31–34
Stretching, widget layout, 254–255
String literals, 20–21
StringInputField, 402
Strings

converting to enums, 350
QStringList and iteration, 97–99
reading, 33–34
Standard Library (STL), 30–31
writing, 32–33

Stroustrup, Bjarne, 6–7
struct

arrays of, 513
classes vs., 53
overview of, 48–49

Structural patterns, 182
Struts, widget layout, 254–255
Subclasses

defined, 137
QLayout, 251

SubObjects, 58–59
Subtraction (�) operator, 25
Suffolk University, 197–198
superClass( ), 344
switch statement, 481–482
Switched parameters, command-line

arguments, 158
Switches

command-line arguments, 158–163
compiler, 13–14

Symbols, enclosing, 15
Syntax

compiler errors, 587
multiple inheritance, 529–531
regular expressions (regex), 310–312
throw, 494

I N D E X

621

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 621



T
Table definition, MySQL, 425–426
Table models, 411–416
taglib, 381
Tags, XML, 324
Tarball

downloading, 9
overview of, 9

TARGET, make command, 88
target.path, make command, 88
Template<class T>, 217
Templates. See also Design patterns

auto_ptr, 384–385
causing generated code for each 

type, 350
class, 216–219
container, 219–221
declaration code for, 217
functions vs., 214–216
generics and, 214–219
instantiated, 215
parameters, 214
QList as template class, 96–97

Text editors, 598
this pointer, 68–70
Thrashing, memory allocation and, 515
Threads. See QThread
Thread-safe objects, 302
Throw( ), in function signature, 488–489
throw statements

exception expressions and, 497–498
overview of, 486–488
uses of, 494

Tilde (~) character, destructor 
names, 60

toString( ), 138–139, 142, 351–353
tr( ), and internationalization, 211
Trailing arguments, functions with, 109
Tree models, 417–420

exercises, 420
extended tree widget items, 418–420
overview of, 417–418

triggered( ) signals, QAction, 264
Trolltech Online Documentation, 89
try statements

nesting, 498
overview of, 490–494

type( ) member function, 200
Type modifier, 44
Typecast operators, 346

Typecasting, 449–454
ANSI standards, 450
const_cast, 450–453
C-style, 454
downcasting, 333, 454
dynamic_cast, 454–456
overview of, 449
reinterpret_cast, 453–454
static_cast, 450
typeid( ), 456

typeid operator, 345, 456–458, 524–525
Type-restricted, 385
Types, 437–461

casting, 449–454
conversion, 447
enumeration, 443–445
exercises, 458–460
hierarchy of, 447
logical expressions, 443
member selection, 457–458
operators, 438–442
overview of, 19–22
review questions, 461
run-time type identification (RTTI),

454–456
signed and unsigned integral types,

445–446
simple, 22–24, 29–30
variables, 49

U
Umbrello design tool, 54, 597
The Umbrello UML Modeller 

Handbook, 54
UML (Unified Modeling Language)

diagramming inheritance, 137
inheritance design with, 153
introduction to, 54–55
modeling tools, 597
relationships, 55

Unable to Find libxxx.so.x, linker error 
messages, 585

Unary operators
address of (&), 36–38
decrement (—), 26
deference (*), 37
increment (++), 26
not (!), 27
overloading and, 115

Undefined pointers, 508

622

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 622



Undefined Reference to [identifier], linker
error messages, 586–587

Undefined Reference to vtable for
ClassName, linker error messages, 587

Unforeseen types, 403–404
Unified Modeling Language. See UML

(Unified Modeling Language)
Union, 351
Unmanaged containers, 221–224
Unsigned integral types, 445–446
updateCursor( ), 287–288
USER, as environment variable, 280
USERNAME, as environment variable, 280
using declaration, namespaces, 15, 475
/usr/local, 176
utils library, reusing, 171–172

V
valgrind, profiler, 591–593
Validation, 307–319

exercises and review questions,
318–319

phone number recognition, 313–316
regular expressions, 316–317
regular expressions syntax, 310–312
using for, 310
validators, 308–309

Validators, 308–309
Value containers, 221
Value parameters, 116–117
Values

function return, 122
QObject, 210

Variable-length argument lists, 542–543
Variables

class types, 49
const, 471–472
declarations, 15
defined, 36
environment variables, 280–282
global, 466
initialization in C++, 465
local, 350
reference, 43–44

vector class, 488–489
Views. See also Models and views

form, 400–402
Qt 4, 409–411
separating models from views, 392

Virtual base classes, 535–536

Virtual destructors, 526–528
virtual functions

overriding and, 154
pure, 149–152
QAbstractTableModel, 414

Virtual inheritance, 534–535
virtual keyword

derivation with polymorphism 
using, 142–147

enabling runtime binding with, 142
virtual methods, parsing XML with, 327
Virtual pointers, 524–526
Virtual tables (vtables), inheritance and,

524–526
Visibility, 52
Visitor, generating playlists, 555–556
Visitor pattern, iteration and, 182–190

customizing with inheritance, 186–189
DOM tree walking, 331–334
exercises and review questions, 189–190
overview of, 184–186
QDir and QFileInfo (directories and

files), 183
void, 22
Vtables (vitual tables), 524

W
walkTree( ) method, 333
while, iteration structures, 483–484
Whitespace, pointer problems and, 505
Widgets. See also QWidgets

displaying current play list on MP3
player, 565

Qt designer, 594
tree, 417–420

Win32, setup, 12
Window, QWidget, 238
Windows

environment variables, 281
installing libraries in, 176–177
USERNAME environment 

variable, 280
Wrappers

FileTagger (façade example), 386–389
header files, 50
using auto_ptr in, 384–385

write( ), 279
Writing strings, 32–33
Wt8, 179
wxWidgets, 179

I N D E X

623

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 623



X
XML (eXtensible Markup Language),

321–340
encoding/decoding DataObjects as,

373–375
event-driven parsing, 325–329
exercises and review questions, 339
exporting to, 375–376
generating output with DOM,

335–339

HTML vs., 321–323
importing objects with Abstract Factory,

376–380
nodes, 324
Qt XML Module, 325
tree structures and DOM, 329–334
XML editors, 324

Xml module, Qt, 91, 325
xmllint, 325
Xterm, 284–286

624

I N D E X

ezus_138004_ind.qxd  8/4/06  1:37 PM  Page 624



Using Trolltech’s Qt you can build industrial-strength
C++ applications that run natively on Windows,
Linux/Unix, Mac OS X, and embedded Linux—
without making source code changes. With C++ GUI
Programming with Qt 4, Trolltech insiders have
written a start-to-finish guide to getting great results
with the most powerful version of Qt ever created: 
Qt 4.1.

Using this book, you’ll discover the most effective Qt
4 programming patterns and techniques and master
key technologies ranging from Qt’s model/view
architecture to Qt’s powerful new 2D paint engine.

The authors provide you with unparalleled insight into Qt’s event model and layout
system. Then, using realistic examples, they introduce superior techniques for
everything from basic GUI development to advanced database and XML integration.

• Includes new chapters on Qt 4’s model/view architecture and Qt’s new plugin
support, along with a brief introduction to Qtopia embedded programming

• Covers all Qt fundamentals, from dialogs and windows to implementing
application functionality

• Introduces best practices for layout management and event processing

• Shows how to make the most of Qt 4’s new APIs, including the powerful new
2D paint engine and the new easy-to-use container classes

• Contains completely updated material in every chapter

• Presents advanced Qt 4 techniques covered in no other book, from creating
both Qt and application plugins to interfacing with native APIs

• Contains an in-depth appendix on C++/Qt programming for experienced Java
developers

The accompanying CD-ROM includes the open source edition of Qt 4.1.1 for
Windows, Mac, Linux, and many Unixes, as well as MinGW, a set of freely available
development tools that can be used to build Qt applications on Windows and was
used to create the source code for the book’s examples.

The Only Official Best-Practice
Guide to Qt 4.1 Programming 

For more information, including a sample chapter, visit www.prenhallprofessional.com/title/0131872494.

C++ GUI Programming with Qt 4

0131872494 · © 2006 · 560 pages

Jasmin Blanchette and
Mark Summerfield

Ezust_BoB.qxd  7/28/06  11:49 AM  Page 1



www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles. 

IITad_7x9.25  4/17/03  3:49 PM  Page 1



PHPTR_Online_7x9_25.qxd  11/23/04  2:12 PM  Page 1



If you have difficulty registering on Safari Bookshelf or accessing the online edition,  
please e-mail customer-service@safaribooksonline.com.

THIS BOOK IS SAFARI ENABLED

INCLUDES FREE 45-DAY ACCESS TO THE ONLINE EDITION

The Safari® Enabled icon on the cover of your favorite technology  
book means the book is available through Safari Bookshelf. When you 
buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily 
search thousands of technical books, find code samples, download  
chapters, and access technical information whenever and wherever  
you need it.

TO GAIN 45-DAY SAFARI ENABLED ACCESS TO THIS BOOK: 

 • Go to http://www.prenhallprofessional.com/safarienabled

 • Complete the brief registration form

 • Enter the coupon code found in the front  
of this book on the “Copyright” page


	ezus_138004_fm.pdf
	ezus_138004_ch01.pdf
	ezus_138004_ch02.pdf
	ezus_138004_ch03.pdf
	ezus_138004_ch04.pdf
	ezus_138004_ch05.pdf
	ezus_138004_ch06.pdf
	ezus_138004_ch07.pdf
	ezus_138004_ch08.pdf
	ezus_138004_ch09.pdf
	ezus_138004_ch10.pdf
	ezus_138004_ch11.pdf
	ezus_138004_ch12.pdf
	ezus_138004_ch13.pdf
	ezus_138004_ch14.pdf
	ezus_138004_ch15.pdf
	ezus_138004_ch16.pdf
	ezus_138004_ch17.pdf
	ezus_138004_ch18.pdf
	ezus_138004_ch19.pdf
	ezus_138004_ch20.pdf
	ezus_138004_ch21.pdf
	ezus_138004_ch22.pdf
	ezus_138004_ch23.pdf
	ezus_138004_ch24.pdf
	ezus_138004_ch25.pdf
	ezus_138004_appA.pdf
	ezus_138004_appB.pdf
	ezus_138004_appC.pdf
	ezus_138004_bib.pdf
	ezus_138004_ind.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


