
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780131774292
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780131774292
https://plusone.google.com/share?url=http://www.informit.com/title/9780131774292
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780131774292
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780131774292/Free-Sample-Chapter

Expert C Programming
Deep C Secrets

Peter van der Linden

SunSoft Press
A Prentice Hall Title

© 1994 Sun Microsystems, Inc.—Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this product or related
documentation may be reproduced in any form by any means without prior written authorization of Sun and its
licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS: Sun, Sun Microsystems, SunSoft, SunPro, the Sun logo, Solaris, ToolTalk, DeskSet, PC-NFS,
ONC+, XView, and X11/NeWS are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and
OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell,
Inc. Motif and OSF/Motif are trademarks of the Open Software Foundation, Inc. All SPARC trademarks are
trademarks or registered trademarks of SPARC International, Inc. SPARCWorks and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. X Window System is a trademark and product of the Massachusetts Institute
of Technology. PostScript and Display Postscript are registered trademarks of Adobe Systems Incorporated.
FrameMaker is a registered trademark of Frame Technology Corporation. 4004, 8008, 8080, 8085, 8086, 8088, certain
combinations of numbers including 86, and Pentium are trademarks of the Intel Corporation. MS-DOS and
Microsoft Windows are trademarks of Microsoft Corporation. All other product names mentioned herein are the
trademarks of their respective owners.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the International Organization for
Standardization, ISO, and the International Electrotechnical Commission, IEC. The complete standard can be
obtained from any ISO or IEC member or from the ISO or IEC Central Offices, Case Postale 56, CH-1211 Geneva 20,
Switzerland. Copyright remains with ISO and IEC.

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
Corporate Sales Department, PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ 07632,
Phone: 201-592-2863, Fax: 201-592-2249

Editorial/production supervision and interior design: Camille Trentacoste; Illustrator: Gail Cocker-Bogusz
Manufacturing manager: Alexis Heydt
Acquisitions editor: Michael Meehan; Editorial assistant: Nancy Boylan
Cover designer: Doug DeLuca
Cover photo: Coelacanth/Lloyd Ullberg, Special Collections, California Academy of Sciences

The cover depicts a coelacanth (pronounced C-la-canth), a butt-ugly fish that ichthyologists thought had been extinct for 70
million years. Then, in 1938, a specimen was caught off the coast of South Africa and taken to the local museum curator for
identification. She recognized the significance of the find, and called in the experts—but not in time to prevent the fisherman
stuffing and mounting his unique trophy! A second specimen was not caught until 1952. The limb-like fins of the coelacanth
make this fish a “missing link” between ocean- and land-dwelling vertebrates. It is one vile-looking piece of seafood though.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-177429-8

SunSoft Press
A Prentice Hall Title

Library of Congress Cataloging-in-Publication Data
Van der Linden, Peter

Expert C Programming! / Peter van der Linden.
p. cm.

Includes index.
ISBN 0-13-177429-8
1. C (Computer program language) I. Title.

QA76.73.C15V356 1994
005.13’3--dc20 94-253

CIP

Warning
Do not unscrew the cover of this book—there are no user-serviceable parts inside.

Typo’s and Errors
At least one statement in this book is wrong (but it may be this one).

There’s a bounty of $1 per error to the first person who brings a technical correction to
the author’s attention, so it can be corrected in future printings.

Please send your correction by e-mail to linden@eng.sun.com or by mail to the author
c/o Prentice Hall, 113 Sylvan Ave., Englewood Cliffs, NJ 07632.

Dedication
I hereby dedicate this book to pizza, Dalmatian dogs, Sunday afternoons in a hammock,
and comedy. The world would be a lot better off if there were more of these. I plan to be-
come reacquainted with them all now the book is done.

In fact, I think I’ll spend next Sunday afternoon swinging in a hammock, and laughing at
my Dalmatian dog’s attempts to eat pizza.

I would also like to acknowledge the fine products of the Theakston Brewing Company,
Yorkshire, England.

vii

Contents

Preface xiii

Acknowledgments xv

Introduction xix
The $20 Million Bug xx
Convention xxi
Some Light Relief—Tuning File Systems xxii

1. C Through the Mists of Time 1

The Prehistory of C 1
Early Experiences with C 4
The Standard I/O Library and C Preprocessor 6
K&R C 9
The Present Day: ANSI C 11
It’s Nice, but Is It Standard? 14
Translation Limits 16
The Structure of the ANSI C Standard 17
Reading the ANSI C Standard for Fun, Pleasure, and Profit 22
How Quiet is a “Quiet Change”? 25
Some Light Relief—The Implementation-Defined Effects of Pragmas . . . 29

2. It’s Not a Bug, It’s a Language Feature 31

Why Language Features Matter—The Way the Fortran Bug Really Happened! 31
Sins of Commission 33

Switches Let You Down with Fall Through 33
Available Hardware Is a Crayon? 39
Too Much Default Visibility 41

Sins of Mission 42
Overloading the Camel’s Back 42
“Some of the Operators Have the Wrong Precedence” 44
The Early Bug gets() the Internet Worm 48

viii

Sins of Omission 50
Mail Won’t Go to Users with an “f” in Their Usernames 50
Space—The Final Frontier 53
A Digression into C++ Comments 55
The Compiler Date Is Corrupted 55
Lint Should Never Have Been Separated Out 59

Some Light Relief—Some Features Really Are Bugs! 60
References 62

3. Unscrambling Declarations in C 63

Syntax Only a Compiler Could Love 64
How a Declaration Is Formed 66

A Word About structs 68
A Word About unions 71
A Word About enums 73

The Precedence Rule 74
Unscrambling C Declarations by Diagram 75
typedef Can Be Your Friend 78
Difference Between typedef int x[10] and
#define x int[10] 80

What typedef struct foo { ... foo } foo; Means 81
The Piece of Code that Understandeth All Parsing 83

Further Reading 86
Some Light Relief—Software to Bite the Wax Tadpole… 86

4. The Shocking Truth: C Arrays and Pointers Are NOT the Same! 95

Arrays Are NOT Pointers! 95
Why Doesn’t My Code Work? 96
What’s a Declaration? What’s a Definition? 97
How Arrays and Pointers Are Accessed 98

What Happens When You “Define as Array/Declare as Pointer” 101
Match Your Declarations to the Definition 102
Other Differences Between Arrays and Pointers 103
Some Light Relief—Fun with Palindromes! 105

5. Thinking of Linking 109

Libraries, Linking, and Loading 110
Where the Linker Is in the Phases of Compilation 110

The Benefits of Dynamic Linking 113

ix

Five Special Secrets of Linking with Libraries 118
Watch Out for Interpositioning 123
Generating Linker Report Files 128
Some Light Relief—Look Who’s Talking: Challenging the Turing Test 129

Eliza 130
Eliza Meets the VP 130
Doctor, Meet Doctor 131
The Prize in Boston 133
Conclusions 133
Postscript 135
Further Reading 135

6. Poetry in Motion: Runtime Data Structures 137

a.out and a.out Folklore 138
Segments 139
What the OS Does with Your a.out 142
What the C Runtime Does with Your a.out 145

The Stack Segment 145
What Happens When a Function Gets Called:

The Procedure Activation Record 146
The auto and static keywords 151

A Stack Frame Might Not Be on the Stack 152
Threads of Control 152
setjmp and longjmp 153
The Stack Segment Under UNIX 155
The Stack Segment Under MS-DOS 156
Helpful C Tools 156
Some Light Relief—Programming Puzzles at Princeton 161
For Advanced Students Only 163

7. Thanks for the Memory 165

The Intel 80x86 Family 165
The Intel 808x6 Memory Model and How It Got That Way 170
Virtual Memory 174
Cache Memory 177
The Data Segment and Heap 181
Memory Leaks 183

How to Check for a Memory Leak 184

x

Bus Error, Take the Train 187
Bus Error 188
Segmentation Fault 189

Some Light Relief—The Thing King and the Paging Game 195

8. Why Programmers Can’t Tell Halloween from Christmas Day 201

The Potrzebie System of Weights and Measures 201
Making a Glyph from Bit Patterns 203
Types Changed While You Wait 205
Prototype Painfulness 207

Where Prototypes Break Down 209
Getting a Char Without a Carriage Return 212
Implementing a Finite State Machine in C 217
Software Is Harder than Hardware! 219
How and Why to Cast 223
Some Light Relief—The International Obfuscated C Code Competition 225

9. More about Arrays 239

When an Array Is a Pointer 239
Why the Confusion? 240

Rule 1: An “Array Name in an Expression” Is a Pointer 243
Rule 2: C Treats Array Subscripts as Pointer Offsets 244
Rule 3: An “Array Name as a Function Parameter” Is a Pointer 246

Why C Treats Array Parameters as Pointers 246
How an Array Parameter Is Referenced 247

Indexing a Slice 250
Arrays and Pointers Interchangeability Summary 251
C Has Multidimensional Arrays… 251
…But Every Other Language Calls Them “Arrays of Arrays” 251
How Multidimensional Arrays Break into Components 254
How Arrays Are Laid Out in Memory 256
How to Initialize Arrays 257
Some Light Relief—Hardware/Software Trade-Offs 260

10.More About Pointers 263

The Layout of Multidimensional Arrays 263
An Array of Pointers Is an “Illiffe Vector” 265
Using Pointers for Ragged Arrays 269
Passing a One-Dimensional Array to a Function 273

xi

Using Pointers to Pass a Multidimensional Array to a Function 273
Attempt 2 275
Attempt 3 276
Attempt 4 277

Using Pointers to Return an Array from a Function 277
Using Pointers to Create and Use Dynamic Arrays 280
Some Light Relief—The Limitations of Program Proofs 287

Further Reading 291

11.You Know C, So C++ is Easy! 293

Allez-OOP! 293
Abstraction—Extracting Out the Essential Characteristics of a Thing 296
Encapsulation—Grouping Together Related Types, Data, and Functions 298
Showing Some Class—Giving User-Defined Types the Same Privileges as

Predefined Types 299
Availability 301
Declarations 301
How to Call a Method 304

Constructors and Destructors 305
Inheritance—Reusing Operations that Are Already Defined 307
Multiple Inheritance—Deriving from Two or More Base Classes 311
Overloading—Having One Name for the Same Action on Different Types 312
How C++ Does Operator Overloading 313
Input/Output in C++ 314
Polymorphism—Runtime Binding 315
Explanation 317
How C++ Does Polymorphism 318
Fancy Pants Polymorphism 319
Other Corners of C++ 320
If I Was Going There, I Wouldn’t Start from Here 322
It May Be Crufty, but It’s the Only Game in Town 325
Some Light Relief—The Dead Computers Society 328
Some Final Light Relief—Your Certificate of Merit! 330
Further Reading 331

Appendix:Secrets of Programmer Job Interviews 333

Silicon Valley Programmer Interviews 333
How Can You Detect a Cycle in a Linked List? 334
What Are the Different C Increment Statements For? 335

xii

How Is a Library Call Different from a System Call? 338
How Is a File Descriptor Different from a File Pointer? 340
Write Some Code to Determine if a Variable Is Signed or Not 341
What Is the Time Complexity of Printing the Values in a Binary Tree? 342
Give Me a String at Random from This File 343
Some Light Relief—How to Measure a Building with a Barometer 344
Further Reading 346

Index 349

xiii

Preface

Browsing in a bookstore recently, I was discouraged to see the dryness of so many C and
C++ texts. Few authors conveyed the idea that anyone might enjoy programming. All the
wonderment was squeezed out by long boring passages of prose. Useful perhaps, if you
can stay awake long enough to read it. But programming isn’t like that!

Programming is a marvellous, vital, challenging activity, and books on programming
should brim over with enthusiasm for it! This book is educational, but also interesting in
a way that puts the fun back into functions. If this doesn’t seem like something you’ll
enjoy, then please put the book back on the shelf, but in a more prominent position.
Thanks!

OK, now that we’re among friends, there are already dozens and dozens of books on pro-
gramming in C—what’s different about this one?

Expert C Programming should be every programmer’s second book on C. Most of the les-
sons, tips, and techniques here aren’t found in any other book. They are usually pencilled
in the margin of well-thumbed manuals or on the backs of old printouts, if they are writ-
ten down at all. The knowledge has been accumulated over years of C programming by
the author and colleagues in Sun’s Compiler and Operating System groups. There are
many interesting C stories and folklore, like the vending machines connected to the Inter-
net, problems with software in outer space, and how a C bug brought down the entire
AT&T long-distance phone network. Finally, the last chapter is an easy tutorial on C++, to
help you master this increasingly-popular offshoot of C.

The text applies to ANSI standard C as found on PCs and UNIX systems. Unique aspects
of C relating to sophisticated hardware typically found on UNIX platforms (virtual mem-
ory, etc.) are also covered in detail. The PC memory model and the Intel 8086 family are
fully described in terms of their impact on C code. People who have already mastered the

xiv Expert C Programming

basics of C will find this book full of all the tips, hints and shortcuts that a programmer
usually picks up over a period of many years. It covers topics that many C programmers
find confusing:

• What does typedef struct bar {int bar;} bar; actually mean?

• How can I pass different-sized multidimensional arrays to one function?

• Why, oh why, doesn’t extern char *p; match char p[100]; in another file?

• What’s a bus error? What’s a segmentation violation?

• What’s the difference between char *foo[] and char(*foo)[] ?

If you’re not sure about some of these, and you’d like to know how the C experts cope,
then read on! If you already know all these things and everything else about C, get the
book anyway to reinforce your knowledge. Tell the bookstore clerk that you’re “buying it
for a friend.”

PvdL, Silicon Valley, Calif.

xv

Acknowledgments

This isn’t one of those lame little acknowledgment sections that you see in most other
books: a string of feeble tributes to everyone the author ever borrowed money from, start-
ing with his grade school buddies, proceeding through all his spouse’s relatives, and
ending with a grovelling but blatant attempt to curry favor with his thesis advisor (“and
lastly to the great and powerful Professor Oz, whose work on whether the toilet paper
should hang at the front of the roll or the back has done so much to resolve this crucial
question”). No way! This is a genuine list of people who really and truly helped while I
was writing this book. Everyone listed here has actually earned their acknowledgment.
And you can bet that as I spend my leisurely days, and the princely royalty payments, on
a beach in Tahiti I’ll be thinking of them. Really I will!

I’d like to start with a special acknowledgment of the help given by Phil Gustafson and
Brian Scearce, who read the entire manuscript in draft form and suggested many correc-
tions and improvements. The effort was so intense that they have now deeded their
bodies to science.

Thanks, too, to the friends and colleagues who read large parts of the work-in-progress:

Lee Bieber,

Keith Bierman (whose business card reads “Rabble-Rouser” for his title, and he is cer-
tainly the right man for the job),

Robert Corbett,

Rod Evans,

Doug Landauer,

Joseph McGuckin,

Walter Nielsen,

Charlie Springer (who taught me to count on my fingers in binary—you can count up to
1023 that way!),

Nicholas Sterling,

Panos Tsirigotis,

Richard Tuck,

xvi Expert C Programming

who read parts of the manuscript and generously shared their candid, not to say blunt,
views.

And I’m very grateful to the people who generally helped, often by patiently answering a
stream of endless questions:

Chris Aoki,

Arindam Banerji,

Mark Brader,

Brent Callaghan (who hacked the audio feature into snoop),

David Chase,

Joseph T. Chew,

Adrian Cockcroft,

Sam Cramer,

Steve Dever,

Derek Dongray,

Joe Eykholt,

Roger Faulkner,

Mike Federwisch,

Dave Ford,

Burkhard Gerull of Sun Germany,

Rob Gingell,

Cathy Harris (for the plentiful supply of common sense),

Bruce Hildenbrand (and his amazing flying bicycle trick),

Mike Kazar,

Bob Jervis,

Diane Kelly,

Charles Lasner,

Bil Lewis,

Greg Limes,

Tim Marsland,

Marianne Mueller,

Eugene N. Miya,

Chuck Narad,

Bill Petro (for his inspiring and non-stop history lessons),

Acknowledgments xvii

Trelford Pinkerton,

Alex Ramos,

Fred Sayward,

Bill Shannon,

Mark D. Smith,

Kathy Stark,

Dan Stein,

Steve Summit,

Paul Tomblin,

Wendy van der Linden (who came up with the bob-for-apples inheritance example for
C++, and improved the rhythm of the “two ‘l’ null” verse),

Dock Williams,

Nigel “Gag Me” Witherspoon,

Brian Wong,

Tom Wong.

I’m grateful to editor Karin Ellison who let me mix metaphors, and several times poured
midnight oil onto troubled waters on my behalf; to Astrid Julienne, who answered a lot of
questions about Framemaker, and to Peter Van Coutren in the Sun Library.

I appreciate the knowledgeable help of the Prentice Hall staff, including Mike Meehan,
Camille Trentacoste, Susan Aumack, Eloise Starkweather, and Nancy Boylan.

I’d also like to acknowledge the following people who didn’t make a nuisance of them-
selves while I was working on this book. They generally stayed out of my hair, and they
didn’t screw anything up too badly. They’re OK kinds of people, I guess:

Dirk Wibble-O’Dooley,

P. A. G. Embleton,

snopes.

Some of the material in this book was inspired by conversations, e-mail, net postings, and
suggestions of colleagues in the industry. I have credited these sources where known, but
if I have overlooked anyone, please accept my apologies.

PvdL, Silicon Valley, Calif.

This page intentionally left blank

xix

Introduction

C code. C code run. Run code run…please!

—Barbara Ling

All C programs do the same thing: look at a character and do nothing
with it.

—Peter Weinberger

Have you ever noticed that there are plenty of C books with suggestive names like C
Traps and Pitfalls, or The C Puzzle Book, or Obfuscated C and Other Mysteries, but other pro-
gramming languages don’t have books like that? There’s a very good reason for this!

C programming is a craft that takes years to perfect. A reasonably sharp person can learn
the basics of C quite quickly. But it takes much longer to master the nuances of the lan-
guage and to write enough programs, and enough different programs, to become an
expert. In natural language terms, this is the difference between being able to order a cup
of coffee in Paris, and (on the Metro) being able to tell a native Parisienne where to get
off. This book is an advanced text on the ANSI C programming language. It is intended
for people who are already writing C programs, and who want to quickly pick up some
of the insights and techniques of experts.

Expert programmers build up a tool kit of techniques over the years; a grab-bag of idi-
oms, code fragments, and deft skills. These are acquired slowly over time, learned from
looking over the shoulders of more experienced colleagues, either directly or while main-
taining code written by others. Other lessons in C are self-taught. Almost every beginning
C programmer independently rediscovers the mistake of writing:

instead of:

if (i=3)

if (i==3)

xx Expert C Programming

Once experienced, this painful error (doing an assignment where comparison was
intended) is rarely repeated. Some programmers have developed the habit of writing the
literal first, like this: if (3==i). Then, if an equal sign is accidentally left out, the com-
piler will complain about an “attempted assignment to literal.” This won’t protect you
when comparing two variables, but every little bit helps.

The $20 Million Bug
In Spring 1993, in the Operating System development group at SunSoft, we had a “prior-
ity one” bug report come in describing a problem in the asynchronous I/O library. The
bug was holding up the sale of $20 million worth of hardware to a customer who specifi-
cally needed the library functionality, so we were extremely motivated to find it. After
some intensive debugging sessions, the problem was finally traced to a statement that
read:

It was a typo for what was intended to be an assignment statement. The programmer’s
finger had bounced on the “equals” key, accidentally pressing it twice instead of once.
The statement as written compared x to 2, generated true or false, and discarded the
result.

C is enough of an expression language that the compiler did not complain about a state-
ment which evaluated an expression, had no side-effects, and simply threw away the
result. We didn’t know whether to bless our good fortune at locating the problem, or cry
with frustration at such a common typing error causing such an expensive problem. Some
versions of the lint program would have detected this problem, but it’s all too easy to
avoid the automatic use of this essential tool.

This book gathers together many other salutary stories. It records the wisdom of many
experienced programmers, to save the reader from having to rediscover everything inde-
pendently. It acts as a guide for territory that, while broadly familiar, still has some
unexplored corners. There are extended discussions of major topics like declarations and
arrays/pointers, along with a great many hints and mnemonics. The terminology of ANSI
C is used throughout, along with translations into ordinary English where needed.

x==2;

Introduction xxi

Programming Challenge

OR

C

{ }

#

@
~ Handy Heuristic

Convention

One convention that we have is to use the names of fruits and vegetables for variables
(only in small code fragments, not in any real program, of course):

This makes it easy to tell what’s a C reserved word, and what’s a name the programmer
supplied. Some people say that you can’t compare apples and oranges, but why not—
they are both hand-held round edible things that grow on trees. Once you get used to it,

Sample Box

Along the way, we have Programming Challenges outlined in boxes like this one.

These are suggestions for programs that you should write.

There are also Handy Heuristics in boxes of their own.

These are ideas, rules-of-thumb, or guidelines that work in practice. You can adopt them as your
own. Or you can ignore them if you already have your own guidelines that you like better.

char pear[40];

double peach;

int mango = 13;

long melon = 2001;

xxii Expert C Programming

the fruit loops really seem to help. There is one other convention—sometimes we repeat a
key point to emphasize it. In addition, we sometimes repeat a key point to emphasize it.

Like a gourmet recipe book, Expert C Programming has a collection of tasty morsels ready
for the reader to sample. Each chapter is divided into related but self-contained sections;
it’s equally easy to read the book serially from start to finish, or to dip into it at random
and review an individual topic at length. The technical details are sprinkled with many
true stories of how C programming works in practice. Humor is an important technique
for mastering new material, so each chapter ends with a “light relief” section containing
an amusing C story or piece of software folklore to give the reader a change of pace.

Readers can use this book as a source of ideas, as a collection of C tips and idioms, or
simply to learn more about ANSI C, from an experienced compiler writer. In sum, this
book has a collection of useful ideas to help you master the fine art of ANSI C. It gathers
all the information, hints, and guidelines together in one place and presents them for
your enjoyment. So grab the back of an envelope, pull out your lucky coding pencil, settle
back at a comfy terminal, and let the fun begin!

Some Light Relief—Tuning File Systems

Some aspects of C and UNIX are occasionally quite lighthearted. There’s nothing wrong
with well-placed whimsy. The IBM/Motorola/Apple PowerPC architecture has an
E.I.E.I.O. instruction1 that stands for “Enforce In-order Execution of I/O”. In a similar
spirit, there is a UNIX command, tunefs, that sophisticated system administrators use to
change the dynamic parameters of a filesystem and improve the block layout on disk.

The on-line manual pages of the original tunefs, like all Berkeley commands, ended
with a “Bugs” section. In this case, it read:

Even better, the word-processor source had a comment in it, threatening anyone who
removed that last phrase! It said:

1. Probably designed by some old farmer named McDonald.

Bugs:
This program should work on mounted and active file systems, but it
doesn’t. Because the superblock is not kept in the buffer cache, the
program will only take effect if it is run on dismounted file systems; if
run on the root file system, the system must be rebooted.
You can tune a file system, but you can’t tune a fish.

Take this out and a UNIX Demon will dog your steps from now until the
time_t’s wrap around.

Introduction xxiii

When Sun, along with the rest of the world, changed to SVr4 UNIX, we lost this gem. The
SVr4 manpages don’t have a “Bugs” section—they renamed it “Notes” (does that fool
anyone?). The “tuna fish” phrase disappeared, and the guilty party is probably being
dogged by a UNIX demon to this day. Preferably lpd.

Programming Challenge
/

Computer Dating

When will the time_t’s wrap around?

Write a program to find out.

1. Look at the definition of time_t. This is in file /usr/include/time.h.

2. Code a program to place the highest value into a variable of type time_t, then pass it to
ctime() to convert it into an ASCII string. Print the string. Note that ctime has nothing to
do with the language C, it just means “convert time.”

For how many years into the future does the anonymous technical writer who removed the
comment have to worry about being dogged by a UNIX daemon? Amend your program to find
out.

1. Obtain the current time by calling time().
2. Call difftime() to obtain the number of seconds between now and the highest value of
time_t.

3. Format that value into years, months, weeks, days, hours, and minutes. Print it.

Is it longer than your expected lifetime?

xxiv Expert C Programming

Programming Solution

Computer Dating

The results of this exercise will vary between PCs and UNIX systems, and will depend on the
way time_t is stored. On Sun systems, this is just a typedef for long. Our first attempted solution
is

#include <stdio.h>

#include <time.h>

int main() {

time_t biggest = 0x7FFFFFFF;

printf(“biggest = %s \n”, ctime(&biggest));

return 0;

}

This gives a result of:
biggest = Mon Jan 18 19:14:07 2038

However, this is not the correct answer! The function ctime() converts its argument into local
time, which will vary from Coordinated Universal Time (also known as Greenwich Mean Time),
depending on where you are on the globe. California, where this book was written, is eight
hours behind London, and several years ahead.
We should really use the gmtime() function to obtain the largest UTC time value. This function
doesn’t return a printable string, so we call asctime()to get this. Putting it all together, our
revised program is

#include <stdio.h>

#include <time.h>

int main() {

time_t biggest = 0x7FFFFFFF;

Introduction xxv

printf(“biggest = %s \n”, asctime(gmtime(&biggest)));

return 0;

}

This gives a result of:

biggest = Tue Jan 19 03:14:07 2038

There! Squeezed another eight hours out of it!

But we’re still not done. If you use the locale for New Zealand, you can get 13 more hours,
assuming they use daylight savings time in the year 2038. They are on DST in January because
they are in the southern hemisphere. New Zealand, because of its easternmost position with
respect to time zones, holds the unhappy distinction of being the first country to encounter bugs
triggered by particular dates.

Even simple-looking things can sometimes have a surprising twist in software. And anyone who
thinks programming dates is easy to get right the first time probably hasn’t done much of it.

Computer Dating (Continued)

This page intentionally left blank

63

Unscrambling
Declarations in C 3

“The name of the song is called ‘Haddocks’ Eyes.’”
“Oh, that’s the name of the song, is it?” Alice said trying to feel
interested.

”No, you don’t understand,” the Knight said, looking a little vexed.
“That’s what the name is called. The name really is ‘The Aged Aged
Man.’”
“Then I ought to have said ‘That’s what the song is called’?” Alice
corrected herself.

”No, you oughtn’t: that’s quite another thing! The song is called ‘Ways
and Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

”I was coming to that,” the Knight said. “The song really is ‘A-sitting On
A Gate’: and the tune’s my own invention.”

—Lewis Carroll, Through the Looking Glass

syntax only a compiler could love…how a declaration is formed…
a word about structs…a word about unions…a word about enums…

the precedence rule…unscrambling C declarations by diagram…
typedef can be your friend…difference between typedef and #define…

what “typedef struct foo { ... foo } foo;” means…
the piece of code that understandeth all parsing…
some light relief—software to bite the wax tadpole

There’s a story that Queen Victoria was so impressed by Alice in Wonderland that she
requested copies of other books by Lewis Carroll. The queen did not realize that Lewis
Carroll was the pen-name of Oxford mathematics professor Charles Dodgson. She was
not amused when sniggering courtiers brought her several weighty volumes including
The Condensation (Factoring) of Determinants. This story was much told in Victorian times,
and Dodgson tried hard to debunk it:

64 Expert C Programming

“I take this opportunity of giving what publicity I can to my contradiction of a silly story, which
has been going the round of the papers, about my having presented certain books to Her
Majesty the Queen. It is so constantly repeated, and is such absolute fiction, that I think it
worthwhile to state, once for all, that it is utterly false in every particular: nothing even
resembling it has ever occurred.”

—Charles Dodgson, Symbolic Logic, Second Edition

Therefore, on the “he doth protest too much” principle, we can be reasonably certain that
the incident did indeed happen exactly as described. In any case, Dodgson would have
got on well with C, and Queen Victoria would not. Putting the quote at the head of this
chapter into a table, we get:

Yes, Dodgson would have been right at home with computer science. And he would have
especially appreciated type models in programming languages. For example, given the C
declarations:

we can see how the Knight’s paradigm can be applied to it:

What could be more intuitive than that? Well, actually quite a lot of things, and they’ll be
clearer still after you’ve read this chapter.

Syntax Only a Compiler Could Love

As Kernighan and Ritchie acknowledge, “C is sometimes castigated for the syntax of its
declarations” (K&R, 2nd E.d, p. 122). C’s declaration syntax is trivial for a compiler (or
compiler-writer) to process, but hard for the average programmer. Language designers

is called is

name of the song “Haddocks’ Eyes” “The Aged Aged Man”

the song “Ways and Means” “A-sitting On A Gate”

typedef char * string;

string punchline = “I’m a frayed knot”;

is called is

type of the variable string char *

the variable punchline ”I’m a frayed knot”

Chapter 3 • Unscrambling Declarations in C 65

are only human, and mistakes will be made. For example, the Ada language reference
manual gives an ambiguous grammar for Ada in an appendix at the back. Ambiguity is a
very undesirable property of a programming language grammar, as it significantly com-
plicates the job of a compiler-writer. But the syntax of C declarations is a truly horrible
mess that permeates the use of the entire language. It’s no exaggeration to say that C is
significantly and needlessly complicated because of the awkward manner of combining
types.

There are several reasons for C’s difficult declaration model. In the late 1960s, when this
part of C was designed, “type models” were not a well understood area of programming
language theory. The BCPL language (the grandfather of C) was type-poor, having the
binary word as its only data type, so C drew on a base that was deficient. And then, there
is the C philosophy that the declaration of an object should look like its use. An array of
pointers-to-integers is declared by int * p[3]; and an integer is referenced or used in
an expression by writing *p[i], so the declaration resembles the use. The advantage of
this is that the precedence of the various operators in a “declaration” is the same as in a
“use”. The disadvantage is that operator precedence (with 15 or more levels in the hierar-
chy, depending on how you count) is another unduly complicated part of C.
Programmers have to remember special rules to figure out whether int *p[3] is an
array of pointers-to-int, or a pointer to an array of ints.

The idea that a declaration should look like a use seems to be original with C, and it
hasn’t been adopted by any other languages. Then again, it may be that declaration looks
like use was not quite the splendid idea that it seemed at the time. What’s so great about
two different things being made to look the same? The folks from Bell Labs acknowledge
the criticism, but defend this decision to the death even today. A better idea would have
been to declare a pointer as

which at least suggests that p is the address of an integer. This syntax has now been
claimed by C++ to indicate a call by reference parameter.

The biggest problem is that you can no longer read a declaration from left to right, as
people find most natural. The situation got worse with the introduction of the volatile
and const keywords with ANSI C; since these keywords appear only in a declaration
(not in a use), there are now fewer cases in which the use of a variable mimics its declara-
tion. Anything that is styled like a declaration but doesn’t have an identifier (such as a
formal parameter declaration or a cast) looks funny. If you want to cast something to the
type of pointer-to-array, you have to express the cast as:

int &p;

char (*j)[20]; /* j is a pointer to an array of 20 char */

j = (char (*)[20]) malloc(20);

66 Expert C Programming

If you leave out the apparently redundant parentheses around the asterisk, it becomes
invalid.

A declaration involving a pointer and a const has several possible orderings:

The last of these cases makes the pointer read-only, whereas the other two make the
object that it points at read-only; and of course, both the object and what it points at
might be constant. Either of the following equivalent declarations will accomplish this:

The ANSI standard implicitly acknowledges other problems when it mentions that the
typedef specifier is called a “storage-class specifier” for syntactic convenience only. It’s an
area that even experienced C programmers find troublesome. If declaration syntax looks
bad for something as straightforward as an array of pointers, consider how it looks for
something even slightly complicated. What exactly, for example, does the following dec-
laration (adapted from the telnet program) declare?

We’ll answer the question by using this declaration as an example later in the chapter.
Over the years, programmers, students, and teachers have struggled to find simple mne-
monics and algorithms to help them make some sense of the horrible C syntax. This
chapter presents an algorithm that gives a step-by-step approach to solving the problem.
Work through it with a couple of examples, and you’ll never have to worry about C dec-
larations again!

How a Declaration Is Formed

Let’s first take a look at some C terminology, and the individual pieces that can make up
a declaration. An important building block is a declarator—the heart of any declaration;
roughly, a declarator is the identifier and any pointers, function brackets, or array indica-

const int * grape;

int const * grape;

int * const grape_jelly;

const int * const grape_jam;

int const * const grape_jam;

char* const *(*next)();

Chapter 3 • Unscrambling Declarations in C 67

tions that go along with it, as shown in Figure 3-1. We also group any initializer here for
convenience.

A declaration is made up of the parts shown in Figure 3-2 Figure 3-2(not all combinations
are valid, but this table gives us the vocabulary for further discussion). A declaration
gives the basic underlying type of the variable and any initial value.

Figure 3-1 The Declarator in C

How many Name in C How it looks in C

zero or more pointers one of the following alternatives:
* const volatile
 * volatile
 *
 * const
 * volatile const

exactly one direct_declarator identifier
or

identifier [optional_size] ...
or

identifier (args...)
or

(declarator)

zero or one initializer = initial_value

Figure 3-2 The Declaration in C

How many Name in C How it looks in C

at least one type-
specifier

(not all combinations
are valid)

type-specifier

storage-class

type-qualifier

void char short int long
signed unsigned
float double
struct_specifier
enum_specifier
union_specifier
extern static register
auto typedef
const volatile

exactly one declarator see definition above

zero or more more declarators , declarator

one semi-colon ;

68 Expert C Programming

We begin to see how complicated a declaration can become once you start combining
types together. Also, remember there are restrictions on legal declarations. You can’t have
any of these:

• a function can’t return a function, so you’ll never see foo()()

• a function can’t return an array, so you’ll never see foo()[]

• an array can’t hold a function, so you’ll never see foo[]()

You can have any of these:

• a function returning a pointer to a function is allowed: int (* fun())();

• a function returning a pointer to an array is allowed: int (* foo())[]

• an array holding pointers to functions is allowed: int (*foo[])()

• an array can hold other arrays, so you’ll frequently see int foo[][]

Before dealing with combining types, we’ll refresh our memories by reviewing how to
combine variables in structs and unions, and also look at enums.

A Word About structs

Structs are just a bunch of data items grouped together. Other languages call this a
“record”. The syntax for structs is easy to remember: the usual way to group stuff
together in C is to put it in braces: { stuff... } The keyword struct goes at the front so the
compiler can distinguish it from a block:

The stuff in a struct can be any other data declarations: individual data items, arrays,
other structs, pointers, and so on. We can follow a struct definition by some variable
names, declaring variables of this struct type, for example:

The only other point to watch is that we can write an optional “structure tag” after the
keyword “struct”:

The words struct fruit_tag can now be used as a shorthand for

in future declarations.

struct { stuff... }

struct { stuff... } plum, pomegranate, pear;

struct fruit_tag { stuff... } plum, pomegranate, pear;

struct { stuff... }

Chapter 3 • Unscrambling Declarations in C 69

A struct thus has the general form:

So with the declarations

variables my_birthday, xmas, easter, and groundhog_day all have the identical
type. Structs can also have bit fields, unnamed fields, and word-aligned fields. These are
obtained by following the field declaration with a colon and a number representing the
field length in bits.

This is commonly used for “programming right down to the silicon,” and you’ll see it in
systems programs. It can also be used for storing a Boolean flag in a bit rather than a char.
A bit field must have a type of int, unsigned int, or signed int (or a qualified version of
one of these). It’s implementation-dependent whether bit fields that are int’s can be
negative.

struct optional_tag {

type_1 identifier_1;

type_2 identifier_2;

...

type_N identifier_N;

} optional_variable_definitions ;

struct date_tag { short dd,mm,yy; } my_birthday, xmas;

struct date_tag easter, groundhog_day;

/* process ID info */

struct pid_tag {

unsigned int inactive :1;

unsigned int :1; /* 1 bit of padding */

unsigned int refcount :6;

unsigned int :0; /* pad to next word boundary */

short pid_id;

struct pid_tag *link;

};

70 Expert C Programming

Our preference is not to mix a struct declaration with definitions of variables. We prefer

to

Sure, the second version saves you typing a few characters of code, but we should be
much more concerned with how easy the code is to read, not to write. We write code
once, but it is read many times during subsequent program maintenance. It’s just a little
simpler to read a line that only does one thing. For this reason, variable declarations
should be separate from the type declaration.

Finally there are two parameter passing issues associated with structs. Some C books
make statements like “parameters are passed to a called function by pushing them on the
stack from right to left.” This is oversimplification—if you own such a book, tear out that
page and burn it. If you own such a compiler, tear out those bytes. Parameters are passed
in registers (for speed) where possible. Be aware that an int “i” may well be passed in a
completely different manner to a struct “s” whose only member is an int. Assuming an int
parameter is typically passed in a register, you may find that structs are instead passed on
the stack. The second point to note is that by putting an array inside a struct like this:

you can now treat the array as a first-class type. You can copy the entire array with an
assignment statement, pass it to a function by value, and make it the return type of a
function.

struct veg { int weight, price_per_lb; };

struct veg onion, radish, turnip;

struct veg { int weight, price_per_lb; } onion, radish, turnip;

/* array inside a struct */

struct s_tag { int a[100]; };

struct s_tag { int a[100]; };

struct s_tag orange, lime, lemon;

Chapter 3 • Unscrambling Declarations in C 71

You typically don’t want to assign an entire array very often, but you can do it by burying
it in a struct. Let’s finish up by showing one way to make a struct contain a pointer to its
own type, as needed for lists, trees, and many dynamic data structures.

A Word About unions

Unions are known as the variant part of variant records in many other languages. They
have a similar appearance to structs, but the memory layout has one crucial difference.
Instead of each member being stored after the end of the previous one, all the members
have an offset of zero. The storage for the individual members is thus overlaid: only one
member at a time can be stored there.

There’s some good news and some bad news associated with unions. The bad news is
that the good news isn’t all that good. The good news is that unions have exactly the
same general appearance as structs, but with the keyword struct replaced by union. So
if you’re comfortable with all the varieties and possibilities for structs, you already know
unions too. A union has the general form:

struct s_tag twofold (struct s_tag s) {

int j;

for (j=0;j<100;j++) s.a[j] *= 2;

return s;

}

main() {

int i;

for (i=0;i<100;i++) lime.a[i] = 1;

lemon = twofold(lime);

orange = lemon; /* assigns entire struct */

}

/* struct that points to the next struct */

struct node_tag { int datum;

 struct node_tag *next;

 };

struct node_tag a,b;

a.next = &b; /* example link-up */

a.next->next=NULL;

72 Expert C Programming

Unions usually occur as part of a larger struct that also has implicit or explicit informa-
tion about which type of data is actually present. There’s an obvious type insecurity here
of storing data as one type and retrieving it as another. Ada addresses this by insisting
that the discriminant field be explicitly stored in the record. C says go fish, and relies on
the programmer to remember what was put there.

Unions are typically used to save space, by not storing all possibilities for certain data
items that cannot occur together. For example, if we are storing zoological information on
certain species, our first attempt at a data record might be:

However, we know that all creatures are either vertebrate or invertebrate. We further
know that only vertebrate animals have fur, and that only invertebrate creatures have
more than four legs. Nothing has more than four legs and fur, so we can save space by
storing these two mutually exclusive fields as a union:

union optional_tag {
 type_1 identifier_1;

 type_2 identifier_2;

 ...

 type_N identifier_N;

 } optional_variable_definitions;

struct creature {

 char has_backbone;

 char has_fur;

 short num_of_legs_in_excess_of_4;

};

union secondary_characteristics {

 char has_fur;

 short num_of_legs_in_excess_of_4;

};

Chapter 3 • Unscrambling Declarations in C 73

We would typically overlay space like this to conserve backing store. If we have a datafile
of 20 million animals, we can save up to 20 Mb of disk space this way.

There is another use for unions, however. Unions can also be used, not for one interpreta-
tion of two different pieces of data, but to get two different interpretations of the same
data. Interestingly enough, this does exactly the same job as the REDEFINES clause in
COBOL. An example is:

This union allows a programmer to extract the full 32-bit value, or the individual byte
fields value.byte.c0, and so on. There are other ways to accomplish this, but the union
does it without the need for extra assignments or type casting. Just for fun, I looked
through about 150,000 lines of machine-independent operating system source (and boy,
are my arms tired). The results showed that structs are about one hundred times more
common than unions. That’s an indication of how much more frequently you’ll encounter
structs than unions in practice.

A Word About enums

Enums (enumerated types) are simply a way of associating a series of names with a series
of integer values. In a weakly typed language like C, they provide very little that can’t be
done with a #define, so they were omitted from most early implementations of K&R C.
But they’re in most other languages, so C finally got them too. The general form of an
enum should look familiar by now:

The stuff… in this case is a list of identifiers, possibly with integer values assigned to
them. An enumerated type example is:

struct creature {

 char has_backbone;

 union secondary_characteristics form;

};

union bits32_tag {

 int whole; /* one 32-bit value */

 struct {char c0,c1,c2,c3;} byte; /* four 8-bit bytes */

} value;

enum optional_tag { stuff... } optional_variable_definitions;

enum sizes { small=7, medium, large=10, humungous };

74 Expert C Programming

The integer values start at zero by default. If you assign a value in the list, the next value
is one greater, and so on. There is one advantage to enums: unlike #defined names which
are typically discarded during compilation, enum names usually persist through to the
debugger, and can be used while debugging your code.

The Precedence Rule
We have now reviewed the building blocks of declarations. This section describes one
method for breaking them down into an English explanation. The precedence rule for
understanding C declarations is the one that the language lawyers like best. It’s high on
brevity, but very low on intuition.

The Precedence Rule for Understanding C Declarations

A Declarations are read by starting with the name and then reading in precedence order.
B The precedence, from high to low, is:

B.1 parentheses grouping together parts of a declaration
B.2 the postfix operators:

parentheses () indicating a function, and
square brackets [] indicating an array.

B.3 the prefix operator: the asterisk denoting “pointer to”.
C If a const and/or volatile keyword is next to a type specifier (e.g. int, long, etc.) it

applies to the type specifier. Otherwise the const and/or volatile keyword applies to
the pointer asterisk on its immediate left.

Chapter 3 • Unscrambling Declarations in C 75

An example of solving a declaration using the Precedence Rule:

Table 3-1 Solving a Declaration Using the Precedence Rule

Then put it all together to read:

“next is a pointer to a function returning a pointer to a const pointer-to-char”

and we’re done. The precedence rule is what all the rules boil down to, but if you prefer
something a little more intuitive, use Figure 3-3.

Unscrambling C Declarations by Diagram
In this section we present a diagram with numbered steps (see Figure 3-3). If you proceed
in steps, starting at one and following the guide arrows, a C declaration of arbitrary com-
plexity can quickly be translated into English (also of arbitrary complexity). We’ll
simplify declarations by ignoring typedefs in the diagram. To read a typedef, translate the
declaration ignoring the word “typedef”. If it translates to “p is a…”, you can now use
the name “p” whenever you want to declare something of the type to which it translates.

char* const *(*next)();

Rule to apply Explanation

A First, go to the variable name, “next”, and note that it is directly enclosed by
parentheses.

B.1 So we group it with what else is in the parentheses, to get “next is a pointer
to...”.

B Then we go outside the parentheses, and have a choice of a prefix asterisk, or
a postfix pair of parentheses.

B.2 Rule B.2 tells us the highest precedence thing is the function parentheses
at the right, so we have “next is a pointer to a function returning…”

B.3 Then process the prefix “*” to get “pointer to”.

C Finally, take the “char * const”, as a constant pointer to a character.

76

Figure 3-3 How to Parse a C Declaration

Magic Decoder Ring for C Declarations

Declarations in C are read boustrophedonically,i.e. alternating right-to-left with left-to right. And who'd have thought
there would be a special word to describe that! Start at the first identifier you find when reading from the left. When
we match a token in our declaration against the diagram, we erase it from further consideration. At each point we
look first at the token to the right, then to the left. When everything has been erased, the job is done.

Step number Token to match How to read

Identifier

[possible-size] ...

1. Go to the leftmost identifier

stuff-already-dealt-with)

const

(

volatile

basic type

*

2. Look at the next token to the right
 if it is a square bracket

say "identifier is"

for each pair, say "array of"

3. or if it is an opening parenthesis

4. if the token to the left
 is an opening parenthesis

5. if the token to the
left is any of

const
 volatile
 *

6. The tokens that
 remain form the
 basic type of
 the declaration

Read up to the closing
parenthesis say "function returning"

this is the opening parenthesis,
grouping together part of the
declaration we have already dealt with.
 read up to the balancing parenthesis
 start again at step 2

keep reading tokens to the left,
until it's not one of these three

for const say "read-only"
for volatile say "volatile"
for * say "pointer to"
start again at step 4

read off the tokens that remain, e.g.
static unsigned int

(possible-parameters)

Chapter 3 • Unscrambling Declarations in C 77

Let’s try a couple of examples of unscrambling a declaration using the diagram. Say we
want to figure out what our first example of code means:

As we unscramble this declaration, we gradually “white out” the pieces of it that we have
already dealt with, so that we can see exactly how much remains. Again, remember
const means “read-only”. Just because it says constant, it doesn’t necessarily mean
constant.

The process is represented in Table 3-2. In each step, the portion of the declaration we are
dealing with is printed in bold type. Starting at step one, we will proceed through these steps.

Then put it all together to read:

“next is a pointer to a function returning a pointer to a read-only pointer-to-char”

and we’re done.

char* const *(*next)();

Table 3-2 Steps in Unscrambling a C Declaration

Declaration Remaining
(start at leftmost identifier)

Next Step to Apply Result

char * const *(*next) (); step 1 say “next is a…”

char * const *(*) (); step 2, 3 doesn’t match, go to next
step, say “next is a…”

char * const *(*) (); step 4 doesn’t match, go to next
step

char * const *(*) (); step 5 asterisk matches, say
“pointer to …”, go to step 4

char * const *() (); step 4 “(“ matches up to “)”, go to
step 2

char * const * (); step 2 doesn’t match, go to next
step

char * const * (); step 3 say “function returning…”

char * const * ; step 4 doesn’t match, go to next
step

char * const * ; step 5 say “pointer to…”

char * const ; step 5 say “read-only…”

char * ; step 5 say “pointer to…”

char ; step 6 say “char”

78 Expert C Programming

Now let’s try a more complicated example.

Try working through the steps in the same way as the last example. The steps are given at
the end of this chapter, to give you a chance to try it for yourself and compare your
answer.

typedef Can Be Your Friend

Typedefs are a funny kind of declaration: they introduce a new name for a type rather
than reserving space for a variable. In some ways, a typedef is similar to macro text
replacement—it doesn’t introduce a new type, just a new name for a type, but there is a
key difference explained later.

If you refer back to the section on how a declaration is formed, you’ll see that the type-
def keyword can be part of a regular declaration, occurring somewhere near the
beginning. In fact, a typedef has exactly the same format as a variable declaration, only
with this extra keyword to tip you off.

Since a typedef looks exactly like a variable declaration, it is read exactly like one. The
techniques given in the previous sections apply. Instead of the declaration saying “this
name refers to a variable of the stated type,” the typedef keyword doesn’t create a vari-
able, but causes the declaration to say “this name is a synonym for the stated type.”

Typically, this is used for tricky cases involving pointers to stuff. The classic example is
the declaration of the signal()prototype. Signal is a system call that tells the runtime
system to call a particular routine whenever a specified “software interrupt” arrives. It
should really be called “Call_that_routine_when_this_interrupt_comes_in”. You call sig-
nal() and pass it arguments to say which interrupt you are talking about, and which
routine should be invoked to handle it. The ANSI Standard shows that signal is declared
as:

Practicing our new-found skills at reading declarations, we can tell that this means:

signal is a function (with some funky arguments) returning a pointer to a function (tak-
ing an int argument and returning void). One of the funky arguments is itself:

char *(*c[10])(int **p);

void (*signal(int sig, void (*func)(int))) (int);

void (*signal()) (int);

void (*func)(int) ;

Chapter 3 • Unscrambling Declarations in C 79

a pointer to a function taking an int argument and returning void. Here’s how it can be
simplified by a typedef that “factors out” the common part.

Typedef is not without its drawbacks, however. It has the same confusing syntax of other
declarations, and the same ability to cram several declarators into one declaration. It pro-
vides essentially nothing for structs, except the unhelpful ability to omit the struct
keyword. And in any typedef, you don’t even have to put the typedef at the start of
the declaration!

C

{ }

#

@
~ Handy Heuristic

typedef void (*ptr_to_func) (int);

/* this says that ptr_to_func is a pointer to a function

 * that takes an int argument, and returns void

 */

ptr_to_func signal(int, ptr_to_func);

/* this says that signal is a function that takes

 * two arguments, an int and a ptr_to_func, and

 * returns a ptr_to_func

 */

Tips for Working with Declarators

Don’t put several declarators together in one typedef, like this:

typedef int *ptr, (*fun)(), arr[5];

/* ptr is the type “pointer to int”

 * fun is the type “pointer to a function returning int”

 * arr is the type “array of 5 ints”

 */

And never, ever, bury the typedef in the middle of a declaration, like this:

unsigned const long typedef int volatile *kumquat;

80 Expert C Programming

Typedef creates aliases for data types rather than new data types. You can typedef any
type.

Just write a declaration for a variable with the type you desire. Have the name of the vari-
able be the name you want for the alias. Write the keyword ‘typedef’ at the start, as
shown above. A typedef name cannot be the same as another identifier in the same block.

Difference Between typedef int x[10] and
#define x int[10]

As mentioned above, there is a key difference between a typedef and macro text replace-
ment. The right way to think about this is to view a typedef as being a complete
“encapsulated” type—you can’t add to it after you have declared it. The difference
between this and macros shows up in two ways.

You can extend a macro typename with other type specifiers, but not a typedef’d type-
name. That is,

Second, a typedef’d name provides the type for every declarator in a declaration.

After macro expansion, the second line effectively becomes:

typedef int (*array_ptr)[100];

#define peach int

unsigned peach i; /* works fine */

typedef int banana;

unsigned banana i; /* Bzzzt! illegal */

#define int_ptr int *

int_ptr chalk, cheese;

int * chalk, cheese;

Chapter 3 • Unscrambling Declarations in C 81

This makes chalk and cheese as different as chutney and chives: chalk is a pointer-to-an-
integer, while cheese is an integer. In contrast, a typedef like this:

declares both Bentley and Rolls_Royce to be the same. The name on the front is different,
but they are both a pointer to a char.

What typedef struct foo { ... foo; } foo; Means
There are multiple namespaces in C:

* label names
* tags (one namespace for all structs, enums and unions)
* member names (each struct or union has its own namespace)
* everyting else

Everything within a namespace must be unique, but an identical name can be applied to
things in different namespaces. Since each struct or union has its own namespace, the
same member names can be reused in many different structs. This was not true for very
old compilers, and is one reason people prefixed field names with a unique initial in the
BSD 4.2 kernel code, like this:

Because it is legal to use the same name in different namespaces, you sometimes see code
like this.
 struct foo {int foo;} foo;

This is absolutely guaranteed to confuse and dismay future programmers who have to
maintain your code. And what would sizeof(foo); refer to?

Things get even scarier. Declarations like these are quite legal:

typedef char * char_ptr;

char_ptr Bentley, Rolls_Royce;

struct vnode {
 long v_flag;
 long v_usecount;
 struct vnode *v_freef;
 struct vnodeops *v_op;
};

typedef struct baz {int baz;} baz;

 struct baz variable_1;

 baz variable_2;

82 Expert C Programming

That’s too many “baz”s! Let’s try that again, with more enlightening names, to see what’s
going on:

The typedef introduces the name my_type as a shorthand for “struct my_tag
{int i}”, but it also introduces the structure tag my_tag that can equally be used with
the keyword struct. If you use the same identifier for the type and the tag in a typedef,
it has the effect of making the keyword “struct” optional, which provides completely
the wrong mental model for what is going on. Unhappily, the syntax for this kind of
struct typedef exactly mirrors the syntax of a combined struct type and variable declara-
tion. So although these two declarations have a similar form,

very different things are happening. Statement 1 declares a structure tag “fruit” and a
structure typedef “fruit” which can be used like this:

Statement 2 declares a structure tag “veg” and a variable veg. Only the structure tag can
be used in further declarations, like this:

It would be an error to attempt a declaration of veg cabbage. That would be like
writing:

typedef struct my_tag {int i;} my_type;

 struct my_tag variable_1;

 my_type variable_2;

typedef struct fruit {int weight, price_per_lb } fruit; /* statement 1 */

struct veg {int weight, price_per_lb } veg; /* statement 2 */

struct fruit mandarin; /* uses structure tag “fruit” */

 fruit tangerine; /* uses structure type “fruit” */

struct veg potato;

int i;

i j;

Chapter 3 • Unscrambling Declarations in C 83

C

{ }

#

@
~ Handy Heuristic

A pretty good principle in computer science, when you have two different things, is to
use two different names to refer to them. It reduces the opportunities for confusion
(always a good policy in software). If you’re stuck for a name for a structure tag, just give
it a name that ends in “_tag”. This makes it simpler to detect what a particular name is.
Future generations will then bless your name instead of reviling your works.

The Piece of Code that Understandeth All Parsing

You can easily write a program that parses C declarations and translates them into
English. In fact, why don’t you? The basic form of a C declaration has already been
described. All we need to do is write a piece of code which understands that form and
unscrambles it the same way as Figure 3-4. To keep it simple, we’ll pretty much ignore
error handling, and we’ll deal with structs, enums, and unions by compressing them
down to just the single word “struct”, “enum” or “union”. Finally, this program expects
functions to have empty parentheses (i.e., no argument lists).

Tips for Working with Typedefs

Don’t bother with typedefs for structs.

All they do is save you writing the word “struct”, which is a clue that you probably shouldn’t be
hiding anyway.

Use typedefs for:

• types that combine arrays, structs, pointers, or functions.

• portable types. When you need a type that’s at least (say) 20-bits, make it a typedef. Then
when you port the code to different platforms, select the right type, short, int, long,
making the change in just the typedef, rather than in every declaration.

• casts. A typedef can provide a simple name for a complicated type cast. E.g.
typedef int (*ptr_to_int_fun)(void);

char * p;
= (ptr_to_int_fun) p;

Always use a tag in a structure definition, even if it’s not needed. It will be later.

84 Expert C Programming

Programming Challenge
.

Write a Program to Translate C Declarations into English

Here’s the design. The main data structure is a stack, on which we store tokens that we have
read, while we are reading forward to the identifier. Then we can look at the next token to the
right by reading it, and the next token to the left by popping it off the stack. The data structure
looks like:

struct token { char type;

 char string[MAXTOKENLEN]; };

 /* holds tokens we read before reaching first identifier */

struct token stack[MAXTOKENS];

 /* holds the token just read */

 struct token this;

The pseudo-code is:

utility routines----------

classify_string

look at the current token and

return a value of “type” “qualifier” or “identifier” in this.type

gettoken

read the next token into this.string

if it is alphanumeric, classify_string

else it must be a single character token

this.type = the token itself; terminate this.string with a nul.

read_to_first_identifier

gettoken and push it onto the stack until the first identifier is read.

Print “identifier is”, this.string

gettoken

Chapter 3 • Unscrambling Declarations in C 85

This is a small program that has been written numerous times over the years, often under
the name “cdecl”.1 An incomplete version of cdecl appears in The C Programming Lan-
guage. The cdecl specified here is more complete; it supports the type qualifiers “const”
and “volatile”. It also knows about structs, enums, and unions though not in full general-
ity; it is easy to extend this version to handle argument declarations in functions. This
program can be implemented with about 150 lines of C. Adding error handling, and the
full generality of declarations, would make it much larger. In any event, when you pro-
gram this parser, you are implementing one of the major subsystems in a compiler—that’s
a substantial programming achievement, and one that will really help you to gain a deep
understanding of this area.

parsing routines----------

deal_with_function_args

read past closing ‘)’ print out “function returning”

deal_with_arrays

while you’ve got “[size]” print it out and read past it

deal_with_any_pointers

while you’ve got “*” on the stack print “pointer to” and pop it

deal_with_declarator

if this.type is ‘[‘ deal_with_arrays

if this.type is ‘(‘ deal_with_function_args

deal_with_any_pointers

while there’s stuff on the stack

if it’s a ‘(‘

pop it and gettoken; it should be the closing ‘)’

deal_with_declarator

else pop it and print it

main routine----------

main

read_to_first_identifier

deal_with_declarator

1. Don’t confuse this with the cdecl modifier used in Turbo C on PC’s to indicate that the generated code
should not use the Turbo Pascal default convention for calling functions. The cdecl modifier allows Bor-
land C code to be linked with other Turbo languages that were implemented with different calling conven-
tions.

Write a Program to Translate C Declarations into English (Continued)

86 Expert C Programming

Further Reading

Now that you have mastered the way to build data structures in C, you may be interested
in reading a good general-purpose book on data structures. One such book is Data Struc-
tures with Abstract Data Types by Daniel F. Stubbs and Neil W. Webre, 2nd Ed., Pacific
Grove, CA, Brooks/Cole, 1989.

They cover a wide variety of data structures, including strings, lists, stacks, queues, trees,
heaps, sets, and graphs. Recommended.

Some Light Relief—
Software to Bite the Wax Tadpole…
One of the great joys of computer programming is writing software that controls some-
thing physical (like a robot arm or a disk head). There’s an enormous feeling of
satisfaction when you run a program and something moves in the real world. The gradu-
ate students in MIT’s Artificial Intelligence Laboratory were motivated by this when they
wired up the departmental computer to the elevator call button on the ninth floor. This
enabled you to call the elevator by typing a command from your LISP machine! The pro-
gram checked to make sure your terminal was actually located inside the laboratory
before it called the elevator, to prevent rival hackers using the dark side of the force to tie
up the elevators.

The other great joy of computer programming is chowing down on junk food while hack-
ing. So what could be more natural than to combine the two thrills? Some computer
science graduate students at Carnegie-Mellon University developed a junk-food/com-
puter interface to solve a long-standing problem: the computer science department Coke®

machine was on the third floor, far from the offices of the graduate students. Students
were fed up with travelling the long distance only to find the Coke machine empty or,
even worse, so recently filled that it was dispensing warm bottles. John Zsarney and
Lawrence Butcher noticed that the Coke machine stored its product in six refrigerated col-
umns, each with an “empty” light that flashed as it delivered a bottle, and stayed on
when the column was sold out. It was a simple matter to wire up these lights to a serial
interface and thus transmit the “bottle dispensed” data to the PDP10 department main-
frame computer. From the PDP10, the Coke machine interface looked just like a telnet
connection! Mike Kazar and Dave Nichols wrote the software that responded to enquiries
and kept track of which column contained the most refrigerated bottles.

Naturally, Mike and Dave didn’t stop there. They also designed a network protocol that
enabled the mainframe to respond to Coke machine status enquiries from any machine on
the local ethernet, and eventually from the Internet itself. Ivor Durham implemented the
software to do this and to check the Coke machine status from other machines. With
admirable economy of effort Ivor reused the standard “finger” facility—normally used to
check from one machine whether a specified user is logged onto another machine. He
modified the “finger” server to run the Coke status program whenever someone fingered

Chapter 3 • Unscrambling Declarations in C 87

the nonexistent user “coke”. Since finger requests are part of standard Internet protocols,
people could check the Coke machine from any CMU computer. In fact, by running the
command

you could discover the Coke machine’s status from any machine anywhere on the Inter-
net, even thousands of miles away!

Others who worked on the project include Steve Berman, Eddie Caplan, Mark Wilkins,
and Mark Zaremsky2. The Coke machine programs were used for over a decade, and
were even rewritten for UNIX Vaxen when the PDP-10 was retired in the early 1980s. The
end came a few years ago, when the local Coke bottler discontinued the returnable, Coke-
bottle-shaped bottles. The old machine couldn’t handle the new shape bottles, so it was
replaced by a new vending machine that required a new interface. For a while nobody
bothered, but the lure of caffeine eventually motivated Greg Nelson to reengineer the new
machine. The CMU graduate students also wired up the candy machine, and similar
projects have been completed in other schools, too.

The computer club at the University of Western Australia has a Coke machine connected
to a 68000 CPU, with 80K of memory and an ethernet interface (more power than most
PC’s had a decade ago). The Computer Science House at Rochester Institute of Technol-
ogy, Rochester, NY, also has a Coke machine on the Internet, and has extended it to
providing drinks on credit and computerized account billing. One student enjoyed
remote logging in from home hundreds of miles away over the summer, and randomly
dispensing a few free drinks for whoever next passed. It’s getting to the point where
“Coke machine” will soon be the most common type of hardware on the Internet.

Why stop with cola? Last Christmas, programmers at Cygnus Support connected their
office Christmas tree decorations to their ethernet. They could amuse themselves by tog-
gling various lights from their workstations. And people worry that Japan is pulling
ahead of America in technology! Inside Sun Microsystems, there’s an e-mail address gate-
wayed to a fax modem. When you send e-mail there, it’s parsed for phone number details
and sent on as a fax transmission. Ace programmer Don Hopkins wrote pizzatool to put it
to good use. Pizzatool let you custom-select toppings for a pizza using a GUI interface
(most users specified extra GUI cheese), and sent the fax order to nearby Tony & Alba’s
Pizza restaurant, which accepted fax orders and delivered.

I don’t think I’ll be divulging a trade secret if I mention that extensive use was made of
this service during the late-night lab sessions developing Sun’s SPARCserver 600MP
series machines. Bon appetit!

finger coke@g.gp.cs.cmu.edu

2. Craig Everhart, Eddie Caplan, and Robert Frederking, “Serious Coke Addiction,” 25th Anniversary Sym-
posium, Computer Science at CMU: A Commemorative Review, 1990, p. 70. Reed and Witting Company.

88 Expert C Programming

Programming Solution

The Piece of Code that Understandeth All Parsing
 1 #include <stdio.h>

 2 #include <string.h>

 3 #include <ctype.h>

 4 #include <stdlib.h>

 5 #define MAXTOKENS 100

 6 #define MAXTOKENLEN 64

 7

 8 enum type_tag { IDENTIFIER, QUALIFIER, TYPE };

 9

 10 struct token {

 11 char type;

 12 char string[MAXTOKENLEN];

 13 };

 14

 15 int top=-1;

 16 struct token stack[MAXTOKENS];

 17 struct token this;

 18

 19 #define pop stack[top--]

 20 #define push(s) stack[++top]=s

 21

 22 enum type_tag classify_string(void)

 23 /* figure out the identifier type */

 24 {

 25 char *s = this.string;

 26 if (!strcmp(s,”const”)) {

 27 strcpy(s,”read-only”);

 28 return QUALIFIER;

 29 }

 30 if (!strcmp(s,”volatile”)) return QUALIFIER;

 31 if (!strcmp(s,”void”)) return TYPE;

 32 if (!strcmp(s,”char”)) return TYPE;

 33 if (!strcmp(s,”signed”)) return TYPE;

Chapter 3 • Unscrambling Declarations in C 89

 34 if (!strcmp(s,”unsigned”)) return TYPE;

 35 if (!strcmp(s,”short”)) return TYPE;

 36 if (!strcmp(s,”int”)) return TYPE;

 37 if (!strcmp(s,”long”)) return TYPE;

 38 if (!strcmp(s,”float”)) return TYPE;

 39 if (!strcmp(s,”double”)) return TYPE;

 40 if (!strcmp(s,”struct”)) return TYPE;

 41 if (!strcmp(s,”union”)) return TYPE;

 42 if (!strcmp(s,”enum”)) return TYPE;

 43 return IDENTIFIER;

 44 }

 45

 46 void gettoken(void) /* read next token into “this” */

 47 {

 48 char *p = this.string;

 49

 50 /* read past any spaces */

 51 while ((*p = getchar()) == ‘ ‘) ;

 52

 53 if (isalnum(*p)) {

 54 /* it starts with A-Z,0-9 read in identifier */

 55 while (isalnum(*++p=getchar()));

 56 ungetc(*p,stdin);

 57 *p = ‘\0’;

 58 this.type=classify_string();

 59 return;

 60 }

 61

 62 if (*p==’*’) {

 63 strcpy(this.string,”pointer to”);

 64 this.type = ‘*’;

 65 return;

 66 }

 67 this.string[1]= ‘\0’;

 68 this.type = *p;

 69 return;

 70 }

The Piece of Code that Understandeth All Parsing (Continued)

90 Expert C Programming

 71 /* The piece of code that understandeth all parsing. */

 72 read_to_first_identifier() {

 73 gettoken();

 74 while (this.type!=IDENTIFIER) {

 75 push(this);

 76 gettoken();

 77 }

 78 printf(“%s is “, this.string);

 79 gettoken();

 80 }

 81

 82 deal_with_arrays() {

 83 while (this.type==’[‘) {

 84 printf(“array “);

 85 gettoken(); /* a number or ‘]’ */

 86 if (isdigit(this.string[0])) {

 87 printf(“0..%d “,atoi(this.string)-1);

 88 gettoken(); /* read the ‘]’ */

 89 }

 90 gettoken(); /* read next past the ‘]’ */

 91 printf(“of “);

 92 }

 93 }

 94

 95 deal_with_function_args() {

 96 while (this.type!=’)’) {

 97 gettoken();

 98 }

 99 gettoken();

 100 printf(“function returning “);

 101 }

 102

 103 deal_with_pointers() {

 104 while (stack[top].type== ‘*’) {

 105 printf(“%s “, pop.string);

 106 }

 107 }

 108

The Piece of Code that Understandeth All Parsing (Continued)

Chapter 3 • Unscrambling Declarations in C 91

 109 deal_with_declarator() {

 110 /* deal with possible array/function following the identifier */

 111 switch (this.type) {

 112 case ‘[‘ : deal_with_arrays(); break;

 113 case ‘(‘ : deal_with_function_args();

 114 }

 115

 116 deal_with_pointers();

 117

 118 /* process tokens that we stacked while reading to identifier */

 119 while (top>=0) {

 120 if (stack[top].type == ‘(‘) {

 121 pop;

 122 gettoken(); /* read past ‘)’ */

 123 deal_with_declarator();

 124 } else {

 125 printf(“%s “,pop.string);

 126 }

 127 }

 128 }

 129

 130 main()

 131 {

 132 /* put tokens on stack until we reach identifier */

 133 read_to_first_identifier();

 134 deal_with_declarator();

 135 printf(“\n”);

 136 return 0;

 137 }

The Piece of Code that Understandeth All Parsing (Continued)

92 Expert C Programming

C

{ }

#

@
~ Handy Heuristic

Programming Solution

Make String Comparison Look More Natural

One of the problems with the strcmp () routine to compare two strings is that it returns zero
if the strings are identical. This leads to convoluted code when the comparison is part of a
conditional statement:

if (!strcmp(s,“volatile”)) return QUALIFIER;

a zero result indicates false, so we have to negate it to get what we want.
Here’s a better way. Set up the definition:

#define STRCMP(a,R,b) (strcmp(a,b) R 0)

Now you can write a string in the natural style

if (STRCMP(s, ==, “volatile”))

Using this definition, the code expresses what is happening in a more natural style. Try rewriting
the cdecl program to use this style of string comparison, and see if you prefer it.

Unscrambling a C Declaration (One More Time)

Here is the solution to “What is this declaration?” on page 78. In each step, the portion of the
declaration we are dealing with is printed in bold type. Starting at step one, we will proceed
through these steps:

Declaration Remaining Next Step to Apply Result

start at the leftmost identifier

char *(*c[10])(int **p); step 1 say “c is a…”

char *(* [10])(int **p); step 2 say “array[0..9] of…”

Chapter 3 • Unscrambling Declarations in C 93

char *(*)(int **p); step 5 say “pointer to…”
go to step 4

char *()(int **p); step 4 delete the parens, go to
step 2, fall through step 2 to
step 3

char * (int **p); step 3 say “function returning…”

char * ; step 5 say “pointer to…”

char ; step 6 say “char;”

Then put it all together to read:

“c is an array[0..9] of pointer to a function returning a pointer-to-char”

and we’re done. Note: the fuctions pointed to in the array take a pointer to a pointer as their one
and only parameter.

Unscrambling a C Declaration (One More Time)

This page intentionally left blank

349

Index

Symbols
#define , 203

Numerics
32-bit address , 175
64-bit address , 171

A
a.out , 138, 139
ABI , 114
actual parameter , 246
Ada , 6, 42, 60, 65, 212, 248, 251, 280
Algol , 8
Algol-60 , 12, 269, 280, 293, 339
Algol-68 , 8, 280, 293
alignment , 188
alloca , 184
angst , 122
ANSI C , 12
ANSI C Standard , 22, 50
APL , 340
arena , 181
argument , 246
arity , 314
array initialization , 257
array/pointer equivalence , 247
array/pointer interchangeability , 251
assignment operator , 10
associativity , 47
auto , 5, 151
automatic , 56
availability , 301

B
B , 2
back end , 110

barometric building measurement , 344
BASIC , 12, 145, 226
BASIC interpreter , 231
BCPL , 2, 55, 65
BIOS , 112
block , 179
blocking read , 214
Bobrow, Daniel , 130
Borland , 122, 213
boss key , 213
Bourne shell , 225
Bourne, Steve , 8
break , 182
BSS segment , 142
bus error , 187, 188

C
C++ , 6, 35, 55, 60, 211, 293
cache , 179
call-by-reference , 247
call-by-value , 247
CAR , 193
Carnegie-Mellon University , 86, 105
cast , 65, 223
catalpa , 106
cdecl , 85, 92, 219
class , 295, 299
COBOL , 145, 323
code generator , 110
COFF , 139
Coke machine , 87
column major addressing , 256
compiler driver , 110
complex-number , 5
conditional operator , 191
conformant arrays , 276
conforming , 16

350 Expert C Programming

const , 24, 36, 65
constant , 24, 280
constraint , 14
constructor , 305
context switch , 177
core dump , 188
corruption , 56, 60
CP/M , 174
curses library , 216

D
dangling pointers , 151
data segment , 142, 181
Dead Computers Society , 328
debugger hook , 220
declaration , 67, 97, 211
declarator , 66, 67
definition , 97, 211
destructor , 305
direct_declarator , 67
display , 265
Doctor , 131
dope vector , 265
driver program , 110
dynamic arrays , 280
dynamic data structure , 71
dynamic linking , 112

E
E.I.E.I.O. , xxii
efficiency , 246
ELF , 139
Eliza , 130
encapsulation , 295
enum , 73
errno , 215
exceptions , 321
extern , 41

F
fall through , 37
file descriptor , 340
file pointer , 340
FILE structure , 341
finite state machine , 217
first-class type , 70
formal parameter , 241, 246

Fortran , 2, 31, 61, 145, 250, 256, 323
Fortran 90 , 280
fp , 147
frame , 151
free , 181, 183, 192
Free Software Foundation , 29

G
garbage collection , 183
getch , 213
gets() , 49
glyph , 203
gmtime , xxiv
GNU , 29
GNU C , 280
Golden Rule , 3
grammar , 65
Greenwich Mean Time , xxiv

H
hack , 30
hash , 54
hash function , 221
hashing , 221
hat layer , 177
header file , 211
heap , 143, 181, 285
hung , 187

I
IBM , 168
IBM 704 , 193, 246
IBM PC , 15, 258
IEEE 754 , 258
Illiffe vector , 265
implementation-defined , 14
indent , 10
inheritance , 295, 307
initializer , 67
inodes , 179
instance , 295
integral promotion , 26, 205
Intel , 168
Intel 80x86 , 12, 165
internationalized , 55
Internet , 48
Internet worm , 48, 138, 163

Index 351

interposing , 320
interpositioning , 123
interrupt-driven I/O , 217
interviews , 333
ioctl , 214
iostream , 314
ISO , 12

J
Joy, Bill , 139

K
K&R C , 11, 73
kbhit , 213
kernel , 187
Kernighan, Brian , 2, 11, 28, 338
kludge , 207, 257
Knuth, Donald , 202
Korn shell , 225
Korn, David , 225

L
language lawyers , 22, 74
late binding , 315
latency , 172
leak , 183, 187
line , 178, 179
linked list , 193, 221, 286
linker , 110
lint , xx, 59, 212, 246
Lint Party , 60
LISP , 86, 193
locality of reference , 271
longjmp , 153
lpr , 125
l-value , 98, 336

M
MAD Magazine , 202
magic , 138
mail , 50
malloc , 181, 183, 266
Mariner 1 , 60
math library , 121
maximal munch , 53
McNealy, Scott , 186
member , 295

memcpy , 180
memory corruption , 183
memory leak , 58, 183
memory management , 143
memory management unit , 189, 190
memory map , 128
memory models , 173
Mercury , 31
method , 295
Microsoft , 168, 213, 343
MIT , 86
mmap , 142
mmap() , 115
MMU , 176, 177
modifiable l-value , 98, 250
Modula-2 , 42
MS-DOS , 34, 112
MS-Windows , 213
Multics , 1
multidimensional arrays , 251, 254, 263
multiple inheritance , 311

N
name space pollution , 128
named pipe , 186
NASA , 31
naughty device driver , 189
New B , 4
nonblocking read , 214
NUL , 33
NULL , 33
null pointer assignment , 34

O
Obfuscated C , 225
object , 295
object-oriented programming , 294
operator precedence , 65
optimization , 3
optimizer , 110
orthogonality , 322
overloading , 312

P
page fault , 155
paging , 115, 195
palindromes , 105

352 Expert C Programming

panic , 159
parameter , 246
parity error , 189
Pascal , 4, 12, 34, 42, 252
PC , 112
PDP-10 , 87
PDP-11 , 3, 5, 138, 139, 207
PDP-7 , 1, 138
Pentium , 166
Perlis, Alan , 339
pixel , 203
Plauger, 28, 338
PL/I , 2, 6, 280
pointer to function , 218
pointers-to-string , 266
polling , 214
polymorphism , 315, 316, 320
position-independent code , 117
POSIX 1003.1 , 19
post-increment , 336
pragma , 30
precedence , 45, 47
pre-increment , 336
preprocessor , 6
Princeton , 161
principle of least astonishment , 29
printtool , 186
private part , 304
procedure activation record , 146
procedure linkage table , 117
program proofs , 287
protected mode , 168
prototype , 20, 21, 207
pure code , 118

R
ragged arrays , 269
read-only , 24
realloc , 285
redefinition , 123
register , 5
reserved , 125
returning an array from a function , 277
Ritchie, Dennis , 1, 4, 11, 46, 135
Rochester Institute of Technology , 87
rogue , 30
row major addressing , 256
runtime checking , 34

runtime system , 138
r-value , 98

S
scope resolution operator , 303
segment , 170, 190
segmentation fault , 187
segments , 139
sending a message , 304
setjmp , 153
shared object , 115, 116
signal , 78, 217
signal handler , 217
signal handling , 188
Simula-67 , 294
sizeof , 44, 205
snoop , 185
space shuttle , 61
space software , 61
SPARCserver 1000 , 179
SPARCstation 2 , 179, 180
stack , 49, 145, 194
stack frame , 152
stack segment , 145
stack size , 156
Stallman, Richard , 29
Stanford University , 202
static , 57, 151
static linking , 113, 148
storage-class , 67
storage-class specifier , 42, 66
stream pointer , 341
STREAMS , 314
strictly-conforming , 16
strings , 281
stty , 214
subscript operator , 243
subscripted array parameter , 247
SVr4 , 114
swap , 176
swap space , 114, 184
symbol table , 55

T
tag , 179
templates , 321
terminal , 214
text segment , 115, 142

Index 353

The C Programming Language , 11, 44, 205
this , 305
Thompson, Ken , 1, 4, 25, 135
threads , 152
Tiki birds , 44
time_t , xxii
tools , 156
Tower of Hanoi , 30
traditional recursion joke,

see traditional recursion joke
tuna fish , xxiii
Turing Award , 135
Turing, Alan , 129
type promotion , 205
typedef , 75, 78
typedef specifier , 66
type-qualifier , 67
type-specifier , 67

U
undefined , 14, 121
unions , 71
University of Western Australia , 87
unsigned preserving , 26, 29
unspecified , 14, 48
usual arithmetic conversions , 25, 26, 205

V
value preserving , 26, 29
variable arguments , 207
VAX , 5, 139
Venus , 61
virtual , 317
virtual address space , 144
virtual memory , 155, 174, 175
virtual real mode , 168
vnode , 177, 187
void , 25
volatile , 65

W
Weizenbaum, Joseph , 130
white space , 53
willy-nilly , 211
worm , 48
write-back , 179
write-through , 178

X
X3J11 , 213

Y
Yale , 105

	Contents
	Preface
	Acknowledgments
	Introduction
	The $20 Million Bug
	Convention
	Some Light Relief—Tuning File Systems

	3. Unscrambling Declarations in C
	Syntax Only a Compiler Could Love
	How a Declaration Is Formed
	A Word About structs
	A Word About unions
	A Word About enums

	The Precedence Rule
	Unscrambling C Declarations by Diagram
	typedef Can Be Your Friend
	Difference Between typedef int x[10] and #define x int[10]
	What typedef struct foo { ... foo } foo; Means
	The Piece of Code that Understandeth All Parsing
	Further Reading

	Some Light Relief—Software to Bite the Wax Tadpole…

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

