
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780131872486
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780131872486
https://plusone.google.com/share?url=http://www.informit.com/title/9780131872486
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780131872486
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780131872486/Free-Sample-Chapter

Thinking
in

Java
Fourth Edition

Bruce Eckel
President, MindView, Inc.

Comments from readers:
Thinking In Java should be read cover to cover by every Java programmer,
then kept close at hand for frequent reference. The exercises are challenging,
and the chapter on Collections is superb! Not only did this book help me to
pass the Sun Certified Java Programmer exam; it’s also the first book I turn
to whenever I have a Java question. Jim Pleger, Loudoun County
(Virginia) Government

Much better than any other Java book I’ve seen. Make that “by an order of
magnitude”... very complete, with excellent right-to-the-point examples and
intelligent, not dumbed-down, explanations ... In contrast to many other Java
books I found it to be unusually mature, consistent, intellectually honest,
well-written and precise. IMHO, an ideal book for studying Java. Anatoly
Vorobey, Technion University, Haifa, Israel

One of the absolutely best programming tutorials I’ve seen for any language.
Joakim Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin Pillay,
Registrar, King Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a
non-C programmer), but your book has brought me up to speed as fast as I
could read it. It’s really cool to be able to understand the underlying
principles and concepts from the start, rather than having to try to build that
conceptual model through trial and error. Hopefully I will be able to attend
your seminar in the not-too-distant future. Randall R. Hawley,
Automation Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I’ve read about a programming language… The
best book ever written on Java. Ravindra Pai, Oracle Corporation,
SUNOS product line

This is the best book on Java that I have ever found! You have done a great
job. Your depth is amazing. I will be purchasing the book when it is
published. I have been learning Java since October 96. I have read a few
books, and consider yours a “MUST READ.” These past few months we have
been focused on a product written entirely in Java. Your book has helped
solidify topics I was shaky on and has expanded my knowledge base. I have

even used some of your explanations as information in interviewing
contractors to help our team. I have found how much Java knowledge they
have by asking them about things I have learned from reading your book
(e.g., the difference between arrays and Vectors). Your book is great! Steve
Wilkinson, Senior Staff Specialist, MCI Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair, Software
Engineer, Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond mere
language description to a thoughtful, penetrating analytic tutorial that
doesn’t kowtow to The Manufacturers. I’ve read almost all the others—only
yours and Patrick Winston’s have found a place in my heart. I’m already
recommending it to customers. Thanks again. Richard Brooks, Java
Consultant, Sun Professional Services, Dallas

Bruce, your book is wonderful! Your explanations are clear and direct.
Through your fantastic book I have gained a tremendous amount of Java
knowledge. The exercises are also FANTASTIC and do an excellent job
reinforcing the ideas explained throughout the chapters. I look forward to
reading more books written by you. Thank you for the tremendous service
that you are providing by writing such great books. My code will be much
better after reading Thinking in Java. I thank you and I’m sure any
programmers who will have to maintain my code are also grateful to you.
Yvonne Watkins, Java Artisan, Discover Technologies, Inc.

Other books cover the WHAT of Java (describing the syntax and the libraries)
or the HOW of Java (practical programming examples). Thinking in Java is
the only book I know that explains the WHY of Java; why it was designed the
way it was, why it works the way it does, why it sometimes doesn’t work, why
it’s better than C++, why it’s not. Although it also does a good job of teaching
the what and how of the language, Thinking in Java is definitely the thinking
person’s choice in a Java book. Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like it. My
students like it, too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It is people
like you that dignify the future of the Internet and I just want to thank you for
your effort. It is very much appreciated. Patrick Barrell, Network Officer
Mamco, QAF Mfg. Inc.

I really, really appreciate your enthusiasm and your work. I download every
revision of your online books and am looking into languages and exploring
what I would never have dared (C#, C++, Python, and Ruby, as a side effect).
I have at least 15 other Java books (I needed 3 to make both JavaScript and
PHP viable!) and subscriptions to Dr. Dobbs, JavaPro, JDJ, JavaWorld, etc.,
as a result of my pursuit of Java (and Enterprise Java) and certification but I
still keep your book in higher esteem. It truly is a thinking man’s book. I
subscribe to your newsletter and hope to one day sit down and solve some of
the problems you extend for the solutions guides for you (I’ll buy the guides!)
in appreciation. But in the meantime, thanks a lot. Joshua Long,
www.starbuxman.com

Most of the Java books out there are fine for a start, and most just have
beginning stuff and a lot of the same examples. Yours is by far the best
advanced thinking book I’ve seen. Please publish it soon! ... I also bought
Thinking in C++ just because I was so impressed with Thinking in Java.
George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your
Thinking in C++ (a book that stands prominently on my shelf here at work).
And today I’ve been able to delve into Java with your e-book in my virtual
hand, and I must say (in my best Chevy Chase from Modern Problems), “I
like it!” Very informative and explanatory, without reading like a dry
textbook. You cover the most important yet the least covered concepts of Java
development: the whys. Sean Brady

I develop in both Java and C++, and both of your books have been lifesavers
for me. If I am stumped about a particular concept, I know that I can count
on your books to a) explain the thought to me clearly and b) have solid
examples that pertain to what I am trying to accomplish. I have yet to find
another author that I continually whole-heartedly recommend to anyone who
is willing to listen. Josh Asbury, A^3 Software Consulting,
Cincinnati, Ohio

Your examples are clear and easy to understand. You took care of many
important details of Java that can’t be found easily in the weak Java
documentation. And you don’t waste the reader’s time with the basic facts a
programmer already knows. Kai Engert, Innovative Software,
Germany

I’m a great fan of your Thinking in C++ and have recommended it to
associates. As I go through the electronic version of your Java book, I’m
finding that you’ve retained the same high level of writing. Thank you! Peter
R. Neuwald

VERY well-written Java book...I think you’ve done a GREAT job on it. As the
leader of a Chicago-area Java special interest group, I’ve favorably mentioned
your book and Web site several times at our recent meetings. I would like to
use Thinking in Java as the basis for a part of each monthly SIG meeting, in
which we review and discuss each chapter in succession. Mark Ertes

By the way, printed TIJ2 in Russian is still selling great, and remains
bestseller. Learning Java became synonym of reading TIJ2, isn’t that nice?
Ivan Porty, translator and publisher of Thinking in Java 2nd
Edition in Russian

I really appreciate your work and your book is good. I recommend it here to
our users and Ph.D. students. Hugues Leroy // Irisa-Inria Rennes
France, Head of Scientific Computing and Industrial Tranfert

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve already found
it to be the most clearly written and presented programming book I’ve come
across...and I’m a writer, myself, so I am probably a little critical. I have
Thinking in C++ on order and can’t wait to crack it—I’m fairly new to
programming and am hitting learning curves head-on everywhere. So this is
just a quick note to say thanks for your excellent work. I had begun to burn a
little low on enthusiasm from slogging through the mucky, murky prose of
most computer books—even ones that came with glowing recommendations.
I feel a whole lot better now. Glenn Becker, Educational Theatre
Association

Thank you for making your wonderful book available. I have found it
immensely useful in finally understanding what I experienced as confusing in
Java and C++. Reading your book has been very satisfying. Felix Bizaoui,
Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at
Thinking in Java based on my experience with Thinking in C++, and I was
not disappointed. Jaco van der Merwe, Software Specialist,
DataFusion Systems Ltd, Stellenbosch, South Africa

This has to be one of the best Java books I’ve seen. E.F. Pritchard, Senior
Software Engineer, Cambridge Animation Systems Ltd., United
Kingdom

Your book makes all the other Java books I’ve read or flipped through seem
doubly useless and insulting. Brett Porter, Senior Programmer, Art &
Logic

I have been reading your book for a week or two and compared to the books I
have read earlier on Java, your book seems to have given me a great start. I
have recommended this book to a lot of my friends and they have rated it
excellent. Please accept my congratulations for coming out with an excellent
book. Rama Krishna Bhupathi, Software Engineer, TCSI
Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I’ve been
using it as a major reference for in-house Java work. I find that the table of
contents is just right for quickly locating the section that is required. It’s also
nice to see a book that is not just a rehash of the API nor treats the
programmer like a dummy. Grant Sayer, Java Components Group
Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and admittedly
a couple of good) Java books out there, but from what I’ve seen yours is
definitely one of the best. John Root, Web Developer, Department of
Social Security, London

I’ve just started Thinking in Java. I expect it to be very good because I really
liked Thinking in C++ (which I read as an experienced C++ programmer,
trying to stay ahead of the curve) … You are a wonderful author. Kevin K.
Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book.
Thank you for making it available for free over the Internet. If you wouldn’t
have I’d know nothing about Java at all. But the best thing is that your book
isn’t a commercial brochure for Java. It also shows the bad sides of Java.
YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when I
wanted to start with C++, it was C++ Inside & Out which took me around the
fascinating world of C++. It helped me in getting better opportunities in life.
Now, in pursuit of more knowledge and when I wanted to learn Java, I

bumped into Thinking in Java—no doubts in my mind as to whether I need
some other book. Just fantastic. It is more like rediscovering myself as I get
along with the book. It is just a month since I started with Java, and heartfelt
thanks to you, I am understanding it better now. Anand Kumar S.,
Software Engineer, Computervision, India

Your book stands out as an excellent general introduction. Peter Robinson,
University of Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I
just want you to know how lucky I feel to have found it. THANKS! Chuck
Peterson, Product Leader, Internet Product Line, IVIS
International

The book is great. It’s the third book on Java I’ve started and I’m about two-
thirds of the way through it now. I plan to finish this one. I found out about it
because it is used in some internal classes at Lucent Technologies and a
friend told me the book was on the Net. Good work. Jerry Nowlin, MTS,
Lucent Technologies

Of the six or so Java books I’ve accumulated to date, your Thinking in Java is
by far the best and clearest. Michael Van Waas, Ph.D., President, TMR
Associates

I just want to say thanks for Thinking in Java. What a wonderful book you’ve
made here! Not to mention downloadable for free! As a student I find your
books invaluable (I have a copy of C++ Inside Out, another great book about
C++), because they not only teach me the how-to, but also the whys, which
are of course very important in building a strong foundation in languages
such as C++ or Java. I have quite a lot of friends here who love programming
just as I do, and I’ve told them about your books. They think it’s great!
Thanks again! By the way, I’m Indonesian and I live in Java. Ray Frederick
Djajadinata, Student at Trisakti University, Jakarta

The mere fact that you have made this work free over the Net puts me into
shock. I thought I’d let you know how much I appreciate and respect what
you’re doing. Shane LeBouthillier, Computer Engineering student,
University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly column.
As a newbie to the world of object oriented programming, I appreciate the
time and thoughtfulness that you give to even the most elementary topic. I

have downloaded your book, but you can bet that I will purchase the hard
copy when it is published. Thanks for all of your help. Dan Cashmer, B. C.
Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon the
PDF version of Thinking in Java. Even before I finished reading it, I ran to
the store and found Thinking in C++. Now, I have been in the computer
business for over eight years, as a consultant, software engineer,
teacher/trainer, and recently as self-employed, so I’d like to think that I have
seen enough (not “have seen it all,” mind you, but enough). However, these
books cause my girlfriend to call me a ”geek.” Not that I have anything
against the concept—it is just that I thought this phase was well beyond me.
But I find myself truly enjoying both books, like no other computer book I
have touched or bought so far. Excellent writing style, very nice introduction
of every new topic, and lots of wisdom in the books. Well done. Simon
Goland, simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of
documentation I was looking for. Especially the sections about good and poor
software design using Java. Dirk Duehr, Lexikon Verlag, Bertelsmann
AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in Java).
You have helped me immensely in my progression to object oriented
programming. Donald Lawson, DCL Enterprises

Thank you for taking the time to write a really helpful book on Java. If
teaching makes you understand something, by now you must be pretty
pleased with yourself. Dominic Turner, GEAC Support

It’s the best Java book I have ever read—and I read some. Jean-Yves
MENGANT, Chief Software Architect NAT-SYSTEM, Paris, France

Thinking in Java gives the best coverage and explanation. Very easy to read,
and I mean the code fragments as well. Ron Chan, Ph.D., Expert Choice,
Inc., Pittsburgh, Pa.

Your book is great. I have read lots of programming books and your book still
adds insights to programming in my mind. Ningjian Wang, Information
System Engineer, The Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all my
students. Dr. Paul Gorman, Department of Computer Science,
University of Otago, Dunedin, New Zealand

With your book, I have now understood what object oriented programming
means. ... I believe that Java is much more straightforward and often even
easier than Perl. Torsten Römer, Orange Denmark

You make it possible for the proverbial free lunch to exist, not just a soup
kitchen type of lunch but a gourmet delight for those who appreciate good
software and books about it. Jose Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece! IT
IS THE BEST book on the subject that I’ve read or browsed. Jeff
Lapchinsky, Programmer, Net Results Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java
Research & Development Team, KL Group Inc.

It truly is the best book I’ve read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior Architect,
West Group

Thank you for a wonderful book. I’m having a lot of fun going through the
chapters. Fred Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the
details. You make learning VERY easy and satisfying. Thank you for a truly
wonderful tutorial. Rajesh Rau, Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President,
Idocs Inc.

About Thinking in C++:

Winner of the 1995 Software Development Magazine Jolt Award
for Best Book of the Year

“This book is a tremendous achievement. You owe it to yourself to
have a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I’ve seen
to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also an
excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking
in C++ is his best collection of ideas yet. If you want clear answers to
difficult questions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance, and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance. The
entire effort is woven in a fabric that includes Eckel’s own philosophy
of object and program design. A must for every C++ developer’s
bookshelf, Thinking in C++ is the one C++ book you must have if
you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
in

Java
Fourth Edition

Bruce Eckel
President, MindView, Inc.

Upper Saddle River, NJ ● Boston ● Indianapolis ● San Francisco
New York ● Toronto ● Montreal ● London ● Munich ● Paris

Madrid ● Capetown ● Sydney ● Tokyo ● Singapore ● Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

Java is a trademark of Sun Microsystems, Inc. Windows 95, Windows NT, Windows 2000, and
Windows XP are trademarks of Microsoft Corporation. All other product names and company
names mentioned herein are the property of their respective owners.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include custom covers and/or content particular to your
business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.informit.com

Cover design and interior design by Daniel Will-Harris, www.Will-Harris.com

Library of Congress Cataloging-in-Publication Data:

Eckel, Bruce.
 Thinking in Java / Bruce Eckel.—4th ed.

p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-187248-6 (pbk. : alk. paper)

1. Java (Computer program language) I. Title.
 QA76.73.J38E25 2006
 005.13'3—dc22

 2005036339

Copyright © 2006 by Bruce Eckel, President, MindView, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-187248-6

First printing, January 2006

Dedication
To Dawn

Overview
Preface 1

Introduction 13

Introduction to Objects 23

Everything Is an Object 61

Operators 93

Controlling Execution 135

Initialization & Cleanup 155

Access Control 209

Reusing Classes 237

Polymorphism 277

Interfaces 311

Inner Classes 345

Holding Your Objects 389

Error Handling with Exceptions 443

Strings 503

Type Information 553

Generics 617

Arrays 747

Containers in Depth 791

I/O 901

Enumerated Types 1011

Annotations 1059

Concurrency 1109

Graphical User Interfaces 1303

A: Supplements 1449

B: Resources 1455

Index 1463

What’s Inside
Preface 1

Java SE5 and SE6.................. 2
Java SE6... 3

The 4th edition 3
Changes .. 4

Note on the cover design 6
Acknowledgements7

Introduction 13
Prerequisites14
Learning Java.......................14
Goals.....................................15
Teaching from this book16
JDK HTML
documentation 17
Exercises............................... 17
Foundations for Java18
Source code18

Coding standards21
Errors21

Introduction to Objects 23
The progress
of abstraction 24
An object has
an interface.......................... 26
An object
provides services 29
The hidden
implementation................... 30
Reusing the
implementation................... 32
Inheritance 33

Is-a vs. is-like-a relationships...... 37

Interchangeable objects
with polymorphism.............38
The singly rooted
hierarchy.............................. 43
Containers 44

Parameterized types (Generics) ...45
Object creation & lifetime ... 46
Exception handling:
dealing with errors 49
Concurrent programming... 50
Java and the Internet51

What is the Web?.......................... 51
Client-side programming53
Server-side programming59

Summary60
Everything Is an Object 61

You manipulate objects
with references61
You must create
all the objects....................... 63

Where storage lives63
Special case: primitive types65
Arrays in Java66

You never need to
destroy an object 67

Scoping ...67
Scope of objects68

Creating new data types:
class 69

Fields and methods70
Methods, arguments,
and return values 72

The argument list 73

Building a Java program..... 74
Name visibility 74
Using other components...............75
The static keyword...................... 76

Your first Java program...... 78
Compiling and running................80

Comments and embedded
documentation81

Comment documentation............ 82
Syntax... 83
Embedded HTML 84
Some example tags....................... 85
Documentation example.............. 87

Coding style.........................88
Summary 89
Exercises.............................. 89

Operators 93
Simpler print statements 93
Using Java operators 94
Precedence 95
Assignment.......................... 95

Aliasing during method calls 97
Mathematical operators...... 98

Unary minus

and plus operators 101
Auto increment and
decrement........................... 101
Relational operators.......... 103

Testing object equivalence......... 103
Logical operators................105

Short-circuiting.......................... 106
Literals............................... 108

Exponential notation 109
Bitwise operators111
Shift operators.................... 112
Ternary if-else operator ... 116
String operator
+ and +=............................. 118

Common pitfalls
when using operators......... 119
Casting operators 120

Truncation and rounding121
Promotion................................... 122

Java has no “sizeof”........... 122
A compendium
of operators 123
Summary133

Controlling Execution 135
true and false135
if-else.................................135
Iteration..............................137

do-while.................................... 138
for... 138
The comma operator 140

Foreach syntax 140
return............................... 143
break and continue 144
The infamous “goto” 146
switch................................ 151
Summary154

Initialization & Cleanup 155
Guaranteed initialization
with the constructor155
Method overloading 158

Distinguishing

overloaded methods 160
Overloading with primitives........161
Overloading on return values..... 165

Default constructors.......... 166
The this keyword...............167

Calling constructors

from constructors 170
The meaning of static................ 172

Cleanup: finalization
and garbage collection173

What is finalize() for? 174

You must perform cleanup 175
The termination condition..........176
How a garbage collector works...178

Member initialization 181
Specifying initialization183

Constructor initialization...185
Order of initialization185
static data initialization............ 186
Explicit static initialization 190
Non-static

instance initialization 191
Array initialization193

Variable argument lists.............. 198
Enumerated types204
Summary 207

Access Control 209
package:
the library unit 210

Code organization212
Creating unique

package names213
A custom tool library217
Using imports

to change behavior..................... 220
Package caveat 220

Java access specifiers221
Package access221
public: interface access 222
private: you can’t touch that!... 224
protected: inheritance access.. 225

Interface
and implementation.......... 228
Class access 229
Summary 233

Reusing Classes 237
Composition syntax 237
Inheritance syntax241

Initializing the base class 244

Delegation246
Combining composition
and inheritance249

Guaranteeing proper cleanup 251
Name hiding255

Choosing composition
vs. inheritance 256
protected......................... 258
Upcasting...........................260

Why “upcasting”? 261
Composition vs. inheritance

revisited 261
The final keyword262

final data....................................262
final methods267
final classes270
final caution 271

Initialization
and class loading 272

Initialization with inheritance....272
Summary 274

Polymorphism 277
Upcasting revisited............ 278

Forgetting the object type279
The twist 281

Method-call binding 281
Producing the right behavior282
Extensibility................................286
Pitfall: “overriding”

private methods....................... 290
Pitfall: fields

and static methods................... 290
Constructors and
polymorphism 293

Order of constructor calls...........293
Inheritance and cleanup.............295
Behavior of polymorphic

methods inside constructors 301
Covariant return types303

Designing
with inheritance304

Substitution vs. extension.......... 306
Downcasting and runtime

type information308
Summary 310

Interfaces 311
Abstract classes
and methods....................... 311
Interfaces............................316
Complete decoupling320
“Multiple inheritance”
in Java 326
Extending an interface
with inheritance 329

Name collisions when

combining interfaces 330
Adapting to an interface331
Fields in interfaces 335

Initializing fields in interfaces ... 335
Nesting interfaces 336
Interfaces and factories..... 339
Summary 343

Inner Classes 345
Creating inner classes 345
The link to
the outer class 347
Using .this and .new 350
Inner classes
and upcasting 352
Inner classes in
methods and scopes 354
Anonymous
inner classes 356

Factory Method revisited............361
Nested classes 364

Classes inside interfaces 366

Reaching outward from

a multiply nested class368
Why inner classes?369

Closures & callbacks372
Inner classes &

control frameworks 375
Inheriting from
inner classes382
Can inner classes
be overridden?...................383
Local inner classes 385
Inner-class identifiers 387
Summary388

Holding Your Objects 389
Generics and
type-safe containers390
Basic concepts394
Adding groups
of elements396
Printing containers398
List 401
Iterator406

ListIterator 409
LinkedList....................... 410
Stack................................. 412
Set415
Map................................... 419
Queue 423

PriorityQueue425
Collection vs. Iterator .. 427
Foreach and iterators 431

The Adapter Method idiom........434
Summary 437

Error Handling
with Exceptions 443

Concepts444
Basic exceptions 445

Exception arguments..................446

Catching an exception....... 447
The try block.............................. 447
Exception handlers 448

Creating your
own exceptions.................. 449

Exceptions and logging.............. 452
The exception
specification 457
Catching any exception..... 458

The stack trace460
Rethrowing an exception461
Exception chaining 464

Standard Java
exceptions..........................468

Special case:

RuntimeException 469
Performing cleanup
with finally........................471

What’s finally for? 473
Using finally during return 476
Pitfall: the lost exception477

Exception restrictions 479
Constructors...................... 483
Exception matching489
Alternative approaches490

History.. 492
Perspectives 494
Passing exceptions

to the console 497
Converting checked

to unchecked exceptions............ 497
Exception guidelines.........500
Summary501

Strings 503
Immutable Strings 503
Overloading ‘+’ vs.
StringBuilder................. 504
Unintended recursion....... 509
Operations on Strings 511

Formatting output..............514
printf() 514
System.out.format() 514
The Formatter class................. 515
Format specifiers........................ 516
Formatter conversions 518
String.format() 521

Regular expressions 523
Basics ..524
Creating regular expressions...... 527
Quantifiers..................................529
Pattern and Matcher 531
split()...540
Replace operations 541
reset()..544
Regular expressions

and Java I/O544
Scanning input 546

Scanner delimiters549
Scanning with

regular expressions.....................550
StringTokenizer551
Summary 552

Type Information 553
The need for RTTI............. 553
The Class object 556

Class literals................................562
Generic class references565
New cast syntax568

Checking before a cast....... 569
Using class literals 576
A dynamic instanceof578
Counting recursively.................. 580

Registered factories........... 582
instanceof vs. Class
equivalence........................586
Reflection: runtime
class information...............588

A class method extractor590

Dynamic proxies 593
Null Objects....................... 598

Mock Objects & Stubs606
Interfaces and
type information 607
Summary613

Generics 617
Comparison with C++....... 618
Simple generics619

A tuple library621
A stack class 625
RandomList 626

Generic interfaces 627
Generic methods631

Leveraging type

argument inference.................... 633
Varargs and generic methods 635
A generic method

to use with Generators............ 636
A general-purpose Generator . 637
Simplifying tuple use 639
A Set utility.................................641

Anonymous
inner classes 645
Building
complex models 647
The mystery of erasure 650

The C++ approach 652
Migration compatibility 655
The problem with erasure.......... 656
The action at the boundaries 658

Compensating
for erasure 662

Creating instances of types 664
Arrays of generics....................... 667

Bounds............................... 673
Wildcards677

How smart is the compiler?.......680
Contravariance........................... 682

Unbounded wildcards 686
Capture conversion692

Issues694
No primitives

as type parameters694
Implementing

parameterized interfaces............696
Casting and warnings697
Overloading699
Base class hijacks an interface .. 700

Self-bounded types............ 701
Curiously-recurring generics...... 701
Self-bounding703
Argument covariance706

Dynamic type safety 710
Exceptions 711
Mixins.................................713

Mixins in C++............................. 714
Mixing with interfaces................ 715
Using the Decorator pattern717
Mixins with dynamic proxies 719

Latent typing721
Compensating for
the lack of latent typing..... 726

Reflection....................................726
Applying a method

to a sequence728
When you don’t happen

to have the right interface 731
Simulating latent typing

with adapters733
Using function objects
as strategies 737
Summary: Is casting
really so bad?..................... 743

Further reading746
Arrays 747

Why arrays are special 747

Arrays are
first-class objects............... 749
Returning an array............ 753
Multidimensional
arrays................................. 754
Arrays and generics........... 759
Creating test data 762

Arrays.fill() 762
Data Generators 763
Creating arrays

from Generators...................... 770
Arrays utilities..................775

Copying an array775
Comparing arrays777
Array element comparisons....... 778
Sorting an array 782
Searching a sorted array 784

Summary 786
Containers in Depth 791

Full container taxonomy....791
Filling containers 793

A Generator solution............... 794
Map generators 796
Using Abstract classes800

Collection
functionality809
Optional operations813

Unsupported operations.............815
List functionality817
Sets and storage order...... 821

SortedSet 825
Queues............................... 827

Priority queues...........................828
Deques.. 829

Understanding Maps831
Performance............................... 833
SortedMap............................... 837
LinkedHashMap838

Hashing and hash codes ... 839

Understanding hashCode().....843
Hashing for speed.......................847
Overriding hashCode()............ 851

Choosing
an implementation............858

A performance

test framework............................859
Choosing between Lists.............863
Microbenchmarking dangers 871
Choosing between Sets872
Choosing between Maps............875

Utilities 879
Sorting and searching Lists...... 884
Making a Collection

or Map unmodifiable.................885
Synchronizing a

Collection or Map887
Holding references889

The WeakHashMap892
Java 1.0/1.1 containers......893

Vector & Enumeration 894
Hashtable895
Stack ..895
BitSet...897

Summary900
I/O 901

The File class 901
A directory lister 902
Directory utilities....................... 906
Checking for

and creating directories.............. 912
Input and output 914

Types of InputStream 915
Types of OutputStream 917

Adding attributes
and useful interfaces 918

Reading from an InputStream

with FilterInputStream 919

Writing to an OutputStream

with FilterOutputStream.......921
Readers & Writers......... 922

Sources and sinks of data........... 923
Modifying stream behavior........ 924
Unchanged classes 925

Off by itself:
RandomAccessFile....... 926
Typical uses
of I/O streams 927

Buffered input file 927
Input from memory 928
Formatted memory input 929
Basic file output 930
Storing and recovering data....... 932
Reading and writing

random-access files.................... 934
Piped streams............................. 936

File reading
& writing utilities 936

Reading binary files940
Standard I/O941

Reading from standard input941
Changing System.out

to a PrintWriter 942
Redirecting standard I/O........... 942

Process control.................. 944
New I/O............................. 946

Converting data.......................... 950
Fetching primitives 953
View buffers 955
Data manipulation

with buffers960
Buffer details 962
Memory-mapped files................ 966
File locking................................. 970

Compression 973
Simple compression

with GZIP 974

Multifile storage with Zip 975
Java ARchives (JARs)978

Object serialization980
Finding the class........................ 984
Controlling serialization............ 986
Using persistence996

XML................................. 1003
Preferences 1006
Summary1008

Enumerated Types 1011
Basic enum features 1011

Using static imports

with enums.............................. 1013
Adding methods
to an enum1014

Overriding enum methods...... 1015
enums in
switch statements...........1016
The mystery
of values().......................1017
Implements,
not inherits 1020
Random selection.............1021
Using interfaces
for organization............... 1022
Using EnumSet
instead of flags................. 1028
Using EnumMap........... 1030
Constant-specific
methods 1032

Chain of Responsibility

with enums..............................1036
State machines with enums 1041

Multiple dispatching 1047
Dispatching with enums1050
Using

constant-specific methods........ 1053
Dispatching

with EnumMaps..................... 1055

Using a 2-D array..................... 1056
Summary1057

Annotations 1059
Basic syntax..................... 1060

Defining annotations1061
Meta-annotations..................... 1063

Writing
annotation processors..... 1064

Annotation elements................ 1065
Default value constraints 1065
Generating external files.......... 1066
Annotations don’t

support inheritance.................. 1070
Implementing the processor..... 1071

Using apt to
process annotations1074
Using the Visitor pattern
with apt............................1079
Annotation-based
unit testing 1083

Using @Unit with generics..... 1094
No “suites” necessary............... 1095
Implementing @Unit.............. 1096
Removing test code...................1104

Summary1106
Concurrency 1109

The many faces of
concurrency....................... 1111

Faster execution......................... 1111
Improving code design1114

Basic threading 1116
Defining tasks1116
The Thread class 1118
Using Executors......................1120
Producing return values

from tasks.................................. 1124
Sleeping..................................... 1126
Priority 1127

Yielding......................................1129
Daemon threads 1130
Coding variations1135
Terminology1142
Joining a thread.........................1143
Creating responsive

user interfaces1145
Thread groups1146
Catching exceptions...................1147

Sharing resources.............1150
Improperly

accessing resources 1150
Resolving shared

resource contention...................1153
Atomicity and volatility 1160
Atomic classes1167
Critical sections1169
Synchronizing on

other objects1175
Thread local storage 1177

Terminating tasks 1179
The ornamental garden1179
Terminating when blocked....... 1183
Interruption...............................1185
Checking for an interrupt..........1194

Cooperation
between tasks 1197

wait() and notifyAll() 1198
notify() vs. notifyAll()..........1204
Producers and consumers1208
Producer-consumers

and queues.................................1215
Using pipes for I/O

between tasks1221
Deadlock.......................... 1223
New library
components 1229

CountDownLatch 1230
CyclicBarrier 1232

DelayQueue1235
PriorityBlockingQueue1239
The greenhouse controller

with ScheduledExecutor......1242
Semaphore1246
Exchanger.............................. 1250

Simulation........................1253
Bank teller simulation...............1253
The restaurant simulation1259
Distributing work......................1264

Performance tuning1270
Comparing

mutex technologies 1271
Lock-free containers 1281
Optimistic locking.................... 1290
ReadWriteLocks1292

Active objects1295
Summary 1300

Further reading........................ 1302
Graphical
User Interfaces 1303

Applets............................. 1306
Swing basics1307

A display framework1310
Making a button................1311
Capturing an event........... 1312
Text areas 1315
Controlling layout 1317

BorderLayout 1317
FlowLayout 1318
GridLayout 1319
GridBagLayout 1320
Absolute positioning 1320
BoxLayout 1320
The best approach? 1321

The Swing event model.... 1321
Event and listener types............1322
Tracking multiple events1329

A selection of
Swing components 1332

Buttons 1333
Icons .. 1335
Tool tips 1337
Text fields 1338
Borders1340
A mini-editor1341
Check boxes 1342
Radio buttons 1344
Combo boxes

(drop-down lists) 1345
List boxes 1347
Tabbed panes............................ 1349
Message boxes 1350
Menus 1352
Pop-up menus 1359
Drawing1360
Dialog boxes 1364
File dialogs................................ 1368
HTML on

Swing components 1370
Sliders and progress bars1371
Selecting look & feel 1373
Trees, tables & clipboard.......... 1376

JNLP and
Java Web Start1376
Concurrency & Swing...... 1382

Long-running tasks 1382
Visual threading1391

Visual programming
and JavaBeans................. 1393

What is a JavaBean?................. 1395
Extracting BeanInfo

with the Introspector 1397
A more sophisticated Bean.......1403
JavaBeans

and synchronization 1407
Packaging a Bean.......................1412

More complex Bean support..... 1414
More to Beans 1415

Alternatives to Swing 1415
Building Flash Web
clients with Flex 1416

Hello, Flex 1416
Compiling MXML 1418
MXML and ActionScript........... 1419
Containers and controls........... 1420
Effects and styles.......................1422
Events..1423
Connecting to Java....................1424
Data models

and data binding1427
Building and deploying............ 1428

Creating SWT
applications 1430

Installing SWT 1431
Hello, SWT 1431
Eliminating redundant code.....1434
Menus..1436
Tabbed panes, buttons,

and events 1438
Graphics1442
Concurrency in SWT.................1444
SWT vs. Swing?.........................1447

Summary1447
Resources 1448

A: Supplements 1449
Downloadable
supplements 1449
Thinking in C:
Foundations for Java 1449
Thinking in Java
seminar............................ 1450
Hands-On Java
seminar-on-CD................ 1450
Thinking in Objects
seminar............................ 1450
Thinking in
Enterprise Java 1451
Thinking in Patterns
(with Java)....................... 1452
Thinking in Patterns
seminar............................ 1452
Design consulting
and reviews.......................1453

B: Resources 1455
Software............................1455
Editors & IDEs1455
Books 1456

Analysis & design...................... 1457
Python.......................................1460
My own list of books.................1460

Index 1463

Preface
I originally approached Java as “just another
programming language,” which in many senses it is.

But as time passed and I studied it more deeply, I began to see that the
fundamental intent of this language was different from other languages I had
seen up to that point.

Programming is about managing complexity: the complexity of the problem
you want to solve, laid upon the complexity of the machine in which it is
solved. Because of this complexity, most of our programming projects fail.
And yet, of all the programming languages of which I am aware, almost none
have gone all out and decided that their main design goal would be to
conquer the complexity of developing and maintaining programs.1 Of course,
many language design decisions were made with complexity in mind, but at
some point there were always other issues that were considered essential to
be added into the mix. Inevitably, those other issues are what cause
programmers to eventually “hit the wall” with that language. For example,
C++ had to be backwards-compatible with C (to allow easy migration for C
programmers), as well as efficient. Those are both very useful goals and
account for much of the success of C++, but they also expose extra complexity
that prevents some projects from being finished (certainly, you can blame
programmers and management, but if a language can help by catching your
mistakes, why shouldn’t it?). As another example, Visual BASIC (VB) was tied
to BASIC, which wasn’t really designed to be an extensible language, so all the
extensions piled upon VB have produced some truly unmaintainable syntax.
Perl is backwards-compatible with awk, sed, grep, and other Unix tools it was
meant to replace, and as a result it is often accused of producing “write-only
code” (that is, after a while you can’t read it). On the other hand, C++, VB,
Perl, and other languages like Smalltalk had some of their design efforts
focused on the issue of complexity and as a result are remarkably successful
in solving certain types of problems.

1 However, I believe that the Python language comes closest to doing exactly that. See
www.Python.org.

2 Thinking in Java Bruce Eckel

What has impressed me most as I have come to understand Java is that
somewhere in the mix of Sun’s design objectives, it seems that there was a
goal of reducing complexity for the programmer. As if to say, “We care about
reducing the time and difficulty of producing robust code.” In the early days,
this goal resulted in code that didn’t run very fast (although this has
improved over time), but it has indeed produced amazing reductions in
development time—half or less of the time that it takes to create an equivalent
C++ program. This result alone can save incredible amounts of time and
money, but Java doesn’t stop there. It goes on to wrap many of the complex
tasks that have become important, such as multithreading and network
programming, in language features or libraries that can at times make those
tasks easy. And finally, it tackles some really big complexity problems: cross-
platform programs, dynamic code changes, and even security, each of which
can fit on your complexity spectrum anywhere from “impediment” to “show-
stopper.” So despite the performance problems that we’ve seen, the promise
of Java is tremendous: It can make us significantly more productive
programmers.

In all ways—creating the programs, working in teams, building user
interfaces to communicate with the user, running the programs on different
types of machines, and easily writing programs that communicate across the
Internet—Java increases the communication bandwidth between people.

I think that the results of the communication revolution may not be seen
from the effects of moving large quantities of bits around. We shall see the
true revolution because we will all communicate with each other more easily:
one-on-one, but also in groups and as a planet. I’ve heard it suggested that
the next revolution is the formation of a kind of global mind that results from
enough people and enough interconnectedness. Java may or may not be the
tool that foments that revolution, but at least the possibility has made me feel
like I’m doing something meaningful by attempting to teach the language.

Java SE5 and SE6
This edition of the book benefits greatly from the improvements made to the
Java language in what Sun originally called JDK 1.5, and then later changed
to JDK5 or J2SE5, then finally they dropped the outdated “2” and changed it
to Java SE5. Many of the Java SE5 language changes were designed to
improve the experience of the programmer. As you shall see, the Java

Preface 3

language designers did not completely succeed at this task, but in general
they made large steps in the right direction.

One of the important goals of this edition is to completely absorb the
improvements of Java SE5/6, and to introduce and use them throughout this
book. This means that this edition takes the somewhat bold step of being
“Java SE5/6-only,” and much of the code in the book will not compile with
earlier versions of Java; the build system will complain and stop if you try.
However, I think the benefits are worth the risk.

If you are somehow fettered to earlier versions of Java, I have covered the
bases by providing free downloads of previous editions of this book via
www.MindView.net. For various reasons, I have decided not to provide the
current edition of the book in free electronic form, but only the prior editions.

Java SE6
This book was a monumental, time-consuming project, and before it was
published, Java SE6 (code-named mustang) appeared in beta form. Although
there were a few minor changes in Java SE6 that improved some of the
examples in the book, for the most part the focus of Java SE6 did not affect
the content of this book; the features were primarily speed improvements and
library features that were outside the purview of this text.

The code in this book was successfully tested with a release candidate of Java
SE6, so I do not expect any changes that will affect the content of this book. If
there are any important changes by the time Java SE6 is officially released,
these will be reflected in the book’s source code, which is downloadable from
www.MindView.net.

The cover indicates that this book is for “Java SE5/6,” which means “written
for Java SE5 and the very significant changes that version introduced into the
language, but is equally applicable to Java SE6.”

The 4th edition
The satisfaction of doing a new edition of a book is in getting things “right,”
according to what I have learned since the last edition came out. Often these
insights are in the nature of the saying “A learning experience is what you get
when you don’t get what you want,” and my opportunity is to fix something
embarrassing or simply tedious. Just as often, creating the next edition

4 Thinking in Java Bruce Eckel

produces fascinating new ideas, and the embarrassment is far outweighed by
the delight of discovery and the ability to express ideas in a better form than
what I have previously achieved.

There is also the challenge that whispers in the back of my brain, that of
making the book something that owners of previous editions will want to buy.
This presses me to improve, rewrite and reorganize everything that I can, to
make the book a new and valuable experience for dedicated readers.

Changes
The CD-ROM that has traditionally been packaged as part of this book is not
part of this edition. The essential part of that CD, the Thinking in C
multimedia seminar (created for MindView by Chuck Allison), is now
available as a downloadable Flash presentation. The goal of that seminar is to
prepare those who are not familiar enough with C syntax to understand the
material presented in this book. Although two of the chapters in this book
give decent introductory syntax coverage, they may not be enough for people
without an adequate background, and Thinking in C is intended to help those
people get to the necessary level.

The Concurrency chapter (formerly called “Multithreading”) has been
completely rewritten to match the major changes in the Java SE5
concurrency libraries, but it still gives you a basic foundation in the core ideas
of concurrency. Without that core, it’s hard to understand more complex
issues of threading. I spent many months working on this, immersed in that
netherworld called “concurrency,” and in the end the chapter is something
that not only provides a basic foundation but also ventures into more
advanced territory.

There is a new chapter on every significant new Java SE5 language feature,
and the other new features have been woven into modifications made to the
existing material. Because of my continuing study of design patterns, more
patterns have been introduced throughout the book as well.

The book has undergone significant reorganization. Much of this has come
from the teaching process together with a realization that, perhaps, my
perception of what a “chapter” was could stand some rethought. I have
tended towards an unconsidered belief that a topic had to be “big enough” to
justify being a chapter. But especially while teaching design patterns, I find
that seminar attendees do best if I introduce a single pattern and then we

Preface 5

immediately do an exercise, even if it means I only speak for a brief time (I
discovered that this pace was also more enjoyable for me as a teacher). So in
this version of the book I’ve tried to break chapters up by topic, and not worry
about the resulting length of the chapters. I think it has been an
improvement.

I have also come to realize the importance of code testing. Without a built-in
test framework with tests that are run every time you do a build of your
system, you have no way of knowing if your code is reliable or not. To
accomplish this in the book, I created a test framework to display and
validate the output of each program. (The framework was written in Python;
you can find it in the downloadable code for this book at
www.MindView.net.) Testing in general is covered in the supplement you
will find at http://MindView.net/Books/BetterJava, which introduces what I
now believe are fundamental skills that all programmers should have in their
basic toolkit.

In addition, I’ve gone over every single example in the book and asked myself,
“Why did I do it this way?” In most cases I have done some modification and
improvement, both to make the examples more consistent within themselves
and also to demonstrate what I consider to be best practices in Java coding
(at least, within the limitations of an introductory text). Many of the existing
examples have had very significant redesign and reimplementation.
Examples that no longer made sense to me were removed, and new examples
have been added.

Readers have made many, many wonderful comments about the first three
editions of this book, which has naturally been very pleasant for me.
However, every now and then, someone will have complaints, and for some
reason one complaint that comes up periodically is “The book is too big.” In
my mind it is faint damnation indeed if “too many pages” is your only gripe.
(One is reminded of the Emperor of Austria’s complaint about Mozart’s work:
“Too many notes!” Not that I am in any way trying to compare myself to
Mozart.) In addition, I can only assume that such a complaint comes from
someone who is yet to be acquainted with the vastness of the Java language
itself and has not seen the rest of the books on the subject. Despite this, one
of the things I have attempted to do in this edition is trim out the portions
that have become obsolete, or at least nonessential. In general, I’ve tried to go
over everything, remove what is no longer necessary, include changes, and
improve everything I could. I feel comfortable removing portions because the

6 Thinking in Java Bruce Eckel

original material remains on the Web site (www.MindView.net), in the form
of the freely downloadable 1st through 3rd editions of the book, and in the
downloadable supplements for this book.

For those of you who still can’t stand the size of the book, I do apologize.
Believe it or not, I have worked hard to keep the size down.

Note on the cover design
The cover of Thinking in Java is inspired by the American Arts & Crafts
Movement that began near the turn of the century and reached its zenith
between 1900 and 1920. It began in England as a reaction to both the
machine production of the Industrial Revolution and the highly ornamental
style of the Victorian era. Arts & Crafts emphasized spare design, the forms of
nature as seen in the art nouveau movement, hand-crafting, and the
importance of the individual craftsperson, and yet it did not eschew the use of
modern tools. There are many echoes with the situation we have today: the
turn of the century, the evolution from the raw beginnings of the computer
revolution to something more refined and meaningful, and the emphasis on
software craftsmanship rather than just manufacturing code.

I see Java in this same way: as an attempt to elevate the programmer away
from an operating system mechanic and toward being a “software craftsman.”

Both the author and the book/cover designer (who have been friends since
childhood) find inspiration in this movement, and both own furniture, lamps,
and other pieces that are either original or inspired by this period.

The other theme in this cover suggests a collection box that a naturalist might
use to display the insect specimens that he or she has preserved. These
insects are objects that are placed within the box objects. The box objects are
themselves placed within the “cover object,” which illustrates the
fundamental concept of aggregation in object-oriented programming. Of
course, a programmer cannot help but make the association with “bugs,” and
here the bugs have been captured and presumably killed in a specimen jar,
and finally confined within a small display box, as if to imply Java’s ability to
find, display, and subdue bugs (which is truly one of its most powerful
attributes).

In this edition, I created the watercolor painting that you see as the cover
background.

Preface 7

Acknowledgements
First, thanks to associates who have worked with me to give seminars,
provide consulting, and develop teaching projects: Dave Bartlett, Bill
Venners, Chuck Allison, Jeremy Meyer, and Jamie King. I appreciate your
patience as I continue to try to develop the best model for independent folks
like us to work together.

Recently, no doubt because of the Internet, I have become associated with a
surprisingly large number of people who assist me in my endeavors, usually
working from their own home offices. In the past, I would have had to pay for
a pretty big office space to accommodate all these folks, but because of the
Net, FedEx, and the telephone, I’m able to benefit from their help without the
extra costs. In my attempts to learn to “play well with others,” you have all
been very helpful, and I hope to continue learning how to make my own work
better through the efforts of others. Paula Steuer has been invaluable in
taking over my haphazard business practices and making them sane (thanks
for prodding me when I don’t want to do something, Paula). Jonathan
Wilcox, Esq., has sifted through my corporate structure and turned over every
possible rock that might hide scorpions, and frog-marched us through the
process of putting everything straight, legally. Thanks for your care and
persistence. Sharlynn Cobaugh has made herself an expert in sound
processing and an essential part of creating the multimedia training
experiences, as well as tackling other problems. Thanks for your perseverance
when faced with intractable computer problems. The folks at Amaio in
Prague have helped me out with several projects. Daniel Will-Harris was the
original work-by-Internet inspiration, and he is of course fundamental to all
my graphic design solutions.

Over the years, through his conferences and workshops, Gerald Weinberg has
become my unofficial coach and mentor, for which I thank him.

Ervin Varga was exceptionally helpful with technical corrections on the 4th
edition—although other people helped on various chapters and examples,
Ervin was my primary technical reviewer for the book, and he also took on
the task of rewriting the solution guide for the 4th edition. Ervin found errors
and made improvements to the book that were invaluable additions to this
text. His thoroughness and attention to detail are amazing, and he’s far and
away the best technical reader I’ve ever had. Thanks, Ervin.

8 Thinking in Java Bruce Eckel

My weblog on Bill Venners’ www.Artima.com has been a source of assistance
when I’ve needed to bounce ideas around. Thanks to the readers that have
helped me clarify concepts by submitting comments, including James
Watson, Howard Lovatt, Michael Barker, and others, in particular those who
helped with generics.

Thanks to Mark Welsh for his continuing assistance.

Evan Cofsky continues to be very supportive by knowing off the top of his
head all the arcane details of setting up and maintaining Linux-based Web
servers, and keeping the MindView server tuned and secure.

A special thanks to my new friend, coffee, who generated nearly boundless
enthusiasm for this project. Camp4 Coffee in Crested Butte, Colorado, has
become the standard hangout when people have come up to take MindView
seminars, and during seminar breaks it is the best catering I’ve ever had.
Thanks to my buddy Al Smith for creating it and making it such a great place,
and for being such an interesting and entertaining part of the Crested Butte
experience. And to all the Camp4 barristas who so cheerfully dole out
beverages.

Thanks to the folks at Prentice Hall for continuing to give me what I want,
putting up with all my special requirements, and for going out of their way to
make things run smoothly for me.

Certain tools have proved invaluable during my development process and I
am very grateful to the creators every time I use these. Cygwin
(www.cygwin.com) has solved innumerable problems for me that Windows
can’t/won’t and I become more attached to it each day (if I only had this 15
years ago when my brain was still hard-wired with Gnu Emacs). IBM’s
Eclipse (www.eclipse.org) is a truly wonderful contribution to the
development community, and I expect to see great things from it as it
continues to evolve (how did IBM become hip? I must have missed a memo).
JetBrains IntelliJ Idea continues to forge creative new paths in development
tools.

I began using Enterprise Architect from Sparxsystems on this book, and it
has rapidly become my UML tool of choice. Marco Hunsicker’s Jalopy code
formatter (www.triemax.com) came in handy on numerous occasions, and
Marco was very helpful in configuring it to my particular needs. I’ve also

Preface 9

found Slava Pestov’s JEdit and plug-ins to be helpful at times
(www.jedit.org) and it’s quite a reasonable beginner’s editor for seminars.

And of course, if I don’t say it enough everywhere else, I use Python
(www.Python.org) constantly to solve problems, the brainchild of my buddy
Guido Van Rossum and the gang of goofy geniuses with whom I spent a few
great days sprinting (Tim Peters, I’ve now framed that mouse you borrowed,
officially named the “TimBotMouse”). You guys need to find healthier places
to eat lunch. (Also, thanks to the entire Python community, an amazing
bunch of people.)

Lots of people sent in corrections and I am indebted to them all, but
particular thanks go to (for the 1st edition): Kevin Raulerson (found tons of
great bugs), Bob Resendes (simply incredible), John Pinto, Joe Dante, Joe
Sharp (all three were fabulous), David Combs (many grammar and
clarification corrections), Dr. Robert Stephenson, John Cook, Franklin Chen,
Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles A. Lee,
Austin Maher, Dennis P. Roth, Roque Oliveira, Douglas Dunn, Dejan Ristic,
Neil Galarneau, David B. Malkovsky, Steve Wilkinson, and a host of others.
Prof. Ir. Marc Meurrens put in a great deal of effort to publicize and make the
electronic version of the 1st edition of the book available in Europe.

Thanks to those who helped me rewrite the examples to use the Swing library
(for the 2nd edition), and for other assistance: Jon Shvarts, Thomas Kirsch,
Rahim Adatia, Rajesh Jain, Ravi Manthena, Banu Rajamani, Jens Brandt,
Nitin Shivaram, Malcolm Davis, and everyone who expressed support.

In the 4th edition, Chris Grindstaff was very helpful during the development
of the SWT section, and Sean Neville wrote the first draft of the Flex section
for me.

Kraig Brockschmidt and Gen Kiyooka have been some of the smart technical
people in my life who have become friends and have also been both
influential and unusual in that they do yoga and practice other forms of
spiritual enhancement, which I find quite inspirational and instructional.

It’s not that much of a surprise to me that understanding Delphi helped me
understand Java, since there are many concepts and language design
decisions in common. My Delphi friends provided assistance by helping me
gain insight into that marvelous programming environment. They are Marco
Cantu (another Italian—perhaps being steeped in Latin gives one aptitude for

10 Thinking in Java Bruce Eckel

programming languages?), Neil Rubenking (who used to do the
yoga/vegetarian/Zen thing until he discovered computers), and of course
Zack Urlocker (the original Delphi product manager), a long-time pal whom
I’ve traveled the world with. We’re all indebted to the brilliance of Anders
Hejlsberg, who continues to toil away at C# (which, as you’ll learn in this
book, was a major inspiration for Java SE5).

My friend Richard Hale Shaw’s insights and support have been very helpful
(and Kim’s, too). Richard and I spent many months giving seminars together
and trying to work out the perfect learning experience for the attendees.

The book design, cover design, and cover photo were created by my friend
Daniel Will-Harris, noted author and designer (www.Will-Harris.com), who
used to play with rub-on letters in junior high school while he awaited the
invention of computers and desktop publishing, and complained of me
mumbling over my algebra problems. However, I produced the camera-ready
pages myself, so the typesetting errors are mine. Microsoft® Word XP for
Windows was used to write the book and to create camera-ready pages in
Adobe Acrobat; the book was created directly from the Acrobat PDF files. As
a tribute to the electronic age, I happened to be overseas when I produced the
final versions of the 1st and 2nd editions of the book—the 1st edition was sent
from Cape Town, South Africa, and the 2nd edition was posted from Prague.
The 3rd and 4th came from Crested Butte, Colorado. The body typeface is
Georgia and the headlines are in Verdana. The cover typeface is ITC Rennie
Mackintosh.

A special thanks to all my teachers and all my students (who are my teachers
as well).

Molly the cat often sat in my lap while I worked on this edition, and thus
offered her own kind of warm, furry support.

The supporting cast of friends includes, but is not limited to: Patty Gast
(Masseuse extraordinaire), Andrew Binstock, Steve Sinofsky, JD Hildebrandt,
Tom Keffer, Brian McElhinney, Brinkley Barr, Bill Gates at Midnight
Engineering Magazine, Larry Constantine and Lucy Lockwood, Gene Wang,
Dave Mayer, David Intersimone, Chris and Laura Strand, the Almquists, Brad
Jerbic, Marilyn Cvitanic, Mark Mabry, the Robbins families, the Moelter
families (and the McMillans), Michael Wilk, Dave Stoner, the Cranstons,
Larry Fogg, Mike Sequeira, Gary Entsminger, Kevin and Sonda Donovan, Joe
Lordi, Dave and Brenda Bartlett, Patti Gast, Blake, Annette & Jade, the

Preface 11

Rentschlers, the Sudeks, Dick, Patty, and Lee Eckel, Lynn and Todd, and
their families. And of course, Mom and Dad.

 13

Introduction
“He gave man speech, and speech created thought, Which
is the measure of the Universe”—Prometheus Unbound,
Shelley

Human beings ... are very much at the mercy of the particular language
which has become the medium of expression for their society. It is quite
an illusion to imagine that one adjusts to reality essentially without the
use of language and that language is merely an incidental means of
solving specific problems of communication and reflection. The fact of
the matter is that the “real world” is to a large extent unconsciously built
up on the language habits of the group.

The Status of Linguistics as a Science, 1929, Edward Sapir

Like any human language, Java provides a way to express concepts. If
successful, this medium of expression will be significantly easier and more
flexible than the alternatives as problems grow larger and more complex.

You can’t look at Java as just a collection of features—some of the features
make no sense in isolation. You can use the sum of the parts only if you are
thinking about design, not simply coding. And to understand Java in this
way, you must understand the problems with the language and with
programming in general. This book discusses programming problems, why
they are problems, and the approach Java has taken to solve them. Thus, the
set of features that I explain in each chapter are based on the way I see a
particular type of problem being solved with the language. In this way I hope
to move you, a little at a time, to the point where the Java mindset becomes
your native tongue.

Throughout, I’ll be taking the attitude that you want to build a model in your
head that allows you to develop a deep understanding of the language; if you
encounter a puzzle, you’ll feed it to your model and deduce the answer.

14 Thinking in Java Bruce Eckel

Prerequisites
This book assumes that you have some programming familiarity: You
understand that a program is a collection of statements, the idea of a
subroutine/function/macro, control statements such as “if” and looping
constructs such as “while,” etc. However, you might have learned this in
many places, such as programming with a macro language or working with a
tool like Perl. As long as you’ve programmed to the point where you feel
comfortable with the basic ideas of programming, you’ll be able to work
through this book. Of course, the book will be easier for C programmers and
more so for C++ programmers, but don’t count yourself out if you’re not
experienced with those languages—however, come willing to work hard. Also,
the Thinking in C multimedia seminar that you can download from
www.MindView.net will bring you up to speed in the fundamentals
necessary to learn Java. However, I will be introducing the concepts of object-
oriented programming (OOP) and Java’s basic control mechanisms.

Although references may be made to C and C++ language features, these are
not intended to be insider comments, but instead to help all programmers
put Java in perspective with those languages, from which, after all, Java is
descended. I will attempt to make these references simple and to explain
anything that I think a non-C/C++ programmer would not be familiar with.

Learning Java
At about the same time that my first book, Using C++ (Osborne/McGraw-
Hill, 1989), came out, I began teaching that language. Teaching programming
ideas has become my profession; I’ve seen nodding heads, blank faces, and
puzzled expressions in audiences all over the world since 1987. As I began
giving in-house training with smaller groups of people, I discovered
something during the exercises. Even those people who were smiling and
nodding were confused about many issues. I found out, by creating and
chairing the C++ track at the Software Development Conference for a number
of years (and later creating and chairing the Java track), that I and other
speakers tended to give the typical audience too many topics too quickly. So
eventually, through both variety in the audience level and the way that I
presented the material, I would end up losing some portion of the audience.
Maybe it’s asking too much, but because I am one of those people resistant to
traditional lecturing (and for most people, I believe, such resistance results
from boredom), I wanted to try to keep everyone up to speed.

Introduction 15

For a time, I was creating a number of different presentations in fairly short
order. Thus, I ended up learning by experiment and iteration (a technique
that also works well in program design). Eventually, I developed a course
using everything I had learned from my teaching experience. My company,
MindView, Inc., now gives this as the public and in-house Thinking in Java
seminar; this is our main introductory seminar that provides the foundation
for our more advanced seminars. You can find details at www.MindView.net.
(The introductory seminar is also available as the Hands-On Java CD ROM.
Information is available at the same Web site.)

The feedback that I get from each seminar helps me change and refocus the
material until I think it works well as a teaching medium. But this book isn’t
just seminar notes; I tried to pack as much information as I could within
these pages, and structured it to draw you through into the next subject. More
than anything, the book is designed to serve the solitary reader who is
struggling with a new programming language.

Goals
Like my previous book, Thinking in C++, this book was designed with one
thing in mind: the way people learn a language. When I think of a chapter in
the book, I think in terms of what makes a good lesson during a seminar.
Seminar audience feedback helped me understand the difficult parts that
needed illumination. In the areas where I got ambitious and included too
many features all at once, I came to know—through the process of presenting
the material—that if you include a lot of new features, you need to explain
them all, and this easily compounds the student’s confusion.

Each chapter tries to teach a single feature, or a small group of associated
features, without relying on concepts that haven’t been introduced yet. That
way you can digest each piece in the context of your current knowledge before
moving on.

My goals in this book are to:

1. Present the material one simple step at a time so that you can
easily digest each idea before moving on. Carefully sequence the
presentation of features so that you’re exposed to a topic before
you see it in use. Of course, this isn’t always possible; in those
situations, a brief introductory description is given.

16 Thinking in Java Bruce Eckel

2. Use examples that are as simple and short as possible. This
sometimes prevents me from tackling “real world” problems, but
I’ve found that beginners are usually happier when they can
understand every detail of an example rather than being
impressed by the scope of the problem it solves. Also, there’s a
severe limit to the amount of code that can be absorbed in a
classroom situation. For this I will no doubt receive criticism for
using “toy examples,” but I’m willing to accept that in favor of
producing something pedagogically useful.

3. Give you what I think is important for you to understand about the
language, rather than everything that I know. I believe there is an
information importance hierarchy, and that there are some facts
that 95 percent of programmers will never need to know—details
that just confuse people and increase their perception of the
complexity of the language. To take an example from C, if you
memorize the operator precedence table (I never did), you can
write clever code. But if you need to think about it, it will also
confuse the reader/maintainer of that code. So forget about
precedence, and use parentheses when things aren’t clear.

4. Keep each section focused enough so that the lecture time—and
the time between exercise periods—is small. Not only does this
keep the audience’s minds more active and involved during a
hands-on seminar, but it gives the reader a greater sense of
accomplishment.

5. Provide you with a solid foundation so that you can understand
the issues well enough to move on to more difficult coursework
and books.

Teaching from this book
The original edition of this book evolved from a one-week seminar which was,
when Java was in its infancy, enough time to cover the language. As Java
grew and continued to encompass more and more features and libraries, I
stubbornly tried to teach it all in one week. At one point, a customer asked me
to teach “just the fundamentals,” and in doing so I discovered that trying to
cram everything into a single week had become painful for both myself and
for seminarians. Java was no longer a “simple” language that could be taught
in a week.

Introduction 17

That experience and realization drove much of the reorganization of this
book, which is now designed to support a two-week seminar or a two-term
college course. The introductory portion ends with the Error Handling with
Exceptions chapter, but you may also want to supplement this with an
introduction to JDBC, Servlets and JSPs. This provides a foundation course,
and is the core of the Hands-On Java CD ROM. The remainder of the book
comprises an intermediate-level course, and is the material covered in the
Intermediate Thinking in Java CD ROM. Both of these CD ROMs are for sale
at www.MindView.net.

Contact Prentice-Hall at www.prenhallprofessional.com for information
about professor support materials for this book.

JDK HTML documentation
The Java language and libraries from Sun Microsystems (a free download
from http://java.sun.com) come with documentation in electronic form,
readable using a Web browser. Many books published on Java have
duplicated this documentation. So you either already have it or you can
download it, and unless necessary, this book will not repeat that
documentation, because it’s usually much faster if you find the class
descriptions with your Web browser than if you look them up in a book (and
the online documentation is probably more up-to-date). You’ll simply be
referred to “the JDK documentation.” This book will provide extra
descriptions of the classes only when it’s necessary to supplement that
documentation so you can understand a particular example.

Exercises
I’ve discovered that simple exercises are exceptionally useful to complete a
student’s understanding during a seminar, so you’ll find a set at the end of
each chapter.

Most exercises are designed to be easy enough that they can be finished in a
reasonable amount of time in a classroom situation while the instructor
observes, making sure that all the students are absorbing the material. Some
are more challenging, but none present major challenges.

Solutions to selected exercises can be found in the electronic document The
Thinking in Java Annotated Solution Guide, available for sale from
www.MindView.net.

18 Thinking in Java Bruce Eckel

Foundations for Java
Another bonus with this edition is the free multimedia seminar that you can
download from www.MindView.net. This is the Thinking in C seminar that
gives you an introduction to the C syntax, operators, and functions that Java
syntax is based upon. In previous editions of the book this was in the
Foundations for Java CD that was packaged with the book, but now the
seminar may be freely downloaded.

I originally commissioned Chuck Allison to create Thinking in C as a
standalone product, but decided to include it with the 2nd edition of Thinking
in C++ and 2nd and 3rd editions of Thinking in Java because of the consistent
experience of having people come to seminars without an adequate
background in basic C syntax. The thinking apparently goes “I’m a smart
programmer and I don’t want to learn C, but rather C++ or Java, so I’ll just
skip C and go directly to C++/Java.” After arriving at the seminar, it slowly
dawns on folks that the prerequisite of understanding C syntax is there for a
very good reason.

Technologies have changed, and it made more sense to rework Thinking in C
as a downloadable Flash presentation rather than including it as a CD. By
providing this seminar online, I can ensure that everyone can begin with
adequate preparation.

The Thinking in C seminar also allows the book to appeal to a wider
audience. Even though the Operators and Controlling Execution chapters do
cover the fundamental parts of Java that come from C, the online seminar is a
gentler introduction, and assumes even less about the student’s programming
background than does the book.

Source code
All the source code for this book is available as copyrighted freeware,
distributed as a single package, by visiting the Web site www.MindView.net.
To make sure that you get the most current version, this is the official code
distribution site. You may distribute the code in classroom and other
educational situations.

The primary goal of the copyright is to ensure that the source of the code is
properly cited, and to prevent you from republishing the code in print media

Introduction 19

without permission. (As long as the source is cited, using examples from the
book in most media is generally not a problem.)

In each source-code file you will find a reference to the following copyright
notice:

//:! Copyright.txt
This computer source code is Copyright ©2006 MindView, Inc.
All Rights Reserved.

Permission to use, copy, modify, and distribute this
computer source code (Source Code) and its documentation
without fee and without a written agreement for the
purposes set forth below is hereby granted, provided that
the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to
include the compiled code, in executable format only, in
personal and commercial software programs.

2. Permission is granted to use the Source Code without
modification in classroom situations, including in
presentation materials, provided that the book "Thinking in
Java" is cited as the origin.

3. Permission to incorporate the Source Code into printed
media may be obtained by contacting:

MindView, Inc. 5343 Valle Vista La Mesa, California 91941
Wayne@MindView.net

4. The Source Code and documentation are copyrighted by
MindView, Inc. The Source code is provided without express
or implied warranty of any kind, including any implied
warranty of merchantability, fitness for a particular
purpose or non-infringement. MindView, Inc. does not
warrant that the operation of any program that includes the
Source Code will be uninterrupted or error-free. MindView,
Inc. makes no representation about the suitability of the
Source Code or of any software that includes the Source
Code for any purpose. The entire risk as to the quality
and performance of any program that includes the Source
Code is with the user of the Source Code. The user

20 Thinking in Java Bruce Eckel

understands that the Source Code was developed for research
and instructional purposes and is advised not to rely
exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source
Code or any resulting software prove defective, the user
assumes the cost of all necessary servicing, repair, or
correction.

5. IN NO EVENT SHALL MINDVIEW, INC., OR ITS PUBLISHER BE
LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE
CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE INABILITY
TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW, INC., OR
ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. MINDVIEW, INC. SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOURCE CODE AND DOCUMENTATION PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY ACCOMPANYING
SERVICES FROM MINDVIEW, INC., AND MINDVIEW, INC. HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView, Inc. maintains a Web site which
is the sole distribution point for electronic copies of the
Source Code, http://www.MindView.net (and official mirror
sites), where it is freely available under the terms stated
above.

If you think you've found an error in the Source Code,
please submit a correction using the feedback system that
you will find at http://www.MindView.net.
///:~

You may use the code in your projects and in the classroom (including your
presentation materials) as long as the copyright notice that appears in each
source file is retained.

Introduction 21

Coding standards
In the text of this book, identifiers (methods, variables, and class names) are
set in bold. Most keywords are also set in bold, except for those keywords
that are used so much that the bolding can become tedious, such as “class.”

I use a particular coding style for the examples in this book. As much as
possible, this follows the style that Sun itself uses in virtually all of the code
you will find at its site (see http://java.sun.com/docs/codeconv/index.html),
and seems to be supported by most Java development environments. If
you’ve read my other works, you’ll also notice that Sun’s coding style
coincides with mine—this pleases me, although I had nothing (that I know of)
to do with it. The subject of formatting style is good for hours of hot debate,
so I’ll just say I’m not trying to dictate correct style via my examples; I have
my own motivation for using the style that I do. Because Java is a free-form
programming language, you can continue to use whatever style you’re
comfortable with. One solution to the coding style issue is to use a tool like
Jalopy (www.triemax.com), which assisted me in developing this book, to
change formatting to that which suits you.

The code files printed in the book are tested with an automated system, and
should all work without compiler errors.

This book focuses on and is tested with Java SE5/6. If you need to learn
about earlier releases of the language that are not covered in this edition, the
1st through 3rd editions of the book are freely downloadable at
www.MindView.net.

Errors
No matter how many tools a writer uses to detect errors, some always creep
in and these often leap off the page for a fresh reader. If you discover
anything you believe to be an error, please use the link you will find for this
book at www.MindView.net to submit the error along with your suggested
correction. Your help is appreciated.

 93

Operators
At the lowest level, data in Java is manipulated using
operators.

Because Java was inherited from C++, most of these operators will be
familiar to C and C++ programmers. Java has also added some
improvements and simplifications.

If you’re familiar with C or C++ syntax, you can skim through this chapter
and the next, looking for places where Java is different from those languages.
However, if you find yourself floundering a bit in these two chapters, make
sure you go through the multimedia seminar Thinking in C, freely
downloadable from www.MindView.net. It contains audio lectures, slides,
exercises, and solutions specifically designed to bring you up to speed with
the fundamentals necessary to learn Java.

Simpler print statements
In the previous chapter, you were introduced to the Java print statement:

System.out.println("Rather a lot to type");

You may observe that this is not only a lot to type (and thus many redundant
tendon hits), but also rather noisy to read. Most languages before and after
Java have taken a much simpler approach to such a commonly used
statement.

The Access Control chapter introduces the concept of the static import that
was added to Java SE5, and creates a tiny library to simplify writing print
statements. However, you don’t need to know those details in order to begin
using that library. We can rewrite the program from the last chapter using
this new library:

//: operators/HelloDate.java
import java.util.*;
import static net.mindview.util.Print.*;

public class HelloDate {

94 Thinking in Java Bruce Eckel

 public static void main(String[] args) {
 print("Hello, it's: ");
 print(new Date());
 }
} /* Output: (55% match)
Hello, it's:
Wed Oct 05 14:39:05 MDT 2005
*///:~

The results are much cleaner. Notice the insertion of the static keyword in
the second import statement.

In order to use this library, you must download this book’s code package from
www.MindView.net or one of its mirrors. Unzip the code tree and add the
root directory of that code tree to your computer’s CLASSPATH environment
variable. (You’ll eventually get a full introduction to the classpath, but you
might as well get used to struggling with it early. Alas, it is one of the more
common battles you will have with Java.)

Although the use of net.mindview.util.Print nicely simplifies most code, it
is not justifiable everywhere. If there are only a small number of print
statements in a program, I forego the import and write out the full
System.out.println().

Exercise 1: (1) Write a program that uses the “short” and normal form of
print statement.

Using Java operators
An operator takes one or more arguments and produces a new value. The
arguments are in a different form than ordinary method calls, but the effect is
the same. Addition and unary plus (+), subtraction and unary minus (-),
multiplication (*), division (/), and assignment (=) all work much the same in
any programming language.

All operators produce a value from their operands. In addition, some
operators change the value of an operand. This is called a side effect. The
most common use for operators that modify their operands is to generate the
side effect, but you should keep in mind that the value produced is available
for your use, just as in operators without side effects.

Operators 95

Almost all operators work only with primitives. The exceptions are ‘=’, ‘==’
and ‘!=’, which work with all objects (and are a point of confusion for
objects). In addition, the String class supports ‘+’ and ‘+=’.

Precedence
Operator precedence defines how an expression evaluates when several
operators are present. Java has specific rules that determine the order of
evaluation. The easiest one to remember is that multiplication and division
happen before addition and subtraction. Programmers often forget the other
precedence rules, so you should use parentheses to make the order of
evaluation explicit. For example, look at statements (1) and (2):

//: operators/Precedence.java

public class Precedence {
 public static void main(String[] args) {
 int x = 1, y = 2, z = 3;
 int a = x + y - 2/2 + z; // (1)
 int b = x + (y - 2)/(2 + z); // (2)
 System.out.println("a = " + a + " b = " + b);
 }
} /* Output:
a = 5 b = 1
*///:~

These statements look roughly the same, but from the output you can see that
they have very different meanings which depend on the use of parentheses.

Notice that the System.out.println() statement involves the ‘+’ operator.
In this context, ‘+’ means “string concatenation” and, if necessary, “string
conversion.” When the compiler sees a String followed by a ‘+’ followed by a
non-String, it attempts to convert the non-String into a String. As you can
see from the output, it successfully converts from int into String for a and b.

Assignment
Assignment is performed with the operator =. It means “Take the value of the
right-hand side (often called the rvalue) and copy it into the left-hand side
(often called the lvalue).” An rvalue is any constant, variable, or expression
that produces a value, but an lvalue must be a distinct, named variable. (That

96 Thinking in Java Bruce Eckel

is, there must be a physical space to store the value.) For instance, you can
assign a constant value to a variable:

a = 4;

but you cannot assign anything to a constant value—it cannot be an lvalue.
(You can’t say 4 = a;.)

Assignment of primitives is quite straightforward. Since the primitive holds
the actual value and not a reference to an object, when you assign primitives,
you copy the contents from one place to another. For example, if you say a =
b for primitives, then the contents of b are copied into a. If you then go on to
modify a, b is naturally unaffected by this modification. As a programmer,
this is what you can expect for most situations.

When you assign objects, however, things change. Whenever you manipulate
an object, what you’re manipulating is the reference, so when you assign
“from one object to another,” you’re actually copying a reference from one
place to another. This means that if you say c = d for objects, you end up with
both c and d pointing to the object that, originally, only d pointed to. Here’s
an example that demonstrates this behavior:

//: operators/Assignment.java
// Assignment with objects is a bit tricky.
import static net.mindview.util.Print.*;

class Tank {
 int level;
}

public class Assignment {
 public static void main(String[] args) {
 Tank t1 = new Tank();
 Tank t2 = new Tank();
 t1.level = 9;
 t2.level = 47;
 print("1: t1.level: " + t1.level +
 ", t2.level: " + t2.level);
 t1 = t2;
 print("2: t1.level: " + t1.level +
 ", t2.level: " + t2.level);
 t1.level = 27;
 print("3: t1.level: " + t1.level +
 ", t2.level: " + t2.level);

Operators 97

 }
} /* Output:
1: t1.level: 9, t2.level: 47
2: t1.level: 47, t2.level: 47
3: t1.level: 27, t2.level: 27
*///:~

The Tank class is simple, and two instances (t1 and t2) are created within
main(). The level field within each Tank is given a different value, and
then t2 is assigned to t1, and t1 is changed. In many programming languages
you expect t1 and t2 to be independent at all times, but because you’ve
assigned a reference, changing the t1 object appears to change the t2 object
as well! This is because both t1 and t2 contain the same reference, which is
pointing to the same object. (The original reference that was in t1, that
pointed to the object holding a value of 9, was overwritten during the
assignment and effectively lost; its object will be cleaned up by the garbage
collector.)

This phenomenon is often called aliasing, and it’s a fundamental way that
Java works with objects. But what if you don’t want aliasing to occur in this
case? You could forego the assignment and say:

t1.level = t2.level;

This retains the two separate objects instead of discarding one and tying t1
and t2 to the same object. You’ll soon realize that manipulating the fields
within objects is messy and goes against good object-oriented design
principles. This is a nontrivial topic, so you should keep in mind that
assignment for objects can add surprises.

Exercise 2: (1) Create a class containing a float and use it to demonstrate
aliasing.

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

//: operators/PassObject.java
// Passing objects to methods may not be
// what you're used to.
import static net.mindview.util.Print.*;

class Letter {
 char c;

98 Thinking in Java Bruce Eckel

}

public class PassObject {
 static void f(Letter y) {
 y.c = 'z';
 }
 public static void main(String[] args) {
 Letter x = new Letter();
 x.c = 'a';
 print("1: x.c: " + x.c);
 f(x);
 print("2: x.c: " + x.c);
 }
} /* Output:
1: x.c: a
2: x.c: z
*///:~

In many programming languages, the method f() would appear to be making
a copy of its argument Letter y inside the scope of the method. But once
again a reference is being passed, so the line

y.c = 'z';

is actually changing the object outside of f().

Aliasing and its solution is a complex issue which is covered in one of the
online supplements for this book. However, you should be aware of it at this
point so you can watch for pitfalls.

Exercise 3: (1) Create a class containing a float and use it to demonstrate
aliasing during method calls.

Mathematical operators
The basic mathematical operators are the same as the ones available in most
programming languages: addition (+), subtraction (-), division (/),
multiplication (*) and modulus (%, which produces the remainder from
integer division). Integer division truncates, rather than rounds, the result.

Java also uses the shorthand notation from C/C++ that performs an
operation and an assignment at the same time. This is denoted by an operator
followed by an equal sign, and is consistent with all the operators in the

Operators 99

language (whenever it makes sense). For example, to add 4 to the variable x
and assign the result to x, use: x += 4.

This example shows the use of the mathematical operators:

//: operators/MathOps.java
// Demonstrates the mathematical operators.
import java.util.*;
import static net.mindview.util.Print.*;

public class MathOps {
 public static void main(String[] args) {
 // Create a seeded random number generator:
 Random rand = new Random(47);
 int i, j, k;
 // Choose value from 1 to 100:
 j = rand.nextInt(100) + 1;
 print("j : " + j);
 k = rand.nextInt(100) + 1;
 print("k : " + k);
 i = j + k;
 print("j + k : " + i);
 i = j - k;
 print("j - k : " + i);
 i = k / j;
 print("k / j : " + i);
 i = k * j;
 print("k * j : " + i);
 i = k % j;
 print("k % j : " + i);
 j %= k;
 print("j %= k : " + j);
 // Floating-point number tests:
 float u, v, w; // Applies to doubles, too
 v = rand.nextFloat();
 print("v : " + v);
 w = rand.nextFloat();
 print("w : " + w);
 u = v + w;
 print("v + w : " + u);
 u = v - w;
 print("v - w : " + u);
 u = v * w;
 print("v * w : " + u);
 u = v / w;

100 Thinking in Java Bruce Eckel

 print("v / w : " + u);
 // The following also works for char,
 // byte, short, int, long, and double:
 u += v;
 print("u += v : " + u);
 u -= v;
 print("u -= v : " + u);
 u *= v;
 print("u *= v : " + u);
 u /= v;
 print("u /= v : " + u);
 }
} /* Output:
j : 59
k : 56
j + k : 115
j - k : 3
k / j : 0
k * j : 3304
k % j : 56
j %= k : 3
v : 0.5309454
w : 0.0534122
v + w : 0.5843576
v - w : 0.47753322
v * w : 0.028358962
v / w : 9.940527
u += v : 10.471473
u -= v : 9.940527
u *= v : 5.2778773
u /= v : 9.940527
*///:~

To generate numbers, the program first creates a Random object. If you
create a Random object with no arguments, Java uses the current time as a
seed for the random number generator, and will thus produce different
output for each execution of the program. However, in the examples in this
book, it is important that the output shown at the end of the examples be as
consistent as possible, so that this output can be verified with external tools.
By providing a seed (an initialization value for the random number generator
that will always produce the same sequence for a particular seed value) when
creating the Random object, the same random numbers will be generated

Operators 101

each time the program is executed, so the output is verifiable.1 To generate
more varying output, feel free to remove the seed in the examples in the book.

The program generates a number of different types of random numbers with
the Random object simply by calling the methods nextInt() and
nextFloat() (you can also call nextLong() or nextDouble()). The
argument to nextInt() sets the upper bound on the generated number. The
lower bound is zero, which we don’t want because of the possibility of a
divide-by-zero, so the result is offset by one.

Exercise 4: (2) Write a program that calculates velocity using a constant
distance and a constant time.

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as binary
minus and plus. The compiler figures out which use is intended by the way
you write the expression. For instance, the statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is sometimes clearer to say:

x = a * (-b);

Unary minus inverts the sign on the data. Unary plus provides symmetry with
unary minus, although it doesn’t have any effect.

Auto increment and decrement
Java, like C, has a number of shortcuts. Shortcuts can make code much easier
to type, and either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often
referred to as the auto-increment and auto-decrement operators). The
decrement operator is -- and means “decrease by one unit.” The increment
operator is ++ and means “increase by one unit.” If a is an int, for example,

1 The number 47 was considered a “magic number” at a college I attended, and it stuck.

102 Thinking in Java Bruce Eckel

the expression ++a is equivalent to (a = a + 1). Increment and decrement
operators not only modify the variable, but also produce the value of the
variable as a result.

There are two versions of each type of operator, often called the prefix and
postfix versions. Pre-increment means the ++ operator appears before the
variable, and post-increment means the ++ operator appears after the
variable. Similarly, pre-decrement means the -- operator appears before the
variable, and post-decrement means the -- operator appears after the
variable. For pre-increment and pre-decrement (i.e., ++a or --a), the
operation is performed and the value is produced. For post-increment and
post-decrement (i.e., a++ or a--), the value is produced, then the operation is
performed. As an example:

//: operators/AutoInc.java
// Demonstrates the ++ and -- operators.
import static net.mindview.util.Print.*;

public class AutoInc {
 public static void main(String[] args) {
 int i = 1;
 print("i : " + i);
 print("++i : " + ++i); // Pre-increment
 print("i++ : " + i++); // Post-increment
 print("i : " + i);
 print("--i : " + --i); // Pre-decrement
 print("i-- : " + i--); // Post-decrement
 print("i : " + i);
 }
} /* Output:
i : 1
++i : 2
i++ : 2
i : 3
--i : 2
i-- : 2
i : 1
*///:~

You can see that for the prefix form, you get the value after the operation has
been performed, but with the postfix form, you get the value before the
operation is performed. These are the only operators, other than those

Operators 103

involving assignment, that have side effects—they change the operand rather
than using just its value.

The increment operator is one explanation for the name C++, implying “one
step beyond C.” In an early Java speech, Bill Joy (one of the Java creators),
said that “Java=C++--” (C plus plus minus minus), suggesting that Java is
C++ with the unnecessary hard parts removed, and therefore a much simpler
language. As you progress in this book, you’ll see that many parts are simpler,
and yet in other ways Java isn’t much easier than C++.

Relational operators
Relational operators generate a boolean result. They evaluate the
relationship between the values of the operands. A relational expression
produces true if the relationship is true, and false if the relationship is
untrue. The relational operators are less than (<), greater than (>), less than
or equal to (<=), greater than or equal to (>=), equivalent (==) and not
equivalent (!=). Equivalence and nonequivalence work with all primitives,
but the other comparisons won’t work with type boolean. Because boolean
values can only be true or false, “greater than” and “less than” doesn’t make
sense.

Testing object equivalence
The relational operators == and != also work with all objects, but their
meaning often confuses the first-time Java programmer. Here’s an example:

//: operators/Equivalence.java

public class Equivalence {
 public static void main(String[] args) {
 Integer n1 = new Integer(47);
 Integer n2 = new Integer(47);
 System.out.println(n1 == n2);
 System.out.println(n1 != n2);
 }
} /* Output:
false
true
*///:~

The statement System.out.println(n1 == n2) will print the result of the
boolean comparison within it. Surely the output should be “true” and then

104 Thinking in Java Bruce Eckel

“false,” since both Integer objects are the same. But while the contents of the
objects are the same, the references are not the same. The operators == and
!= compare object references, so the output is actually “false” and then “true.”
Naturally, this surprises people at first.

What if you want to compare the actual contents of an object for equivalence?
You must use the special method equals() that exists for all objects (not
primitives, which work fine with == and !=). Here’s how it’s used:

//: operators/EqualsMethod.java

public class EqualsMethod {
 public static void main(String[] args) {
 Integer n1 = new Integer(47);
 Integer n2 = new Integer(47);
 System.out.println(n1.equals(n2));
 }
} /* Output:
true
*///:~

The result is now what you expect. Ah, but it’s not as simple as that. If you
create your own class, like this:

//: operators/EqualsMethod2.java
// Default equals() does not compare contents.

class Value {
 int i;
}

public class EqualsMethod2 {
 public static void main(String[] args) {
 Value v1 = new Value();
 Value v2 = new Value();
 v1.i = v2.i = 100;
 System.out.println(v1.equals(v2));
 }
} /* Output:
false
*///:~

things are confusing again: The result is false. This is because the default
behavior of equals() is to compare references. So unless you override

Operators 105

equals() in your new class you won’t get the desired behavior.
Unfortunately, you won’t learn about overriding until the Reusing Classes
chapter and about the proper way to define equals() until the Containers in
Depth chapter, but being aware of the way equals() behaves might save you
some grief in the meantime.

Most of the Java library classes implement equals() so that it compares the
contents of objects instead of their references.

Exercise 5: (2) Create a class called Dog containing two Strings: name
and says. In main(), create two dog objects with names “spot” (who says,
“Ruff!”) and “scruffy” (who says, “Wurf!”). Then display their names and
what they say.

Exercise 6: (3) Following Exercise 5, create a new Dog reference and
assign it to spot’s object. Test for comparison using == and equals() for all
references.

Logical operators
Each of the logical operators AND (&&), OR (||) and NOT (!) produces a
boolean value of true or false based on the logical relationship of its
arguments. This example uses the relational and logical operators:

//: operators/Bool.java
// Relational and logical operators.
import java.util.*;
import static net.mindview.util.Print.*;

public class Bool {
 public static void main(String[] args) {
 Random rand = new Random(47);
 int i = rand.nextInt(100);
 int j = rand.nextInt(100);
 print("i = " + i);
 print("j = " + j);
 print("i > j is " + (i > j));
 print("i < j is " + (i < j));
 print("i >= j is " + (i >= j));
 print("i <= j is " + (i <= j));
 print("i == j is " + (i == j));
 print("i != j is " + (i != j));
 // Treating an int as a boolean is not legal Java:
//! print("i && j is " + (i && j));

106 Thinking in Java Bruce Eckel

//! print("i || j is " + (i || j));
//! print("!i is " + !i);
 print("(i < 10) && (j < 10) is "
 + ((i < 10) && (j < 10)));
 print("(i < 10) || (j < 10) is "
 + ((i < 10) || (j < 10)));
 }
} /* Output:
i = 58
j = 55
i > j is true
i < j is false
i >= j is true
i <= j is false
i == j is false
i != j is true
(i < 10) && (j < 10) is false
(i < 10) || (j < 10) is false
*///:~

You can apply AND, OR, or NOT to boolean values only. You can’t use a
non-boolean as if it were a boolean in a logical expression as you can in C
and C++. You can see the failed attempts at doing this commented out with a
‘//!’ (this comment syntax enables automatic removal of comments to
facilitate testing). The subsequent expressions, however, produce boolean
values using relational comparisons, then use logical operations on the
results.

Note that a boolean value is automatically converted to an appropriate text
form if it is used where a String is expected.

You can replace the definition for int in the preceding program with any
other primitive data type except boolean. Be aware, however, that the
comparison of floating point numbers is very strict. A number that is the
tiniest fraction different from another number is still “not equal.” A number
that is the tiniest bit above zero is still nonzero.

Exercise 7: (3) Write a program that simulates coin-flipping.

Short-circuiting
When dealing with logical operators, you run into a phenomenon called
“short-circuiting.” This means that the expression will be evaluated only until
the truth or falsehood of the entire expression can be unambiguously

Operators 107

determined. As a result, the latter parts of a logical expression might not be
evaluated. Here’s an example that demonstrates short-circuiting:

//: operators/ShortCircuit.java
// Demonstrates short-circuiting behavior
// with logical operators.
import static net.mindview.util.Print.*;

public class ShortCircuit {
 static boolean test1(int val) {
 print("test1(" + val + ")");
 print("result: " + (val < 1));
 return val < 1;
 }
 static boolean test2(int val) {
 print("test2(" + val + ")");
 print("result: " + (val < 2));
 return val < 2;
 }
 static boolean test3(int val) {
 print("test3(" + val + ")");
 print("result: " + (val < 3));
 return val < 3;
 }
 public static void main(String[] args) {
 boolean b = test1(0) && test2(2) && test3(2);
 print("expression is " + b);
 }
} /* Output:
test1(0)
result: true
test2(2)
result: false
expression is false
*///:~

Each test performs a comparison against the argument and returns true or
false. It also prints information to show you that it’s being called. The tests
are used in the expression:

test1(0) && test2(2) && test3(2)

You might naturally think that all three tests would be executed, but the
output shows otherwise. The first test produced a true result, so the
expression evaluation continues. However, the second test produced a false

108 Thinking in Java Bruce Eckel

result. Since this means that the whole expression must be false, why
continue evaluating the rest of the expression? It might be expensive. The
reason for short-circuiting, in fact, is that you can get a potential performance
increase if all the parts of a logical expression do not need to be evaluated.

Literals
Ordinarily, when you insert a literal value into a program, the compiler
knows exactly what type to make it. Sometimes, however, the type is
ambiguous. When this happens, you must guide the compiler by adding some
extra information in the form of characters associated with the literal value.
The following code shows these characters:

//: operators/Literals.java
import static net.mindview.util.Print.*;

public class Literals {
 public static void main(String[] args) {
 int i1 = 0x2f; // Hexadecimal (lowercase)
 print("i1: " + Integer.toBinaryString(i1));
 int i2 = 0X2F; // Hexadecimal (uppercase)
 print("i2: " + Integer.toBinaryString(i2));
 int i3 = 0177; // Octal (leading zero)
 print("i3: " + Integer.toBinaryString(i3));
 char c = 0xffff; // max char hex value
 print("c: " + Integer.toBinaryString(c));
 byte b = 0x7f; // max byte hex value
 print("b: " + Integer.toBinaryString(b));
 short s = 0x7fff; // max short hex value
 print("s: " + Integer.toBinaryString(s));
 long n1 = 200L; // long suffix
 long n2 = 200l; // long suffix (but can be confusing)
 long n3 = 200;
 float f1 = 1;
 float f2 = 1F; // float suffix
 float f3 = 1f; // float suffix
 double d1 = 1d; // double suffix
 double d2 = 1D; // double suffix
 // (Hex and Octal also work with long)
 }
} /* Output:
i1: 101111
i2: 101111

Operators 109

i3: 1111111
c: 1111111111111111
b: 1111111
s: 111111111111111
*///:~

A trailing character after a literal value establishes its type. Uppercase or
lowercase L means long (however, using a lowercase l is confusing because it
can look like the number one). Uppercase or lowercase F means float.
Uppercase or lowercase D means double.

Hexadecimal (base 16), which works with all the integral data types, is
denoted by a leading 0x or 0X followed by 0-9 or a-f either in uppercase or
lowercase. If you try to initialize a variable with a value bigger than it can
hold (regardless of the numerical form of the value), the compiler will give
you an error message. Notice in the preceding code the maximum possible
hexadecimal values for char, byte, and short. If you exceed these, the
compiler will automatically make the value an int and tell you that you need
a narrowing cast for the assignment (casts are defined later in this chapter).
You’ll know you’ve stepped over the line.

Octal (base 8) is denoted by a leading zero in the number and digits from 0-7.

There is no literal representation for binary numbers in C, C++, or Java.
However, when working with hexadecimal and octal notation, it’s useful to
display the binary form of the results. This is easily accomplished with the
static toBinaryString() methods from the Integer and Long classes.
Notice that when passing smaller types to Integer.toBinaryString(), the
type is automatically converted to an int.

Exercise 8: (2) Show that hex and octal notations work with long values.
Use Long.toBinaryString() to display the results.

Exponential notation
Exponents use a notation that I’ve always found rather dismaying:

//: operators/Exponents.java
// "e" means "10 to the power."

public class Exponents {
 public static void main(String[] args) {
 // Uppercase and lowercase 'e' are the same:
 float expFloat = 1.39e-43f;

110 Thinking in Java Bruce Eckel

 expFloat = 1.39E-43f;
 System.out.println(expFloat);
 double expDouble = 47e47d; // 'd' is optional
 double expDouble2 = 47e47; // Automatically double
 System.out.println(expDouble);
 }
} /* Output:
1.39E-43
4.7E48
*///:~

In science and engineering, ‘e’ refers to the base of natural logarithms,
approximately 2.718. (A more precise double value is available in Java as
Math.E.) This is used in exponentiation expressions such as 1.39 x e-43,
which means 1.39 x 2.718-43. However, when the FORTRAN programming
language was invented, they decided that e would mean “ten to the power,”
which is an odd decision because FORTRAN was designed for science and
engineering, and one would think its designers would be sensitive about
introducing such an ambiguity.2 At any rate, this custom was followed in C,
C++ and now Java. So if you’re used to thinking in terms of e as the base of
natural logarithms, you must do a mental translation when you see an
expression such as 1.39 e-43f in Java; it means 1.39 x 10-43.

Note that you don’t need to use the trailing character when the compiler can
figure out the appropriate type. With

long n3 = 200;

there’s no ambiguity, so an L after the 200 would be superfluous. However,
with

2 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620.
At that time, and throughout the 1960s and into the 1970s, FORTRAN was an all
uppercase language. This probably started because many of the early input devices were
old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’
in the exponential notation was also always uppercase and was never confused with the
natural logarithm base ‘e’, which is always lowercase. The ‘E’ simply stood for exponential,
which was for the base of the number system used—usually 10. At the time octal was also
widely used by programmers. Although I never saw it used, if I had seen an octal number
in exponential notation I would have considered it to be base 8. The first time I remember
seeing an exponential using a lowercase ‘e’ was in the late 1970s and I also found it
confusing. The problem arose as lowercase crept into FORTRAN, not at its beginning. We
actually had functions to use if you really wanted to use the natural logarithm base, but
they were all uppercase.”

Operators 111

float f4 = 1e-43f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the
trailing f, it will give you an error telling you that you must use a cast to
convert double to float.

Exercise 9: (1) Display the largest and smallest numbers for both float
and double exponential notation.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in an integral
primitive data type. Bitwise operators perform Boolean algebra on the
corresponding bits in the two arguments to produce the result.

The bitwise operators come from C’s low-level orientation, where you often
manipulate hardware directly and must set the bits in hardware registers.
Java was originally designed to be embedded in TV set-top boxes, so this low-
level orientation still made sense. However, you probably won’t use the
bitwise operators much.

The bitwise AND operator (&) produces a one in the output bit if both input
bits are one; otherwise, it produces a zero. The bitwise OR operator (|)
produces a one in the output bit if either input bit is a one and produces a
zero only if both input bits are zero. The bitwise EXCLUSIVE OR, or XOR
(^), produces a one in the output bit if one or the other input bit is a one, but
not both. The bitwise NOT (~, also called the ones complement operator) is a
unary operator; it takes only one argument. (All other bitwise operators are
binary operators.) Bitwise NOT produces the opposite of the input bit—a one
if the input bit is zero, a zero if the input bit is one.

The bitwise operators and logical operators use the same characters, so it is
helpful to have a mnemonic device to help you remember the meanings:
Because bits are “small,” there is only one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and
assignment: &=, |= and ^= are all legitimate. (Since ~ is a unary operator, it
cannot be combined with the = sign.)

The boolean type is treated as a one-bit value, so it is somewhat different.
You can perform a bitwise AND, OR, and XOR, but you can’t perform a
bitwise NOT (presumably to prevent confusion with the logical NOT). For

112 Thinking in Java Bruce Eckel

booleans, the bitwise operators have the same effect as the logical operators
except that they do not short circuit. Also, bitwise operations on booleans
include an XOR logical operator that is not included under the list of “logical”
operators. You cannot use booleans in shift expressions, which are
described next.

Exercise 10: (3) Write a program with two constant values, one with
alternating binary ones and zeroes, with a zero in the least-significant digit,
and the second, also alternating, with a one in the least-significant digit (hint:
It’s easiest to use hexadecimal constants for this). Take these two values and
combine them in all possible ways using the bitwise operators, and display
the results using Integer.toBinaryString().

Shift operators
The shift operators also manipulate bits. They can be used solely with
primitive, integral types. The left-shift operator (<<) produces the operand to
the left of the operator after it has been shifted to the left by the number of
bits specified to the right of the operator (inserting zeroes at the lower-order
bits). The signed right-shift operator (>>) produces the operand to the left of
the operator after it has been shifted to the right by the number of bits
specified to the right of the operator. The signed right shift >> uses sign
extension: If the value is positive, zeroes are inserted at the higher-order bits;
if the value is negative, ones are inserted at the higher-order bits. Java has
also added the unsigned right shift >>>, which uses zero extension:
Regardless of the sign, zeroes are inserted at the higher-order bits. This
operator does not exist in C or C++.

If you shift a char, byte, or short, it will be promoted to int before the shift
takes place, and the result will be an int. Only the five low-order bits of the
right-hand side will be used. This prevents you from shifting more than the
number of bits in an int. If you’re operating on a long, you’ll get a long
result. Only the six low-order bits of the right-hand side will be used, so you
can’t shift more than the number of bits in a long.

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The
lvalue is replaced by the lvalue shifted by the rvalue. There is a problem,
however, with the unsigned right shift combined with assignment. If you use
it with byte or short, you don’t get the correct results. Instead, these are
promoted to int and right shifted, but then truncated as they are assigned

Operators 113

back into their variables, so you get -1 in those cases. The following example
demonstrates this:

//: operators/URShift.java
// Test of unsigned right shift.
import static net.mindview.util.Print.*;

public class URShift {
 public static void main(String[] args) {
 int i = -1;
 print(Integer.toBinaryString(i));
 i >>>= 10;
 print(Integer.toBinaryString(i));
 long l = -1;
 print(Long.toBinaryString(l));
 l >>>= 10;
 print(Long.toBinaryString(l));
 short s = -1;
 print(Integer.toBinaryString(s));
 s >>>= 10;
 print(Integer.toBinaryString(s));
 byte b = -1;
 print(Integer.toBinaryString(b));
 b >>>= 10;
 print(Integer.toBinaryString(b));
 b = -1;
 print(Integer.toBinaryString(b));
 print(Integer.toBinaryString(b>>>10));
 }
} /* Output:
11111111111111111111111111111111
1111111111111111111111
11
11
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
1111111111111111111111
*///:~

In the last shift, the resulting value is not assigned back into b, but is printed
directly, so the correct behavior occurs.

114 Thinking in Java Bruce Eckel

Here’s an example that demonstrates the use of all the operators involving
bits:

//: operators/BitManipulation.java
// Using the bitwise operators.
import java.util.*;
import static net.mindview.util.Print.*;

public class BitManipulation {
 public static void main(String[] args) {
 Random rand = new Random(47);
 int i = rand.nextInt();
 int j = rand.nextInt();
 printBinaryInt("-1", -1);
 printBinaryInt("+1", +1);
 int maxpos = 2147483647;
 printBinaryInt("maxpos", maxpos);
 int maxneg = -2147483648;
 printBinaryInt("maxneg", maxneg);
 printBinaryInt("i", i);
 printBinaryInt("~i", ~i);
 printBinaryInt("-i", -i);
 printBinaryInt("j", j);
 printBinaryInt("i & j", i & j);
 printBinaryInt("i | j", i | j);
 printBinaryInt("i ^ j", i ^ j);
 printBinaryInt("i << 5", i << 5);
 printBinaryInt("i >> 5", i >> 5);
 printBinaryInt("(~i) >> 5", (~i) >> 5);
 printBinaryInt("i >>> 5", i >>> 5);
 printBinaryInt("(~i) >>> 5", (~i) >>> 5);

 long l = rand.nextLong();
 long m = rand.nextLong();
 printBinaryLong("-1L", -1L);
 printBinaryLong("+1L", +1L);
 long ll = 9223372036854775807L;
 printBinaryLong("maxpos", ll);
 long lln = -9223372036854775808L;
 printBinaryLong("maxneg", lln);
 printBinaryLong("l", l);
 printBinaryLong("~l", ~l);
 printBinaryLong("-l", -l);
 printBinaryLong("m", m);

Operators 115

 printBinaryLong("l & m", l & m);
 printBinaryLong("l | m", l | m);
 printBinaryLong("l ^ m", l ^ m);
 printBinaryLong("l << 5", l << 5);
 printBinaryLong("l >> 5", l >> 5);
 printBinaryLong("(~l) >> 5", (~l) >> 5);
 printBinaryLong("l >>> 5", l >>> 5);
 printBinaryLong("(~l) >>> 5", (~l) >>> 5);
 }
 static void printBinaryInt(String s, int i) {
 print(s + ", int: " + i + ", binary:\n " +
 Integer.toBinaryString(i));
 }
 static void printBinaryLong(String s, long l) {
 print(s + ", long: " + l + ", binary:\n " +
 Long.toBinaryString(l));
 }
} /* Output:
-1, int: -1, binary:
 11111111111111111111111111111111
+1, int: 1, binary:
 1
maxpos, int: 2147483647, binary:
 1111111111111111111111111111111
maxneg, int: -2147483648, binary:
 10000000000000000000000000000000
i, int: -1172028779, binary:
 10111010001001000100001010010101
~i, int: 1172028778, binary:
 1000101110110111011110101101010
-i, int: 1172028779, binary:
 1000101110110111011110101101011
j, int: 1717241110, binary:
 1100110010110110000010100010110
i & j, int: 570425364, binary:
 100010000000000000000000010100
i | j, int: -25213033, binary:
 11111110011111110100011110010111
i ^ j, int: -595638397, binary:
 11011100011111110100011110000011
i << 5, int: 1149784736, binary:
 1000100100010000101001010100000
i >> 5, int: -36625900, binary:
 11111101110100010010001000010100

116 Thinking in Java Bruce Eckel

(~i) >> 5, int: 36625899, binary:
 10001011101101110111101011
i >>> 5, int: 97591828, binary:
 101110100010010001000010100
(~i) >>> 5, int: 36625899, binary:
 10001011101101110111101011
...
*///:~

The two methods at the end, printBinaryInt() and printBinaryLong(),
take an int or a long, respectively, and print it out in binary format along
with a descriptive string. As well as demonstrating the effect of all the bitwise
operators for int and long, this example also shows the minimum,
maximum, +1, and -1 values for int and long so you can see what they look
like. Note that the high bit represents the sign: 0 means positive and 1 means
negative. The output for the int portion is displayed above.

The binary representation of the numbers is referred to as signed twos
complement.

Exercise 11: (3) Start with a number that has a binary one in the most
significant position (hint: Use a hexadecimal constant). Using the signed
right-shift operator, right shift it all the way through all of its binary
positions, each time displaying the result using Integer.toBinaryString().

Exercise 12: (3) Start with a number that is all binary ones. Left shift it,
then use the unsigned right-shift operator to right shift through all of its
binary positions, each time displaying the result using
Integer.toBinaryString().

Exercise 13: (1) Write a method that displays char values in binary
form. Demonstrate it using several different characters.

Ternary if-else operator
The ternary operator, also called the conditional operator, is unusual
because it has three operands. It is truly an operator because it produces a
value, unlike the ordinary if-else statement that you’ll see in the next section
of this chapter. The expression is of the form:

boolean-exp ? value0 : value1

Operators 117

If boolean-exp evaluates to true, value0 is evaluated, and its result becomes
the value produced by the operator. If boolean-exp is false, value1 is
evaluated and its result becomes the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but
the ternary operator is much terser. Although C (where this operator
originated) prides itself on being a terse language, and the ternary operator
might have been introduced partly for efficiency, you should be somewhat
wary of using it on an everyday basis—it’s easy to produce unreadable code.

The conditional operator is different from if-else because it produces a value.
Here’s an example comparing the two:

//: operators/TernaryIfElse.java
import static net.mindview.util.Print.*;

public class TernaryIfElse {
 static int ternary(int i) {
 return i < 10 ? i * 100 : i * 10;
 }
 static int standardIfElse(int i) {
 if(i < 10)
 return i * 100;
 else
 return i * 10;
 }
 public static void main(String[] args) {
 print(ternary(9));
 print(ternary(10));
 print(standardIfElse(9));
 print(standardIfElse(10));
 }
} /* Output:
900
100
900
100
*///:~

You can see that this code in ternary() is more compact than what you’d
need to write without the ternary operator, in standardIfElse(). However,
standardIfElse() is easier to understand, and doesn’t require a lot more
typing. So be sure to ponder your reasons when choosing the ternary

118 Thinking in Java Bruce Eckel

operator—it’s generally warranted when you’re setting a variable to one of
two values.

String operator + and +=
There’s one special usage of an operator in Java: The + and += operators can
be used to concatenate strings, as you’ve already seen. It seems a natural use
of these operators even though it doesn’t fit with the traditional way that they
are used.

This capability seemed like a good idea in C++, so operator overloading was
added to C++ to allow the C++ programmer to add meanings to almost any
operator. Unfortunately, operator overloading combined with some of the
other restrictions in C++ turns out to be a fairly complicated feature for
programmers to design into their classes. Although operator overloading
would have been much simpler to implement in Java than it was in C++ (as
has been demonstrated in the C# language, which does have straightforward
operator overloading), this feature was still considered too complex, so Java
programmers cannot implement their own overloaded operators like C++
and C# programmers can.

The use of the String operators has some interesting behavior. If an
expression begins with a String, then all operands that follow must be
Strings (remember that the compiler automatically turns a double-quoted
sequence of characters into a String):

//: operators/StringOperators.java
import static net.mindview.util.Print.*;

public class StringOperators {
 public static void main(String[] args) {
 int x = 0, y = 1, z = 2;
 String s = "x, y, z ";
 print(s + x + y + z);
 print(x + " " + s); // Converts x to a String
 s += "(summed) = "; // Concatenation operator
 print(s + (x + y + z));
 print("" + x); // Shorthand for Integer.toString()
 }
} /* Output:
x, y, z 012
0 x, y, z
x, y, z (summed) = 3

Operators 119

0
*///:~

Note that the output from the first print statement is ‘o12’ instead of just ‘3’,
which is what you’d get if it was summing the integers. This is because the
Java compiler converts x, y, and z into their String representations and
concatenates those strings, instead of adding them together first. The second
print statement converts the leading variable into a String, so the string
conversion does not depend on what comes first. Finally, you see the use of
the += operator to append a string to s, and the use of parentheses to control
the order of evaluation of the expression so that the ints are actually summed
before they are displayed.

Notice the last example in main(): you will sometimes see an empty String
followed by a + and a primitive as a way to perform the conversion without
calling the more cumbersome explicit method (Integer.toString(), in this
case).

Common pitfalls when using
operators

One of the pitfalls when using operators is attempting to leave out the
parentheses when you are even the least bit uncertain about how an
expression will evaluate. This is still true in Java.

An extremely common error in C and C++ looks like this:

while(x = y) {
 //
}

The programmer was clearly trying to test for equivalence (==) rather than
do an assignment. In C and C++ the result of this assignment will always be
true if y is nonzero, and you’ll probably get an infinite loop. In Java, the
result of this expression is not a boolean, but the compiler expects a
boolean and won’t convert from an int, so it will conveniently give you a
compile-time error and catch the problem before you ever try to run the
program. So the pitfall never happens in Java. (The only time you won’t get a
compile-time error is when x and y are boolean, in which case x = y is a
legal expression, and in the preceding example, probably an error.)

120 Thinking in Java Bruce Eckel

A similar problem in C and C++ is using bitwise AND and OR instead of the
logical versions. Bitwise AND and OR use one of the characters (& or |) while
logical AND and OR use two (&& and ||). Just as with = and ==, it’s easy to
type just one character instead of two. In Java, the compiler again prevents
this, because it won’t let you cavalierly use one type where it doesn’t belong.

Casting operators
The word cast is used in the sense of “casting into a mold.” Java will
automatically change one type of data into another when appropriate. For
instance, if you assign an integral value to a floating point variable, the
compiler will automatically convert the int to a float. Casting allows you to
make this type conversion explicit, or to force it when it wouldn’t normally
happen.

To perform a cast, put the desired data type inside parentheses to the left of
any value. You can see this in the following example:

//: operators/Casting.java

public class Casting {
 public static void main(String[] args) {
 int i = 200;
 long lng = (long)i;
 lng = i; // "Widening," so cast not really required
 long lng2 = (long)200;
 lng2 = 200;
 // A "narrowing conversion":
 i = (int)lng2; // Cast required
 }
} ///:~

As you can see, it’s possible to perform a cast on a numeric value as well as on
a variable. Notice that you can introduce superfluous casts; for example, the
compiler will automatically promote an int value to a long when necessary.
However, you are allowed to use superfluous casts to make a point or to
clarify your code. In other situations, a cast may be essential just to get the
code to compile.

In C and C++, casting can cause some headaches. In Java, casting is safe,
with the exception that when you perform a so-called narrowing conversion
(that is, when you go from a data type that can hold more information to one
that doesn’t hold as much), you run the risk of losing information. Here the

Operators 121

compiler forces you to use a cast, in effect saying, “This can be a dangerous
thing to do—if you want me to do it anyway you must make the cast explicit.”
With a widening conversion an explicit cast is not needed, because the new
type will more than hold the information from the old type so that no
information is ever lost.

Java allows you to cast any primitive type to any other primitive type, except
for boolean, which doesn’t allow any casting at all. Class types do not allow
casting. To convert one to the other, there must be special methods. (You’ll
find out later in this book that objects can be cast within a family of types; an
Oak can be cast to a Tree and vice versa, but not to a foreign type such as a
Rock.)

Truncation and rounding
When you are performing narrowing conversions, you must pay attention to
issues of truncation and rounding. For example, if you cast from a floating
point value to an integral value, what does Java do? For example, if you have
the value 29.7 and you cast it to an int, is the resulting value 30 or 29? The
answer to this can be seen in this example:

//: operators/CastingNumbers.java
// What happens when you cast a float
// or double to an integral value?
import static net.mindview.util.Print.*;

public class CastingNumbers {
 public static void main(String[] args) {
 double above = 0.7, below = 0.4;
 float fabove = 0.7f, fbelow = 0.4f;
 print("(int)above: " + (int)above);
 print("(int)below: " + (int)below);
 print("(int)fabove: " + (int)fabove);
 print("(int)fbelow: " + (int)fbelow);
 }
} /* Output:
(int)above: 0
(int)below: 0
(int)fabove: 0
(int)fbelow: 0
*///:~

122 Thinking in Java Bruce Eckel

So the answer is that casting from a float or double to an integral value
always truncates the number. If instead you want the result to be rounded,
use the round() methods in java.lang.Math:

//: operators/RoundingNumbers.java
// Rounding floats and doubles.
import static net.mindview.util.Print.*;

public class RoundingNumbers {
 public static void main(String[] args) {
 double above = 0.7, below = 0.4;
 float fabove = 0.7f, fbelow = 0.4f;
 print("Math.round(above): " + Math.round(above));
 print("Math.round(below): " + Math.round(below));
 print("Math.round(fabove): " + Math.round(fabove));
 print("Math.round(fbelow): " + Math.round(fbelow));
 }
} /* Output:
Math.round(above): 1
Math.round(below): 0
Math.round(fabove): 1
Math.round(fbelow): 0
*///:~

Since the round() is part of java.lang, you don’t need an extra import to
use it.

Promotion
You’ll discover that if you perform any mathematical or bitwise operations on
primitive data types that are smaller than an int (that is, char, byte, or
short), those values will be promoted to int before performing the
operations, and the resulting value will be of type int. So if you want to assign
back into the smaller type, you must use a cast. (And, since you’re assigning
back into a smaller type, you might be losing information.) In general, the
largest data type in an expression is the one that determines the size of the
result of that expression; if you multiply a float and a double, the result will
be double; if you add an int and a long, the result will be long.

Java has no “sizeof”
In C and C++, the sizeof() operator tells you the number of bytes allocated
for data items. The most compelling reason for sizeof() in C and C++ is for

Operators 123

portability. Different data types might be different sizes on different
machines, so the programmer must discover how big those types are when
performing operations that are sensitive to size. For example, one computer
might store integers in 32 bits, whereas another might store integers as 16
bits. Programs could store larger values in integers on the first machine. As
you might imagine, portability is a huge headache for C and C++
programmers.

Java does not need a sizeof() operator for this purpose, because all the data
types are the same size on all machines. You do not need to think about
portability on this level—it is designed into the language.

A compendium of operators
The following example shows which primitive data types can be used with
particular operators. Basically, it is the same example repeated over and over,
but using different primitive data types. The file will compile without error
because the lines that fail are commented out with a //!.

//: operators/AllOps.java
// Tests all the operators on all the primitive data types
// to show which ones are accepted by the Java compiler.

public class AllOps {
 // To accept the results of a boolean test:
 void f(boolean b) {}
 void boolTest(boolean x, boolean y) {
 // Arithmetic operators:
 //! x = x * y;
 //! x = x / y;
 //! x = x % y;
 //! x = x + y;
 //! x = x - y;
 //! x++;
 //! x--;
 //! x = +y;
 //! x = -y;
 // Relational and logical:
 //! f(x > y);
 //! f(x >= y);
 //! f(x < y);
 //! f(x <= y);
 f(x == y);

124 Thinking in Java Bruce Eckel

 f(x != y);
 f(!y);
 x = x && y;
 x = x || y;
 // Bitwise operators:
 //! x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 //! x += y;
 //! x -= y;
 //! x *= y;
 //! x /= y;
 //! x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! char c = (char)x;
 //! byte b = (byte)x;
 //! short s = (short)x;
 //! int i = (int)x;
 //! long l = (long)x;
 //! float f = (float)x;
 //! double d = (double)x;
 }
 void charTest(char x, char y) {
 // Arithmetic operators:
 x = (char)(x * y);
 x = (char)(x / y);
 x = (char)(x % y);
 x = (char)(x + y);
 x = (char)(x - y);
 x++;
 x--;
 x = (char)+y;
 x = (char)-y;

Operators 125

 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x= (char)~y;
 x = (char)(x & y);
 x = (char)(x | y);
 x = (char)(x ^ y);
 x = (char)(x << 1);
 x = (char)(x >> 1);
 x = (char)(x >>> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 byte b = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void byteTest(byte x, byte y) {
 // Arithmetic operators:
 x = (byte)(x* y);
 x = (byte)(x / y);
 x = (byte)(x % y);

126 Thinking in Java Bruce Eckel

 x = (byte)(x + y);
 x = (byte)(x - y);
 x++;
 x--;
 x = (byte)+ y;
 x = (byte)- y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = (byte)~y;
 x = (byte)(x & y);
 x = (byte)(x | y);
 x = (byte)(x ^ y);
 x = (byte)(x << 1);
 x = (byte)(x >> 1);
 x = (byte)(x >>> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 char c = (char)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;

Operators 127

 }
 void shortTest(short x, short y) {
 // Arithmetic operators:
 x = (short)(x * y);
 x = (short)(x / y);
 x = (short)(x % y);
 x = (short)(x + y);
 x = (short)(x - y);
 x++;
 x--;
 x = (short)+y;
 x = (short)-y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = (short)~y;
 x = (short)(x & y);
 x = (short)(x | y);
 x = (short)(x ^ y);
 x = (short)(x << 1);
 x = (short)(x >> 1);
 x = (short)(x >>> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean bl = (boolean)x;

128 Thinking in Java Bruce Eckel

 char c = (char)x;
 byte b = (byte)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void intTest(int x, int y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;

Operators 129

 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 char c = (char)x;
 byte b = (byte)x;
 short s = (short)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void longTest(long x, long y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 x = x >>> 1;
 // Compound assignment:
 x += y;

130 Thinking in Java Bruce Eckel

 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 char c = (char)x;
 byte b = (byte)x;
 short s = (short)x;
 int i = (int)x;
 float f = (float)x;
 double d = (double)x;
 }
 void floatTest(float x, float y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;

Operators 131

 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 char c = (char)x;
 byte b = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 double d = (double)x;
 }
 void doubleTest(double x, double y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);

132 Thinking in Java Bruce Eckel

 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;
 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! boolean bl = (boolean)x;
 char c = (char)x;
 byte b = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 }
} ///:~

Note that boolean is quite limited. You can assign to it the values true and
false, and you can test it for truth or falsehood, but you cannot add booleans
or perform any other type of operation on them.

In char, byte, and short, you can see the effect of promotion with the
arithmetic operators. Each arithmetic operation on any of those types
produces an int result, which must be explicitly cast back to the original type
(a narrowing conversion that might lose information) to assign back to that
type. With int values, however, you do not need to cast, because everything is
already an int. Don’t be lulled into thinking everything is safe, though. If you

Operators 133

multiply two ints that are big enough, you’ll overflow the result. The
following example demonstrates this:

//: operators/Overflow.java
// Surprise! Java lets you overflow.

public class Overflow {
 public static void main(String[] args) {
 int big = Integer.MAX_VALUE;
 System.out.println("big = " + big);
 int bigger = big * 4;
 System.out.println("bigger = " + bigger);
 }
} /* Output:
big = 2147483647
bigger = -4
*///:~

You get no errors or warnings from the compiler, and no exceptions at run
time. Java is good, but it’s not that good.

Compound assignments do not require casts for char, byte, or short, even
though they are performing promotions that have the same results as the
direct arithmetic operations. On the other hand, the lack of the cast certainly
simplifies the code.

You can see that, with the exception of boolean, any primitive type can be
cast to any other primitive type. Again, you must be aware of the effect of a
narrowing conversion when casting to a smaller type; otherwise, you might
unknowingly lose information during the cast.

Exercise 14: (3) Write a method that takes two String arguments and
uses all the boolean comparisons to compare the two Strings and print the
results. For the == and !=, also perform the equals() test. In main(), call
your method with some different String objects.

Summary
If you’ve had experience with any languages that use C-like syntax, you can
see that the operators in Java are so similar that there is virtually no learning
curve. If you found this chapter challenging, make sure you view the
multimedia presentation Thinking in C, available at www.MindView.net.

134 Thinking in Java Bruce Eckel

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindView.net.

 1463

Index
Please note that some names will be duplicated in
capitalized form. Following Java style, the capitalized
names refer to Java classes, while lowercase names refer
to a general concept.

!

! · 105
!= · 103

&

& · 111
&& · 105
&= · 111

.

.NET · 57

.new syntax · 350

.this syntax · 350

@

@ symbol, for annotations · 1059
@author · 86
@Deprecated, annotation · 1060
@deprecated, Javadoc tag · 87
@docRoot · 85
@inheritDoc · 85
@interface, and extends keyword · 1070
@link · 85
@Override · 1059
@param · 86
@Retention · 1061
@return · 86
@see · 85
@since · 86

@SuppressWarnings · 1060
@Target · 1061
@Test · 1060
@Test, for @Unit · 1084
@TestObjectCleanup, @Unit tag · 1092
@TestObjectCreate, for @Unit · 1089
@throws · 87
@Unit · 1084; using · 1084
@version · 85

[

[], indexing operator · 193

^

^ · 111
^= · 111

|

| · 111
|| · 105
|= · 111

+

+ · 101; String conversion with operator + ·
95, 118, 504

1464 Thinking in Java Bruce Eckel

<

< · 103
<< · 112
<<= · 112
<= · 103

=

== · 103

>

> · 103
>= · 103
>> · 112
>>= · 112

A

abstract: class · 311; inheriting from
abstract classes · 312; keyword · 312; vs.
interface · 328

Abstract Window Toolkit (AWT) · 1303
AbstractButton · 1333
abstraction · 24
AbstractSequentialList · 859
AbstractSet · 793
access: class · 229; control · 210, 234;

control, violating with reflection · 607;
inner classes & access rights · 348;
package access and friendly · 221;
specifiers · 31, 210, 221; within a
directory, via the default package · 223

action command · 1358
ActionEvent · 1358, 1406
ActionListener · 1316
ActionScript, for Macromedia Flex · 1417
active objects, in concurrency · 1295
Adapter design pattern · 325, 334, 434,

630, 733, 737, 795
Adapter Method idiom · 434
adapters, listener · 1328
add(), ArrayList · 390
addActionListener() · 1403, 1410
addChangeListener · 1363
addition · 98

addListener · 1321
Adler32 · 975
agent-based programming · 1299
aggregate array initialization · 193
aggregation · 32
aliasing · 97; and String · 504; arrays · 194
Allison, Chuck · 4, 18, 1449, 1460
allocate() · 948
allocateDirect() · 948
alphabetic sorting · 418
alphabetic vs. lexicographic sorting · 783
AND: bitwise · 120; logical (&&) · 105
annotation · 1059; apt processing tool ·

1074; default element values · 1062,
1063, 1065; default value · 1069;
elements · 1061; elements, allowed types
for · 1065; marker annotation · 1061;
processor · 1064; processor based on
reflection · 1071

anonymous inner class · 356, 904, 1314;
and table-driven code · 859; generic ·
645

application: builder · 1394; framework ·
375

applying a method to a sequence · 728
apt, annotation processing tool · 1074
argument: constructor · 156; covariant

argument types · 706; final · 266, 904;
generic type argument inference · 632;
variable argument lists (unknown
quantity and type of arguments) · 198

Arnold, Ken · 1306
array: array of generic objects · 850;

associative array · 394; bounds checking
· 194; comparing arrays · 777;
comparison with container · 748;
copying an array · 775; covariance · 677;
dynamic aggregate initialization syntax ·
752; element comparisons · 778; first-
class objects · 749; initialization · 193;
length · 194, 749; multidimensional ·
754; not Iterable · 433; of objects · 749;
of primitives · 749; ragged · 755;
returning an array · 753

ArrayBlockingQueue · 1215
ArrayList · 401, 817; add() · 390; get() ·

390; size() · 390
Arrays: asList() · 396, 436, 816;

binarySearch() · 784; class, container
utility · 775

asCharBuffer() · 950
aspect-oriented programming (AOP) · 714

Index 1465

assert, and @Unit · 1087
assigning objects · 96
assignment · 95
associative array · 390, 394; another name

for map · 831
atomic operation · 1160
AtomicInteger · 1167
atomicity, in concurrent programming ·

1151
AtomicLong · 1167
AtomicReference · 1167
autoboxing · 419, 630; and generics · 632,

694
auto-decrement operator · 101
auto-increment operator · 101
automatic type conversion · 239
available() · 930

B

backwards compatibility · 655
bag · 394
bank teller simulation · 1253
base 16 · 109
base 8 · 109
base class · 226, 241, 281; abstract base

class · 311; base-class interface · 286;
constructor · 294; initialization · 244

base types · 34
basic concepts of object-oriented

programming (OOP) · 23
BASIC, Microsoft Visual BASIC · 1394
BasicArrowButton · 1334
BeanInfo, custom · 1414
Beans: and Borland’s Delphi · 1394; and

Microsoft’s Visual BASIC · 1394;
application builder · 1394; bound
properties · 1414; component · 1395;
constrained properties · 1414; custom
BeanInfo · 1414; custom property editor
· 1414; custom property sheet · 1414;
events · 1394; EventSetDescriptors ·
1401; FeatureDescriptor · 1414;
getBeanInfo() · 1398;
getEventSetDescriptors() · 1401;
getMethodDescriptors() · 1401;
getName() · 1400;
getPropertyDescriptors() · 1400;
getPropertyType() · 1400;
getReadMethod() · 1400;
getWriteMethod() · 1400; indexed

property · 1414; Introspector · 1398;
JAR files for packaging · 1412; manifest
file · 1412; Method · 1401;
MethodDescriptors · 1401; naming
convention · 1395; properties · 1394;
PropertyChangeEvent · 1414;
PropertyDescriptors · 1400;
ProptertyVetoException · 1414;
reflection · 1394, 1398; Serializable ·
1405; visual programming · 1394

Beck, Kent · 1457
benchmarking · 1272
binary: numbers · 109; numbers, printing ·

116; operators · 111
binarySearch() · 784, 885
binding: dynamic binding · 282; dynamic,

late, or runtime binding · 277; early · 40;
late · 40; late binding · 281; method call
binding · 281; runtime binding · 282

BitSet · 897
bitwise: AND · 120; AND operator (&) ·

111; EXCLUSIVE OR XOR (^) · 111;
NOT ~ · 111; operators · 111; OR · 120;
OR operator (|) · 111

blank final · 265
Bloch, Joshua · 175, 1011, 1146, 1164
blocking: and available() · 930; in

concurrent programs · 1112
BlockingQueue · 1215, 1235
Booch, Grady · 1457
book errors, reporting · 21
Boolean · 132; algebra · 111; and casting ·

121; operators that won’t work with
boolean · 103; vs. C and C++ · 106

Borland Delphi · 1394
bound properties · 1414
bounds: and Class references · 566; in

generics · 653, 673; self-bounded
generic types · 701; superclass and Class
references · 568

bounds checking, array · 194
boxing · 419, 630; and generics · 632, 694
BoxLayout · 1320
branching, unconditional · 143
break keyword · 144
Brian’s Rule of Synchronization · 1156
browser, class · 229
Budd, Timothy · 25
buffer, nio · 946
BufferedInputStream · 920
BufferedOutputStream · 921
BufferedReader · 483, 924, 927

1466 Thinking in Java Bruce Eckel

BufferedWriter · 924, 930
busy wait, concurrency · 1198
button: creating your own · 1329; radio

button · 1344; Swing · 1311, 1333
ButtonGroup · 1334, 1344
ByteArrayInputStream · 916
ByteArrayOutputStream · 917
ByteBuffer · 946
bytecode engineering · 1101; Javassist ·

1104

C

C#: programming language · 57
C++ · 103; exception handling · 492;

Standard Template Library (STL) · 900;
templates · 618, 652

CachedThreadPool · 1121
Callable, concurrency · 1124
callback · 903, 1312; and inner classes ·

372
camel-casing · 88
capacity, of a HashMap or HashSet · 878
capitalization of package names · 75
Cascading Style Sheets (CSS), and

Macromedia Flex · 1423
case statement · 151
CASE_INSENSITIVE_ORDER String

Comparator · 884, 902
cast · 42; and generic types · 697; and

primitive types · 133; asSubclass() ·
569; operators · 120; via a generic class ·
699

cast() · 568
catch: catching an exception · 447;

catching any exception · 458; keyword ·
448

Chain of Responsibility design pattern ·
1036

chained exceptions · 464, 498
change, vector of · 377
channel, nio · 946
CharArrayReader · 923
CharArrayWriter · 923
CharBuffer · 950
CharSequence · 530
Charset · 952
check box · 1342
checked exceptions · 457, 491; converting

to unchecked exceptions · 497
checkedCollection() · 710

CheckedInputStream · 973
checkedList() · 710
checkedMap() · 710
CheckedOutputStream · 973
checkedSet() · 710
checkedSortedMap() · 710
checkedSortedSet() · 710
Checksum class · 975
Chiba, Shigeru, Dr. · 1104, 1106
class · 27; abstract class · 311; access · 229;

anonymous inner class · 356, 904, 1314;
base class · 226, 241, 281; browser · 229;
class hierarchies and exception handling
· 489; class literal · 562, 576; creators ·
30; data · 76; derived class · 281;
equivalence, and
instanceof/isInstance() · 586; final
classes · 270; inheritance diagrams ·
261; inheriting from abstract classes ·
312; inheriting from inner classes · 382;
initialization · 563; initialization & class
loading · 272; initialization of fields ·
182; initializing the base class · 244;
initializing the derived class · 244; inner
class · 345; inner class, and access rights
· 348; inner class, and overriding · 383;
inner class, and super · 383; inner class,
and Swing · 1322; inner class, and
upcasting · 352; inner class, identifiers
and .class files · 387; inner class, in
methods and scopes · 354; inner class,
nesting within any arbitrary scope · 355;
instance of · 25; keyword · 33; linking ·
563; loading · 273, 563; member
initialization · 239; methods · 76;
multiply nested · 368; nested class
(static inner class) · 364; nesting inside
an interface · 366; order of initialization
· 185; private inner classes · 377; public
class, and compilation units · 211;
referring to the outer-class object in an
inner class · 350; static inner classes ·
364; style of creating classes · 228;
subobject · 244

Class · 1335; Class object · 556, 998, 1156;
forName() · 558, 1326;
getCanonicalName() · 560; getClass() ·
459; getConstructors() · 592;
getInterfaces() · 560; getMethods() ·
592; getSimpleName() · 560;
getSuperclass() · 561;
isAssignableFrom() · 580; isInstance()

Index 1467

· 578; isInterface() · 560;
newInstance() · 561; object creation
process · 189; references, and bounds ·
566; references, and generics · 565;
references, and wildcards · 566; RTTI
using the Class object · 556

class files, analyzing · 1101
class loader · 556
class name, discovering from class file ·

1101
ClassCastException · 309, 570
ClassNotFoundException · 574
classpath · 214
cleanup: and garbage collector · 251;

performing · 175; verifying the
termination condition with finalize() ·
176; with finally · 473

clear(), nio · 949
client programmer · 30; vs. library creator

· 209
close() · 928
closure, and inner classes · 372
code: coding standards · 21; coding style ·

88; organization · 221; reuse · 237;
source code · 18

collecting parameter · 713, 742
collection · 44, 394, 427, 884; classes ·

389; filling with a Generator · 636; list
of methods for · 809; utilities · 879

Collections: addAll() · 396;
enumeration() · 894; fill() · 793;
unmodifiableList() · 815

collision: during hashing · 848; name · 217
combo box · 1345
comma operator · 140
Command design pattern · 381, 603, 1031,

1121
comments, and embedded documentation

· 81
Commitment, Theory of Escalating · 1146
common interface · 311
Communicating Sequential Processes

(CSP) · 1299
Comparable · 779, 822, 828
Comparator · 780, 822
compareTo(), in java.lang.Comparable ·

778, 824
comparing arrays · 777
compatibility: backwards · 655; migration ·

655
compilation unit · 211
compile-time constant · 262

compiling a Java program · 80
component, and JavaBeans · 1395
composition · 32, 237; and design · 304;

and dynamic behavior change · 306;
combining composition & inheritance ·
249; vs. inheritance · 256, 262, 830, 895

compression, library · 973
concurrency: active objects · 1295; and

containers · 887; and exceptions · 1158;
and Swing · 1382; ArrayBlockingQueue ·
1215; atomicity · 1151; BlockingQueue ·
1215, 1235; Brian’s Rule of
Synchronization · 1156; Callable · 1124;
Condition class · 1212; constructors ·
1137; contention, lock · 1272;
CountDownLatch · 1230; CyclicBarrier ·
1232; daemon threads · 1130;
DelayQueue · 1235; Exchanger · 1250;
Executor · 1120; I/O between tasks
using pipes · 1221;
LinkedBlockingQueue · 1215; lock,
explicit · 1157; lock-free code · 1161; long
and double non-atomicity · 1161; missed
signals · 1203; performance tuning ·
1270; priority · 1127;
PriorityBlockingQueue · 1239;
producer-consumer · 1208; race
condition · 1152; ReadWriteLock · 1292;
ScheduledExecutor · 1242; semaphore ·
1246; sleep() · 1126; SynchronousQueue
· 1259; task interference · 1150;
terminating tasks · 1179; the Goetz Test
for avoiding synchronization · 1160;
thread local storage · 1177; thread vs.
task, terminology · 1142;
UncaughtExceptionHandler · 1148;
word tearing · 1161

ConcurrentHashMap · 834, 1282, 1287
ConcurrentLinkedQueue · 1282
ConcurrentModificationException · 888;

using CopyOnWriteArrayList to
eliminate · 1281, 1298

Condition class, concurrency · 1212
conditional compilation · 220
conditional operator · 116
conference, Software Development

Conference · 14
console: sending exceptions to · 497;

Swing display framework in
net.mindview.util.SwingConsole · 1310

constant: compile-time constant · 262;
constant folding · 262; groups of

1468 Thinking in Java Bruce Eckel

constant values · 335; implicit
constants, and String · 504

constrained properties · 1414
constructor · 155; and anonymous inner

classes · 356; and concurrency · 1137;
and exception handling · 481, 483; and
finally · 483; and overloading · 158; and
polymorphism · 293; arguments · 156;
base-class constructor · 294; behavior of
polymorphic methods inside
constructors · 301; calling base-class
constructors with arguments · 245;
calling from other constructors · 170;
Constructor class for reflection · 589;
default · 166; initialization during
inheritance and composition · 249;
instance initialization · 359; name · 156;
no-arg · 156, 166; order of constructor
calls with inheritance · 293; return value
· 157; static construction clause · 190;
static method · 189; synthesized default
constructor access · 592

consulting & training provided by
MindView, Inc. · 1450

container · 44; class · 389; classes · 389;
comparison with array · 748;
performance test · 859

containers: basic behavior · 398; lock-free ·
1281; type-safe and generics · 390

contention, lock, in concurrency · 1272
context switch · 1112
continue keyword · 144
contravariance, and generics · 682
control framework, and inner classes · 375
control, access · 31, 234
conversion: automatic · 239; narrowing

conversion · 120; widening conversion ·
121

Coplien, Jim: curiously recurring template
pattern · 702

copying an array · 775
CopyOnWriteArrayList · 1252, 1281
CopyOnWriteArraySet · 1282
copyright notice, source code · 19
CountDownLatch, for concurrency · 1230
covariant · 565; argument types · 706;

arrays · 677; return types · 303, 583, 706
CRC32 · 975
critical section, and synchronized block ·

1169
CSS (Cascading Style Sheets), and

Macromedia Flex · 1423

curiously recurring: generics · 702;
template pattern in C++ · 702

CyclicBarrier, for concurrency · 1232

D

daemon threads · 1130
data: final · 262; primitive data types and

use with operators · 123; static
initialization · 186

Data Transfer Object · 621, 797
Data Transfer Object (Messenger idiom) ·

860
data type, equivalence to class · 27
database table, SQL generated via

annotations · 1066
DatagramChannel · 971
DataInput · 926
DataInputStream · 920, 924, 929
DataOutput · 926
DataOutputStream · 921, 925
deadlock, in concurrency · 1223
decode(), character set · 953
decompiler, javap · 505, 610, 660
Decorator design pattern · 717
decoupling, via polymorphism · 41, 277
decrement operator · 101
default constructor · 166; access the same

as the class · 592; synthesizing a default
constructor · 245

default keyword, in a switch statement ·
151

default package · 211, 223
defaultReadObject() · 995
defaultWriteObject() · 994
DeflaterOutputStream · 973
Delayed · 1238
DelayQueue, for concurrency · 1235
delegation · 246, 716
Delphi, from Borland · 1394
DeMarco, Tom · 1459
deque, double-ended queue · 410, 829
derived: derived class · 281; derived class,

initializing · 244; types · 34
design · 307; adding more methods to a

design · 235; and composition · 304;
and inheritance · 304; and mistakes ·
234; library design · 210

design pattern: Adapter · 325, 334, 630,
733, 737, 795; Adapter method · 434;
Chain of Responsibility · 1036;

Index 1469

Command · 381, 603, 1031, 1121; Data
Transfer Object (Messenger idiom) ·
621, 797, 860; Decorator · 717; Façade ·
577; Factory Method · 339, 582, 627,
928; Factory Method, and anonymous
classes · 361; Flyweight · 800, 1301;
Iterator · 349, 406; Null Iterator · 598;
Null Object · 598; Proxy · 593; Singleton
· 232; State · 306; Strategy · 322, 332,
737, 764, 778, 780, 903, 910, 1036,
1238; Template Method · 375, 573, 666,
859, 969, 1173, 1279, 1284; Visitor ·
1079

destructor · 173, 175, 473; Java doesn’t
have one · 251

diagram: class inheritance diagrams · 261;
inheritance · 42

dialog: box · 1364; file · 1368; tabbed ·
1349

dictionary · 394
Dijkstra, Edsger · 1224
dining philosophers, example of deadlock

in concurrency · 1224
directory: and packages · 220; creating

directories and paths · 912; lister · 902
dispatching: double dispatching · 1048;

multiple, and enum · 1047
display framework, for Swing · 1310
dispose() · 1365
division · 98
documentation · 17; comments &

embedded documentation · 81
double: and threading · 1161; literal value

marker (d or D) · 109
double dispatching · 1048; with EnumMap

· 1055
double-ended queue (deque) · 410
do-while · 138
downcast · 261, 308; type-safe downcast ·

569
drawing lines in Swing · 1360
drop-down list · 1345
duck typing · 721, 733
dynamic: aggregate initialization syntax

for arrays · 752; behavior change with
composition · 306; binding · 277, 282;
proxy · 594; type checking in Java · 814;
type safety and containers · 710

E

early binding · 40, 281
East, BorderLayout · 1317
editor, creating one using the Swing

JTextPane · 1341
efficiency: and arrays · 747; and final · 271
else keyword · 135
encapsulation · 228; using reflection to

break · 607
encode(), character set · 953
end sentinel · 626
endian: big endian · 958; little endian ·

958
entrySet(), in Map · 845
enum: adding methods · 1014; and Chain

of Responsibility design pattern · 1036;
and inheritance · 1020; and interface ·
1023; and multiple dispatching · 1047;
and random selection · 1021; and state
machines · 1041; and static imports ·
1013; and switch · 1016; constant-
specific methods · 1032, 1053; groups of
constant values in C & C++ · 335;
keyword · 204, 1011; values() · 1011,
1017

enumerated types · 204
Enumeration · 894
EnumMap · 1030
EnumSet · 642, 899; instead of flags · 1028
equals() · 104; and hashCode() · 822, 853;

and hashed data structures · 843;
conditions for defining properly · 842;
overriding for HashMap · 842

equivalence: == · 103; object equivalence ·
103

erasure · 696; in generics · 650
Erlang language · 1113
error: handling with exceptions · 443;

recovery · 443; reporting · 492;
reporting errors in book · 21; standard
error stream · 450

Escalating Commitment, Theory of · 1146
event: event-driven programming · 1312;

event-driven system · 375; events and
listeners · 1322; JavaBeans · 1394;
listener · 1321; model, Swing · 1321;
multicast, and JavaBeans · 1407;
responding to a Swing event · 1312

EventSetDescriptors · 1401

1470 Thinking in Java Bruce Eckel

exception: and concurrency · 1158; and
constructors · 481; and inheritance ·
479, 489; and the console · 497;
catching an exception · 447; catching
any exception · 458; chained exceptions
· 498; chaining · 464; changing the
point of origin of the exception · 463;
checked · 457, 491; class hierarchies ·
489; constructors · 483; converting
checked to unchecked · 497; creating
your own · 449; design issues · 485;
Error class · 468; Exception class · 468;
exception handler · 448; exception
handling · 443; exception matching ·
489; exceptional condition · 445;
FileNotFoundException · 485;
fillInStackTrace() · 461; finally · 471;
generics · 711; guarded region · 447;
handler · 445; handling · 49; logging ·
452; losing an exception, pitfall · 477;
NullPointerException · 469;
printStackTrace() · 461; reporting
exceptions via a logger · 454;
restrictions · 479; re-throwing an
exception · 461; RuntimeException ·
469; specification · 457, 493;
termination vs. resumption · 449;
Throwable · 458; throwing an exception
· 445, 446; try · 473; try block · 447;
typical uses of exceptions · 500;
unchecked · 469

Exchanger, concurrency class · 1250
executing operating system programs from

within Java · 944
Executor, concurrency · 1120
ExecutorService · 1121
explicit type argument specification for

generic methods · 398, 635
exponential notation · 109
extending a class during inheritance · 35
extends · 226, 243, 307; and @interface ·

1070; and interface · 330; keyword · 241
extensible program · 286
extension: sign · 112; zero · 112
extension, vs. pure inheritance · 306
Externalizable · 986; alternative approach

to using · 992
Extreme Programming (XP) · 1457

F

Façade · 577
Factory Method design pattern · 339, 582,

627, 928; and anonymous classes · 361
factory object · 285, 664
fail fast containers · 888
false · 105
FeatureDescriptor · 1414
Fibonacci · 629
Field, for reflection · 589
fields, initializing fields in interfaces · 335
FIFO (first-in, first out) · 423
file: characteristics of files · 912; dialogs ·

1368; File class · 901, 916, 925;
File.list() · 901; incomplete output files,
errors and flushing · 931; JAR file · 212;
locking · 970; memory-mapped files ·
966

FileChannel · 947
FileDescriptor · 916
FileInputReader · 927
FileInputStream · 916
FileLock · 971
FilenameFilter · 901
FileNotFoundException · 485
FileOutputStream · 917
FileReader · 483, 923
FileWriter · 923, 930
fillInStackTrace() · 461
FilterInputStream · 916
FilterOutputStream · 917
FilterReader · 924
FilterWriter · 924
final · 316, 622; and efficiency · 271; and

private · 268; and static · 263; argument
· 266, 904; blank finals · 265; classes ·
270; data · 262; keyword · 262; method ·
282; methods · 267, 303; static
primitives · 264; with object references ·
263

finalize() · 173, 254, 485; and inheritance ·
295; calling directly · 175

finally · 251, 254; and constructors · 483;
and return · 476; keyword · 471; not run
with daemon threads · 1135; pitfall · 477

finding .class files during loading · 214
FixedThreadPool · 1122
flag, using EnumSet instead of · 1028
Flex: OpenLaszlo alternative to Flex · 1416;

tool from Macromedia · 1416

Index 1471

flip(), nio · 948
float: floating point true and false · 106;

literal value marker (F) · 109
FlowLayout · 1318
flushing output files · 931
Flyweight design pattern · 800, 1301
focus traversal · 1305
folding, constant · 262
for keyword · 138
foreach · 141, 145, 199, 200, 219, 376, 393,

422, 429, 545, 629, 631, 694, 1011,
1036; and Adapter Method · 434; and
Iterable · 431

format: precision · 517; specifiers · 516;
string · 514; width · 516

format() · 514
Formatter · 515
forName() · 558, 1326
FORTRAN programming language · 110
forward referencing · 184
Fowler, Martin · 209, 495, 1457
framework, control framework and inner

classes · 375
function: member function · 29; overriding

· 36
function object · 737
functional languages · 1113
Future · 1125

G

garbage collection · 173, 175; and cleanup ·
251; how the collector works · 178; order
of object reclamation · 254; reachable
objects · 889

Generator · 285, 627, 636, 645, 695, 732,
763, 780, 794, 1021, 1042; filling a
Collection · 636; general purpose · 637

generics: @Unit testing · 1094; and type-
safe containers · 390; anonymous inner
classes · 645; array of generic objects ·
850; basic introduction · 390; bounds ·
653, 673; cast via a generic class · 699;
casting · 697; Class references · 565;
contravariance · 682; curiously
recurring · 702; erasure · 650, 696;
example of a framework · 1282;
exceptions · 711; explicit type argument
specification for generic methods · 398,
635; inner classes · 645; instanceof ·
663, 697; isInstance() · 663; methods ·

631, 795; overloading · 699; reification ·
655; self-bounded types · 701; simplest
class definition · 413; supertype
wildcards · 682; type tag · 663;
unbounded wildcard · 686; varargs and
generic methods · 635; wildcards · 677

get(): ArrayList · 390; HashMap · 420; no
get() for Collection · 811

getBeanInfo() · 1398
getBytes() · 929
getCanonicalName() · 560
getChannel() · 948
getClass() · 459, 558
getConstructor() · 1335
getConstructors() · 592
getenv() · 433
getEventSetDescriptors() · 1401
getInterfaces() · 560
getMethodDescriptors() · 1401
getMethods() · 592
getName() · 1400
getPropertyDescriptors() · 1400
getPropertyType() · 1400
getReadMethod() · 1400
getSelectedValues() · 1347
getSimpleName() · 560
getState() · 1357
getSuperclass() · 561
getWriteMethod() · 1400
Glass, Robert · 1458
glue, in BoxLayout · 1321
Goetz Test, for avoiding synchronization ·

1160
Goetz, Brian · 1156, 1160, 1272, 1302
goto, lack of in Java · 146
graphical user interface (GUI) · 375, 1303
graphics · 1368; Graphics class · 1361
greater than (>) · 103
greater than or equal to (>=) · 103
greedy quantifiers · 529
GridBagLayout · 1320
GridLayout · 1319, 1392
Grindstaff, Chris · 1430
group, thread · 1146
groups, regular expression · 534
guarded region, in exception handling ·

447
GUI: graphical user interface · 375, 1303;

GUI builders · 1304
GZIPInputStream · 973
GZIPOutputStream · 973

1472 Thinking in Java Bruce Eckel

H

handler, exception · 448
Harold, Elliotte Rusty · 1415, 1456; XOM

XML library · 1003
has-a · 32; relationship, composition · 258
hash function · 847
hashCode() · 833, 839, 847; and hashed

data structures · 843; equals() · 822;
issues when writing · 851; recipe for
generating decent · 853

hashing · 844, 847; and hash codes · 839;
external chaining · 848; perfect hashing
function · 848

HashMap · 834, 877, 1287, 1331
HashSet · 415, 821, 872
Hashtable · 877, 895
hasNext(), Iterator · 407
Hexadecimal · 109
hiding, implementation · 228
Holub, Allen · 1295
HTML on Swing components · 1370

I

I/O: available() · 930; basic usage,
examples · 927; between tasks using
pipes · 1221; blocking, and available() ·
930; BufferedInputStream · 920;
BufferedOutputStream · 921;
BufferedReader · 483, 924, 927;
BufferedWriter · 924, 930;
ByteArrayInputStream · 916;
ByteArrayOutputStream · 917;
characteristics of files · 912;
CharArrayReader · 923;
CharArrayWriter · 923;
CheckedInputStream · 973;
CheckedOutputStream · 973; close() ·
928; compression library · 973;
controlling the process of serialization ·
986; DataInput · 926; DataInputStream
· 920, 924, 929; DataOutput · 926;
DataOutputStream · 921, 925;
DeflaterOutputStream · 973; directory
lister · 902; directory, creating
directories and paths · 912;
Externalizable · 986; File · 916, 925; File
class · 901; File.list() · 901;
FileDescriptor · 916; FileInputReader ·

927; FileInputStream · 916;
FilenameFilter · 901; FileOutputStream
· 917; FileReader · 483, 923; FileWriter ·
923, 930; FilterInputStream · 916;
FilterOutputStream · 917; FilterReader ·
924; FilterWriter · 924; from standard
input · 941; GZIPInputStream · 973;
GZIPOutputStream · 973;
InflaterInputStream · 973; input · 914;
InputStream · 914; InputStreamReader ·
922, 923; internationalization · 923;
interruptible · 1189; library · 901;
lightweight persistence · 980;
LineNumberInputStream · 920;
LineNumberReader · 924; mark() ·
926; mkdirs() · 914; network I/O · 946;
new nio · 946; ObjectOutputStream ·
981; output · 914; OutputStream · 914,
917; OutputStreamWriter · 922, 923;
pipe · 915; piped streams · 936;
PipedInputStream · 916;
PipedOutputStream · 916, 917;
PipedReader · 923; PipedWriter · 923;
PrintStream · 921; PrintWriter · 924,
930, 932; PushbackInputStream · 920;
PushbackReader · 924;
RandomAccessFile · 925, 926, 934;
read() · 914; readDouble() · 934;
Reader · 914, 922, 923; readExternal() ·
986; readLine() · 485, 924, 931, 942;
readObject() · 981; redirecting standard
I/O · 942; renameTo() · 914; reset() ·
926; seek() · 926, 934;
SequenceInputStream · 916, 925;
Serializable · 986; setErr(PrintStream) ·
943; setIn(InputStream) · 943;
setOut(PrintStream) · 943;
StreamTokenizer · 924; StringBuffer ·
916; StringBufferInputStream · 916;
StringReader · 923, 928; StringWriter ·
923; System.err · 941; System.in · 941;
System.out · 941; transient · 991; typical
I/O configurations · 927; Unicode · 923;
write() · 914; writeBytes() · 933;
writeChars() · 933; writeDouble() ·
934; writeExternal() · 986;
writeObject() · 981; Writer · 914, 922,
923; ZipEntry · 977; ZipInputStream ·
973; ZipOutputStream · 973

Icon · 1335
IdentityHashMap · 834, 877
if-else statement · 116, 135

Index 1473

IllegalAccessException · 573
IllegalMonitorStateException · 1199
ImageIcon · 1336
immutable · 600
implementation · 28; and interface · 257,

316; and interface, separating · 31; and
interface, separation · 228; hiding · 209,
228, 352; separation of interface and
implementation · 1321

implements keyword · 316
import keyword · 211
increment operator · 101; and concurrency

· 1153
indexed property · 1414
indexing operator [] · 193
indexOf(), String · 592
inference, generic type argument inference

· 632
InflaterInputStream · 973
inheritance · 33, 226, 237, 241, 277; and

enum · 1020; and final · 270; and
finalize() · 295; and generic code · 617;
and synchronized · 1411; class
inheritance diagrams · 261; combining
composition & inheritance · 249;
designing with inheritance · 304;
diagram · 42; extending a class during ·
35; extending interfaces with
inheritance · 329; from abstract classes ·
312; from inner classes · 382;
initialization with inheritance · 272;
method overloading vs. overriding · 255;
multiple inheritance in C++ and Java ·
326; pure inheritance vs. extension ·
306; specialization · 258; vs.
composition · 256, 262, 830, 895

initial capacity, of a HashMap or HashSet ·
878

initialization: and class loading · 272; array
initialization · 193; base class · 244;
class · 563; class member · 239;
constructor initialization during
inheritance and composition · 249;
initializing with the constructor · 155;
instance initialization · 191, 359; lazy ·
239; member initializers · 294; non-
static instance initialization · 191; of
class fields · 182; of method variables ·
181; order of initialization · 185, 302;
static · 274; with inheritance · 272

inline method calls · 267

inner class · 345; access rights · 348; and
overriding · 383; and control
frameworks · 375; and super · 383; and
Swing · 1322; and threads · 1137; and
upcasting · 352; anonymous inner class ·
904, 1314; and table-driven code · 859;
callback · 372; closure · 372; generic ·
645; hidden reference to the object of
the enclosing class · 349; identifiers and
.class files · 387; in methods & scopes ·
354; inheriting from inner classes · 382;
local · 355; motivation · 369; nesting
within any arbitrary scope · 355; private
inner classes · 377; referring to the
outer-class object · 350; static inner
classes · 364

InputStream · 914
InputStreamReader · 922, 923
instance: instance initialization · 359; non-

static instance initialization · 191; of a
class · 25

instanceof · 576; and generic types · 697;
dynamic instanceof with isInstance() ·
578; keyword · 569

Integer: parseInt() · 1368; wrapper class ·
196

interface: and enum · 1023; and generic
code · 617; and implementation,
separation of · 31, 228, 1321; and
inheritance · 329; base-class interface ·
286; classes nested inside · 366;
common interface · 311; for an object ·
26; initializing fields in interfaces · 335;
keyword · 316; name collisions when
combining interfaces · 330; nesting
interfaces within classes and other
interfaces · 336; private, as nested
interfaces · 339; upcasting to an
interface · 319; vs. abstract · 328; vs.
implementation · 257

internationalization, in I/O library · 923
interrupt(): concurrency · 1185; threading

· 1143
interruptible io · 1189
Introspector · 1398
invocation handler, for dynamic proxy ·

595
is-a · 306; relationship, inheritance · 258;

and upcasting · 260; vs. is-like-a
relationships · 37

isAssignableFrom(), Class method · 580
isDaemon() · 1133

1474 Thinking in Java Bruce Eckel

isInstance() · 578; and generics · 663
isInterface() · 560
is-like-a · 307
Iterable · 629, 797; and array · 433; and

foreach · 431
Iterator · 406, 409, 427; hasNext() · 407;

next() · 407
Iterator design pattern · 349

J

Jacobsen, Ivar · 1457
JApplet · 1317; menus · 1352
JAR · 1412; file · 212; jar files and classpath

· 216; utility · 978
Java: and set-top boxes · 111; AWT · 1303;

bytecodes · 506; compiling and running
a program · 80; Java Foundation
Classes (JFC/Swing) · 1303; Java
Virtual Machine (JVM) · 556; Java Web
Start · 1376; public Java seminars · 15

Java standard library, and thread-safety ·
1232

JavaBeans, see Beans · 1393
javac · 81
javadoc · 82
javap decompiler · 505, 610, 660
Javassist · 1104
JButton · 1335; Swing · 1311
JCheckBox · 1335, 1342
JCheckBoxMenuItem · 1353, 1357
JComboBox · 1345
JComponent · 1337, 1360
JDialog · 1364; menus · 1352
JDK 1.1 I/O streams · 922
JDK, downloading and installing · 80
JFC, Java Foundation Classes (Swing) ·

1303
JFileChooser · 1368
JFrame · 1317; menus · 1352
JIT, just-in-time compilers · 181
JLabel · 1340
JList · 1347
JMenu · 1352, 1357
JMenuBar · 1352, 1358
JMenuItem · 1336, 1352, 1357, 1358, 1360
JNLP, Java Network Launch Protocol ·

1376
join(), threading · 1143
JOptionPane · 1350
Joy, Bill · 103

JPanel · 1334, 1360, 1392
JPopupMenu · 1359
JProgressBar · 1373
JRadioButton · 1335, 1344
JScrollPane · 1316, 1349
JSlider · 1373
JTabbedPane · 1349
JTextArea · 1315
JTextField · 1312, 1338
JTextPane · 1341
JToggleButton · 1334
JUnit, problems with · 1083
JVM (Java Virtual Machine) · 556

K

keyboard: navigation, and Swing · 1305;
shortcuts · 1358

keySet() · 877

L

label · 146
labeled: break · 147; continue · 147
late binding · 40, 277, 281
latent typing · 721, 733
layout, controlling layout with layout

managers · 1317
lazy initialization · 239
least-recently-used (LRU) · 838
left-shift operator (<<) · 112
length: array member · 194; for arrays ·

749
less than (<) · 103
less than or equal to (<=) · 103
lexicographic: sorting · 418; vs. alphabetic

sorting · 783
library: creator, vs. client programmer ·

209; design · 210; use · 210
LIFO (last-in, first-out) · 412
lightweight: object · 406; persistence · 980
LineNumberInputStream · 920
LineNumberReader · 924
LinkedBlockingQueue · 1215
LinkedHashMap · 834, 838, 877
LinkedHashSet · 416, 821, 872, 874
LinkedList · 401, 410, 423, 817
linking, class · 563
list: boxes · 1347; drop-down list · 1345

Index 1475

List · 389, 394, 401, 817, 1347;
performance comparison · 863; sorting
and searching · 884

listener: adapters · 1328; and events ·
1322; interfaces · 1326

Lister, Timothy · 1459
ListIterator · 817
literal: class literal · 562, 576; double · 109;

float · 109; long · 109; values · 108
little endian · 958
livelock · 1301
load factor, of a HashMap or HashSet ·

878
loader, class · 556
loading: .class files · 214; class · 273, 563;

initialization & class loading · 272
local: inner class · 355; variable · 71
lock: contention, in concurrency · 1272;

explicit, in concurrency · 1157; in
concurrency · 1155; optimistic locking ·
1290

lock-free code, in concurrent
programming · 1161

locking, file · 970, 971
logarithms, natural · 110
logging, building logging into exceptions ·

452
logical: AND · 120; operator and short-

circuiting · 106; operators · 105; OR ·
120

long: and threading · 1161; literal value
marker (L) · 109

look & feel, pluggable · 1373
LRU, least-recently-used · 838
lvalue · 95

M

machines, state, and enum · 1041
Macromedia Flex · 1416
main() · 242
manifest file, for JAR files · 978, 1412
Map · 389, 394, 419; EnumMap · 1030; in-

depth exploration of · 831; performance
comparison · 875

Map.Entry · 845
MappedByteBuffer · 966
mark() · 926
marker annotation · 1061
matcher, regular expression · 531
matches(), String · 525

Math.random() · 419; range of results ·
871

mathematical operators · 98, 971
member: initializers · 294; member

function · 29; object · 32
memory exhaustion, solution via

References · 890
memory-mapped files · 966
menu: JDialog, JApplet, JFrame · 1352;

JPopupMenu · 1359
message box, in Swing · 1350
message, sending · 27
Messenger idiom · 621, 797, 860
meta-annotations · 1063
Metadata · 1059
method: adding more methods to a design

· 235; aliasing during method calls · 97;
applying a method to a sequence · 728;
behavior of polymorphic methods inside
constructors · 301; distinguishing
overloaded methods · 160; final · 267,
282, 303; generic · 631; initialization of
method variables · 181; inline method
calls · 267; inner classes in methods &
scopes · 354; lookup tool · 1324; method
call binding · 281; overloading · 158;
overriding private · 290; polymorphic
method call · 277; private · 303;
protected methods · 259; recursive ·
510; static · 172, 282

Method · 1401; for reflection · 589
MethodDescriptors · 1401
Meyer, Jeremy · 1059, 1100, 1376
Meyers, Scott · 30
microbenchmarks · 871
Microsoft Visual BASIC · 1394
migration compatibility · 655
missed signals, concurrency · 1203
mistakes, and design · 234
mixin · 713
mkdirs() · 914
mnemonics (keyboard shortcuts) · 1358
Mock Object · 606
modulus · 98
monitor, for concurrency · 1155
Mono · 58
multicast · 1406; event, and JavaBeans ·

1407
multidimensional arrays · 754
multiparadigm programming · 25
multiple dispatching: and enum · 1047;

with EnumMap · 1055

1476 Thinking in Java Bruce Eckel

multiple implementation inheritance · 371
multiple inheritance, in C++ and Java ·

326
multiplication · 98
multiply nested class · 368
multitasking · 1112
mutual exclusion (mutex), concurrency ·

1154
MXML, Macromedia Flex input format ·

1416
mxmlc, Macromedia Flex compiler · 1418

N

name: clash · 211; collisions · 217;
collisions when combining interfaces ·
330; creating unique package names ·
214; qualified · 560

namespaces · 211
narrowing conversion · 120
natural logarithms · 110
nested class (static inner class) · 364
nesting interfaces · 336
net.mindview.util.SwingConsole · 1310
network I/O · 946
Neville, Sean · 1416
new I/O · 946
new operator · 173; and primitives, array ·

195
newInstance() · 1335; reflection · 561
next(), Iterator · 407
nio · 946; and interruption · 1189; buffer ·

946; channel · 946; performance · 967
no-arg constructor · 156, 166
North, BorderLayout · 1317
not equivalent (!=) · 103
NOT, logical (!) · 105
notifyAll() · 1198
notifyListeners() · 1411
null · 67
Null Iterator design pattern · 598
Null Object design pattern · 598
NullPointerException · 469
numbers, binary · 109

O

object · 25; aliasing · 97; arrays are first-
class objects · 749; assigning objects by

copying references · 96; Class object ·
556, 998, 1156; creation · 156; equals() ·
104; equivalence · 103; equivalence vs.
reference equivalence · 104; final · 263;
getClass() · 558; hashCode() · 833;
interface to · 26; lock, for concurrency ·
1155; member · 32; object-oriented
programming · 553; process of creation ·
189; serialization · 980; standard root
class, default inheritance from · 241;
wait() and notifyAll() · 1199; web of
objects · 981

object pool · 1246
object-oriented, basic concepts of object-

oriented programming (OOP) · 23
ObjectOutputStream · 981
Octal · 109
ones complement operator · 111
OOP: basic characteristics · 25; basic

concepts of object-oriented
programming · 23; protocol · 316;
Simula-67 programming language · 26;
substitutability · 25

OpenLaszlo, alternative to Flex · 1416
operating system, executing programs

from within Java · 944
operation, atomic · 1160
operator · 94; + and += overloading for

String · 242; +, for String · 504; binary ·
111; bitwise · 111; casting · 120; comma
operator · 140; common pitfalls · 119;
indexing operator [] · 193; logical · 105;
logical operators and short-circuiting ·
106; ones-complement · 111; operator
overloading for String · 504;
overloading · 118; precedence · 95;
relational · 103; shift · 112; String
conversion with operator + · 95, 118;
ternary · 116; unary · 101, 111

optional methods, in the Java containers ·
813

OR · 120; (||) · 105
order: of constructor calls with inheritance

· 293; of initialization · 185, 272, 302
ordinal(), for enum · 1012
organization, code · 221
OSExecute · 944
OutputStream · 914, 917
OutputStreamWriter · 922, 923
overflow, and primitive types · 133
overloading: and constructors · 158;

distinguishing overloaded methods ·

Index 1477

160; generics · 699; lack of name hiding
during inheritance · 255; method
overloading · 158; on return values ·
165; operator + and += overloading for
String · 242, 504; operator overloading ·
118; vs. overriding · 255

overriding: and inner classes · 383;
function · 36; private methods · 290; vs.
overloading · 255

P

package · 210; access, and friendly · 221;
and directory structure · 220; creating
unique package names · 214; default ·
211, 223; names, capitalization · 75;
package access, and protected · 258

paintComponent() · 1360, 1368
painting on a JPanel in Swing · 1360
parameter, collecting · 713, 742
parameterized types · 617
parseInt() · 1368
pattern, regular expression · 527
perfect hashing function · 848
performance: and final · 271; nio · 967;

test, containers · 859; tuning, for
concurrency · 1270

persistence · 996; lightweight persistence ·
980

PhantomReference · 889
philosophers, dining, example of deadlock

in concurrency · 1224
pipe · 915
piped streams · 936
PipedInputStream · 916
PipedOutputStream · 916, 917
PipedReader · 923, 1221
PipedWriter · 923, 1221
pipes, and I/O · 1221
Plauger, P.J. · 1458
pluggable look & feel · 1373
pointer, Java exclusion of pointers · 372
polymorphism · 38, 277, 310, 554, 613; and

constructors · 293; and multiple
dispatching · 1048; behavior of
polymorphic methods inside
constructors · 301

pool, object · 1246
portability in C, C++ and Java · 123
position, absolute, when laying out Swing

components · 1320

possessive quantifiers · 529
post-decrement · 102
postfix · 102
post-increment · 102
pre-decrement · 102
preferences API · 1006
prefix · 102
pre-increment · 102
prerequisites, for this book · 23
primitive: comparison · 104; data types,

and use with operators · 123; final · 263;
final static primitives · 264;
initialization of class fields · 182; types ·
65

primordial class loader · 556
printf() · 514
printStackTrace() · 458, 461
PrintStream · 921
PrintWriter · 924, 930, 932; convenience

constructor in Java SE5 · 937
priority, concurrency · 1127
PriorityBlockingQueue, for concurrency ·

1239
PriorityQueue · 425, 827
private · 31, 210, 221, 224, 258, 1155;

illusion of overriding private methods ·
268; inner classes · 377; interfaces,
when nested · 339; method overriding ·
290; methods · 303

problem space · 24
process control · 944
process, concurrent · 1112
ProcessBuilder · 944
ProcessFiles · 1100
producer-consumer, concurrency · 1208
programmer, client · 30
programming: basic concepts of object-

oriented programming (OOP) · 23;
event-driven programming · 1312;
Extreme Programming (XP) · 1457;
multiparadigm · 25; object-oriented ·
553

progress bar · 1371
promotion, to int · 122, 132
property · 1394; bound properties · 1414;

constrained properties · 1414; custom
property editor · 1414; custom property
sheet · 1414; indexed property · 1414

PropertyChangeEvent · 1414
PropertyDescriptors · 1400
ProptertyVetoException · 1414

1478 Thinking in Java Bruce Eckel

protected · 31, 210, 221, 225, 258; and
package access · 258; is also package
access · 227

protocol · 316
proxy: and java.lang.ref.Reference · 890;

for unmodifiable methods in the
Collections class · 817

Proxy design pattern · 593
public · 31, 210, 221, 222; and interface ·

316; class, and compilation units · 211
pure substitution · 37, 307
PushbackInputStream · 920
PushbackReader · 924
pushdown stack · 412; generic · 625
Python · 1, 5, 9, 53, 60, 722, 787, 1113,

1460

Q

qualified name · 560
quantifier: greedy · 529; possessive · 529;

regular expression · 529; reluctant · 529
queue · 389, 410, 423, 827; performance ·

863; synchronized, concurrency · 1215
queuing discipline · 425

R

race condition, in concurrency · 1152
RAD (Rapid Application Development) ·

588
radio button · 1344
ragged array · 755
random selection, and enum · 1021
random() · 419
RandomAccess, tagging interface for

containers · 441
RandomAccessFile · 925, 926, 934, 948
raw type · 651
reachable objects and garbage collection ·

889
read() · 914; nio · 948
readDouble() · 934
Reader · 914, 922, 923
readExternal() · 986
reading from standard input · 941
readLine() · 485, 924, 931, 942
readObject() · 981; with Serializable · 992
ReadWriteLock · 1292

recursion, unintended via toString() · 509
redirecting standard I/O · 942
ReentrantLock · 1160, 1192
refactoring · 209
reference: assigning objects by copying

references · 96; final · 263; finding exact
type of a base reference · 555; null · 67;
reference equivalence vs. object
equivalence · 104

reference counting, garbage collection ·
178

Reference, from java.lang.ref · 889
referencing, forward · 184
reflection · 588, 1324, 1398; and Beans ·

1394; and weak typing · 496; annotation
processor · 1064, 1071; breaking
encapsulation with · 607; difference
between RTTI and reflection · 589;
example · 1334; latent typing and
generics · 726

regex · 527
Registered Factories, variation of Factory

Method design pattern · 582
regular expressions · 523
rehashing · 878
reification, and generics · 655
relational operators · 103
reluctant quantifiers · 529
removeActionListener() · 1403, 1410
removeXXXListener() · 1322
renameTo() · 914
reporting errors in book · 21
request, in OOP · 27
reset() · 926
responsive user interfaces · 1145
resume(), and deadlocks · 1184
resumption, termination vs. resumption,

exception handling · 449
re-throwing an exception · 461
return: an array · 753; and finally · 476;

constructor return value · 157; covariant
return types · 303, 706; overloading on
return value · 165; returning multiple
objects · 621

reusability · 32
reuse: code reuse · 237; reusable code ·

1393
rewind() · 953
right-shift operator (>>) · 112
rollover · 1337
RoShamBo · 1048
Rumbaugh, James · 1457

Index 1479

running a Java program · 80
runtime binding · 282; polymorphism ·

277
runtime type information (RTTI) · 308;

Class object · 556, 1335;
ClassCastException · 570; Constructor
class for reflection · 589; Field · 589;
getConstructor() · 1335; instanceof
keyword · 569; isInstance() · 578;
Method · 589; misuse · 613;
newInstance() · 1335; reflection · 588;
reflection, difference between · 589;
shape example · 553; type-safe
downcast · 569

RuntimeException · 469, 498
rvalue · 95

S

ScheduledExecutor, for concurrency · 1242
scheduler, thread · 1117
scope: inner class nesting within any

arbitrary scope · 355; inner classes in
methods & scopes · 354

scrolling in Swing · 1316
searching: an array · 784; sorting and

searching Lists · 884
section, critical section and synchronized

block · 1169
seek() · 926, 934
self-bounded types, in generics · 701
semaphore, counting · 1246
seminars: public Java seminars · 15;

training, provided by MindView, Inc. ·
1450

sending a message · 27
sentinel, end · 626
separation of interface and

implementation · 31, 228, 1321
sequence, applying a method to a sequence

· 728
SequenceInputStream · 916, 925
Serializable · 980, 986, 991, 1001, 1405;

readObject() · 992; writeObject() · 992
serialization: and object storage · 996; and

transient · 991; controlling the process
of serialization · 986;
defaultReadObject() · 995;
defaultWriteObject() · 994; Versioning ·
995

Set · 389, 394, 415, 821; mathematical
relationships · 641; performance
comparison · 872

setActionCommand() · 1358
setBorder() · 1340
setErr(PrintStream) · 943
setIcon() · 1337
setIn(InputStream) · 943
setLayout() · 1317
setMnemonic() · 1358
setOut(PrintStream) · 943
setToolTipText() · 1337
shape: example · 34, 282; example, and

runtime type information · 553
shift operators · 112
short-circuit, and logical operators · 106
shortcut, keyboard · 1358
shuffle() · 885
side effect · 94, 103, 166
sign extension · 112
signals, missed, in concurrency · 1203
signature, method · 72
signed twos complement · 116
Simula-67 programming language · 26
simulation · 1253
sine wave · 1360
single dispatching · 1047
SingleThreadExecutor · 1123
Singleton design pattern · 232
size(), ArrayList · 390
size, of a HashMap or HashSet · 878
sizeof(), lack of in Java · 122
sleep(), in concurrency · 1126
slider · 1371
Smalltalk · 25
SocketChannel · 971
SoftReference · 889
Software Development Conference · 14
solution space · 24
SortedMap · 837
SortedSet · 825
sorting · 778; alphabetic · 418; and

searching Lists · 884; lexicographic ·
418

source code · 18; copyright notice · 19
South, BorderLayout · 1317
space: namespaces · 211; problem space ·

24; solution space · 24
specialization · 258
specification, exception specification · 457,

493
specifier, access · 31, 210, 221

1480 Thinking in Java Bruce Eckel

split(), String · 322, 525
sprintf() · 521
SQL generated via annotations · 1066
stack · 410, 412, 895; generic pushdown ·

625
standard input, reading from · 941
standards, coding · 21
State design pattern · 306
state machines, and enum · 1041
stateChanged() · 1363
static · 316; and final · 263; block · 190;

construction clause · 190; data
initialization · 186; final static primitives
· 264; import, and enum · 1013;
initialization · 274, 558; initializer · 582;
inner classes · 364; keyword · 76, 172;
method · 172, 282; strong type checking
· 492; synchronized static · 1156; type
checking · 615; vs. dynamic type
checking · 814

STL, C++ · 900
stop(), and deadlocks · 1184
Strategy design pattern · 322, 332, 737,

764, 778, 780, 903, 910, 1036, 1238
stream, I/O · 914
StreamTokenizer · 924
String: CASE_INSENSITIVE_ORDER

Comparator · 884; class methods · 503;
concatenation with operator += · 118;
conversion with operator + · 95, 118;
format() · 521; immutability · 503;
indexOf() · 592; lexicographic vs.
alphabetic sorting · 783; methods · 511;
operator + and += overloading · 242;
regular expression support in · 524;
sorting, CASE_INSENSITIVE_ORDER
· 902; split() method · 322; toString() ·
238

StringBuffer · 916
StringBufferInputStream · 916
StringBuilder, vs. String, and toString() ·

506
StringReader · 923, 928
StringWriter · 923
strong static type checking · 492
Stroustrup, Bjarne · 207
structural typing · 721, 733
struts, in BoxLayout · 1321
Stub · 606
style: coding style · 88; of creating classes ·

228
subobject · 244, 256

substitutability, in OOP · 25
substitution: inheritance vs. extension ·

306; principle · 37
subtraction · 98
suites, @Unit vs. JUnit · 1095
super · 245; and inner classes · 383;

keyword · 243
superclass · 243; bounds · 568
supertype wildcards · 682
suspend(), and deadlocks · 1184
SWF, Flash bytecode format · 1416
Swing · 1303; and concurrency · 1382;

component examples · 1332;
components, using HTML with · 1370;
event model · 1321

switch: and enum · 1016; keyword · 151
switch, context switching in concurrency ·

1112
synchronized · 1155; and inheritance · 1411;

and wait() & notifyAll() · 1198; block,
and critical section · 1169; Brian’s Rule
of Synchronization · 1156; containers ·
887; deciding what methods to
synchronize · 1411; queue · 1215; static ·
1156

SynchronousQueue, for concurrency · 1259
System.arraycopy() · 775
System.err · 450, 941
System.in · 941
System.out · 941
System.out, changing to a PrintWriter ·

942
systemNodeForPackage(), preferences

API · 1007

T

tabbed dialog · 1349
table-driven code · 1033; and anonymous

inner classes · 859
task vs. thread, terminology · 1142
tearing, word tearing · 1161
Template Method design pattern · 375,

573, 666, 859, 969, 1173, 1279, 1284
templates, C++ · 618, 652
termination condition, and finalize() · 176
termination vs. resumption, exception

handling · 449
ternary operator · 116

Index 1481

testing: annotation-based unit testing with
@Unit · 1083; techniques · 367; unit
testing · 242

Theory of Escalating Commitment · 1146
this keyword · 167
thread: group · 1146; interrupt() · 1185;

isDaemon() · 1133; notifyAll() · 1198;
priority · 1127; resume(), and deadlocks
· 1184; safety, Java standard library ·
1232; scheduler · 1117; states · 1183;
stop(), and deadlocks · 1184;
suspend(), and deadlocks · 1184; thread
local storage · 1177; vs. task, terminology
· 1142; wait() · 1198

ThreadFactory, custom · 1131
throw keyword · 447
Throwable base class for Exception · 458
throwing an exception · 446
time conversion · 1238
Timer, repeating · 1207
TimeUnit · 1127, 1238
toArray() · 877
tool tips · 1337
TooManyListenersException · 1406
toString() · 238; guidelines for using

StringBuilder · 508
training seminars provided by MindView,

Inc. · 1450
transferFrom() · 949
transferTo() · 949
transient keyword · 991
translation unit · 211
TreeMap · 834, 837, 877
TreeSet · 416, 821, 825, 872
true · 105
try · 254, 473; try block in exceptions · 447
tryLock(), file locking · 971
tuple · 621, 639, 647
twos complement, signed · 116
type: argument inference, generic · 632;

base · 34; checking, static · 492, 615;
data type equivalence to class · 27;
derived · 34; duck typing · 721, 733;
dynamic type safety and containers ·
710; finding exact type of a base
reference · 555; generics and type-safe
containers · 390; latent typing · 721,
733; parameterized · 617; primitive · 65;
primitive data types and use with
operators · 123; structural typing · 721,
733; tag, in generics · 663; type checking

and arrays · 747; type safety in Java ·
119; type-safe downcast · 569

TYPE field, for primitive class literals · 562

U

UML: indicating composition · 32; Unified
Modeling Language · 29, 1457

unary: minus (-) · 101; operator · 111;
operators · 101; plus (+) · 101

unbounded wildcard in generics · 686
UncaughtExceptionHandler, Thread class ·

1148
unchecked exception · 469; converting

from checked · 497
unconditional branching · 143
unicast · 1406
Unicode · 923
Unified Modeling Language (UML) · 29,

1457
unit testing · 242; annotation-based with

@Unit · 1083
unmodifiable, making a Collection or Map

unmodifiable · 885
unmodifiableList(), Collections · 815
unsupported methods, in the Java

containers · 813
UnsupportedOperationException · 815
upcasting · 42, 260, 278; and interface ·

319; and runtime type information ·
555; inner classes and upcasting · 352

user interface: graphical user interface
(GUI) · 375, 1303; responsive, with
threading · 1145

userNodeForPackage(), preferences API ·
1007

Utilities, java.util.Collections · 879

V

value, preventing change at run time · 262
values(), for enum · 1011, 1017
varargs · 198, 728; and generic methods ·

635
Varga, Ervin · 7, 1191
variable: defining a variable · 139;

initialization of method variables · 181;
local · 71; variable argument lists

1482 Thinking in Java Bruce Eckel

(unknown quantity and type of
arguments) · 198

Vector · 870, 894
vector of change · 377
Venners, Bill · 176
versioning, serialization · 995
Visitor design pattern, and annotations,

mirror API · 1079
Visual BASIC, Microsoft · 1394
visual programming · 1394; environments

· 1304
volatile · 1151, 1160, 1165

W

wait() · 1198
waiting, busy · 1198
Waldrop, M. Mitchell · 1459
WeakHashMap · 834, 892
WeakReference · 889
web of objects · 981
Web Start, Java · 1376
West, BorderLayout · 1317
while · 137
widening conversion · 121
wildcards: and Class references · 566; in

generics · 677; supertype · 682;
unbounded · 686

windowClosing() · 1365

word tearing, in concurrent programming ·
1161

write() · 914; nio · 949
writeBytes() · 933
writeChars() · 933
writeDouble() · 934
writeExternal() · 986
writeObject() · 981; with Serializable · 992
Writer · 914, 922, 923

X

XDoclet · 1060
XML · 1003
XOM XML library · 1003
XOR (Exclusive-OR) · 111

Y

You Aren’t Going to Need It (YAGNI) · 601

Z

zero extension · 112
ZipEntry · 977
ZipInputStream · 973
ZipOutputStream · 973

	What's Inside
	Preface
	Introducion
	Operators
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

