User interfaces are typically the most volatile aspect of web applications
during development, so it is crucial to create flexible and extensible inter-
faces. This chapter shows you how to achieve that flexibility and extensibility
by including common content. First we discuss standard JSP mechanisms—
JSP includes and JSTL imports—that you can use to include common content
in a JSF application. Next, we explore the use of the Apache Tiles package—
which lets you encapsulate layout in addition to content, among other handy
features—with JSF.

Common Layouts

Many popular web sites, such as nytimes.com, java.sun.com, or amazon.com, use a
common layout for their web pages. For example, all three of the web sites
listed above use a header-menu-content layout, as depicted in Figure 8-1.

You can use HTML frames to achieve the layout shown in Figure 8-1, but
frames are undesirable for several reasons. For example, frames make it hard
for users to bookmark pages. Frames also generate separate requests, which
can be problematic for web applications. Including content, which is the focus
of this chapter, is generally preferred over frames.

315

m Chapter 8 B Subviews and Tiles

HEADER

MENU CONTENT

Figure 8-1 A typical web page layout

A Book Viewer and a Library

To illustrate implementing layouts, including common content, and using
Tiles, we discuss two applications in this chapter: a book viewer and a library.
Those applications are shown in Figure 8-2 and Figure 8-3, respectively.

The book viewer is intuitive. If you click a chapter link, that chapter is shown
in the content region of the web page. The library is an extension of the book
viewer that lets you view more than one book. You can select books from the
menu at the top of the web page.

The book viewer addresses the following topics:
e “Monolithic JSF Pages” on page 320

¢ “Common Content Inclusion” on page 326
e “Looking at Tiles” on page 331

¢ “Parameterizing Tiles” on page 334

e “Extending Tiles” on page 335

The library illustrates these Tiles features:

* “Nested Tiles” on page 339
e “Tile Controllers” on page 341

Coverage of the book viewer begins in the next section, “The Book Viewer” on
page 318. The library is discussed in “The Library” on page 339.

A Book Viewer and a Library

NOTE: For the examples in this chapter, we downloaded Alice in

Wonderland and Peter Pan from the Project Gutenberg web site

(http://promo.net/pg/), chopped them up into chapters, and converted
them to HTML.

8ene Welcome to Alice in Wonderland (=)
ét | @ http: f/localhost:9090,/book-viewer-tiles/book.faces7chapter=chapterl "9¢
= (1
= 1
o
—C
Alice in Wonderland
chapter1 (CHAPTER |
Chapter 2
Chapter 3 | Down the Rabbit-Hole
Chapter 4
h Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had
SEEeng peeped into the book her sister was reading, but it had no pictures or conversations in it, "and what s the use of a book," thought
Chapterb | Alice "without pictures or conversation?’
Chapter 7 . =Lk : 3 i
Chonters So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether
_—L the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White
Chapter 3 | Rabhit with pink eyes ran close by her.
Chapter 10 .
Chamter 11 There was nothing so VERY remarkable in that; nor did Alice think it so VERY much out of the way to hear the Rabbit say to
%L itself, *Oh dear! Oh dear! [shall be late!" {when she thought it over aftenwards, it occurred to her that she ought to have
Chapter 12 | wondered at this, but at the time it all seemed quite natural); but when the Rabhit actually TOOK A WATCH OUT OF IT8

WAISTCOAT- POCKET, and looked at it, and then hurried on, Alice staried to her feet, for it flashed across her mind that she
had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curicsity, she ran
across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge.

In another moment down went Alice aiter it, never once considering how in the world she was to gel out again.

The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a
moment to think about stopping herself before she found herself falling down a very deep well.

Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down 10 look about her and to
wender what was going to happen next. First, she tried to look down and make cut what she was coming Lo, but it was too dark
to see anything; then she locked at the sides of the well, and noticed that they were filled with cupboards and book-shelves;
here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was
labelled "ORANGE MARMALADE’, but to her great disappointment it was empty: she did not like to drop the jar for fear of
kitling someboedy, so managed to put it into one of the cuphoards as she fell past it.

“Welll" thought Alice to herself, “after such a fall as this, I shall think nothing of tumbling down stairs! How brave they'Il all
think me at home! Why, I wouldn't say anything about it, even if | fell off the top of the house!" (Which was very likely true.)

Down, down, down. Would the fall NEVER come to an end! '| wonder how many miles ['ve fallen by this time?’ she said aloud.
"I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, | think—' (for,
you see, Alice had [earnt several things of this sort in her lessons in the schoofroom, and though this was not a VERY geod
opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) "—yes,
that's about the right distance—-but then | wonder what Latitude or Longitude I've got to?' (Alice had no idea what Latitude was,
or Longitude either, but thought they were nice grand words to say.)

Presently she began again. “I wonder if | shall fall right THROUGH the earth! How funny it'll seem to come oul among the
people that walk with their heads downward! The Antipathies, I think—' (she was rather glad there WAS no one listening, this
time, as it didn’t sound at all the right word) *~but | shall have to ask them what the name of the country is, you know. Please,
Ma'am, is this New Zealand or Australia?’ (and she tried to curtsey as she spoke—fancy CURTSEYING as you're falling through
the air! Do you think you could manage it?) "And what an ignorant little girl she'll think me for asking! No, it'll never do to ask:

Document; Done

perhaps | shall see it written up somewhere.

Figure 8-2 The book viewer

317

Chapter 8 B Subviews and Tiles

uttenber ra
ene Gi berg Library (=]
G:' @ htp:/ /localhost:9090/ library/ library.faces %
= Mm
|Select abook | Peter Pan B |
Peter Pan
Chagter 1 |Chapter 12
Chapter 2
Chapter3 | THE CHILDREN ARE CARRIED OFF
Chapter 4
h ~ | The pirate attack had been a complete surprise: a sure proof that the unscrupulous Hook had conducted it improperly, for to
Chagier's surprise redskins fairly is beyond the wit of the white man.
Chapter 6
Chapter 7 By all the unwritten laws of savage warfare il is always the redskin who attacks, and wilh the wiliness of his race he does it just
s before the dawn, at which time he knows the courage of the whites to be at its [owest ebb. The white men have in the
7_3& meantime made a rude stockade on the summit of yonder undulating ground, at the foot of which a strearn runs, for it is
Chapter 9 | destruction to be too far from water. There they await the onslaught, the inexperienced ones clutching their revolvers and
Chapter 10 |treading on twigs, but the old hands sleeping tranquilly until just before the dawn. Through the long black night the savage W
Chapter 11 |5€outs wriggle, snake-like, among the grass without stirring a blade. The brushwood closes behind ther, as silently as sand into
h which a mole has dived. Not a sound is to be heard, save when they give vent to a wonderful imitation of the lanely call of the
Lhaplor(d coyote. The cry is answered by other braves; and some of them do it even better than the coyotes, who are not very good at it
Chapter 13 | So the chill hours wear on, and the long suspense is horribly trying 1o the paleface who has to live through it for the first time;
Chapter 14 |but to the trained hand those ghastly calls and still ghastlier silences are but an intimation of how the night is marching.
Chapter 15 That this was the usual procedure was so well known to Hook that in disregarding it he cannot be excused on the plea of
ignorance.
The Piccaninnies, on their part, trusted implicitly to his honour, and their whole actien of the night stands out in marked
contrast to his. They left nothing undone that was consistent with the reputation of their tribe. With that alertness of the senses
which is at once the marvel and despair of civilised peoples, they knew that the pirates were on the island from the moment
one of them trod on a dry stick; and in an incredibly short space of time the coyote cries began. Every fool of ground between
the spot where Hook had [anded his forces and the home under the trees was stealthily examined by braves wearing their
mocassing with the heels in front. They found only one hillock with a stream at its base, so that Hook had no choice; here he
must establish himself and wait for just before the dawn. Everything being thus mapped out with almost diabolical cunning, the
main body of the redskins folded their blankets around them, and in the phlegmatic manner that is to them, the pearl of
manhood squatted above the children's home, awaiting the cold moment when they should deal pale death.
Here dreaming, though wide-awake, of the exquisite tortures 1o which they were to put him at break of day, those confiding
savages were found by the treacherous Hook. From the accounts afterwards supplied by such of the scouts as escaped the
camage, he does not seem even to have paused at the rising ground, though it is certain that in that grey light he must have
seen it: no thought of wailing to be attacked appears from first to last to have visited his subtle mind; he would not even hold
off 1ill the night was nearly spent; an he pounded with no policy but to fall to [get inte combat]. What could the bewildered
scouts do, masters as they were of every war-like artifice save this one, but trot helplessty after him, exposing themselves
fatally to view, while they gave pathetic utterance to the coyote cry.
Around the brave Tiger Lily were a dozen of her stoutest warriors, and they suddenly saw the perfidious pirates bearing down
upon them. Fell from their eyes then the film through which they had looked at victory. No more would they torture at the "
stake. For them the happy hunting-grounds was now. They knew it; but as their father’s sons they acquitted themselves. Even .
then they had time to gather in a phalanx [dense formation] that would have been hard to break had they risen quickly, but this |+
Document: Done @ A

Figure 8-3 The library

The Book Viewer

The book viewer is rather limited in scope. It supports only a single book,
which is a managed bean that we define in the faces configuration file. The
name of that bean is book.

The book bean has these properties:

titleKey
image

The Book Viewer m

U numChapters
U chapterKeys

The titleKey property represents a key in a resource bundle for the book’s title.
In the book viewer’s properties file we have the key/value pair titleKey=ATice in
Wonderland. When we display the book’s title, we use the titleKey property, like
this:

<h:outputText value="#{msgs[book.titleKey]}"/>

The image property is a string. The application interprets that string as a URL
and loads it in the book viewer’s header like this:

<h:graphicImage url="#{book.image}"/>

The chapterkeys property is a read-only list of keys, one for each chapter. The
book viewer populates the book viewer’s menu with corresponding values
from a resource bundle:

<h:dataTable value="#{book.chapterKeys}" var="chapterkey">
<h:commandLink>
<h:outputText value="#{msgs[chapterKey]}"/>

</h:commandLink>
</h:dataTable>

The Book class uses the numChapters property to compute the chapter keys.

The implementation of the Book class is rather mundane. You can see it in
Listing 8-3 on page 324. Here is how we define an instance of the Book class in
faces-config.xml:

<faces-config>
<!-- The book -->
<managed-bean>
<managed-bean-name>hook</managed-bean-name>
<managed-bean-class>com.corejsf.Book</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

<managed-property>
<property-name>titleKey</property-name>
<value>aliceInWonderland</value>
</managed-property>

<managed-property>
<property-name>image</property-name>
<value>cheshire.jpg</value>
</managed-property>

Chapter 8 B Subviews and Tiles

<managed-property>
<property-name>numChapters</property-name>
<property-class>java.lang.Integer</property-class>
<value>12</value>
</managed-property>
</managed-bean>
</faces-config>

There are many ways to implement page layout. In this section, we look at
three options: a monolithic JSF page, inclusion of common content, and Tiles.

NOTE: We do not set the book’s chapterKeys property in faces-config.xml.
This is because the Book class creates that list of chapter keys for us. All we
have to do is define the numChapters property.

Monolithic JSF Pages

A monolithic JSF page is perhaps the quickest way to implement the book
viewer, shown in Figure 8-2. For example, here is a naive implementation:

<!-- A panel grid, which resides in a form, for the entire page --%>
<h:panelGrid columns="2" styleClass="hook"
columnClasses="menuColumn, chapterColumn">

<!-- The header, containing an image, title, and horizontal rule --%>
<f:facet name="header">
<h:panelGrid columns="1" styleClass="bookHeader">
<h:graphicImage value="#{book.image}"/>
<h:outputText value="#{msgs[book.titleKey]}" styleClass="bookTitle'/>
<hr>
</h:panelGrid>
</f:facet>

<!-- Column 1 of the panel grid: The menu, which consists of chapter Tinks --%>
<h:dataTable value="#{book.chapterKeys}" var="chapterKey"
styleClass="1inks" columnClasses="TinksCoTumn">
<h:column>
<h:commandLink>
<h:outputText value="#{msgs[chapterKey]}"/>
<fiparam name="chapter" value="#{chapterKey}"/>
</h:commandLink>
</h:coTumn>
</h:dataTable>

<!-- Column 2 of the panel grid: The chapter content --%
<c:import url="${param.chapter}.html"/>
</h:panelGrid>

The Book Viewer m

The book viewer is implemented with a panel grid with two columns. The
header region is populated with an image, text, and HTML horizontal rule.
Besides the header, the panel grid has only one row—the menu occupies the
left column and the current chapter is displayed in the right column.

The menu is composed of chapter links. By default, Book.getChapterKeys() returns
a list of strings that looks like this:

chapterl
chapter?

chapterN
ChapterN represents the last chapter in the book. In the book viewer’s resource
bundle, we define values for those keys:

chapterl=Chapter 1
chapter2=Chapter 2

To create chapter links, we use h:dataTable to iterate over the book’s chapter
keys. For every chapter, we create a link whose text corresponds to the chapter
key’s value with this expression: #{msgs[chapterKey]}. So, for example, we wind
up with “Chapter 1” ... “Chapter 12” displayed in the menu when the number
of chapters is 12.

The right column is reserved for chapter content. That content is included with
JSTL's c:import tag.

The directory structure for the book viewer is shown in Figure 8—4. The
monolithic JSF version of the book viewer is shown in Listing 8-1 through
Listing 8-5.

U NOTE: Notice the f:param tag inside h:commandLink. The JSF framework turns
that parameter into a request parameter—named chapter—when the link is
activated. When the page is reloaded, that request parameter is used to
load the chapter’s content, like this:

<c:import url="${param.chapter}"/>

m Chapter 8 B Subviews and Tiles

] book-viewer. war
- I META-IMF
) MANIFEST.MF
9 [WEB-IMF
@[] classes
o Jcom
o [corejsf
D Book.class
[y messages.properties
D faces-config.xml
[wek.xmi
D styles.css
D chapterl.html
D chapter1d.html
D chapterll. html
D chapterl2. html
D chapter2. html
D chapter3.html
[chaptard. htmi
[chaptars. htmi
D chapteré. html
D chapter?.html
D chapter8.html
D chapterd.html
D index.html
D cheshire. jpg
[book.Jsp
Figure 8-4 The directory structure of the book viewer

book-viewer/web/book. jsp

1. <htm1>

2. <K@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c" %>
3. <H@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

4. <K@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

5.

6. <fiview>

7 <f:loadBundle basename="com.corejsf.messages" var="msgs"/>

8 <head>

9. <link href="styles.css" rel="stylesheet" type="text/css"/>
10. <title><h:outputText value="#{msgs.bookWindowTitle}"/></title>
11. </head>

12.

13, <body>

14. <h:form>

The Book Viewer m

book-viewer/web/book.jsp (cont.)

15. <h:panelGrid columns="2" styleClass="hook"

16. columnClasses="menuColumn, chapterColumn">

17. <f:facet name="header">

18. <h:panelGrid columns="1" styleClass="bookHeader">

19. <h:graphicImage value="#{book.image}"/>

20. <h:outputText value="#{msgs[book.titleKey]}"

21. styleClass="bookTitle'/>

22, <hr/>

23. </h:panelGrid>

24, </f:facet>

25.

26. <h:dataTable value="#{book.chapterKeys}" var="chapterKey"
27. styleClass="Tinks" columnClasses="TinksColumn">
28. <h:column>

29, <h:commandLink>

30. <h:outputText value="#{msgs[chapterKey]}"/>

31. <fiparam name="chapter" value="#{chapterKey}"/>
32. </h:commandLink>

33. </h:column>

34. </h:dataTable>

35.

36. <c:import url="${param.chapter}.html"/>

37. </h:panelGrid>

38. </h:form>

39. </body>

4. </fiview>

41. </htm1>

book-viewer/web/WEB-INF/faces-config.xml

1. <?xml version="1.0"?>
2. <faces-config xmIns="http://java.sun.com/xml/ns/javaee"
3. xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">
<managed-bean>
<managed-bean-name>hook</managed-bean-name>
<managed-bean-class>com. corejsf.Book</managed-bean-class>
10. <managed-bean-scope>request</managed-bhean-scope>
11.

© ® N o o »

m Chapter 8 B Subviews and Tiles

book-viewer/web/WEB-INF/faces-config.xml (cont.)

12, <managed-property>

13. <property-name>titleKey</property-name>

14. <value>aliceInWonderland</value>

15. </managed-property>

16.

17. <managed-property>

18. <property-name>image</property-name>

19. <value>cheshire.jpg</value>

20. </managed-property>

21.

22. <managed-property>

23, <property-name>numChapters</property-name>
24, <property-class>java.lang.Integer</property-class>
25. <value>12</value>

26. </managed-property>

</managed-bean>
28. </faces-config>

)
N

book-viewer/src/java/com/corejsf/Book.java

1. package com.corejsf;

2.

3. import java.util.LinkedList;

4. import java.util.List;

5.

6. public class Book {

7. private String titleKey;

8. private String image;

9. private int numChapters;

10. private List<String> chapterKeys = null;

12. // PROPERTY: titleKey
13, public void setTitleKey(String titleKey) { this.titleKey = titleKey; }
14, public String getTitleKey() { return titleKey; }

16. // PROPERTY: image
17. public void setImage(String image) { this.image = image; }
18. public String getImage() { return image; }

20. // PROPERTY: numChapters
21, public void setNumChapters(int numChapters) { this.numChapters = numChapters;}
2. public int getNumChapters() { return numChapters; }

The Book Viewer m

book-viewer/src/java/com/corejsf/Book.java (cont.)

24. // PROPERTY: chapterKeys
25. public List<String> getChapterKeys() {

26. if(chapterKeys == null) {

27. chapterKeys = new LinkedList<String>();
28. for(int i=1; i <= numChapters; ++i)

29. chapterKeys.add("chapter" + i);

30. }

3t. return chapterkeys;

32}

33. }

150 -2V B hook-viewer/src/java/com/corejsf/messages.properties

. bookWindowTitle=Welcome to Alice in Wonderland
. aliceInWonderland=Alice in Wonderland

. chapterl=Chapter 1
. chapter2=Chapter 2
. chapter3=Chapter 3
. chapterd=Chapter 4
. chapter5=Chapter 5
. chapter6=Chapter 6
. chapter7=Chapter 7
. chapter8=Chapter 8
. chapter9=Chapter 9
. chapter10=Chapter 10
. chapterll=Chapter 11
. chapter12=Chapter 12
. chapter13=Chapter 13
. chapterl4=Chapter 14
. chapter15=Chapter 15

book-viewer/web/styles.css

1. .bookHeader {

2. width: 100%;

3. text-align: center;

4. background-color: #eee;
5

6.

7

© ® N O O A N =

- 4 a4 a4 a4 a4 A g
o N o o0~ W N = O

padding: @ px;
border: thin solid CornflowerBlue;

!

m Chapter 8 B Subviews and Tiles

book-viewer/web/styles.css (cont.)

8. .bookTitle {

9. text-align: center;

10. font-style: italic;

11. font-size: 1.3em;

12. font-family: Helvetica;
13. }

14. .book {

15, vertical-align: top;

16. width: 100%;

17. height: 100%;

18. }

19. .menuCoTumn {

20. vertical-align: top;

21, background-color: #eee;
22. width: 100px;

23. border: thin solid #777;

25. .chapterColumn {

2. vertical-align: top;
27. text-align: Teft;
28. width: ;

Common Content Inclusion

A monolithic JSF page is a poor choice for the book viewer because the JSF
page is difficult to modify. Also, realize that our monolithic JSF page represents
two things: layout and content.

Layout is implemented with an h:panelGrid tag, and content is represented by
various JSF tags, such as h:graphicImage, h:outputText, h:commandLink, and the book
chapters. Realize that with a monolithic |SF page, we cannot reuse content or layout.

In the next section, we concentrate on including content. In “Looking at Tiles”
on page 331, we discuss including layout.

Content Inclusion in JSP-Based Applications

Instead of cramming a bunch of code into a monolithic JSF page, as we did in
Listing 8-1 on page 322, it is better to include common content so you can reuse
that content in other JSF pages. With JSP, you have three choices for including
content:

The Book Viewer

. <%@ include file="header.jsp"% >

U <jsp:include page="header.jsp"/>

U <c:import url="header.jsp"/>

The first choice listed above—the JSP include directive—includes the specified
file before the enclosing JSF page is compiled to a servlet. However, the include
directive suffers from an important limitation: If the included file’s content
changes after the enclosing page was first processed, those changes are not
reflected in the enclosing page. That means you must manually update the
enclosing pages—whether the including pages changed or not—whenever
included content changes.

The last two choices listed above include the content of a page at runtime and
merge the included content with the including JSF page. Because the inclusion
happens at runtime, changes to included pages are always reflected when the
enclosing page is redisplayed. For that reason, jsp:include and c:import are usu-
ally preferred to the include directive.

The c:import tag works just like jsp:include, but it has more features—for exam-
ple, c:import can import resources from another web application, whereas
jsprinclude cannot. Also, prior to JSP 2.0, you cannot use JSP expressions for
jsprinclude attributes, whereas you can with c:import. Remember that you must
import the JSTL core tag library to use c:import.

Throughout this chapter, we use c:import for consistency. You can use either
jsprinclude or c:import to dynamically include content. If you do not need
c:import’s extra features, then it is ever-so-slightly easier to use jsp:include
because you do not need to import the JSTL core tag library.

JSF-Specific Considerations

Regardless of whether you include content with the include directive, jsp:include,
or c:import, you must take into account two special considerations when you
include content in a JavaServer Faces application:

1. You must wrap included JSF tags in an f:subview tag.
2. Included JSF tags cannot contain f:view tags.
The first rule applies to included content that contains JSF tags. For example,

the book viewer should encapsulate header content in its own JSF page so that
we can reuse that content:
<%-- this is header.jsp --%

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %
<@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %

327

Chapter 8 B Subviews and Tiles

<h:panelGrid columns="1" styleClass="header">
<h:graphicImage value="books/book/cheshire.jpg"/>
<h:outputText value="#{msgs.bookTitle}" styleClass="bookTitle"/>

</h:panelGrid>
Now we can include that content from the original JSF page:
<%-- This is from the original JSF page --%

<fiviews

<fisubview id="header">
<c:import url="header.jsp"/>
</f:subview>

</fiviews
You must assign an ID to each subview. The standard convention for including
content is to name the subview after the imported JSF page.

JSF views, which are normally web pages, can contain an unlimited number of
subviews. But there can be only one view. Because of that restriction, included
JSF tags—which must be wrapped in a subview—cannot contain f:view tags.

CAUTION: The book-viewer-include application maps the Faces servlet to
x.faces. That means you can start the application with this URL: http://
www. TocaThost:8080/book-viewer-include/book. faces. The Faces serviet maps
books . faces to books.jsp. However, you cannot use the faces suffix when you
use c:import. If you use c:import, you must use the jsp suffix.

Content Inclusion in the Book Viewer

To include content in the book viewer, we split our monolithic JSF page into
four files: the original JSF page, /header.jsp, /menu.jsp, and /content.jsp. We
include the header, menu, and content in the original JSF page:

<h:panelGrid columns="2" styleClass="book"
columnClasses="menuColumn, contentColumn">

<f:facet name="header">
<fisubview id="header">
<c:import url="header.jsp"/>
</fisubview>
</f:facet>

<fisubview id="menu">

Content Inclusion in the Book Viewer m

<c:import url="menu.jsp"/>
</f:subview>

<c:import url="content.jsp"/>
</h:panelGrid>

This code is much cleaner than the original JSF page listed in Listing 8-1, so it is
easier to understand, maintain, and modify. But more important, we are now
free to reuse the header, menu, and content for other views.

The directory structure for the book viewer with includes example is shown in
Figure 8-5. Listing 8-6 through Listing 8-9 show the JSF pages for the book, its
header, menu, and content.

] book-viewer-include.war
9 [META-INF
[} MANIFEST. MF
¢ [WEB-INF
o [Jclasses
¢ [com
¢] corejsf
[Book.class
D Book(Catalog.class
[} messages. properties
D faces—-config.xml
D web.xml
D styles.css
D chapterl.html
[y chapter10.htmi
[y chapter1l.htmi
D chapterl2. html
D chapter2 . ftiuml
D chapter3.hiuml
D chapterd. html
D chapters . html
D chapter&. html
) chapter7. htmi
[chapters. html
D chapterd. himl
D index. html
D cheshire. jpa
D book. jsp
D bookContent. jsp
D bookHeader. jsp
[} bookMenu.jsp

Figure 8-5 The directory structure of the book viewer with includes

m Chapter 8 B Subviews and Tiles

book-viewer-include/web/hook. jsp

1. <html>

2. <@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c" %>
3. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %
4. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %
5.

6. <fiview>

7 <f:loadBundle basename="com.corejsf.messages" var="msgs"/>
8 <head>

9. <link href="styles.css" rel="stylesheet" type="text/css"/>
10. <title><h:outputText value="#{msgs.bookWindowTitle}"/></title>
11. </head>

12.

13. <body>

14, <h:form>

15. <h:panelGrid columns="2" styleClass="book"

16. columnClasses="menuColumn, chapterColumn">
17. <f:facet name="header">

18. <f:subview id="header">

19. <c:import url="/bookHeader.jsp"/>

20. </fisubview>

21. </f:facet>

22.

23, <fisubview id="menu">

24, <c:import url="/bookMenu.jsp"/>

25. </fisubview>

26.

27. <c:import url="/bookContent.jsp"/>

28. </h:panelGrid>

29. </h:form>

30. </body>

31, </fiview>

2. </htm1>

book-viewer-include/web/bookHeader. jsp

1. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

2. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

3

4. <h:panelGrid columns="1" styleClass="bookHeader">

5. <h:graphicImage value="#{book.image}"/>

6. <h:outputText value="#{msgs[book.titleKey]}" styleClass="bookTitle"/>
7. <hr>

8. </h:panelGrid>

Content Inclusion in the Book Viewer m
TR T2 I hook-viewer-incTlude/web/bookMenu. jsp

1. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
2. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %

4. <h:dataTable value="#{bhook.chapterKeys}" var="chapterKey"
5 styleClass="Tinks" columnClasses="1inksCoTumn">
6. <h:column>

7 <h:commandLink>

8 <h:outputText value="#{msgs[chapterKey]}"/>

9 <fiparam name="chapter" value="#{chapterKey}"/>
10. </h:commandLink>

1. </h:column>

12. </h:dataTable>

book-viewer-include/web/bookContent. jsp

1. <%@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c" %>
2.
3. <crimport url="${param.chapter}.html"/>

Looking at Tiles

We have seen how to encapsulate and include content and how that strategy
increases flexibility—it is much easier to reuse content if you include it rather
than mixing it all in one file. Now that you can create user interfaces with plug-
gable content, you may be satisfied with that level of flexibility and reuse—but
wait, there’s more.

In addition to encapsulating content, you can use Tiles to encapsulate layout. For
the application shown in Figure 8-2 on page 317, encapsulating layout means
making the layout code—the h:panelGrid and its contents listed in Listing 8-6 on
page 330—available for reuse. As it stands in Listing 8-6, that layout code can
only be used by the JSF page shown in Figure 8-2. If you implement JSF pages
with identical layouts, you must replicate that layout code for every page.

With Tiles, you define a single layout that can be reused by multiple tiles, which
are nothing more mysterious than imported JSP pages. Tiles lets you implement
layout code once and reuse it among many pages.

But reusing layout is just the beginning of the Tiles bag of tricks. You can do
more:

* Nest tiles

e Extend tiles

Chapter 8 B Subviews and Tiles

* Restrict tiles to users of a particular role
. Attach controllers (Java objects) to tiles that are invoked just before their
tile is displayed

Those are the core features that Tiles offers in the pursuit of the ultimate flexi-
bility in crafting web-based user interfaces.

Installing Tiles

To use Tiles, you need the standalone Tiles JAR file. That JAR file can be found
in the source code for this book.

Once you have the Tiles JAR file, follow these steps to install Tiles in your
application:

1. Copy the Tiles JAR file to your application’s WEB-INF/1ib directory.

2. Add the Tiles servlet to your deployment descriptor (web.xm1). Use the
Toad-on-startup element to ensure that the Tiles servlet is loaded when your
application starts.

Your deployment descriptor should look similar to the following:

<?xml version="1.0"7>

<web-app xmIns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</serviet-class>

<load-on-startup>1</load-on-startup>
</servlet>

<servlet>
<servlet-name>Tiles Servlet</servlet-name>
<servlet-class>org.apache.tiles.servlets.TilesServlet</serviet-class>
<load-on-startup>2</load-on-startup>

</servlet>

</web-app>

Content Inclusion in the Book Viewer m

Using Tiles with the Book Viewer

Using Tiles with JSF is a three-step process:

1. Use tiles:insert to insert a tile definition in a JSF page.
2. Define the tile in your Tiles configuration file.

3. Implement the tile’s layout.

For the book viewer, we start in book.jsp, where we insert a tile named book:

<%@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %>

<h:form>
<tiles:insert definition="book" flush="false"/>
</h:form>

We define the book tile in /WEB-INF/tiles.xml:

<definition name="book" path="/headerMenuContentlLayout.jsp">
<put name="header" value="/bookHeader.jsp"/>
<put name="menu" value="/bookMenu.jsp"/>
<put name="content" value="/bookContent.jsp"/>
</definition>

The previous snippet of XML defines a tile. The tile’s layout is specified with
the definition element’s path attribute. The tile attributes, specified with put ele-
ments, are used by the layout. That layout looks like this:

<%-- this is /headerMenuContentlayout.jsp --%>

<%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %>

<h:panelGrid columns="2" styleClass="gridClass"
headerClass="headerClass"
columnClasses="menuClass, contentClass">

<f:facet name="header">
<f:subview id="header">
<tiles:insert attribute="header" flush="false"/>
</f:subviews
</f:facet>

<fisubview id="menu">
<tiles:insert attribute="menu" flush="false"/>
</fisubview>

Chapter 8 B Subviews and Tiles

<fisubview id="content">
<tiles:insert attribute="content" flush="false"/>
</fisubview>
</h:panelGrid>

The tiles:insert tag dynamically includes content. That content is the value of
the attribute tag of tiles:insert. For example, the preceding code inserts the
header attribute. That attribute’s value is /bookHeader. jsp, so tiles:insert dynami-
cally includes that file.

Notice that we specified a flush="false" attribute for the tiles:insert tag. That is
necessary for most modern servlet containers because those containers disal-
low buffer flushing inside custom tags. If your servlet container throws an
exception stating that you cannot flush from a custom tag, then you know you
have forgotten to specify that attribute, which is true by default.

What have we gained by using Tiles in this example? We have encapsulated lay-
out so that we can reuse it in other tiles, instead of replicating that layout code from one
JSF page to another. For example, you could reuse the book viewer’s layout,
implemented in /headerMenuContentlLayout. jsp, for other pages in the application
that have the same layout.

Parameterizing Tiles

There is one flaw to the layout listed in the previous section: It hardcodes CSS
classes, namely gridClass, headerClass, menuClass, and contentClass. This means that
every web page using the header-menu-content layout will have the same
look and feel. It would be better if we could parameterize the CSS class names.
That way, other tiles with a header-menu-content layout could define their
own look and feel.

Next, we look at how we can do that. First, we add three attributes to the book
tile:

<definition name="book" path="/headerMenuContentlLayout.jsp">
<put name="headerClass" value="headerClass"/>
<put name="menuClass" value="menuClass"/>
<put name="contentClass" value="contentClass"/>

<put name="header" value="/bookHeader.jsp"/>

<put name="menu" value="/bookMenu.jsp"/>

<put name="content" value="/bookContent.jsp"/>
</definition>

Content Inclusion in the Book Viewer

Then we use those attributes in the layout:

<%-- this is an excerpt of /headerMenuContentlayout.jsp --%
<tiles:importAttribute scope="request"/>

<h:panelGrid columns="2" styleClass="#{gridClass}"
headerClass="#{headerClass}"
columnClasses="#{menuClass}, #{contentClass}">

</h:panelGrids

Tile attributes, such as headerClass, menuClass, etc., in the preceding code, exist in
tiles scope, which is inaccessible to JSE. To make our attributes accessible to the
layout JSF page listed above, we use the tiles:importAttribute tag. That tag
imports all tile attributes to the scope you specify with the scope attribute. In the
preceding code, we imported them to request scope.

Now we can specify different CSS classes for other tiles:

<definition name="anotherTile" path="/headerMenuContentLayout.jsp">
<put name="headerClass" value="aDifferentHeaderClass"/>

</definition>

NOTE: The tiles:importAttribute tag also lets you import one attribute at a
time—for example: <tiles:importAttribute name="headerClass" scope="..."/>.

Extending Tiles
In “Parameterizing Tiles” on page 334 we defined a tile that looked like this:

<definition name="book" path="/headerMenuContentlLayout.jsp">
<put name="headerClass" value="headerClass"/>
<put name="menuClass" value="menuClass"/>
<put name="contentClass" value="contentClass"/>

<put name="header" value="/bookHeader.jsp"/>

<put name="menu" value="/bookMenu.jsp"/>

<put name="content" value="/bookContent.jsp"/>
</definition>

There are two distinct types of attributes in that tile: CSS classes and included
content. Although the latter is specific to the book tile, the former can be used by

tiles that represent something other than books. Because of that generality, we
split the book tile into two:

m Chapter 8 B Subviews and Tiles

<definition name="header-menu-content" path="/headerMenuContentLayout.jsp">
<put name="headerClass" value="headerClass"/>
<put name="menuClass" value="menuClass"/>
<put name="contentClass" value="contentClass"/>

</definition

<definition name="book" extends="header-menu-content">
<put name="header" value="/bookHeader.jsp"/>
<put name="menu" value="/bookMenu.jsp"/>
<put name="content" value="/bookContent.jsp"/>
</definition>

Now the hook tile extends the header-menu-content tile. When you extend a tile, you
inherit its layout and attributes, much the same as Java subclasses inherit meth-
ods and variables from their base classes. Because we have split the original tile
in two, the CSS class attributes are available for reuse by other tiles that extend
the header-menu-content tile.

NOTE: Here is one more thing to consider about Tiles. Imagine the book
viewer has been a huge success and Project Gutenberg has commissioned
you to implement a library that can display all 6,000+ of their books. You
define more than 6,000 tiles that reuse the same layout—one tile for each
book—and present your finished product to the folks at Gutenberg. They
think it's great, but they want you to add a footer to the bottom of every page.
Since you have used Tiles, you only need to change the single layout used
by all your tiles. Imagine the difficulty you would encounter making that
change if you had replicated the layout code more than 6,000 times!

Figure 8-6 shows the directory structure for the “tileized” version of the book
viewer. That directory structure is the same as the previous version of the book
viewer, except that we have added a layout—headerMenuContentLayout. jsp—and
the tiles definition file, /WEB-INF/tiles.xm1.

Listing 8-10 through Listing 8-12 show the Tiles definition file, the book lay-
out, and the JSF page that displays Alice in Wonderland. We left out the listings
of the other files in the application because they are unchanged from the
application discussed in “Content Inclusion in JSP-Based Applications” on
page 326.

Content Inclusion in the Book Viewer 337

] book-viewer-tiles. war
[META-INF
[MAMIFEST MF
¢ [WEB-INF
¢ Jclasses
¢ 3 com
¢ 3 corejsf
[} Book. class
D messages. propertias
¢ Tlib
[tiles-core-SNAPSHOT jar
D faces-config. xml
D tiles.xml
D web.xml
D styles. css
D chapterl. html
[chapter1o.hmi
[chaptar1l.mmi
[chaptar1z mmi
D chapterz .himl
D chapter3. himl
D chapterd. html
D chapter: html
D chaptersg. html
[chapter7 hm
[chaptars. htm
[chaptars. hm
D index. html
D cheshire. jpg
D book. jsp
D bookContent. jsp
D bookHeader. jsp
[} bookMenu. jsp
D headerMenuContentLayout. jsp

Figure 8-6 Book viewer with extended tile directory structure

m Chapter 8 B Subviews and Tiles

book-viewer-tiTes/web/WEB-INF/tiles.xn]

1. <!DOCTYPE tiles-definitions PUBLIC

2. "-//Apache Software Foundation//DTD Tiles Configuration//EN"
s. "http://jakarta.apache.org/struts/dtds/tiles-config.dtd">

4.

5. <tiles-definitions>

6. <definition name="book" path="/headerMenuContentLayout.jsp">

7. <put name="gridClass" value="headerMenuContent"/>
8. <put name="header(Class" value="header"/>

9. <put name="menuColumnClass" value="menuColumn"/>

10. <put name="contentColumnClass" value="contentColumn"/>

11.

12, <put name="header" value="/bookHeader.jsp"/>

13. <put name="menu" value="/bookMenu.jsp"/>

14, <put name="content" value="/bookContent.jsp"/>

15. </definition>
16. </tiles-definitions>

book-viewer-tiles/web/headerMenuContentLayout.jsp

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>
<%@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %

<h:panelGrid columns="2" styleClass="#{gridClass}"
headerClass="#{headerClass}"
columnClasses="#{menuCoTumnClass}, #{contentColumnClass}">
10. <f:facet name="header">

1.
2.
3.
4.
5. <tiles:importAttribute scope="request"/>
6.
7.
8
9

1. <fisubview id="header">

12, <tiles:insert attribute="header" flush="false"/>
13. </fisubviews

1. </f:facet>

15.

16. <fisubview id="menu">

17. <tiles:insert attribute="menu" flush="false"/>

18. </fisubview>

20. <f:subview id="content">

21. <tiles:insert attribute="content" flush="false"/>
22. </fisubview>

23. </h:panelGrid>

The Library

book-viewer-tiles/web/book.jsp

1. <html>

2 <%@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c" %>
3. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %

4. <@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %

5. <@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %
6.

7

8

9

<fiviews
<f:loadBundle basename="com.corejsf.messages" var="msgs"/>

. <head>
10. <link href="styles.css" rel="stylesheet" type="text/css"/>
1. <title><h:outputText value="#{msgs.bookWindowTitle}"/></title>
12. </head>
13.
14, <body>
15. <f:subview id="bhook">
16. <h: form>
17. <tiles:insert definition="book" flush="false"/>
18. </h:form>
19. </f:subview>
20. </body>
21, </fiview>
22. </htm1>

The Library

In this section, we turn the book viewer into a library, as shown in Figure 8-7.

The library application shown in Figure 8-7 contains a menu at the top of the
page that lets you select a book, either Alice in Wonderland or Peter Pan. The rest
of the application works like the book viewer we have discussed throughout
this chapter.

The library employs two Tiles techniques that are of interest to us: nesting tiles

and using tile controllers.

Nested Tiles
The library shown in Figure 8-7 contains a book viewer. So does the Tibrary tile:

<definition name="book">
</definition>

<definition name="Tibrary" path="/TibrarylLayout.jsp"
controllerClass="com.corejsf.LibraryTileController">

Chapter 8 B Subviews and Tiles

<put name="header" value="/bookSelector.jsp"/>
<put name="book" value="book"/>

</definition>

Notice the value for the book attribute—it is a tile, not a JSP page. Using a tile
name instead of a JSP page lets you nest tiles, as we did by nesting the book tile

in the library.

8eee Guttenberg Library (=]
@ 2 6h![p'f/iocalnnsl“m?ﬂn\brarv,‘\lbrary.face; A:,
‘sgm abook | Allcein Wonderland [
s Z >
Alice in Wonderland
8eee Cuttenberg Library (=]
Chapter | Ccl & @ hitn: {/localhost-9000 library /library.faces’chaprer =chapterl =

Chapler 2 T Peter Pan
Chapter 3 DY [guiect a bt ¥ Alice in Wonderland |
Chapter 4
Chapter 5 ﬂ
Chapter 6 wi
Chapter 7 =
ghagler 8 210 s O
Chapler 9 th Alice in Wonderland
Chapter 10
Chapter 11 h =
Chapter 12 :;3 il e o6 Gutenberg Library =)
ac| Chapter 2 @j @ http://localhost:8080/library/library.faces Y
st Chapter 3 -
;“; Chapter 4 |59|€.m P Tl Feier Pan 2] ‘
Chapter 5
In| | Chapter6
3 | Chapter7
Dsumentoe. L,ha =2
Chapter 8
Chapter 10
lEil Peter Pan
Chapter 12
Chapter 1 (Chapter 1
Chapter 2
Chapter 3 | PETER BREAKS THROUGH
Document: Done o
e All children, except one, grow up. They soon know that they will grow up, and the way Wendy knew
~NAPIEL2 | \yas this. One day when she was two years old she was playing in a garden, and she plucked another
Chapter 6 |flgwer and ran with it to her mother. | suppose she must have looked rather delightful, for Mrs. Darling
Chapter 7 |put her hand ta her heart and cried, "Oh, why can't you remain like this for ever!" This was all that
Chapter & passed between them on the subject, but henceforth Wendy knew that she must grow up. You always
know after you are two. Two is the beginning of the end.
Chapter 9
Chapter 10 |Of course they lived at 14 [their house number on their street], and until Wendy came her mother was
Chapter 11 the chief one. She was a lovely lady, with a romantic mind and such a sweet macking mouth. Her
Chapter 12 romantic mind was like the tiny boxes, one within the other, that come from the puzzling East,
h however many you discover there is always one more; and her sweet mocking mauth had one kiss on
Chapter 13 15 it Wendy could never get, though there is was, perfectly conspicuous in the right-hand corner.
Chapter 14
Chapter 15 The way Mr. Darling won her was this: the many gentlemen who had been boys when she was a girl
discovered simultanecusly that they loved her, and they all ran to her house to propose to her except
Mr. Darling, who took a cab and nipped in first, and so he got her. He got all of her, except the
innermost box and the kiss. He never knew about the box, and in time he gave up trying for the kiss. e
Wendy thlcmght Napoleon could have got it, but | can picture him trying, and then going off in a £
nnecinn dammine tha daae
Document: Done Q.

Figure 8-7 Library implemented with JSF and tiles

The Library m

Tile Controllers

In our book viewer application, we had one managed bean named book (see
“The Book Viewer” on page 318 for more information about the book bean). The
library, on the other hand, must be aware of more than one book.

In this section—with a sleight of hand—we show you how to support multiple
books without having to change the book viewer. The book viewer will con-
tinue to manipulate a book bean, but that bean will no longer be a managed
bean. Instead, it will be the book that was last selected in the library’s pull-
down menu at the top of the page.

We accomplish that sleight of hand with a Tiles controller. Tiles lets you attach
a Java object, called a tile controller, to a tile. That object’s class must implement
the org.apache.struts.tiles.Controller interface, which defines a single perform
method. Tiles invokes that method just before it loads the controller’s associ-
ated tile. Tile controllers have access to their tile’s context, which lets the con-
troller access the tile’s attributes or create new attributes.

We attach a controller to the library tile. The controller looks for a Tibrary
attribute in session scope. If the library is not there, the controller creates a
library and stores it in session scope. The controller then consults the library’s
selectedBook property to see if a book has been selected. If so, the controller sets
the value of the book session attribute to the selected book. If there is no selected
book, the controller sets the book attribute to that for Peter Pan. Subsequently,
when the Tibrary tile is loaded, the book viewer accesses the selected book. The
controller is listed in Listing 8-20 on page 348.

Figure 8-8 shows the directory structure for the library application. For brevity,
we left out the book HTML files.

The files shown in Figure 8-8 are shown in Listing 8-13 through Listing 8-28,
with the exception of the HTML files. As you look through those listings, note
the effort required to add a new book. All you have to do is modify the con-
structor in Library.java—see Listing 8-19 on page 346—to create your book and
add it to the book map.

You could even implement the Library class so that it reads XML book defini-
tions. That way, you could add books without any programming. Digesting
XML is an easy task with Tiles’s distant cousin, the Apache Commons Digester.
See http://jakarta.apache.org/commons/digester/ for more information about the
Digester.

Chapter 8 B Subviews and Tiles

3 library. war
¢ I META-INF
[y MANIFEST . MF
¢ [WEB-INF
¢ I classes
¢ CJcom
¢] corejsf
o3 util
D Messages.class
D Book.class
D Library.class
D LibranyTileController.class
[y messages. properties
¢ lib
[tiles-core-SMAPSHOT jar
D faces-config.xml
[} tites.xmi
[y web.xmi
¢ 3 books
¢ 3 aliceinWonderland

D cheshire.jpa
¢ 3 peterpan

0y

D peterpan. jpg

Figure 8-8 Library directory structure

Tibrary/web/Tibrary.jsp

1. <html>

2. <K@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

3. <@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

4. <%@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %>
5.

6. <fiview>

7 <f:loadBundle basename="com.corejsf.messages" var="msgs"/>

8 <head>

9. <link href="styles.css" rel="stylesheet" type="text/css"/>
10. <title><h:outputText value="#{msgs.libraryWindowTitle}"/></title>
11. </head>

The Library m

Tibrary/web/1ibrary.jsp (cont.)

13. <body>

14, <fisubview id="library">

15. <h:forms>

16. <tiles:insert definition="library" flush="false"/>
17. </h:form>

18. </f:subview>

19. </body>

20. </fiview>

21. </htm1>

Tibrary/web/WEB-INF/tiles. xml

. <?xml version="1.0" encoding="IS0-8859-1" 7>

1
2.
3. <!DOCTYPE tiles-definitions PUBLIC

4. "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"
5. "http://struts.apache.org/dtds/tiles-config_1_1.dtd">
6

7

8

9

. <tiles-definitions>
<definition name="menu-header-content" path="/headerMenuContentLayout.jsp">

<put name="gridClass" value="headerMenuContent"/>
10. <put name="headerClass" value="header"/>
11. <put name="menuCoTumnClass" value="menuColumn"/>
12. <put name="contentColumnClass" value="contentColumn"/>
13. </definition>
14.
15. <definition name="book" extends="menu-header-content">
16. <put name="header" value="/bookHeader.jsp"/>
17. <put name="menu" value="/bookMenu.jsp"/>
18. <put name="content" value="/bookContent.jsp"/>
19. </definition>
20.
21, <definition name="Tibrary" path="/TibrarylLayout.jsp"
22, controllerClass="com.corejsf.LibraryTileController">
23. <put name="header" value="/bookSelector.jsp"/>
24. <put name="book" value="book"/>

25. </definition>
26. </tiles-definitions>

m Chapter 8 B Subviews and Tiles

Tibrary/web/1ibrarylLayout. jsp

1. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

2. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

3. <%@ taglib uri="http://jakarta.apache.org/tiles" prefix="tiles" %

4.

5. <h:panelGrid columns="1" styleClass="book" headerClass="1libraryHeader">
6. <f:facet name="header">

7 <fisubview id="header">

8. <tiles:insert attribute="header" flush="false"/>

9 </fisubview>

10. </f:facet>

12. <fisubview id="book">

13, <tiles:insert attribute="book" flush="false"/>
1. </fisubview>

15. </h:panelGrid>

Tibrary/web/bookSelector.jsp

. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %
. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

:<h:outputText value="#{msgs.selectABookPrompt}" />

.

: <h:selectOneMenu onchange="submit()" value="#{1ibrary.book}"
valueChangelistener="#{1ibrary.bookSelected}">

o. <f:iselectItems value="#{Tibrary.bookItems}"/>
1. </h:selectOneMenu>

1
2
3
4
5
6
7
8
9

- o

Tibrary/src/java/com/corejsf/Library.java

. package com.corejsf;

|
2.
3. import java.util.s;

4. import javax.faces.model.SelectItem;

5. import javax.faces.event.ValueChangeEvent;
6

7

8

9

.public class Library {
private Map<String,Book> bookMap = new HashMap<String,Book>();
private Book initialBook = null;

o. private List bookItems = null;

-

The Library m

library/src/java/com/corejsf/Library.java (cont.)

1. private String book = null;
2. private String selectedBook = null;

-

13.

14, public Library() {

15. Book peterpan = new Book();

16. Book aliceInWonderland = new Book();

17.

18. initialBook = peterpan;

19.

20. aliceInWonderland.setDirectory("books/aliceInWonderland");
21. aliceInWonderland.setTitleKey("aliceInWonderland");

22, aliceInWonderland.setImage("books/aliceInWonderland/cheshire.jpg");
23. aliceInWonderland.setNumChapters(12);

24.

25. peterpan.setDirectory("books/peterpan");

26. peterpan.setTitleKey("peterpan");

27. peterpan.setImage("books/peterpan/peterpan.jpg");

28. peterpan.setNumChapters(15);

29.

30. bookMap.put("aliceInWonderland", aliceInWonderland);

31. bookMap.put("peterpan”, peterpan);

32}

33. public void setBook(String book) { this.book = book; }
34, public String getBook() { return book; }

35.
s6. public Map<String,Book> getBooks() {

ar. return bookMap;

38}

39. public void bookSelected(ValueChangeEvent e) {

40. selectedBook = (String) e.getNewValue();

4.}

42. pubTic Book getSelectedBook() {

43, return selectedBook != null ? bookMap.get(selectedBook) : initialBook;
4.}

45. public List getBookItems() {

46. if(bookItems == null) {

47. bookItems = new LinkedList();

48. Tterator<Book> it = bookMap.values().iterator();

49. while(it.hasNext()) {

50. Book book = it.next();

51. bookItems.add(new SelectItem(book.getTitleKey(),

52. getBookTitle(book.getTitleKey())));
53. }

54. }

55, return bookItems;

m Chapter 8 B Subviews and Tiles

library/src/java/com/corejsf/Library.java (cont.)

56. }

57. private String getBookTitle(String key) {

58. return com.corejsf.util.Messages.

59. getString("com.corejsf.messages"”, key, null);
60. }

61. }

Tibrary/web/bhookSelector. jsp

. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %>

:<h:outputText value="#{msgs.selectABookPrompt}"/>

:

: <h:selectOneMenu onchange="submit()" value="#{1ibrary.book}"
valueChangelistener="#{1ibrary.bookSelected}">

o. <fiselectItems value="#{1ibrary.bookItems}"/>
1. </h:selectOneMenu>

1
2
3
4
5
6
7
8
9

- o

library/src/java/com/corejsf/Library.java

1. package com.corejsf;

2.

3. import java.util.s;

4. import javax.faces.model.SelectItem;

5. import javax.faces.event.ValueChangeEvent;
6.

7. public class Library {

8. private Map<String,Book> bookMap = new HashMap<String,Book>();
9. private Book initialBook = null;

10. private List bookItems = null;

1. private String book = null;

12. private String selectedBook = null;

13.

14 public Library() {

15. Book peterpan = new Book();

16. Book aliceInWonderland = new Book();
17.

18. initialBook = peterpan;

The Library

library/src/java/com/corejsf/Library.java (cont.)

20.
21.
22,
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

aliceInWonderland.setDirectory("books/aliceInWonderland");
aliceInWonderland.setTitleKey("aliceInWonderland");
aliceInWonderland.setImage("books/aliceInWonderland/cheshire.jpg");
aliceInWonderland.setNumChapters(12);

peterpan.setDirectory("books/peterpan");
peterpan.setTitleKey("peterpan”);
peterpan.setImage("books/peterpan/peterpan.jpg");
peterpan.setNumChapters(15);

bookMap.put("aliceInWonderland"”, aliceInWonderland);
bookMap.put("“peterpan", peterpan);
}
public void setBook(String book) { this.book = book; }
pubTic String getBook() { return book; }

pubTic Map<String,Book> getBooks() {
return bookMap;
}
public void bookSelected(ValueChangeEvent e) {
selectedBook = (String) e.getNewValue();
}
pubTic Book getSelectedBook() {
return selectedBook != null ? bookMap.get(selectedBook) : initialBook;
}
public List getBookItems() {
if(bookItems == null) {
bookItems = new LinkedList();
Iterator<Book> it = bookMap.values().iterator();
while(it.hasNext()) {
Book book = it.next()
bookItems.add(new SeTectItem(book.getTitleKey(),
getBookTitle(bhook.getTitleKey())));
}
}
return bookItems;
}
private String getBookTitle(String key) {
return com.corejsf.util.Messages.
getString("com.corejsf.messages"”, key, null);

347

m Chapter 8 B Subviews and Tiles

IS ET50 T Z O Tibrary/src/java/com/corejst/LibraryTileController. java

. package com.corejsf;

. import java.io.IOException;

. import javax.servlet.ServletContext;

. import javax.servlet.ServietException;
_import javax.servlet.http.HttpServietRequest;
_import javax.servlet.http.HttpServietResponse;
_import javax.servlet.http.HttpSession;

. import org.apache.tiles.ComponentContext;

10. import org.apache.tiles.Controller;

12. pubTic class LibraryTileController implements Controller {
13, public void execute(ComponentContext tilesContext,

14, HttpServletRequest request,

15. HttpServletResponse response,

16. ServletContext context)

17. throws IOException, ServletException {

18. HttpSession session = request.getSession();

19.

20. String chapter = (String) request.getParameter("chapter");
21. session.setAttribute("chapter", chapter == null || "".equals(chapter) ?
22. "chapterl" : chapter);

23.

24. Library Tibrary = (Library) session.getAttribute("Tibrary");
25.

26. if(library == null) {

27. library = new Library();

28. session.setAttribute("Tibrary", Tibrary);

29. }

30

31. Book selectedBook = Tibrary.getSelectedBook();

32. if(selectedBook != null) {

33. session.setAttribute("book", selectedBook);

34. }

35}

s6. public void perform(ComponentContext tilesContext,

a7. HttpServletRequest request,

38. HttpServletResponse response,

39. ServletContext context)

40. throws IOException, ServletException {

4. HttpSession session = request.getSession();

42, execute(tilesContext, request, response, context);

43, }

The Library

Tibrary/src/java/com/corejsf/Book.java

1. package com.corejsf;

2.

3. import java.util.LinkedList;

4. import java.util.Llist;

5.

6. public class Book {

7. private String titleKey;

8. private String image;

9. private String directory;

10. private int numChapters;

1. private List<String> chapterKeys = null;

12.

13. // PROPERTY: titleKey

14, public void setTitleKey(String titleKey) { this.titleKey = titleKey; }
15. public String getTitleKey() { return titleKey; }

16.

17.// PROPERTY: image

1. public void setImage(String image) { this.image = image; }

19. public String getImage() { return image; }

20.

21. // PROPERTY: numChapters

22. pubTlic void setNumChapters(int numChapters) { this.numChapters = numChapters;}
23, public int getNumChapters() { return numChapters; }

24.

25. // PROPERTY: directory

26. public void setDirectory(String directory) { this.directory = directory;}
27. public String getDirectory() { return directory; }

28.

29. // PROPERTY: chapterKeys

so. public List<String> getChapterKeys() {

31. if(chapterKeys == null) {

32. chapterKeys = new LinkedList<String>();
33. for(int i=1; i <= numChapters; ++i)

34. chapterKeys.add("chapter" + i);

35. }

36. return chapterKeys;

7.}

38. }

m Chapter 8 B Subviews and Tiles

Tibrary/web/bookHeader. jsp

1. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

2. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %

3.

4. <h:panelGrid columns="1" styleClass="hookHeader">

5. <h:graphicImage value="#{book.image}"/>

6. <h:outputText value="#{msgs[book.titleKey]}" styleClass="bookTitle"/>
7. <hr>

8. </h:panelGrid>

Tibrary/web/bookMenu. jsp

1. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
2. <%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %
3.

4. <h:dataTable value="#{book.chapterKeys}" var="chapterKey"

5 styleClass="Tinks" columnClasses="TinksColumn">
6. <h:column>

7. <h:commandLink>

8 <h:outputText value="#{msgs[chapterKey]}"/>

9. <fiparam name="chapter" value="#{chapterKey}"/>
10. </h:commandLink>

1. </h:coTumn>

12. </h:dataTable>

-

Tibrary/web/bhookContent. jsp

1. <%@ taglib uri="http://java.sun.com/jsp/jst1/core" prefix="c" %>
2.
3. <c:import url="${book.directory}/${chapter}.htm1"/>

Tibrary/web/styles.css

. library {
vertical-align: top;
width: 100%;

height: 100%;

:.11braryHeader {
width: 100%;

)
2
3
4
5.}
6.
7
8 text-align: Teft;

The Library m

Tibrary/web/styles.css (cont.)

9. vertical-align: top;

10. background-color: #ddd;

1. font-weight: Tighter;

12. border: thin solid #777;

13. }

14. .bookHeader {

15, width: 100%;

16. text-align: center;

17. background-color: #eee;

18. border: thin solid CornflowerBlue;

20. .bookTitTe {

21, text-align: center;

2. font-style: italic;

23. font-size: 1.3em;

24, font-family: Helvetica;
25. }

26. .menuColumn {

27. vertical-align: top;

28. background-color: #eee;
29. border: thin solid #777;
30. }

a1. .chapterColumn {

s2. vertical-align: top;

s3. text-align: Teft;

34, width: «;
s5. padding: 3px;
36. }

37. .contentColumn {
s8. vertical-align: top;
s9. text-align: Teft;

40. width: =;
4.}
42. . links {

43, width: 85px;

44, vertical-align: top;
45. text-align: center;
6. }

47. . TinksCoTumn {

48. vertical-align: top;
49. text-align: center;
50. }

m Chapter 8 B Subviews and Tiles

Tibrary/web/WEB-INF/faces-config.xml

51. <?xml version="1.0"?>

s2. <faces-config xmins="http://java.sun.com/xml/ns/javaee"

53. xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

54. Xsi:schemalocation="http://java.sun.com/xml/ns/javaee

55. http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
s6. version="1.2">

s7. </faces-config>

Tibrary,/web/WEB-INF/web. xm

1. <?xml version="1.0"?>

2. <web-app xmIns="http://java.sun.com/xm1/ns/javaee"

3. xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
4. xsi:schemalocation="http://java.sun.com/xml/ns/javaee

5 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

6 version="2.5">

7. <servlet>

8 <servlet-name>Tiles Servlet</servlet-name>

9. <servlet-class>org.apache.tiles.servlets.TilesServlet</serviet-class>
10. <init-param>

11. <param-name>definitions-config</param-name>
12. <param-value>/WEB-INF/tiTles.xml</param-value>
13. </init-param>

14, <load-on-startup>2</Toad-on-startup>

15, </serviet>

16.

17. <servlet>

18. <servlet-name>Faces Servlet</servlet-name>

19. <servlet-class>javax. faces.webapp.FacesServlet</serviet-class>
20. <load-on-startup>1</Toad-on-startup>

21. </servlet>

22.

23, <servlet-mapping>

24. <servlet-name>Faces Servlet</servlet-name>

25. <url-pattern>x.faces</url-pattern>

2. </servlet-mapping>

27.

28. <welcome-file-Tist>

29. <welcome-file>index.html</welcome-file>

s0. </welcome-file-Tist>
31. </web-app>

The Library m

5150 T ZOA I Tibrary/src/java/com/corejst/messages. properties

. TibraryWindowTitle=Gutenberg Library
. aliceInWonderland=Alice in Wonderland
. peterpan=Peter Pan

. selectABookPrompt=SeTect a hook

. chapterl=Chapter 1
. chapter2=Chapter 2
. chapter3=Chapter 3
. chapterd=Chapter 4
. chapter5=Chapter 5
. chapter6=Chapter 6
. chapter7=Chapter 7
. chapter8=Chapter 8
. chapter9=Chapter 9
. chapter10=Chapter 10
. chapterll=Chapter 11
. chapter12=Chapter 12
. chapter13=Chapter 13
. chapterl4=Chapter 14
. chapterl5=Chapter 15

N = 4 4 4 4 a4 a4 a4 a
O © o N o o A~ W DN = O

