Separation Process Engineering
Includes Mass Transfer Analysis

Third Edition
This page intentionally left blank
To Dot, Chuck, and Jennie
This page intentionally left blank
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
<tr>
<td>About the Author</td>
<td>xxi</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction to Separation Process Engineering

1.1. Importance of Separations | 1
1.2. Concept of Equilibrium | 2
1.3. Mass Transfer | 4
1.4. Problem-Solving Methods | 5
1.5. Prerequisite Material | 7
1.6. Other Resources on Separation Process Engineering | 7
1.7. Summary—Objectives
 References | 10
 Homework | 11

Chapter 2 Flash Distillation

2.1. Basic Method of Flash Distillation | 13
2.2. Form and Sources of Equilibrium Data | 15
2.3. Graphical Representation of Binary VLE | 18
2.4. Binary Flash Distillation
 2.4.1. Sequential Solution Procedure | 23
 Example 2-1. Flash separator for ethanol and water | 26
 2.4.2. Simultaneous Solution and Enthalpy-Composition Diagram | 28
2.5. Multicomponent VLE | 30
2.6. Multicomponent Flash Distillation
 Example 2-2. Multicomponent flash distillation | 39
2.7. Simultaneous Multicomponent Convergence
 Example 2-3. Simultaneous convergence for flash distillation | 45
2.8. Three-Phase Flash Calculations | 47
2.9. Size Calculation
 Example 2-4. Calculation of drum size | 51
2.10. Utilizing Existing Flash Drums | 53
2.11. Summary—Objectives
 References | 54
 Homework | 56
Appendix A. Computer Simulation of Flash Distillation | 67
8.3. Steam Distillation 275
 Example 8-2. Steam distillation. 277
8.4. Two-Pressure Distillation Processes 279
8.5. Complex Ternary Distillation Systems 281
 8.5.1. Distillation Curves 281
 8.5.2. Residue Curves 285
 Example 8-3. Development of distillation and residue curves for constant relative volatility 287
8.6. Extractive Distillation 290
8.7. Azeotropic Distillation with Added Solvent 296
8.8. Distillation with Chemical Reaction 300
8.9. Summary—Objectives 303
 References 304
 Homework 305
Appendix. Simulation of Complex Distillation Systems 321

Chapter 9 Batch Distillation 329
 9.1. Binary Batch Distillation: Rayleigh Equation 331
 9.2. Simple Binary Batch Distillation 332
 Example 9-1. Simple Rayleigh distillation 334
 9.3. Constant-Level Batch Distillation 336
 9.4. Batch Steam Distillation 337
 9.5. Multistage Batch Distillation 340
 9.5.1. Constant Reflux Ratio 340
 Example 9-2. Multistage batch distillation 341
 9.5.2. Variable Reflux Ratio 344
 9.6. Operating Time 344
 9.7. Summary—Objectives 346
 References 347
 Homework 347

Chapter 10 Staged and Packed Column Design 357
 10.1. Staged Column Equipment Description 357
 10.1.1. Trays, Downcomers, and Weirs 360
 10.1.2. Inlets and Outlets 362
 10.2. Tray Efficiencies 365
 Example 10-1. Overall efficiency estimation 369
 10.3. Column Diameter Calculations 370
 Example 10-2. Diameter calculation for tray column 374
 10.4. Balancing Calculated Diameters 376
 10.5. Sieve Tray Layout and Tray Hydraulics 378
 Example 10-3. Tray layout and hydraulics 383
 10.6. Valve Tray Design 386
 10.7. Introduction to Packed Column Design 388
 10.8. Packed Column Internals 388
 10.9. Height of Packing: HETP Method 390
 10.9. Packed Column Flooding and Diameter Calculation 392
 Example 10-4. Packed column diameter calculation 397
13.2.2. Kremser Method for Dilute Systems 510
13.3. Dilute Fractional Extraction 511
13.4. Immiscible Single-Stage and Cross-Flow Extraction 515
 Example 13-2. Single-stage and cross-flow extraction of a protein 516
13.5. Concentrated Immiscible Extraction 519
13.6. Immiscible Batch Extraction 520
13.7. Extraction Equilibrium for Partially Miscible Ternary Systems 522
13.8. Mixing Calculations and the Lever-Arm Rule 524
 Example 13-3. Single-stage extraction 528
13.10. Countercurrent Extraction Cascades for Partially Miscible Systems 531
 13.10.1. External Mass Balances 531
 13.10.2. Difference Points and Stage-by-Stage Calculations 533
 13.10.3. Complete Partially Miscible Extraction Problem 537
 Example 13-4. Countercurrent extraction 537
13.11. Relationship between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems 539
13.12. Minimum Solvent Rate for Partially Miscible Systems 540
13.13. Extraction Computer Simulations 542
 13.14.2. Settler (Decanter) Design 549
 Example 13-5. Mixer-settler design 552
13.15. Introduction to Design of Reciprocating-Plate (Karr) Columns 557
13.16. Summary—Objectives 558
 References 559
 Homework 561
Appendix. Computer Simulation of Extraction 572

Chapter 14 Washing, Leaching, and Supercritical Extraction 575
14.2. Washing 576
 Example 14-1. Washing 581
14.3. Leaching with Constant Flow Rates 582
14.4. Leaching with Variable Flow Rates 584
 Example 14-2. Leaching calculations 585
14.5. Supercritical Fluid Extraction 587
14.6. Application to Other Separations 590
14.7. Summary—Objectives 590
 References 590
 Homework 591

Chapter 15 Introduction to Diffusion and Mass Transfer 599
15.1. Molecular Movement Leads to Mass Transfer 600
15.2. Fickian Model of Diffusivity 602
 15.2.1. Fick’s Law and the Definition of Diffusivity 602
15.2.2. Steady-State Binary Fickian Diffusion and Mass Balances without Convection 604
Example 15-1. Steady-state diffusion without convection: Low-temperature evaporation 605
15.2.3. Unsteady Binary Fickian Diffusion with No Convection (Optional) 607
15.2.4. Steady-State Binary Fickian Diffusion and Mass Balances with Convection 609
Example 15-2. Steady-state diffusion with convection: High-temperature evaporation 613
15.3. Values and Correlations for Fickian Binary Diffusivities 616
15.3.1. Fickian Binary Gas Diffusivities 616
Example 15-3. Estimation of temperature effect on Fickian gas diffusivity 619
15.3.2. Fickian Binary Liquid Diffusivities 619
15.4. Linear Driving-Force Model of Mass Transfer for Binary Systems 622
15.4.1. Film Theory for Dilute and Equimolar Transfer Systems 623
15.4.2. Transfer through Stagnant Films: Absorbers and Strippers 626
15.5. Correlations for Mass-Transfer Coefficients 628
15.5.1. Dimensionless Groups 628
15.5.2. Theoretically Derived Mass-Transfer Correlations 630
15.5.3. Semi-Empirical and Empirical Mass-Transfer Coefficient Correlations 635
Example 15-4. Estimation of mass-transfer coefficients 637
15.5.4. Correlations Based on Analogies 639
15.6. Difficulties with Fickian Diffusion Model 640
15.7. Maxwell-Stefan Model of Diffusion and Mass Transfer 641
15.7.1. Introductory Development of the Maxwell-Stefan Theory of Diffusion 642
15.7.2. Maxwell-Stefan Equations for Binary Nonideal Systems 644
15.7.3. Determining the Independent Fluxes \(N_{i,z} \) 645
15.7.4. Difference Equation Formulations 646
15.7.5. Relationship between Maxwell-Stefan and Fickian Diffusivities 647
Example 15-5. Maxwell-Stefan nonideal binary diffusion 648
15.7.6. Ideal Ternary Systems 649
Example 15-6. Maxwell-Stefan ideal ternary system 651
15.7.7. Nonideal Ternary Systems 653
15.8. Advantages and Disadvantages of Different Diffusion and Mass-Transfer Models 655
15.9. Summary–Objectives 655
References 656
Homework 657
Appendix. Spreadsheet for Example 15-6 661

Chapter 16 Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction 663
16.1. HTU-NTU Analysis of Packed Distillation Columns 663
Example 16-1. Distillation in a packed column 669
16.2. Relationship of HETP and HTU 673
16.3. Mass Transfer Correlations for Packed Towers 675
In the twenty-first century, separations remain as important, if not more important, than in the previous century. The development of new industries such as biotechnology and nanotechnology, the increased importance of removing traces of compounds, and the probable need to recover and sequester carbon dioxide have brought new separations to the fore. Chemical engineers must understand and design new separation processes such as membrane separations, adsorption, and chromatography in addition to the standard equilibrium-staged separations including distillation, absorption, and extraction. Since membrane separations, adsorption, chromatography, and ion exchange were included, I changed the title of the second edition from Equilibrium Staged Separations to Separation Process Engineering to reflect this broader coverage. The new title has been retained for the third edition with the addition of a subtitle, Includes Mass Transfer Analysis, which reflects the addition of Chapter 15.

The second edition was unavoidably longer than the first, and the third edition is longer than the second. The first major addition to the third edition is the extensive Chapter 15, which includes mass transfer and diffusion. Both the Fickian and Maxwell-Stefan approaches to diffusion are covered in detail with examples and homework assignments. The old Chapter 15, which applied mass transfer techniques to equilibrium-staged separations, is now Chapter 16 with the removal of Section 15.1, which is now incorporated in the new Chapter 15.

The second major change is a much more extensive analysis of liquid-liquid extraction. Chapters 13 and 14 in the second edition both covered extraction, washing, and leaching. In the third edition, the material is reorganized so that Chapter 13 covers only extraction and Chapter 14 covers washing and leaching. In addition to the McCabe-Thiele, triangle, and computer-simulation analyses of extraction, Chapter 13 now includes a section on the detailed design of mixer-settlers and a shorter section on the design of Karr columns. Mass transfer analysis of liquid-liquid extraction systems has been added to Chapter 16.

All of the chapters have many new homework questions and problems. More than 300 new questions and problems are included. Since all of the problems were created and solved as I continued to teach this material at Purdue University, a Solutions Manual is available to professors who adopt this textbook for their course. A number of spreadsheet problems have been added, and the answers are provided in the Solutions Manual.

Since process simulators are used extensively in commercial practice, I have continued to include process simulation examples and homework problems throughout the text. I now teach the required three-credit, junior-level separations course at Purdue as two lectures and a two-hour computer lab every week. The computer lab includes a lab test to assess the ability of the students to use the simulator. Although I use Aspen Plus as the simulator, any
process simulator can be used. Chapters 2, 6, 8, 10, 12, 13, and 16 include appendices that present instructions for operation of Aspen Plus. The appendices to Chapters 2, 4, 5, 15, and 17 have Excel spreadsheets, some of which use Visual Basic programs. I chose to use spreadsheets instead of a higher-level mathematical program because spreadsheets are universally available. The appendix to Chapter 18 includes brief instructions for operation of the commercial Aspen Chromatography simulator—more detailed instruction sheets are available from the author: wankat@purdue.edu.

The material in the third edition has been extensively tested in the required junior-level course on separations at Purdue University. Although I teach the material at the junior level, Chapters 1 to 14 could be taught to sophomores, and all of the material is suitable for seniors. The book is too long to cover in one semester, but almost complete coverage is probably feasible in two quarters. If mass transfer is included, this text could easily be used for a two-semester sequence. Many schools, including Purdue, allocate a single three-credit semester course for separations. Because there is too much material, topics must be selected in this case. Several course outlines are included in the Solutions Manual. Instructors may register at www.pearsonhighered.com for access to this book’s Solutions Manual and PowerPoint slides of figures in the book.
Many people were very helpful in the writing of the first edition. Dr. Marjan Bace and Prof. Joe Calo got me started writing. A. P. V. Inc., Glitsch Inc., and The Norton Co. kindly provided photographs. Chris Roesel and Barb Naugle-Hildebrand did the original artwork. The secretarial assistance of Carolyn Blue, Debra Bowman, Jan Gray, and Becky Weston was essential for completion of the first edition. My teaching assistants Magdiel Agosto, Chris Buehler, Margret Shay, Sung-Sup Suh, and Narasimhan Sundaram were very helpful in finding errors. Professors Ron Andres, James Caruthers, Karl T. Chuang, Alden Emery, and David P. Kessler, and Mr. Charles Gillard were very helpful in reviewing portions of the text. I also owe a debt to the professors who taught me this material: Lowell Koppel, who started my interest in separations as an undergraduate; William R. Schowalter, who broadened my horizons beyond equilibrium staged separations in graduate school; and C. Judson King, who kept my interests alive while I was a professor and administrator through his articles, book, and personal example.

The assistance of Lee Meadows, Jenni Layne, and Karen Heide in preparing the second edition is gratefully acknowledged. I thank the reviewers, John Heydweiller, Stewart Slater, and Joe Shaeiwitz, for their very helpful reviews. The encouragement and occasional prodding from my editor, Bernard Goodwin, was very helpful in getting me to prepare the long-overdue second edition and kept me from procrastinating on the third edition.

The assistance of Karen Heide in preparing the third edition is gratefully acknowledged. The hospitality of the Department of Chemical and Process Engineering at the University of Canterbury, Christchurch, New Zealand, which gave me time to complete Chapter 15 and an opportunity to teach from the ion exchange and extraction sections, is greatly appreciated. I thank the reviewers, Ken Morison, Leonard Pease, David Rockstraw, and Joe Shaeiwitz, for their very helpful reviews. I thank my editor, Bernard Goodwin, for his continued support and encouragement.

Finally, I could not have finished any of the editions without the love and support of my wife, Dot, and my children, Chuck and Jennie.
This page intentionally left blank
Phillip C. Wankat is the Clifton L. Lovell Distinguished Professor of Chemical Engineering and the Director of Undergraduate Degree Programs in the Department of Engineering Education at Purdue University. He has been involved in research and teaching of separations for more than forty years and is very interested in improving teaching and learning in engineering. He is the author of two books on how to teach and three books on separation processes. He has received a number of national research awards as well as local and national teaching awards.
This page intentionally left blank
Nomenclature

Chapters 1 through 18

\(a\) interfacial area per volume, \(\text{ft}^2/\text{ft}^3\) or \(\text{m}^2/\text{m}^3\)

\(a_j\) interfacial area for heat transfer on stage \(j\), \(\text{m}^2\)

\(a_{\text{flow}}, a_{\text{heat}}, a_{\text{mass}}\) eddy diffusion parameters, Eqs. (15-48)

\(a_p\) surface area/volume, \(\text{m}^2/\text{m}^3\)

\(a_{p1}, a_{p2}, a_{p3}, a_{T1}, a_{T2}, a_{F6}\) constants in Eq. (2-30) and Table 2-3

\(A\) area, \(\text{m}^2\)

\(A, B, C\) constants in Antoine Eq. (2-34)

\(A, B, C, D, E\) constants in Eq. (2-60)

\(A, B, C, D\) constants in matrix form of mass balances, Eqs. (6-13) and (12-58)

\(A_E, B_E, C_E, D_E\) constants in matrix form of energy balances, Eq. (6-34)

\(A_{\text{active}}\) active area of tray, \(\text{ft}^2\) or \(\text{m}^2\)

\(A_c\) cross-sectional area of column, \(\text{ft}^2\) or \(\text{m}^2\)

\(A_d\) downcomer area, \(\text{ft}^2\) or \(\text{m}^2\)

\(A_{du}\) flow area under downcomer apron, Eq. (10-28), \(\text{ft}^2\)

\(A_f\) area for flow, \(\text{m}^2\)

\(A_{\text{hole}}\) area of holes in column, \(\text{ft}^2\)

\(A_I\) interfacial area between two phases, \(\text{ft}^2\) or \(\text{m}^2\)

\(A_{\text{mixer}}\) cross-sectional area of mixer, \(\text{m}^2\)

\(A_{\text{net}}\) net area, Eq. (10-13), \(\text{ft}^2\) or \(\text{m}^2\)

\(A_{\text{total}}\) total area in horizontal drum, \(\text{ft}^2\) or \(\text{m}^2\)

\(A_{\text{vap}}\) Area for Vapor flow in horizontal drum, \(\text{ft}^2\) or \(\text{m}^2\)

\(b\) empirical constant, Eq. (13-63b)

\(b_{\text{flow}}, b_{\text{heat}}, b_{\text{mass}}\) eddy diffusion parameters, Eqs. (15-48)

\(B\) bottoms flow rate, \(\text{kmol/h} \) or \(\text{lbmol/h}\)

\(C\) number of components

\(C_{\text{BM}}\) bare module cost, Chapter 11

\(C_C\) concentration of solute in continuous phase, \(\text{kmol/m}^3\) continuous phase

\(C_{C\text{C}}\) concentration of solute in continuous phase in equilibrium with \(C_D\), \(\text{kmol/m}^3\)

\(C_D\) concentration of solute in dispersed phase, \(\text{kmol/m}^3\) dispersed phase

\(C_{\text{IL}}\) vapor load coefficient, Eq. (15-38)

\(C_A, C_B, C_m\) molar concentrations, of A, B, and mixture, \(\text{mol/m}^3\)

\(C_o\) orifice coefficient, Eq. (10-25)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>heat capacity, Btu/lb°F or Btu/lbmol°F or cal/g°C or cal/mol°C, etc.</td>
</tr>
<tr>
<td>C_p</td>
<td>base purchase cost, Chapter 11</td>
</tr>
<tr>
<td>$C_{p, size}$</td>
<td>packing size factor, Table 10-5</td>
</tr>
<tr>
<td>C_{pW}</td>
<td>water heat capacity</td>
</tr>
<tr>
<td>C_s</td>
<td>capacity factor at flood, Eq. (10-48)</td>
</tr>
<tr>
<td>C_{sb}</td>
<td>capacity factor, Eq. (10-8)</td>
</tr>
<tr>
<td>d</td>
<td>dampening factor, Eq. (2-57)</td>
</tr>
<tr>
<td>D</td>
<td>diffusivity, Fickian m2/s or ft2/h</td>
</tr>
<tr>
<td>D, D_{Dia}</td>
<td>distillate flow rate, kmol/h or kg/h</td>
</tr>
<tr>
<td>D_{col}</td>
<td>diameter of column, ft or m</td>
</tr>
<tr>
<td>$d_{d, hydraulic}$</td>
<td>column diameter, see Table 16-1, ft</td>
</tr>
<tr>
<td>d_i</td>
<td>impeller diameter, m</td>
</tr>
<tr>
<td>d_p, d_d</td>
<td>drop diameter, m</td>
</tr>
<tr>
<td>d_p^c</td>
<td>characteristic drop diameter, Eq. (16-97b), m</td>
</tr>
<tr>
<td>d_{tube}</td>
<td>tube diameter, m</td>
</tr>
<tr>
<td>$d_{settler} D_s$</td>
<td>diameter of horizontal settler, m</td>
</tr>
<tr>
<td>D_{large}, D_{pilot}</td>
<td>diameters of Karr columns for scale-up, Eq. (13-66), m</td>
</tr>
<tr>
<td>D^o</td>
<td>infinite dilution Fickian diffusivity, m2/s</td>
</tr>
<tr>
<td>D_{eddy}</td>
<td>Maxwell-Stefan diffusivity, m2/s</td>
</tr>
<tr>
<td>D_{total}</td>
<td>total amount of distillate (Chapter 9), moles or kg</td>
</tr>
<tr>
<td>e</td>
<td>absolute entrainment, mol/h</td>
</tr>
<tr>
<td>e</td>
<td>plate fractional free area in Karr column</td>
</tr>
<tr>
<td>erf</td>
<td>error function, Eq. (18-70)</td>
</tr>
<tr>
<td>E</td>
<td>extract flow rate (Chapters 13 and 14), kg/h</td>
</tr>
<tr>
<td>E</td>
<td>mass extract, kg</td>
</tr>
<tr>
<td>E^V_j</td>
<td>energy transfer rate on stage j from bulk liquid to bulk vapor, J/s</td>
</tr>
<tr>
<td>E_k</td>
<td>value of energy function for trial k, Eq. (2-51)</td>
</tr>
<tr>
<td>E_{ML}, E_{MV}</td>
<td>Murphree liquid and vapor efficiencies, Eqs. (4-58) and (4-59)</td>
</tr>
<tr>
<td>E_0</td>
<td>activation energy, Kcal/mol</td>
</tr>
<tr>
<td>E_o</td>
<td>Overall efficiency, Eq. (4-56)</td>
</tr>
<tr>
<td>E_{pt}</td>
<td>point efficiency, Eq. (10-5) or (15-76a)</td>
</tr>
<tr>
<td>E_t</td>
<td>holdup extract phase in tank plus settler, kg</td>
</tr>
<tr>
<td>f</td>
<td>friction factor</td>
</tr>
<tr>
<td>f_{AB}</td>
<td>friction coefficient between molecules A and B</td>
</tr>
<tr>
<td>$f = V/F$</td>
<td>fraction vaporized</td>
</tr>
<tr>
<td>f</td>
<td>fractional approach to flooding</td>
</tr>
<tr>
<td>f</td>
<td>frequency of reciprocation of Karr column, strokes/s</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>equilibrium function, Chapter 9</td>
</tr>
<tr>
<td>$f_0(V/F)$</td>
<td>Rachford-Rice function for trial K, Eq. (2-43)</td>
</tr>
<tr>
<td>F</td>
<td>packing factor, Tables 10-3 and 10-4</td>
</tr>
<tr>
<td>F</td>
<td>degrees of freedom, Eq. (2-4)</td>
</tr>
<tr>
<td>F</td>
<td>charge to still pot (Chapter 9), moles or kg</td>
</tr>
<tr>
<td>F</td>
<td>mass of feed in batch extraction, kg</td>
</tr>
<tr>
<td>F_D</td>
<td>feed flow rate, kmol/h or lbmol/h or kg/h etc.</td>
</tr>
</tbody>
</table>
\[
\frac{W_L}{W_V} \sqrt{\frac{\rho_L}{\rho_V}} = \frac{L'}{G'} \sqrt{\frac{\rho_L}{\rho_V}}, \text{ flow parameter}
\]

Nomenclature

- **Fm**: Material factor for cost, Table 11-2
- **Fp**: Pressure factor for cost, Eqs. (11-5) and (11-6)
- **Fq**: Quantity factor for cost, Eq. (11-7)
- **Fs, Fsolv**: Flow rate solvent (Chapter 13), kg/h
- **Fsolid**: Solids flow rate in leaching, kg insoluble solid/h
- **Fweir**: Weir modification factor, Eq. (10-26) and Figure 10-22
- **gap**: Gap from downcomer apron to tray, Eq. (10-28), ft
- **g**: Acceleration due to gravity, 32.2 ft/s², 9.81 m/s²
- **gC**: Conversion factor in English units, 32.2 ft • lbm/(lbf • s²)
- **G**: Flow rate carrier gas, kmol/h or kg/h
- **G'**: Gas flux, lb/s ft²
- **h**: Pressure drop in head of clear liquid, inches liquid
- **h**: Height of liquid on stage (Chapter 16), ft
- **h**: Height, m or ft
- **h**: Height of liquid in mixer, m
- **h**: Liquid enthalpy, kcal/kg, Btu/lbmol, etc.
- **h**: Step size in Euler’s method = Δt, Eq. (8-29)
- **h**: Pure component enthalpy
- **hf**: Enthalpy of liquid leaving feed stage
- **hF**: Feed enthalpy (liquid, vapor or two-phase)
- **heat transfer**: Heat transfer coefficient
- **hL**: Clear liquid height on stage, m or cm
- **h**: Hole diameter, inches
- **hp**: Packing height, ft or m
- **h**: Height of flash drum, ft or m
- **h**: Height of weir, m or cm
- **H**: Henry’s law constant, Eqs. (8-9), (8-10), and (12-1)
- **H**: Molar holdup of liquid on tray, Eqs. (8-27) and (8-28)
- **H**: Stage height in Karr column, m
- **H**: Vapor enthalpy, kcal/kg, Btu/lbmol, etc.
- **HVij**: Partial molar enthalpy of component i in vapor on stage j, J/kmol
- **HT**: Height of tank, m
- **Hi,OD**: Overall height of a transfer unit for mass transfer driving force in concentration units, Eq. (16-83a analog), m
- **HG**: Height of gas phase transfer unit, ft or m
- **HL**: Height of liquid phase transfer unit, ft or m
- **HOG**: Height of overall gas phase transfer unit, ft or m
- **HOL**: Height of overall liquid phase transfer unit, ft or m
- **HETP**: Height equivalent to a theoretical plate, ft or m
- **HT**: Height of a transfer unit, ft or m
- **jD, jH**: j-functions, Eqs. (15-50)
- **JA**: Flux with respect to molar average velocity of fluid
- **k1, k2**: Empirical constants, Eq. (13-63b)
- **kB**: Boltzmann’s constant, J/k
\(k_{\text{conduction}} \) thermal conductivity, J/(ms K)

\(\bar{k}_x, \bar{k}_y \) individual mass transfer coefficients in liquid and vapor phases, see Table 15-4

\(k_c \) mass transfer coefficient with concentration driving force, m/s, Eq. (15-25b)

\(k'_y \) mass transfer coefficient in concentrated solutions, Eq. (15-32f)

\(k_x, k_y \) individual mass transfer coefficient in molar units

\(k_{x,c}, k_{x,D} \) individual mass transfer coefficients in continuous and dispersed phases, kg/(s\cdot m^3) or kmol/(s\cdot m^3)

\(k_{LD}, k_{LC} \) individual mass transfer coefficients in continuous and dispersed phases with driving force in concentration units, m/s

\(k_L, k_V \) individual liquid and vapor mass transfer coefficients in distillation, Eq. (16-108), m/s

\(k \) mass transfer coefficient in Maxwell-Stefan analysis, \(D/\Delta z \), m/s

\(K_d \) \(y/x \), distribution coefficient for dilute extraction

\(K, K_i \) \(y/x \), equilibrium vapor-liquid ratio

\(K_{\text{drum}} \) parameter to calculate \(u_{\text{perm}} \) for flash drums, Eq. (2-64)

\(K_x, K_y \) overall mass transfer coefficient in liquid or vapor, lbmol/ft^2 h, or kmol/hm^2

\(K_{LD} \) overall mass transfer coefficient in extraction based on dispersed phase in concentration units, Eq. (16-80b analog), m/s

\(K_{O-ED} \) overall mass transfer coefficient in extraction based on dispersed phase, Eq. (16-80a), kg/(s\cdot m^3) or kmol/(s\cdot m^3)

\(l_w \) weir length, ft

\(L \) length, m

\(L \) liquid flow rate, kmol/h or lbmol/h

\(\bar{L} \) mass liquid flow rate, lb/h (Chapter 15)

\(L' \) liquid flux, lb/(s)(ft^2)

\(L_g \) liquid flow rate in gal/min, Chapter 10

\(m \) linear equilibrium constant, \(y = mx + b \)

\(m \) local slope of equilibrium curve, Eq. (15-30b)

\(M \) ratio \(HETP_{\text{practical}}/HETP_{\text{packing}} \) Eq. (10-46)

\(m_{CD} \) slope of equilibrium curve of continuous versus dispersed phase mass or mole fractions, Eq. (16-80c)

\(m_{CD,\text{conc_units}} \) slope of equilibrium curve of continuous versus dispersed phase in concentration units, Eq. (16-80c analog)

\(M \) flow rate of mixed stream (Chapter 13), kg/h

\(M \) multiplier times \((L/D)_{\text{min}} \) (Chapter 7)

\(MW \) molecular weight

\(\bar{MW} \) average molecular weight

\(n \) moles

\(n \) number of drops

\(n_1, n_2 \) empirical constants, Eq. (13-65)

\(n_G \) number of gas phase transfer units

\(n_L \) number of liquid phase transfer units

\(n_{O-ED}, n_{O-EC} \) number of overall extraction transfer units in dispersed and continuous phases, Eq. (16-81)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{OG})</td>
<td>number of overall gas phase transfer units</td>
</tr>
<tr>
<td>(n_{OL})</td>
<td>number of overall liquid phase transfer units</td>
</tr>
<tr>
<td>(n_{org})</td>
<td>moles organic in vapor in steam distillation</td>
</tr>
<tr>
<td>(n_{w})</td>
<td>moles water in vapor in steam distillation</td>
</tr>
<tr>
<td>(N)</td>
<td>impeller revolutions per second</td>
</tr>
<tr>
<td>(N)</td>
<td>number of stages</td>
</tr>
<tr>
<td>(N_{A})</td>
<td>flux of A, lbmol/(h)(ft^2) or kmol/(h)(m^2)</td>
</tr>
<tr>
<td>(N_{feed})</td>
<td>feed stage</td>
</tr>
<tr>
<td>(N_{j})</td>
<td>transfer to liquid from vapor on stage j, mol component i/s</td>
</tr>
<tr>
<td>(N_{fj})</td>
<td>transfer to vapor from liquid on stage j, mol component i/s</td>
</tr>
<tr>
<td>(N_{min})</td>
<td>number of stages at total reflux</td>
</tr>
<tr>
<td>(N_{feed,min})</td>
<td>estimated feed stage location at total reflux</td>
</tr>
<tr>
<td>(N_{Po})</td>
<td>power number, Eq. (13-52)</td>
</tr>
<tr>
<td>(N_{IOD})</td>
<td>number of overall extraction transfer units for mass transfer driving force</td>
</tr>
<tr>
<td>(Nu)</td>
<td>Nusselt number, Eq. (15-33g)</td>
</tr>
<tr>
<td>(NTU)</td>
<td>number of transfer units</td>
</tr>
<tr>
<td>(O)</td>
<td>total overflow rate in washing, kg/h</td>
</tr>
<tr>
<td>(p)</td>
<td>pitch of sieve plate holes, m</td>
</tr>
<tr>
<td>(p, p_{tot})</td>
<td>pressure, atm, kPa, psi, bar etc.</td>
</tr>
<tr>
<td>(P)</td>
<td>partial pressure</td>
</tr>
<tr>
<td>(P)</td>
<td>Number of phases</td>
</tr>
<tr>
<td>(P_e)</td>
<td>power, W</td>
</tr>
<tr>
<td>(Pe)</td>
<td>dimensionless Peclet number in terms of molecular diffusivity, Eq. (15-33c)</td>
</tr>
<tr>
<td>(Pe)</td>
<td>dimensionless Peclet number in terms of eddy diffusivity, Eq. (16-111a)</td>
</tr>
<tr>
<td>(Per_{f})</td>
<td>flow perimeter, Figure 13-33B, m</td>
</tr>
<tr>
<td>(Pr)</td>
<td>dimensionless Prandt number, Eq. (15-33f)</td>
</tr>
<tr>
<td>(q)</td>
<td>(\frac{L_{f}}{F} = (L - L)/F), feed quality</td>
</tr>
<tr>
<td>(q)</td>
<td>volumetric flow rate/plate width, m^2/s</td>
</tr>
<tr>
<td>(Q)</td>
<td>amount of energy transferred, Btu/h, kcal/h, etc.</td>
</tr>
<tr>
<td>(Q_{c})</td>
<td>condenser heat load</td>
</tr>
<tr>
<td>(Q_{c}, Q_{C})</td>
<td>volumetric flow rate continuous phase, m^3/s</td>
</tr>
<tr>
<td>(Q_{D}, Q_{D})</td>
<td>volumetric flow rate dispersed phase, m^3/s</td>
</tr>
<tr>
<td>(Q_{flash})</td>
<td>heat loss from flash drum</td>
</tr>
<tr>
<td>(Q_{L})</td>
<td>volumetric flow rate of liquid, m^3/s</td>
</tr>
<tr>
<td>(Q_{R})</td>
<td>reboiler heat load</td>
</tr>
<tr>
<td>(Q_{z})</td>
<td>heat flux in z direction, J/s</td>
</tr>
<tr>
<td>(r)</td>
<td>radius of column, ft or m</td>
</tr>
<tr>
<td>(R)</td>
<td>gas constant, 1.9859 cal/(mol⋅K) or 8.314 m^3Pa/(mol⋅K)</td>
</tr>
<tr>
<td>(R)</td>
<td>raffinate flow rate (Chapter. 13), kg/h</td>
</tr>
<tr>
<td>(R_{A})</td>
<td>solute radius, m</td>
</tr>
<tr>
<td>(\hat{R})</td>
<td>mass raffinate, kg</td>
</tr>
<tr>
<td>(\hat{R}_{t})</td>
<td>Holdup raffinate phase in tank plus settler, kg</td>
</tr>
<tr>
<td>(Re)</td>
<td>dimensionless Reynolds number, Eq. (15-33b)</td>
</tr>
<tr>
<td>(Re_{settler})</td>
<td>Reynold's number for settler, Eq. (13-60a)</td>
</tr>
<tr>
<td>(S)</td>
<td>solvent flow rate kmol/h or lbmol/h</td>
</tr>
<tr>
<td>(S)</td>
<td>tray spacing, inches, Eq. (10-47)</td>
</tr>
</tbody>
</table>
Nomenclature

S moles second solvent in constant-level batch distillation
Ṡ mass of solvent, kg
S solvent flow rate, kg/h
ŠcL Schmidt number for liquid = \(\frac{\mu}{(\rho D)} \)
Šcv Schmidt number for vapor = \(\frac{\mu}{(\rho D)} \)
\(\text{Sh}_c, \text{Sh}_v, \text{Sh}_y \) dimensionless Sherwood numbers, Eq. (15-33a)
\(\text{St}_c, \text{St}_v, \text{St}_y \) dimensionless Stanton numbers, Eq. (15-33d)
t time, s, min, or h
tbatch period for batch distillation, Eq. (9-28)
tdown down time in batch distillation
t(\(t_{95} - t_0 \)) residence time in extractor for 95% extraction, Eq. (16-105), s
\(t_L, t_V \) average residence time per pass for liquid and vapor, s
\(t_{\text{L, residence}} \) liquid residence time, Eq. (16-111c), s
\(t_{\text{res, dispersed}} \) residence time of dispersed phase in settler, s
\(t_{\text{operating}} \) operating time in batch distillation
\(t_{\text{res, down}} \) residence time in downcomer, Eq. (10-30), s, or on plate, Eq. (16-35e)
ttray tray thickness, inches
T temperature, \(°C, °F, K, \) or \(°R \)
T\(_j^L, T_j^V \) liquid and vapor temperatures on stage \(j \) at the interface, K
Tref reference temperature
u vapor velocity, cm/s or ft/s
uflood flooding velocity, Eq. (10-8)
up operating velocity, Eq. (10-11)
uperm permissible vapor velocity, Eq. (2-64)
uthindered hindered settling velocity, Eq. (13-58)
\(u_i, u_{\text{Stokes}} \) Stokes’ law terminal velocity, Eq. (13-57), m/s
U superficial vapor velocity in active area of tray, m/s
Ua superficial vapor velocity, ft/s
v characteristic velocity of Karr column, Eq. (13-68), m/s
\(v_{\text{c, flood}}, v_{\text{d, flood}} \) continuous and dispersed phase flooding velocities, m/s
vo vapor velocity through holes, Eq. (10-29), ft/s
vo, bal velocity where valve is balanced, Eq. (10-36)
VA, VB component transfer velocities, Eqs. (15-15e, f)
vr reference or basis velocity, Eqs. (15-15c, d)
vref reference velocity
vy vertical velocity
V vapor flow rate, kmol/h or lbmol/h
Vj molar volume Eq. (13-1)
VA molar volume solute at normal boiling point, m\(^3\)/kmol
V\(_{\text{liq, tank}} \) volume of liquid in tank, m\(^3\)
Vmax maximum vapor flow rate
Vmixer volume of liquid in mixing tank, m\(^3\)
Vsettler volume settler, m\(^3\)
Vtank volume tank, m\(^3\)
Vsurge surge volume in flash drum, Eq. (2-68), ft\(^3\)
VP vapor pressure, same units as p
w plate width, m
WL liquid flow rate, kg/h or lb/h
Nomenclature

WL liquid mass flux, lb/s ft² or lb/h ft², (Chapter 16)
WV vapor flow rate, kg/h or lb/h
x weight or mole fraction in liquid
x [L/D – (L/D)min]/(L/D + 1) in Eqs. (7-42)
x* equilibrium mole fraction in liquid
xA,ref, xB,ref fractions to calculate velocity of center of total flux, Eq. (15-17)
xI interfacial mole fraction in liquid
x* interfacial mole fraction in liquid
x*l liquid mole fraction in equilibrium with inlet gas, Eq. (16-35b)
X weight or mole ratio in liquid
y weight or mole fraction in vapor
yvol volume fraction in vapor
y* equilibrium mole fraction in vapor
y*l vapor mole fraction in equilibrium with inlet liquid in countercurrent system, Eq. (16-35a) or in equilibrium with outlet liquid in cocurrent contactor, Eq. (16-71)
ylm log mean difference, Eq. (15-32d)
yI interfacial mole fraction in vapor
y mass fraction in vapor
Y weight or mole ratio in vapor
z weight or mole fraction in feed
z distance from downcomer exit to weir, m

Greek

αAB KA/KB, relative volatility
αthermal thermal diffusity, m²/s
β A_hole/A_active
γ activity coefficient
δ thickness of mass transfer film or thickness of falling film, m
δ_λ characteristic dimension of packing, inch, Eq. (10-38)
δ_i solubility parameter, Eq. (13-1)
Δ change in variable or difference operator
ΔEv latent energy of vaporization, Eq. (13-1)
ΔH steady state height of dispersion band in settler, m
Δρ |ρ_C − ρ_D |
ε limit for convergence
εA,εB, εAB Lennard-Jones interaction energies, Table 15-2 and Eq. (15-22c)
η fraction of column available for vapor flow
η parameter, Eq. (15-42b)
θ angle of downcomer, Figure 10-20B
λ latent heat of vaporization, kcal/kg, Btu/lb, Btu/lbmol, etc.
μ viscosity, cp or Pa⋅s = kg/(m s)
μ_w viscosity of water, cp
ρL liquid density, g/cm³ or lb/ft³ or kg/m³
ρV vapor density
σ,γ surface tension, dynes/cm or interfacial tension
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>dimensionless distance, Eq. (15-14a)</td>
</tr>
<tr>
<td>χ</td>
<td>term defined in Eq. (13-49)</td>
</tr>
<tr>
<td>Ψ_c, Ψ_d</td>
<td>volumetric fraction of continuous and dispersed phases</td>
</tr>
<tr>
<td>$\Psi_{d,\text{feed}}$</td>
<td>volumetric fraction of dispersed phase in feed</td>
</tr>
<tr>
<td>ϕ</td>
<td>liquid phase packing parameter, Eq. (16-38)</td>
</tr>
<tr>
<td>ϕ_B</td>
<td>solvent interaction parameter, Eq. (15-23b)</td>
</tr>
<tr>
<td>ϕ_{ac}</td>
<td>relative froth density in downcomer, Eq. (10-29)</td>
</tr>
<tr>
<td>ϕ_e</td>
<td>effective relative froth density, Eq. (16-109d)</td>
</tr>
<tr>
<td>ψ</td>
<td>$\rho_{\text{water}}/\rho_L$, Chapter 10</td>
</tr>
<tr>
<td>ψ</td>
<td>$c/(e + L)$, fractional entrainment, Chapter 10</td>
</tr>
<tr>
<td>ψ</td>
<td>packing parameter for gas phase, Eq. (16-37)</td>
</tr>
<tr>
<td>Ω_D</td>
<td>collision integral, Table 15-2</td>
</tr>
<tr>
<td>μ_C, μ_D</td>
<td>viscosity of continuous and dispersed phases, Pa·s</td>
</tr>
<tr>
<td>μ_H, μ_L</td>
<td>viscosity of heavy and light phases, Pa·s</td>
</tr>
<tr>
<td>μ_m</td>
<td>mixture viscosity, Eq. (13-55), Pa·s</td>
</tr>
<tr>
<td>ρ_C, ρ_D</td>
<td>densities of continuous and dispersed phases, g/m³</td>
</tr>
<tr>
<td>ρ_m</td>
<td>mixture density, Eq. (13-53), g/m³</td>
</tr>
<tr>
<td>ρ_m</td>
<td>molar density, mol/m³</td>
</tr>
<tr>
<td>ω</td>
<td>revolutions per second</td>
</tr>
</tbody>
</table>

Chapter 17

- a, a_j | term in quadratic equations for well-mixed membrane systems, Eqs. (17-10b), (17-74a), and (17-74a) |
- a | constant in expression to calculate osmotic pressure, kPa/mole fraction, Eq. (17-15a) |
- a' | constant in expression to calculate osmotic pressure, kPa/weight fraction, Eq. (17-15b) |
- a_i | activities, Eq. (17-51) |
- A | membrane area available for mass transfer, cm² or m² |
- b, b_j | term in quadratic equations for well-mixed membrane systems, Eqs. (17-10c), (17-74b), and (17-74b) |
- c, c_j | term in quadratic equations for well-mixed membrane systems, Eqs. (17-10d), (17-74c) and (17-74c) |
- c | concentration, g solute/L solution |
- c_{out} | outlet concentration of solute, g/L |
- c_p | permeate concentration of solute, g/L |
- c_w | concentration of solute at wall, g/L |
- c' | water concentration in permeate in Figure 17-17 |
- $C_{PL,p}$ | liquid heat capacity of permeate, kJ/(kg °C) |
- $C_{PV,p}$ | vapor heat capacity of permeate, kJ/(kg °C) |
- d_t | diameter of tube, cm |
- d_{tank} | tank diameter, cm |
- D | diffusivity in solution, cm²/s |
- D_m | diffusivity in the membrane, cm²/s |
- F_p | volumetric flow rate of permeate, cm³/s |
- F_{out} | volumetric flow rate of exiting retentate, cm³/s |
- F_{solv} | volumetric flow rate of solvent in RO, cm³/s |
\(\hat{F} \) molar flow rate, mol/s, mol/min, etc.

\(F' \) mass flow rate, g/s, g/min, kg/min, etc.

\(h \) distance between parallel plates, cm

\(h_{in} \) enthalpy of inlet liquid stream in pervaporation, kJ/kg

\(h_{out} \) enthalpy of outlet liquid retentate stream in pervaporation, kJ/kg

\(H_A \) solubility parameter, cc(STP)/[cm³ (cm Hg)]

\(H_p \) enthalpy of vapor permeate stream in pervaporation, kJ/kg

\(k \) mass transfer coefficient, typically cm/s, Eq. (17-33)

\(K'_{solv} \) permeability of the solvent through membrane, L/(atm m² day) or similar units

\(j \) counter for stage location in staged models in Figure 17-19

\(J \) volumetric flux, cm³/(s cm²) or m³/(m² day), Eq. (17-1b)

\(J' \) mass flux, g/(s cm²) or g/(m² day), Eq. (17-1c)

\(\dot{J} \) mole flux, mol/(s cm²) or kmol/(day m²), Eq. (17-1d)

\(K'_{A} \) solute permeability, g/(m s wt frac)

\(K_{m,i} \) rate transfer term for multicomponent gas permeation, dimensionless, Eq. (17-11d)

\(L \) tube length, cm

\(M \) concentration polarization modulus in wt fraction units, dimensionless, Eq. (17-17)

\(M_c \) concentration polarization modulus in concentration units, dimensionless, Eq. (17-48)

\(MW \) molecular weight, g/mol or kg/kmol

\(N \) number of well-mixed stages in models in Figure 17-19

\(p \) pressure, Pa, kPa, atm, mm Hg, etc.

\(p_A \) partial pressure of species A, Pa, atm, mm Hg, etc.

\(p_p \) total pressure on the permeate (low pressure) side, Pa, kPa, atm, mm Hg, etc.

\(p_r \) total pressure on the retentate (high pressure) side, Pa, kPa, atm, mm Hg, etc.

\(P_A \) permeability of species A in the membrane, cc(STP) cm/[cm² s cm Hg]

\(R \) rejection coefficient in wt frac units, dimensionless, Eq. (17-24a)

\(R^o \) inherent rejection coefficient (M = 1), dimensionless

\(R_c \) rejection coefficient in conc. units, dimensionless, Eq. (17-48)

\(R \) tube radius, cm

\(Re \) Reynolds number, dimensionless, Eq. (17-35b)

\(Sc \) Schmidt number, dimensionless, Eq. (17-35c)

\(Sh \) Sherwood number, dimensionless, Eq. (17-35a)

\(t_{ms} \) thickness of membrane skin doing separation, μm, mm, cm, or m

\(T \) temperature, °C

\(T_{ref} \) reference temperature, °C

\(u_b \) bulk velocity in tube, cm/s

\(v_{solvent} \) partial molar volume of the solvent, cm³/gmole

\(x \) wt frac of retentate in pervaporation. In binary system refers to more permeable species.

\(x_g \) wt frac at which solute gels in UF

\(x_p \) wt frac solute in liquid permeate in RO and UF

\(x_r \) wt frac solute in retentate in RO and UF

\(y \) wt frac of permeate in pervaporation. In binary system refers to more permeable species.
Greek letters

\(\alpha \) selectivity, dimensionless, Gas Permeation: Eq. (17-4b), RO: Eq. (17-20), pervaporation: Eq. (17-53a)

\(\Delta x \) difference in wt frac of solute across the membrane

\(\Delta \pi \) difference in the osmotic pressure across the membrane, Pa, atm, mm Hg, etc.

\(\pi \) osmotic pressure, Pa, kPa, atm, mm Hg, etc.

\(\theta \) cut = \(\frac{F_p}{F_{in}} \), with flows in molar units, dimensionless

\(\theta' \) cut = \(\frac{F'_{p}}{F'_{in}} \) in flows in mass units, dimensionless

\(\mu \) viscosity, centipoise or g/(cm s)

\(\nu = \frac{\mu}{\rho} \) kinematic viscosity, cm²/s

\(\rho_{solv} \) mass solvent density, kg/m³

\(\rho_{solv} \) molar solvent density, kmol/m³

\(\lambda_p \) mass latent heat of vaporization of the permeate in pervaporation determined at the reference temperature, kJ/kg

\(\omega \) stirrer speed in radians/s

Chapter 18

a constant in Langmuir isotherm, same units as \(q/c \), Eq. (18-6c)

\(a \) argument for error function, dimensionless, Eq. (18-70), Table 18-7

\(a_p \) surface area of the particles per volume, m⁻¹

\(A_c \) cross sectional area of the column, m²

\(A_w \) wall surface area per volume of column for heat transfer, m⁻¹

\(b \) constant in Langmuir isotherm, (concentration)⁻¹, Eq. (18-6c)

\(c_A \) concentration of species A, kg/m³, kmol/m³, g/L, etc.

\(c_i \) concentration of species i, kg/m³, kmol/m³, g/L, etc., or

\(c_i \) concentration of ion i in solution, typically equivalents/m³

\(c_i' \) concentration of species i that would be in equilibrium with \(q_i \), same units as \(c_i \)

\(c_i \) average concentration of solute in pore, same units as \(c_i \)

\(c_{i,pore} \) fluid concentration at surface of adsorbent pores, same units as \(c_i \)

\(c_{i,surface} \) fluid concentration at surface of particles, \(\varepsilon_p = 0 \), same units as \(c_i \)

\(c_{Ri} \) concentration of ion i on the resin, typically equivalents/m³

\(c_{RT} \) total concentration of ions on the resin, typically equivalents/m³

\(c_T \) total concentration of ions in solution, typically equivalents/m³

\(C_i \) constant relating solute velocity to interstitial velocity, dimensionless, Eq. (18-15e)

\(C_{Pf} \) heat capacity of the fluid, cal/(g °C), cal/(mol °C), J/(g K), etc.

\(C_{tp} \) heat capacity of particle including pore fluid, same units \(C_{Pf} \)

\(C_{ps} \) heat capacity of the solid, same units as \(C_{Pf} \)

\(C_{pw} \) heat capacity of the wall, same units as \(C_{Pf} \)

\(d_p \) particle diameter, cm or m

\(D \) desorbent rate in SMB, same units as \(F \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/F</td>
<td>desorbet to feed ratio in SMB, dimensionless</td>
</tr>
<tr>
<td>D_{col}</td>
<td>column diameter, m or cm</td>
</tr>
<tr>
<td>D</td>
<td>diffusivity including both molecular and Knudsen diffusivities, m2/s or cm2/s</td>
</tr>
<tr>
<td>$D_{effective}$</td>
<td>effective diffusivity, m2/s or cm2/s, Eq. (18-4)</td>
</tr>
<tr>
<td>D_K</td>
<td>Knudsen diffusivity, m2/s or cm2/s, Eq. (18-51)</td>
</tr>
<tr>
<td>$D_{molecular}$</td>
<td>molecular diffusivity in free solution, m2/s or cm2/s</td>
</tr>
<tr>
<td>D_s</td>
<td>surface diffusivity, m2/s or cm2/s, Eq. (18-53)</td>
</tr>
<tr>
<td>erf</td>
<td>error function, Eq. (18-70) and Table 18-7</td>
</tr>
<tr>
<td>E_D</td>
<td>axial dispersion coefficient due to both eddy and molecular effects, m2/s or cm2/s</td>
</tr>
<tr>
<td>E_{DT}</td>
<td>thermal axial dispersion coefficient, m2/s or cm2/s</td>
</tr>
<tr>
<td>E_{eff}</td>
<td>effective axial dispersion coefficient, same units E_D, Eq. (18-68)</td>
</tr>
<tr>
<td>F</td>
<td>volumetric feed rate, e.g., m3/h, cm3/min, liter/h</td>
</tr>
<tr>
<td>h_p</td>
<td>particle heat transfer coefficient, J/(K s m2) or similar units</td>
</tr>
<tr>
<td>h_w</td>
<td>wall heat transfer coefficient, J/(K s m2) or similar units</td>
</tr>
<tr>
<td>HETP</td>
<td>height of equilibrium plate, cm/plate, Eq. (18-78b)</td>
</tr>
<tr>
<td>k_f</td>
<td>film mass transfer coefficient, m/s or cm/s</td>
</tr>
<tr>
<td>$k_{m,c}$</td>
<td>lumped parameter mass transfer coefficient with concentration driving force, m/s or cm/s, Eqs. (18-56a) and (18-57a)</td>
</tr>
<tr>
<td>$k_{m,q}$</td>
<td>lumped parameter mass transfer coefficient with amount adsorbed driving force, m/s or cm/s, Eqs. (18-56b) and (18-57b)</td>
</tr>
<tr>
<td>K_{AB}</td>
<td>mass action equilibrium constant for monovalent-monovalent ion exchange, dimensionless, Eq. (18-40a)</td>
</tr>
<tr>
<td>$K_{A,c}$</td>
<td>adsorption equilibrium constant in terms of concentration, units are (concentration)$^{-1}$</td>
</tr>
<tr>
<td>$K'_{i,c}$</td>
<td>linearized adsorption equilibrium constant in terms of concentration, units are units of q/c, Eq. (18-6b)</td>
</tr>
<tr>
<td>K_{Ao}</td>
<td>pre-exponential factor in Arrhenius Eq. (18-7a), same units as K_A</td>
</tr>
<tr>
<td>$K_{A,p}$</td>
<td>adsorption equilibrium constant in terms of partial pressure, units are (pressure)$^{-1}$</td>
</tr>
<tr>
<td>$K'_{A,p}$</td>
<td>linearized adsorption equilibrium constant in terms of partial pressure, units are units of q_A/p_A, Eq. (18-5b)</td>
</tr>
<tr>
<td>K_d</td>
<td>size exclusion parameter, dimensionless</td>
</tr>
<tr>
<td>K_{DB}</td>
<td>mass action equilibrium constant for divalent-monovalent ion exchange, same units as c_T/c_R, Eq. (18-41)</td>
</tr>
<tr>
<td>K_{DE}</td>
<td>Donnan exclusion factor, dimensionless, following Eq. (18-44)</td>
</tr>
<tr>
<td>L</td>
<td>length of packing in column, m or cm</td>
</tr>
<tr>
<td>L_{MTZ}</td>
<td>length of mass transfer zone, Figure 18-23, m or cm</td>
</tr>
<tr>
<td>M</td>
<td>molecular weight of solute, g/mol or kg/kmol</td>
</tr>
<tr>
<td>M_i</td>
<td>multipliers in Eqs. (18-29), dimensionless</td>
</tr>
<tr>
<td>N</td>
<td>equivalent number of plates in chromatography, Eq. (18-78)</td>
</tr>
<tr>
<td>N_{Pe}</td>
<td>Peclet number, dimensionless, Eq. (18-62)</td>
</tr>
<tr>
<td>p_A</td>
<td>partial pressure of species A, mm Hg, kPa, or other pressure units</td>
</tr>
<tr>
<td>p_h</td>
<td>high pressure, mm Hg, kPa, or other pressure units</td>
</tr>
<tr>
<td>p_L</td>
<td>low pressure, mm Hg, kPa, or other pressure units</td>
</tr>
<tr>
<td>P_{eL}</td>
<td>Peclet number based on length, dimensionless, Eq. (18-78a)</td>
</tr>
<tr>
<td>q_A</td>
<td>amount of species A adsorbed, kg/kg adsorbent, mol/kg adsorbent, or kg/L</td>
</tr>
<tr>
<td>$q_{A,max}$</td>
<td>maximum amount of species A that can adsorb, kg/kg adsorbent, mol/kg adsorbent, or kg/L</td>
</tr>
</tbody>
</table>
\(q_H \) amount adsorbed in equilibrium with feed concentration, same units as \(q_A \)
\(q_i \) average amount of species \(i \) adsorbed, kg/kg adsorbent, mol/kg adsorbent, or kg/L
\(q_i^* \) amount adsorbed that would be in equilibrium with fluid of concentration \(c_i \), same units as \(q_A \)
\(Q \) volumetric flow rate, m\(^3\)/s, L/min, etc.
\(r_p \) pore radius, m or cm
\(R \) resolution, dimensionless, Eq. (18-82)
\(R \) gas constant (e.g., \(R = 8.314 \frac{m^3 Pa}{mol K} \))
\(\text{Re} \) Reynolds number, dimensionless, Eq. (18-60)
\(\text{Sc} \) Schmidt number, dimensionless, Eq. (18-60)
\(\text{Sh} \) Sherwood number, dimensionless, Eq. (18-60)
\(t \) time, s, min, or h
\(t_{br} \) breakthrough time, s, min, or h
\(t_{center} \) time center of pattern exits column, s, min, or h, Eq. (18-85b)
\(t_{elution} \) elution time, s, min, or h
\(t_{feed} \) feed time, s, min, or h
\(t_{MTZ} \) time of mass transfer zone, Figure 18-23, s, min, or h
\(t_R \) retention time, s, min, or h
\(t_{sw} \) switching time in SMB, s, min, or h
\(T \) temperature, °C or K
\(T_{amb} \) ambient temperature, °C or K
\(T_s \) solid temperature, °C or K
\(u_{i,ion} \) velocity of ion \(i \), m/s or cm/s
\(u_i \) average solute velocity, m/s or cm/s
\(\bar{u}_s \) average of solute velocities for A and B, cm/s, Eq. (18-83)
\(u_{k,ion,i} \) diffuse wave velocity of ion \(i \), m/s or cm/s
\(u_{sh} \) shock wave velocity, m/s or cm/s
\(u_{sh,ion,i} \) shock wave velocity of ion \(i \), m/s or cm/s
\(u_{th} \) thermal wave velocity, m/s or cm/s
\(u_{total,ion} \) velocity of total ion wave, m/s or cm/s
\(v_{A,product} \) interstitial velocity of A Product if it was in the column, m/s or cm/s = \((A \text{ Product})/(\varepsilon_e A_c) \)
\(v_{B,product} \) interstitial velocity of B Product if it was in the column, m/s or cm/s = \((B \text{ Product})/(\varepsilon_e A_c) \)
\(v_D \) interstitial velocity of desorbent if it was in the column, m/s or cm/s = \(D/(\varepsilon_e A_c) \)
\(v_{Feed} \) interstitial velocity of feed if it was in the column, m/s or cm/s = \(F/(\varepsilon_e A_c) \)
\(v_{inter} \) interstitial velocity, m/s or cm/s, Eq. (18-2b)
\(v_{super} \) superficial velocity, m/s or cm/s, Eq. (18-2a)
\(V_{available} \) volume available to molecule, m\(^3\), Eq. (18-1c)
\(V_{column} \) column volume, m\(^3\)
\(V_{feed} \) volume feed gas, m\(^3\)
\(V_{fluid} \) volume available to fluid, m\(^3\), Eq. (18-1a)
\(V_{purge} \) volume purge gas, m\(^3\)
\(w_A \), \(w_B \) width of chromatographic peak, s, min or hours
\(W \) weight of the column per length, kg/m

\(\text{Nomenclature} \)
x deviation from the location of the peak maximum, dimensionless Eq. (18-79)
x_t deviation from peak maximum in length units, Eq. (18-80b)
x_t deviation from peak maximum in time units, Eq. (18-80a)
x weight or mole fraction solute in liquid, kg solute/kg liquid or kmol solute/kmol liquid, dimensionless
x_i \frac{c_i}{c_T} equivalent fraction of ion in solution, dimensionless
X_{breakthrough}(z,t) general solution for column breakthrough for linear isotherms, same units as c, Eq. (18-72)
y weight or mole fraction solute in gas, kg solute/kg gas, or kmol solute/kmol gas, dimensionless
y_i = \frac{c_{R_i}}{c_{RT}} equivalent fraction of ion on resin, dimensionless
z axial distance in column, m or cm.
 (Measured from closed end for PSA pressure change calculations)

Greek letters
β \beta_{strong} ratio velocities of strong and weak solutes, Eq. (18-27), dimensionless
Δc change in solute concentration, same units as c
ΔH_{ads} heat of adsorption, J/kg, cal/gmole, etc.
Δp_A change in partial pressure, kPa, atm, etc.
Δq change in amount adsorbed, kmol/kg adsorbent, kg/kg adsorbent, kmol/m^3, or kg/m^3
Δt change in time, s, min, or h
ΔT_f change in fluid temperature, °C or K
Δz increment of column length, m
γ volumetric purge to feed ratio in PSA, dimensionless, Eq. (18-26)
ε_e external porosity, dimensionless
ε_p internal or pore porosity, dimensionless
ε_T total porosity, dimensionless, Eq. (18-1b)
ρ_b bulk density of adsorbent, kg/m^3, Eq. (18-3b)
ρ_f fluid density, kg/m^3
ρ_f molar density of fluid, kmol/m^3
ρ_p particle density, kg/m^3, Eq. (18-3a)
ρ_s structural density of solid, kg/m^3
σ standard deviation of Gaussian chromatographic peak, Eq. (18-79)
σ_i standard deviation in length units, m or cm, Eq. (18-80b)
σ_t standard deviation in time units, min or s, Eq. (18-80a)
τ tortuosity, dimensionless, Eq. (18-4)
ζ Greek letter zeta used as dummy variable in Eq. (18-70)
This page intentionally left blank
1.1 IMPORTANCE OF SEPARATIONS

Why does chemical engineering require the study of separation techniques? Because separations are crucial in chemical engineering. A typical chemical plant is a chemical reactor surrounded by separators, as diagramed in the schematic flow sheet of Figure 1-1. Raw materials are prepurified in separation devices and fed to the chemical reactor; unreacted feed is separated from the reaction products and recycled back to the reactor. Products must be further separated and purified before they can be sold. This type of arrangement is very common. Examples for a variety of traditional processes are illustrated by Biegler et al. (1997), Chenier (2002), Couper et al. (2005), Matar and Hatch (2001), Shreve and Austin (1984), Speight (2002), and Turton et al. (2003), whereas recent processes often are shown in Chemical Engineering magazine. Chemical plants commonly have from 40% to 70% of both capital and operating costs in separations (Humphrey and Keller, 1997).

Since separations are ubiquitous in chemical plants and petroleum refineries, chemical engineers must be familiar with a variety of separation methods. We will first focus on some of the most common chemical engineering separation methods: flash distillation, continuous column distillation, batch distillation, absorption, stripping, and extraction. These separations all contact two phases and can be designed and analyzed as equilibrium stage processes. Several other separation methods that can also be considered equilibrium stage processes will be briefly discussed. Chapters 17 and 18 explore two important separations—membrane separators and adsorption processes—that do not operate as equilibrium stage systems.

The equilibrium stage concept is applicable when the process can be constructed as a series of discrete stages in which the two phases are contacted and then separated. The two separated phases are assumed to be in equilibrium with each other. For example, in distillation, a vapor and a liquid are commonly contacted on a metal plate with holes in it. Because of the intimate contact between the two phases, solute can transfer from one phase to another. Above the plate the vapor disengages from the liquid. Both liquid and vapor can be sent to additional stages for further separation. Assuming that the stages are equilibrium stages, the engineer can calculate concentrations and temperatures without detailed knowledge of
flow patterns and heat and mass transfer rates. Although this example shows the applicability of the equilibrium stage method for equipment built with a series of discrete stages, we will see that the staged design method can also be used for packed columns where there are no discrete stages. This method is a major simplification in the design and analysis of chemical engineering separations that is used in Chapters 2 to 14.

A second useful concept is that of a unit operation. The idea here is that although the specific design may vary depending on what chemicals are being separated, the basic design principles for a given separation method are always the same. For example, the basic principles of distillation are always the same whether we are separating ethanol from water, separating several hydrocarbons, or separating liquid metals. Consequently, distillation is often called a unit operation, as are absorption, extraction, etc.

A more general idea is that design methods for related unit operations are similar. Since distillation and absorption are both liquid-vapor contacting systems, the design is much the same for both. This similarity is useful because it allows us to apply a very few design tools to a variety of separation methods. We will use stage-by-stage methods where calculation is completed for one stage and then the results are used for calculation of the next stage to develop basic understanding. Matrix solution of the mass and energy balances will be used for detailed computer simulations.

1.2 CONCEPT OF EQUILIBRIUM

The separation processes we are studying in Chapters 1 to 14 are based on the equilibrium stage concept, which states that streams leaving a stage are in equilibrium. What do we mean by equilibrium?

Consider a vapor and a liquid that are in contact with each other as shown in Figure 1-2. Liquid molecules are continually vaporizing, while vapor molecules are continually condensing. If two chemical species are present, they will, in general, condense and vaporize at different rates. When not at equilibrium, the liquid and the vapor can be at different pressures and temperatures and be present in different mole fractions. At equilibrium the temperatures, pressures, and fractions of the two phases cease to change. Although molecules continue to evaporate and condense, the rate at which each species condenses is equal to the rate at which

Figure 1-1. Typical chemical plant layout
it evaporates. Although on a molecular scale nothing has stopped, on the macroscopic scale, where we usually observe processes, there are no further changes in temperature, pressure, or composition.

Equilibrium conditions can be conveniently subdivided into thermal, mechanical, and chemical potential equilibrium. In thermal equilibrium, heat transfer stops and the temperatures of the two phases are equal.

\[T_{\text{liquid}} = T_{\text{vapor}} \quad \text{(at equilibrium)} \]

(1-1)

In mechanical equilibrium, the forces between vapor and liquid balance. In the staged separation processes we will study, this usually implies that the pressures are equal. Thus for the cases in this book,

\[p_{\text{liquid}} = p_{\text{vapor}} \quad \text{(at equilibrium)} \]

(1-2)

If the interface between liquid and vapor is curved, equal forces do not imply equal pressures. In this case the Laplace equation can be derived (e.g., see Levich, 1962).

In phase equilibrium, the rate at which each species is vaporizing is just equal to the rate at which it is condensing. Thus there is no change in composition (mole fraction in Figure 1-2). However, in general, the compositions of liquid and vapor are not equal. If the compositions were equal, no separation could be achieved in any equilibrium process. If temperature and pressure are constant, equal rates of vaporization and condensation require a minimum in the free energy of the system. The resulting condition for phase equilibrium is

\[(\text{chemical potential } i)_{\text{liquid}} = (\text{chemical potential } i)_{\text{vapor}} \]

(1-3)

The development of Eq. (1-3), including the necessary definitions and concepts, is the subject of a large portion of many books on thermodynamics (e.g., Balzhiser et al., 1972; Denbigh, 1981; Elliott and Lira, 1999; Sandler, 2006; Smith et al., 2005; Walas, 1985) but is beyond the scope of this book. However, Eq. (1-3) does require that there be some relationship between liquid and vapor compositions. In real systems this relationship may be very
complex and experimental data may be required. We will assume that the equilibrium data or appropriate correlations are known (see Chapter 2), and we will confine our discussion to the use of the equilibrium data in the design of separation equipment.

1.3 MASS TRANSFER

In the vapor-liquid contacting system shown in Figure 1-2 the vapor and liquid will not be initially at equilibrium. By transferring mass from one phase to the other we can approach equilibrium. The basic mass transfer equation in words is

\[
\text{Mass transfer rate} = (\text{area}) \times (\text{mass transfer coefficient}) \times (\text{driving force})
\]

(1-4)

In this equation the mass transfer rate will typically have units such as kmol/h or lbmol/h. The area is the area across which mass transfer occurs in m² or ft². The driving force is the concentration difference that drives the mass transfer. This driving force can be represented as a difference in mole fractions, a difference in partial pressures, a difference in concentrations in kmol/L, and so forth. The value and units of the mass transfer coefficient depend upon which driving forces are selected. The details are discussed in Chapter 15.

For equilibrium staged separations we would ideally calculate the mass transfer rate based on the transfer within each phase (vapor and liquid in Figure 1-2) using a driving force that is the concentration difference between the bulk fluid and the concentration at the interface. Since this is difficult, we often make a number of simplifying assumptions (see Section 15.4 for details) and use a driving force that is the difference between the actual concentration and the concentration we would have if equilibrium were achieved. For example, for the system shown in Figure 1-2 with concentrations measured in mole fractions, we could use the following rate expressions.

\[
\text{Rate / volume} = K_y a (y_A^* - y_A)
\]

(1-5a)

\[
\text{Rate / volume} = K_x a (x_A - x_A^*)
\]

(1-5b)

In these equations \(K_y\) and \(K_x\) are overall gas and liquid mass transfer coefficients, \(y_A^*\) is the mole fraction in the gas in equilibrium with the actual bulk liquid of mole fraction \(x_A\), \(x_A^*\) is the mole fraction in the liquid in equilibrium with the actual bulk gas of mole fraction \(y_A\), and the term “\(a\)” is the interfacial area per unit volume (m²/m³ or ft²/ft³).

By definition, at equilibrium we have \(y_A^* = y_A\) and \(x_A^* = x_A\). Note that as \(y_A \rightarrow y_A^*\) and \(x_A \rightarrow x_A^*\) the driving forces in Eqs. (1-5) approach zero and mass transfer rates decrease. In order to be reasonably close to equilibrium, the simplified model represented by Eqs. (1-5) shows that we need high values of \(K_y\) and \(K_x\) and/or “\(a\).” Generally speaking, the mass transfer coefficients will be higher if diffusivities are higher (details are in Chapter 15), which occurs with fluids of low viscosity. Since increases in temperature decrease viscosity, increasing temperature is favorable as long as it does not significantly decrease the differences in equilibrium concentrations and the materials are thermally stable. Mass transfer rates will also be increased if there is more interfacial area/volume between the gas and liquid (higher “\(a\)”). This can be achieved by having significant interfacial turbulence or by using a packing material with a large surface area (see Chapter 10).
Although some knowledge of what affects mass transfer is useful, we don't need to know the details as long as we are willing to assume we have equilibrium stages. Thus, we will delay discussing the details until we need them (Chapters 15 through 18).

1.4 PROBLEM-SOLVING METHODS

To help develop your problem-solving abilities, an explicit strategy, which is a modification of the strategy developed at McMaster University (Woods et al., 1975), is used throughout this book. The seven stages of this strategy are:

0. I want to, and I can
1. Define the problem
2. Explore or think about it
3. Plan
4. Do it
5. Check
6. Generalize

Step 0 is a motivation and confidence step. It is a reminder that you got this far in chemical engineering because you can solve problems. The more different problems you solve, the better a problem solver you will become. Remind yourself that you want to learn how to solve chemical engineering problems, and you can do it.

In step 1 you want to define the problem. Make sure that you clearly understand all the words. Draw the system and label its parts. List all the known variables and constraints. Describe what you are asked to do. If you cannot define the problem clearly, you will probably be unable to solve it.

In step 2 you explore and think about the problem. What are you really being asked to do? What basic principles should be applied? Can you find a simple limiting solution that gives you bounds to the actual solution? Is the problem over- or underspecified? Let your mind play with the problem and chew on it, and then go back to step 1 to make sure that you are still looking at the problem in the same way. If not, revise the problem statement and continue. Experienced problem solvers always include an explore step even if they don't explicitly state it.

In step 3 the problem solver plans how to subdivide the problem and decides what parts to attack first. The appropriate theory and principles must be selected and mathematical methods chosen. The problem solver assembles required resources such as data, paper, and calculator. While doing this, new subproblems may arise; you may find there are not enough data to solve the problem. Recycle through the problem-solving sequence to solve these subproblems.

Step 4, do it, is often the first step that inexperienced problem solvers try. In this step the mathematical manipulations are done, the numbers are plugged in, and an answer is generated. If your plan was incomplete, you may be unable to carry out this step. In that case, return to step 2 or step 3, the explore or plan steps, and recycle through the process.

In step 5, check your answer. Is it the right order of magnitude? For instance, commercial distillation columns are neither 12 centimeters nor 12 kilometers high. Does the answer seem reasonable? Have you avoided blunders such as plugging in the wrong number or incorrectly punching the calculator? Is there an alternative solution method that can serve as an independent check on the answer? If you find errors or inconsistencies, recycle to the appropriate step and solve the problem again.
The last step, generalize, is important but is usually neglected. In this step you try to learn as much as possible from the problem. What have you learned about the physical situation? Did including a particular phenomenon have an important effect, or could you have ignored it? Generalizing allows you to learn and become a better problem solver.

At first these steps will not “feel” right. You will want to get on with it and start calculating instead of carefully defining the problem and working your way through the procedure. Stick with a systematic approach. It works much better on difficult problems than a “start calculating, maybe something will work” method. The more you use this or any other strategy, the more familiar and less artificial it will become.

In this book, example problems are solved using this strategy. To avoid repeating myself, I will not list step 0, but it is always there. The other six steps will usually be explicitly listed and developed. On the simpler examples some of the steps may be very short, but they are always present.

I strongly encourage you to use this strategy and write down each step as you do homework problems. In the long run this method will improve your problem-solving ability.

A problem-solving strategy is useful, but what do you do when you get stuck? In this case heuristics or rules of thumb are useful. A heuristic is a method that is often helpful but is not guaranteed to help. A large number of problem-solving heuristics have been developed. I have listed ten (Wankat and Oreovicz, 1993) that are often helpful to students.

Problem-Solving Heuristics:

1. Try solving simplified, limiting cases.
2. Relate the problem to one you know how to solve. This heuristic encapsulates one of the major reasons for doing homework.
3. Generalize the problem.
4. Try putting in specific numbers. Heuristics 3 and 4 are the opposite of each other. Sometimes it is easier to see a solution path without all the details, and sometimes the details help.
5. Solve for ratios. Often problems can be solved for ratios, but there is not enough information to solve for individual values.
6. Do the solvable parts of the problem. This approach may provide information that allows you to solve previously unsolvable parts.
7. Look for information that you haven’t used.
8. Try to guess and check. If you have a strong hunch, this may lead to an answer, but you must check your guess.
9. Take a break. Don’t quit, but do something else for a while. Coming back to the problem may help you see a solution path.
10. Ask someone for a little help. Then complete the problem on your own.

Ten heuristics is probably too many to use on a regular basis. Select four or five that fit you, and make them a regular part of your problem-solving method. If you want to read more about problem solving and heuristics, I recommend *How to Model It: Problem Solving for the Computer Age* (Starfield et al., 1994) and *Strategies for Creative Problem Solving* (Fogler and LeBlanc, 1995).
1.5 PREREQUISITE MATERIAL

No engineering book exists in a vacuum, and some preparatory material is always required. The first prerequisite, which is often overlooked, is that you must be able to read well. If you don't read well, get help immediately.

A second set of prerequisites involves certain mathematical abilities. You need to be comfortable with algebra and the manipulation of equations, as these skills are used throughout the text. Another required mathematical skill is graphical analysis, since many of the design methods are graphical methods. You need to be competent and to feel comfortable plotting curves and straight lines and solving simultaneous algebraic equations graphically. Familiarity with exponential and logarithmic manipulations is required for Chapter 7. The only chapters requiring calculus are Section 8.5.2, and Chapters 9 and 15 through 18.

The third area of prerequisites concerns mass balances, energy balances, and phase equilibria. Although the basics of mass and energy balances can be learned in a very short time, facility with their use requires practice. Thus, this book will normally be preceded by a course on mass and energy balances. A knowledge of the basic ideas of phase equilibrium, including the concept of equilibrium, Gibbs' phase rule, distribution coefficients, familiarity with graphical representations of equilibrium data, and a working knowledge of vapor-liquid equilibrium (VLE) correlations will be helpful.

Units are a fourth critically important area. The United States’ NASA program crashed a space craft into Mars because of failure to convert between the metric and English systems of units. Because conversion of units will remain necessary throughout your career, I have used data in the units in which they were originally presented. Thus, you must do conversions throughout the book. Although problem solutions and Appendix C show conversion factors, it is assumed that you are very familiar and proficient with unit conversions. This includes conversion from weight to mole fractions, and vice versa.

A fifth area of prerequisites is problem-solving skills. Because the chemical engineer must be a good problem solver, it is important to develop skills in this area. The ability to solve problems is a prerequisite for all chemical engineering courses.

In general, later chapters depend on the earlier chapters, as shown schematically in Figure 1-3. Chapters 11, 14, 16, and 17 are not required for the understanding of later chapters and can be skipped if time is short. Figure 1-3 should be useful in planning the order in which to cover topics and for adapting this book for special purposes.

1.6 OTHER RESOURCES ON SEPARATION PROCESS ENGINEERING

Since students have different learning styles, you need to customize the way you use this book to adapt to your learning style. Of course, you will have to take charge of your learning and do this for yourself. If you are interested in exploring your learning style, a good place to start is the Index of Learning Styles, which was developed by Richard M. Felder and Linda K. Silverman. This index is available free on the Internet at www4.ncsu.edu/unity/lockers/users/felder/public/ILSpage.html. Alternatively, you may search on the term “Felder” using a search engine such as Google.

Since students (and professors) have different learning styles, no single approach to teaching or writing a book can be best for all students. Thus, there will undoubtedly be parts of this book that do not make sense to you. Many students use other students, then the teaching
assistant, and finally the professor as resources. Fortunately, a number of good textbooks and Web pages exist that can be helpful because their presentations differ from those in this textbook. Table 1-1 presents a short annotated bibliography of some of the available handbook and textbook resources. A large number of useful Web sites are available but are not listed because URLs change rapidly. They can be accessed by searching on the term “separation processes” using any popular search engine.

Table 1-1. Annotated bibliography of resources on separation process engineering

TABLE 1-1. Annotated bibliography of resources on separation process engineering (continued)

1.7 SUMMARY—OBJECTIVES

We have explored some of the reasons for studying separations and some of the methods we will use. At this point you should be able to satisfy the following objectives:

1. Explain how separations are used in a typical chemical plant
2. Define the concepts of equilibrium stages and unit operations
3. Explain what is meant by phase equilibrium
4. Explain the basic concepts of mass transfer
5. List the steps in the structured problem-solving approach and start to use this approach
6. Have some familiarity with the prerequisites

Note: In later chapters you may want to turn to the Summary—Objectives section first to help you see where you are going. Then when you’ve finished the chapter, the Summary—Objectives section can help you decide if you got there.

REFERENCES

HOMEWORK

A. Discussion Problems

A1. Return to your successful solution of a fairly difficult problem in one of your previous technical courses (preferably chemical engineering). Look at this solution but from the point of view of the process used to solve the problem instead of the technical details. Did you follow a structured method? Most people don't at first. Did you eventually do most of the steps listed? Usually, the define, explore, plan, and do it steps are done sometime during the solution. Rearrange your solution so that these steps are in order. Did you check your solution? If not, do that now. Finally, try generalizing your solution.

A2. Without returning to the book, answer the following:
 a. Define a unit operation. Give a few examples.
 b. What is the equilibrium stage concept?
 c. What are the steps in the systematic problem solving approach? Explain each step in your own words.

A3. The equilibrium stage concept
 a. is a hypothetical construct.
 b. assumes that phases leaving the stage are in equilibrium.
 c. is useful even when phases are not in equilibrium.
 d. all of the above.

A4. If you have studied heat transfer, relate Eq. (1-4) to the similar basic definition of heat transfer by conduction and convection.

A5. Do you satisfy the prerequisites? If not, how can you remedy this situation?

A6. Develop a key relations chart (one page or less) for this chapter. A key relations chart is a summary of everything you need to solve problems or answer questions from the chapter. In general, it will include equations, sketches, and key words. Organize it in your own way. The purpose of developing a key relations chart is to force your brain to actively organize the material. This will greatly aid you in remembering the material.

B. Generation of Alternatives

B1. List as many products and how they are purified or separated as you can. Go to a large supermarket and look at some of the household products. How many of these could you separate? At the end of this course you will know how to purify most of the liquid products.

B2. Some separation methods are common in homes in the United States. Most of these are concerned with water treatment. List the separations that you are familiar with and briefly describe how you think they work.

B3. The body uses several membrane separation methods. List as many of these as you can and describe how you think they work.

B4. Separation operations are very common in chemistry laboratories. List the separations that you employed in various chemistry labs.

C. Derivations

C1. Write the mass and energy balances (in general form) for the separator shown in Figure 1-1. If you have difficulty with this, review a book on mass and energy balances.
D. \textit{Problems}

D1. One of the prerequisites for study of separations is the ability to convert from weight to mole fractions and vice versa. As a refresher in this conversion, solve the following problem: We have a flow rate of 1500 kmol/h of a feed that is 40 mol\% ethanol and 60 mol\% water. What is the weight fraction of ethanol, and what is the total flow rate in pounds per hour?

E. \textit{Complex Problems}
There are no complex problems for this chapter.

F. \textit{Problems Using Other Resources}

F1. Look through several recent issues of \textit{Chemical Engineering} magazine or similar technical magazines and find an article that contains a process flow chart. Read the article and write a short (less than one page) critique. Explicitly comment on whether the flow sheet for the process fits (at least approximately) the general flow sheet shown in Figure 1-1.

F2. Arrange a tour of the unit operations laboratory in your institution to observe the different types of separation equipment. Note that although this equipment is often much larger than the separation equipment that you used in chemistry laboratory, it is much smaller than industrial-scale equipment.

G. \textit{Simulator Problems}
There are no simulator problems for this chapter.

H. \textit{Computer Spreadsheet Problems}
There are no computer spreadsheet problems for this chapter.
This page intentionally left blank
Index

A
Abietic acid data, 506
Absorption
chemical, 455
current absorbers, 482–484, 688–690
column diameter calculation, 474–475
column failure, 403
computer simulations, 494–496
centrated, 478–482
cross-flow, 489
definition, 455
dilute multisolute, 476–478
efficiency, 469–470
equilibria, 457–459
graphical analysis, 459–462
irreversible, 482–484
Kremser equation, 463–469
mass transfer, 626–628, 683–690
matrix solution, 478–482
McCabe-Thiele diagrams, 459–462
operating lines, 459–462
physical, 455
Absorption factor, 465
Acetic acid data, 376, 506, 538, 570, 815, 899
Acetonaphthalene data, 815, 904
Acetone data, 283, 487, 494, 900
Acetylene data, 814
Activated alumina, 811
data, 810, 815, 823, 853
Activated carbon, 809
data, 810, 812, 814–815, 816, 899–900
Adsorption. See also Sorption processes
definition, 805
example, 816–819
materials (See Sorbents)
processes (See Pressure swing adsorption,
Simulated moving bed, Temperature
swing adsorption)
Alanine, 824
Alcohol. See Ethanol
Alcohol dehydrogenase data, 516
Almost-ideal separations, 437–442
Ammonia data, 459, 490, 524, 617, 618, 620
Aniline data, 565
Anthracene data, 815, 823, 853
Argon data, 490
Aspartic acid, 824
Aspen Chromatography, 909–913
Aspen Plus. See also Computer simulations
absorption, 494–496
azeotropic distillation, 321–327
decaners, 323
downcomer design, 416–418
drawing flowcharts, 67–69
error messages, 70
extractive distillation, 325–328
flash drum setup, 67–68
LLE data fitting, 919–920
multicomponent distillation, 237–242
rate-based analysis of distillation, 721–724
simulating input data, 69–70, 71
simulations for binary distillation, 173–176
start-up, 67
stripping, 494–496
tray design, 416–418
troubleshooting guide, 915–917
two-pressure distillation, 321–323
VLE data analysis, 70
VLE data fitting, 919–920
Avogadro’s number, 600
Azeotrope, 21–22, 266, 267
Azeotropic distillation, 286, 296–300

B
Balances. See specific balances
Barium sulfide data, 595
Batch distillation
binary
Rayleigh equations, 331–332
simple, 332–336
constant-level, 336–337
Batch distillation (continued)

constant reflux ratio, 340–344

versus continuous operation, 331

energy requirements, 345

examples

low temperature, 605–607

multistage distillation, 341–344

Rayleigh equations binary distillation, 334–336

simple binary distillation, 334–336

history of, 329

inverted, 331, 355

multistage, 340–344

operating time, 344–346

schematic, 330

solvent-switching, 336

steam, 337–339

variable reflux ratio, 344

Batch extraction, 520–522

Benzene data, 227, 239, 272, 283, 287, 310, 506–507, 617, 618

Bibliography, 8–9

Binary batch distillation

Rayleigh equations, 331–332

simple, 332–336

Binary co-current permeation, 784–786, 798–803

Binary countercurrent flow, 786–788, 802–803

Binary cross-flow permeation, 782–784, 795–797

Binary distillation. See also Column distillation

computer simulation, 173–176

equilibrium relationships, 105–112

McCabe-Thiele method, 112–116

profiles, 127–129

solution methods, 105–112

spreadsheets for, 177–182

stage-by-stage methods, 105–112

Binary flash distillation. See Flash distillation, binary

Binary heterogeneous azeotropes, 266–270

Binary VLE. See Vapor-liquid equilibrium (VLE), binary

Boiling point. See Bubble-point

Boilup

column distillation, 81–84

definition, 81

versus recycling, 83

superheated, 153–155

Bolles-Fair correlation, 675–677

Books of reference. See Publications

Bovine serum albumin data, 815

Breaking azeotropes, 265–275

Bubble-caps, illustration, 359

Bubble-cap trays, 359

Bubble-point equilibrium calculations, 198–202

Bubble-point procedure, 217

Bubble regime, 86

Bulk density, 808

Butadiene-butylene separation process, 296–297

Butane, 33, 618

Butanol data, 266, 307, 440, 506, 617

C

Caffeine, 589

Capital costs

design variables, 428

estimating, 419–425

Carbon dioxide data, 458, 617, 618, 620, 736

Carbon molecular sieves (CMS), 809

Carbon monoxide data, 458, 736

Carbon tetrachloride data, 458, 570

Cascading flash separators, 79–84

Cation-exchange resins, 861–863

Checklist for sorption system design, 890–892

Chemical absorption, 455

Chemical plants, typical layout, 2

Chemical potential equilibrium, 3

Chemical reaction distillation, 300–303

Chilton-Colburn analogy, 639–640

Chimney trays, 365

Chlorinated compound data, 458

Chlorine data, 617, 620

Chlorobenzene data, 566, 620

Chloroform data, 283, 458

Chromatography. See also Solute movement analysis

computer simulation, 909–913

definition, 805

elution

costs, 827

displacement chromatography, 827

elementary, 823–826

flow programming, 827

Gaussian solution, 882–886

purge cycles, 823–827

resolution, 883–884

simulated moving bed (SMB) systems, 846–851

solute movement, 823–827

solvent gradients, 827

temperature gradient method, 827

temperature programming, 827

examples

elution chromatography, 823–826

solute movement analysis, 823–826

CMO (constant molal overflow). See Constant molal overflow (CMO)

CMS (carbon molecular sieves), 809

Co-current absorbers, 688–690

Coffee, 589
Column distillation. See also Binary distillation
boilup, 81–84
bubble regime, 86
cascading flash separators, 79–84
concurrent cascades, 80–81
countercurrent cascade, 80
debottlenecking, 151–153
design problems, 88
diameter too large, 152–153
enriching section
 balance envelope schematic, 102
 definition, 83
entrainment, 86
equipment, 79–90
example, external balances, 93–95
external balances, 91–95
feed lines, 116–124
feeds
 distillation with multiple feeds, 135–140
 internal stage-by-stage balances, 116–124
 phase and temperature effects, 107–109
 subcooled reflux, 153–155
 superheated boilup, 153–155
flowcharts, 156–157
flow regime, 86
foam regime, 86
froth regime, 86
increasing capacity, 151–153
isothermal distillation, 80–81
liquid carry-over between stages, 86
optimum feed stage, 88–90, 115–116
passing streams, 81–84
photograph, 85
pressure in, 88
purity levels, 152
rectifying section, 83
recycling versus reflux and boilup, 83
reflux, 81–84
reflux ratio, 88
reusing columns, 151–153
schematics, 83–84
sieve trays, photograph, 87
simulation problems, 88–90
specifications, 88–90
spray regime, 86
stages, calculating number of
 Lewis method, 105–112
 McCabe-Thiele method, 112–116, 132–133
stripping section, 83–84
variable pressure distillation, 80–81
variables, 88–90
Column distillation, internal stage-by-stage
balances
 analytical methods versus graphical, 155–157
 binary distillation profiles, 127–129
 binary solution methods, 105–112
 column sections, 133–134
 composition profiles, 127–129
 condensers
 intermediate, 143–144
 partial, 140–141
 constant flow rates, 106
 constant molal overflow (CMO), 106, 155–157
 efficiencies, 148–149
 enriching columns, 144–145
 equilibrium relationships, 101–105
 examples
 distillation with multiple feeds, 135–140
 feed line calculations, 121–124
 Lewis method, 109–112
 McCabe-Thiele method, 124–127, 129–133, 135–140
 open steam heating, 129–133
 feed, phase and temperature effects, 107–109
 feed lines, 116–124
 flow rate profiles, 127–129
 Lewis method
 constant molal overflow (CMO), 106–107
 example, 109–112
 versus McCabe-Thiele method, 155–157
 stage-by-stage calculations, 155–157
 limiting conditions, 146–148
 McCabe-Thiele method
 description, 112–116
 distillation with multiple feeds, 135–140
 examples, 124–127, 129–133, 135–140
 general analysis procedure, 133–140
 versus Lewis method, 155–157
 open steam heating, 129–133
 problem algorithm, 134
 minimum reflux, 146–148
 Murphree efficiency, 148–149
 operating equation, 107
 pinch points, 147
 reboilers
 intermediate, 143–144
 total, 141
 sidestreams, 141–143
 simulation problems, 150–151
 Sorel’s method, 106
 stripping columns, 144–145
 subcooled reflux, 153–155
 superheated boilup, 153–155
 temperature profiles, 127–129
 total reflux, 146–148
 withdrawal lines, 141–143
Column mass balances, sorption processes, 873
Columns
 coupling, 437–442
Columns (continued)
diameter calculation
absorption, 474–475
balancing, 376–378
description, 370–374, 392–397
examples, 374–376, 397–400
packed column flooding, 392–397
sieve trays, 370–374
stripping, 474–475
valve trays, 386–387
packed (See Packed columns)
polyethylene, 427–428
sections, 133–134
staged (See Staged columns)
Complex distillation processes
azeotropic distillation, 286, 296–300
binary heterogeneous azeotropes, 266–270
breaking azeotropes, 265–275
column pressure, 614–618
distillation curves, 281–285
distillation boundary curves, 283
distillation curves, 281–285
drying organic compounds, 271–275
drying organic compounds, 272–275
steam distillation, 277–279
extractive distillation, 290–296
polymers, 295
polarities of compounds, 295
residue curves, 285–290
schematic, 266
solvents
adding, 297–300
selecting, 295–296
steam distillation, 275–279
ternary distillation, 281–290
two-pressure distillation, 279–281, 321–323
Component mass balance, 34–42
Composition profiles
column distillation, 127–129
multicomponent distillation, 193–198
Computer simulations. See also Aspen Plus
absorption, 494–496
azeotropic distillation, 321–327
binary distillation, 173–176
chromatography, 909–913
downcomer design, 416–418
extraction, 542–543
flash drum setup, 67–68
flowsheets, drawing, 67–69
input data, 69–70
multicomponent distillation, 237–242
multicomponent distillation, matrix method, 237–242
multicomponent flash distillation, 67–73
rate-based analysis of distillation, 721–724
stripping, 494–496
tray design, 416–418
VLE data analysis, 70
Concentrated absorption, 478–482
Concentration polarization, 751–755, 758–764, 768–770, 793
Concentration profile, 195–198
Concurrent cascades, 80–81, 482–484, 690–692
Condensers
intermediate, 143–144
partial, 98, 140–141
total, 92, 112, 219
Conjugate lines, 522–523
Constant flow rates, 106
leaching with, 582–584
Constant-level batch distillation, 336–337
Constant molal overflow (CMO)
column distillation, 106, 155–157
definition, 106
stage-by-stage calculations for, 189–193
validity, 133, 155–157
Constant pattern waves, 851–852, 861
Constant reflux ratio, 340–344
Constants, physical, 922
Continuous column distillation. See Column distillation
Convergence, 215–217, 221–227, 227–228
Costs of distillation
almost-ideal separations, 437–442
capital costs
design variables, 428
estimating, 419–425
coupling columns, 437–442
ejection chromatography, 827
equipment costs (See Capital costs)
estimating, example, 430–432
factors effecting
column pressure, 427
energy costs, 433–436
feed rate, 430
operating effects, 425–432
reflux ratio, 427, 428, 430, 433
state of the economy, 420
heat exchange, 434–436
heat exchangers, 420–425
heuristics, 439–442
long-term trends, 433
Marshall and Stevens equipment cost index, 420
nonideal separations, 442–447
packed columns, 400–401
packings, 425
synthesizing column sequences
almost-ideal separations, 437–442
nonideal separations, 442–447
Countercurrent extraction
difference points, 533–537
dilute systems, 504–509
equilibrium stages, 531–533, 538–539
external mass balances, 531–533
Kremser method, 509–511
McCabe-Thiele diagrams, 504–509
stage-by-stage calculation, 533–537
Counterflow, 823–827
Coupling columns, 437–442
Cross-flow extraction, 514–518, 528–530
Cross-flow pattern, 360
Cumene data, 227, 283, 356
Cyclohexane data, 853

D
Data, 923–929
Debottlenecking, 151–153
Decane data, 33, 277
Decanters, 323, 549–552
DePriester charts, 31–34
Dew-point equilibrium calculations, 198–202
Dew point temperature, 194
Dextran data, 516, 900
Diagrams. See Enthalpy-composition diagrams;
Temperature-composition diagrams; Y-x diagrams
Dialysis, 727
Diameter calculation, columns. See Columns,
diameter calculation
Dichloroethane data, 239
Difference points, 533–537
Diffuse waves, 852–855
Diffusion
definition of, 599
examples, 605–607, 613–616, 648–649
irreversible thermodynamics model, 655
Maxwell-Stefan model of, 641–655
steady-state binary
with convection, 609–616
without convection, 604–607
unsteady binary, 607–609
Diffusivity
definition of, 599
examples

temperature effect, 619
Fickian binary gas, 616–619
Fickian binary liquid, 619–622
Fickian model, 599, 602–616, 640–641, 655
Fick’s law, 602–604
thermal, 602
Diisopropyl ether data, 308
Dilute fractional extraction, 511–514
Dilute multisolute absorption, 476–478
Dilute multisolute stripping, 476–478
Dinitronaphthalene data, 815, 904
Dispersion coefficient, 873, 877
Displacement chromatography, 827
Distillation. See also column distillation and
specific types of distillation
boundary curves, 283
costs (See Costs of distillation)
curves, 281–285
equilibrium stages, 1–2
rate-based analysis of, 708–712
stage-by-stage methods, 2
unit operation, 2
Distillation columns. See also Column distillation
as chemical reactors, 300–303
configurations (See Complex distillation
processes; Extractive distillation; Two-pressure distillation)
sequencing (See Synthesizing column
sequences)
Divalent-monovalent ion exchange, 865–870
Documentation. See Publications
Double-pass trays, 360
Downcomers, 360–362, 416–418
Driving force, 731, 733
Drying organic compounds, 271–275
Dry tray pressure, 358–359

E
Economics of distillation. See Costs of distillation
Efficiencies
column distillation, 148–149
mixer-settlers, 543
Murphree, 148–149
trays
determining, 367–368
estimating, example, 369–370
Murphree, 366–367
O’Connell correlation for absorption,
469–470
O’Connell correlation for distillation,
368–369
scaling up, 369
valve trays, 387
and vapor velocity, 367
Electrodialysis (ED), 727
Elution chromatography. See Chromatography,
elution
Energy balances
binary flash distillation
sequential solution, 23–28
simultaneous solution, 28–30
column distillation (See Column distillation,
external balances; Column distillation,
internal stage-by-stage balances)
multicomponent distillation, 189–192
Energy balances (continued)
- multicomponent flash distillation, 34–42
- pervaporation, 776–778
- sequential solutions, 23–28
- sign convention, 92
- sorption processes, 875

Energy costs, 433–436

Enriching columns, 144–145

Enriching section, 83–84, 101, 377

Enthalpy-composition diagrams
- graphing binary VLE, 18–22
- isotherms, 19–20

Enthalpy equations, 23–28

Entrainment
- bubble-cap trays, 359
- definition, 86
- inlet ports, 362–365
- outlet ports, 365
- sieve trays
 - column diameter, 370–378
 - example, 383–385
 - hydraulics, 378–385
 - tray layout, 378–385
 - vapor velocity, 367

Equilibrium
- adsorption, 811–816
- chemical potential, 3
- description, 2–4
- distillation stages, 1–2
- ion exchange, 863–865
- K values (See K values)
- mechanical, 3
- phase, 3
- plotting, 24
- relationships, column distillation, 101–105
- stages, applicability, 1–2
- thermal, 3

Equilibrium equations
- binary flash distillation
 - sequential solution, 23–28
 - simultaneous solution, 28–30
 - sequential solutions, 23–28

Error function, 878

Esterification in distillation column, 302–303

Ethane data, 33, 618, 812

Ethanol data, 15–22, 240, 287, 292, 310, 376, 440, 503, 617, 618, 620, 648, 774–775

Ethanol-water separation processes, 124–127, 290–292, 297–300

Ethyl acetate production, 300–303

Ethyl benzene data, 506

Ethylene data, 33, 812

Ethylene dichloride data, 239

Ethylene glycol data, 292

Evaporation. See Batch distillation

Excel
- binary flash distillation with, 74–75, 177–182
- multicomponent flash distillation with, 75
- regression of binary vapor-liquid equilibrium
 - with, 73–74

External mass balances
- binary distillation, 91–95
- column distillation, 91–95

Extraction
- solid-liquid (See Leaching; Washing)
- solutes, separating (See Dilute fractional extraction)

Extraction, immiscible. See also Extraction, partially miscible
- batch, 520–522
- concentrated solutions, 518–520
- countercurrent, 503–511
- cross-flow, 514–518
- definition, 499
- dilute fractional, 511–514
- distribution coefficients, 506
- equilibrium data, 507
- equipment used, 500
- examples
 - countercurrent immiscible extraction, 507–509
 - cross-flow extraction, 516–518
 - single-stage extraction, 516–518

Kremser analysis
- countercurrent extraction, 509–511
- dilute systems, 509–511
- mass transfer in, 693–708

McCabe-Thiele diagrams
- concentrated immiscible extraction, 518–520
- countercurrent extraction, 504–509
- cross-flow extraction, 514–518
- fractional extraction, 513–514
- mixer-settlers, 543–557
- nomenclature, 504
- raffinate, 504
- single-stage, 514–518
- solvent selection, 506

Extraction, partially miscible. See also Extraction, immiscible
- computer simulation, 542–543, 572–574
- conjugate lines, 522–523
- countercurrent
 - difference points, 533–537
 - equilibrium stages, 531–533, 538–539
 - external mass balances, 531–533
 - stage-by-stage calculation, 533–537
- cross-flow, 528–530
- examples
 - countercurrent extraction, 537–539
 - cross-flow extraction, 528–530
 - single-stage extraction, 528–530

944
minimum solvent rate, 540–542
mixing point, 526
plait points, 522
saturated extract, 522, 523, 524
saturated raffinate, 522–523
single-stage, 528–530
solubility envelope, 522
Extrative distillation, 290–296, 325–328

F
Fair method for column diameter calculation, 370–374
Feed lines
calculating line slope, 121–124
column distillation, 116–124
distillation with multiple feeds, 135–140
effect on flow rates, 107–112
internal stage-by-stage balances, 116–124
intersection of operating lines, 117–121
multiple, 135–140
optimum location, 88–90
phase and temperature effects, 107–109
plotting, 116–124
q value (feed quality), 118–124
subcooled reflux, 153–155
superheated boilup, 153–155
Feed plate, optimum location, 234–237
Feed rate, cost effects, 430
Feed stage, optimum, 115–116
Fenske equations, 223–228
Fibrinogen data, 620
Fickian model, of diffusion, 599, 602–616, 640–641, 655
Fick’s law, 602–604
Film theory, for mass transfer, 623–626
Finite reflux ratios, 233–237
Fire prevention, packed columns, 403–404
Fish liver oil data, 597
Flash distillation. See also Flash drums
adiabatic, 71
basic processes, 13–15
degrees of freedom, 13–14
equipment required, 13–14
examples
flash drums, sizing, 51–53
multicomponent flash distillation, 39–42
simultaneous multicomponent convergence, 45–47
multicomponent
component mass balance, 34–42
description, 34–42
energy balance, 34–42
example, 39–42
with Excel, 75
Newtonian convergence, 37–38, 42–44
overall mass balance, 34–42
Rachford Rice equations, 37–38, 39–42
simultaneous convergence, 45–47
simultaneous solutions, 34–42
wide-boiling feeds, 42–43
simulating (See Computer simulations)
spreadsheets for, 73–77
three-phase, 47–48
Flash distillation, binary
energy balance
sequential solution, 23–28
simultaneous solution, 28–30
equilibrium equations
sequential solution, 23–28
simultaneous solution, 28–30
mass balance
sequential solution, 23–28
simultaneous solution, 28–30
sequential solution
energy balance, 23–28
enthalpy equations, 23–28
equilibrium data, plotting, 24–25
equilibrium equations, 23–28
examples, 26–28
fraction vaporized (V/F), 23
mass balance, 23–28
operating equations, 23
relative volatility, 27–28
simultaneous solution, 28–30
Flash drums. See also Flash distillation
example, 51–53
requirements, 13
reusing, 53–54
setup, computer simulation, 67–68
sizing, 48–53
Flooding
packed columns, 392–397
sieve trays, 370–378, 380, 382
valve trays, 386–387
Flood regime, 86
Flowcharts
column distillation, 156–157
drawing, 67–69
Flow patterns
membrane separation
binary co-current permeation, 784–786, 800–801
binary countercurrent flow, 786–788, 802–803
binary cross-flow permeation, 782–784, 795–797
example, 781–782
overview, 781–782
spreadsheet calculations, 798–803
trays, 360

Index
Flow profiles
 column distillation, 127–129
 multicomponent distillation, 193–198
Flow programming in chromatography, 827
Flow rates
 multicomponent distillation correcting, 189–192
 initial guess, 220–221
 theta (τ) method convergence, 221–227
Foam regime, 86
Fouling, 765–766
Fraction vaporized (V/F), 23
Froth regime, 86
Fructose data, 815, 900, 908
Furfural data, 506

G
Gamma globulin data, 620
Gas permeation
 binary mixtures, 735–739
 concentration polarization, 793
 examples, 739–745, 747–748, 755–756
 membrane types, 735
 overview, 733–735
 perfectly mixed systems, binary permeation, 736–746
 perfectly mixed systems, multicomponent permeation, 746–748
 rate-transfer (RT) equation, 736–737
Gas treatment plants, 456
Gaussian solution for linear elution chromatography, 882–886
Gel formation, 767–771
Gilliland correlation, 233–237
Glucose data, 815

H
Heat exchange, 434–436
Heat exchangers, 420–425
Heat transfer, sorption processes, 875
Heat transfer coefficients, 427
Heavy key (HK) components, 184
Heavy non-key (HNK) components, 184
Height of packings, 390–392
Helium data, 620, 736
Hemodialysis, 727
Hemoglobin data, 620
Henry’s law, 457–459
Heptane data, 33, 369, 397, 506, 565, 831, 898
Heptane-toluene separation process, 292–296
HETP measurement, 391–392
Heuristics for distillation, 439–442
Hexane data, 33, 45, 51, 98, 369, 376, 397, 506, 617
Hollow-fiber system, 728–729
HTU-NTU (mass transfer analysis). See Mass transfer analysis (HTU-NTU)
HTUs, 665
Human serum albumin data, 815
Hydraulics, sieve trays
 description, 378–383
 example, 383–385
Hydrogen data, 617, 620, 736, 812
Hydrogen sulfide data, 458
Hydrophilic membranes, 774
Hydrophobic membranes, 774

I
Ideal gas constant, 922
Immiscible extraction. See Extraction, immiscible
Inlet ports, 362–365
Intermediate components, multicomponent distillation, 197
Intermediate condensers, 143–144
Intermediate reboilers, 143–144
Internal stage-by-stage balances. See Column distillation, internal stage-by-stage balances
Interstitial velocity in sorption columns, 807–808
Inverted batch distillation, 331, 355
Inverting tridiagonal matrices, 220
Ion exchange
calcium-form resin, 815, 849
cation-exchange resins, 861–863
definition, 805
divalent-monovalent, 865–870
equilibrium, 863–865
example, 866–870
ion movement, 865–870
monovalent, 864–866
overview, 861
resin data, 862, 864
strong resins, 861
Ion movement, 865–870
Irreversible absorption, 482–484
Isobutane data, 33, 617
Isopentane data, 33
Isopropanol data, 440
Isopropanol-water VLE, 920
Isopropyl ether data, 538
Isothermal distillation, 80–81
Isotherms, 19–20, 811–816

K
Karr columns, 557–558
Knudsen diffusion, 872
Kremser analysis
 absorption, 463–469, 509–511
 extraction, 509–511
generalized process, 522–524, 575–576
leaching, 584
stripping, 468–469
washing, 577–581
K values
activity coefficient, 34
constants, 33
DePriester charts, 31–34
equilibrium equation, 30
mole fractions in liquid, 32
multicomponent VLE, 31–34
Raoult’s law, 33
selection guide, 35
in three-phase flash calculation, 47–48
vapor phases, 32

L
Labs. See Computer simulations
Lang factor, 419
Langmuir isotherms, 813–814
Lapidus and Amundson solution, 877–879
Leaching, 595
with constant flow rates, 582–584
example, 585–587
Length of Unused Bed (LUB) approach, 886–890
Lennard-Jones parameters, 618
Lever-arm rule, 28–30, 524–527
Lewis method
calculating number of stages, 105–112
constant molal overflow (CMO), 106–107
example, 109–112
versus McCabe-Thiele method, 155–157
stage-by-stage calculations, 155–157
Light key (LK) components, 184
Light non-key (LNK) components, 184
Linear chromatography, 882–886
Linear driving force model, for mass transfer, 600, 622–628, 631, 655
Linear isotherms, 812–815
solute movement with, 821–851
Linoleic acid data, 506
Liquid carry-over between stages, 86
Liquid-liquid extraction (LLE). See Extraction, immiscible; Extraction, partially miscible
Liquid membranes, 727
LUB. See Length of Unused Bed (LUB)
Lumped parameter mass transfer, 873–875
column distillation (See Column distillation, external balances; Column distillation, internal stage-by-stage balances)
with convection, 609–616
multicomponent distillation, 217–220
sequential solutions, 23–28
without convection, 604–607
Mass transfer, 4–5
absorbers, 626–628, 863–690
analogous correlations, 639–640
coefficients, 628–640
correlations, 759, 874
definition of, 599
dimensionless groups, 628–630
empirical coefficient correlations, 635–638
examples, 637–638
film theory, 623–626
irreversible thermodynamics model, 655
linear driving force model, 600, 622–628, 631, 655
Maxwell-Stefan model of, 641–655
molecular movement in, 600–602, 655
strippers, 626–628
theoretically-derived correlations, 630–635
Mass transfer analysis (HTU-NTU)
absorbers, 683–688, 688–690
basic equation, 663–664
Bolles-Fair correlation, 675–677
co-current absorbers, 688–690
coefficients, 665
extraction, 693–708
examples
HG estimation, 677–682
HL estimation, 677–682
packed column distillation, 669–672
stage efficiency, 692–693
HTUs, 665
McCabe-Thiele diagrams, 667–668
overview, 663–667
packed columns, 663–672
packed tower correlation, 675–683
random packings correlation, 675–683
strippers, 683–688
sum-of-resistances model, 626
tray efficiency, 690–693
Maxwell-Stefan model, of diffusion and mass transfer, 641–655
example, 648–649
ideal ternary system, 649–653
nonideal ternary system, 653–655
McCabe-Thiele diagrams
absorption, 459–462
bottom operating lines, 114
McCabe-Thiele diagrams (continued)
calculating number of stages, 112–116, 132–133
CMO validity, 133
column distillation, 112–116
counter-current extraction, 518–520
cross-flow extraction, 514–518
description, 112–116
dilute multisolvent absorbers, 477
dilute systems, 463–469, 504–509
distillation with multiple feeds, 135–140
equilibrium relationships, plotting, 24–25,
112–116
examples, 124–127, 129–133, 135–140
fractional extraction, 513–514
general distillation analysis procedure, 133–140
generalized extraction process, 522–524
generalized procedure, 575–576
internal stage-by-stage balances, 112–116
leaching, 583
versus Lewis method, 155–157
mass transfer analysis (HTU-NTU), 667–668
open steam heating, 129–133
operating lines, 112
optimum feed stage, 115–116
problem algorithm, 134
stepping off stages, 113–116
stripping, 463
top operating lines, 113
triangular diagram relationship, 539–540
washing, 577–581
Mechanical equilibrium, 3
Membranes
definition, 727
for gas permeation, 735
hydrophilic, 774
hydrophobic, 774
liquid, 727
material, 731
polymer, 731
properties, determining, 755–756
semipermeable, 750
strength, 733
Membrane separation
concentration polarization (See Concentration
polarization)
dialysis, 727
driving force, 731, 733
electrodialysis (ED), 727
energy balances, 776–778
equipment, 727–731
examples
pervaporation, 778–780
ultrafiltration (UF) with gel formation, 769–771
flow patterns
binary co-current permeation, 784–786,
800–801
binary countercurrent flow, 786–788,
802–803
binary cross-flow permeation, 782–784,
795–797
example, 781–782
overview, 781–782
spreadsheet calculations, 798–803
fouling, 765–766
gas permeation
binary mixtures, 735–739
examples, 739–745, 747–748
membrane types, 735
overview, 733–735
perfectly mixed systems, binary permeation,
736–746
perfectly mixed systems, multicomponent
permeation, 746–748
rate-transfer (RT) equation, 736–737
gel formation, 767–771
hemodialysis, 727
hollow-fiber system, 728–729
liquid membranes, 727
microfiltration, 727
nanofiltration, 727
osmosis, 749–755
overview, 725–727
passed fluid, 727
performance prediction, 762–764
permeability, 731–733
permeance, 732
permeate, 727
permeate-in-series system, 729–730
pervaporation, 771–780
plate-and-frame system, 727–729
polymer membranes, 731
purifying liquids (See Ultrafiltration (UF))
retained fluid, 727
retentate, 727
retentate-in-series system, 729–730
retentate-recycle mode, 729–730
reverse osmosis (RO)
with concentrated solutions, 764–765
concentration polarization, 758–764
examples, 755–758, 757–758, 760–762,
762–764
membrane properties, determining, 755–756
versus osmosis, 749–755
overview, 749
spiral-wound system, 728–729
system properties, 726
thickness, 732
tube-in-shell system, 727–729
ultrafiltration (UF), 765–771
vapor permeation, 727
Methane data, 33, 45, 493, 617, 736, 812, 814, 816, 837, 900
Methanol data, 99, 129, 618, 620
Methylcellosolve data, 506
Methylcyclohexane data, 524, 565
Methylisobutyl ketone data, 506
Metric units, 7
Microfiltration, 727
Minimum reflux
definition, 146
limiting condition, 146–148
Minimum reflux ratio, 228–233
Minimum solvent rate, 540–542
Mixer-settlers, 543–557
Mixing calculations, 524–527
Mixing point, 526
Molecular movement, in mass transfer, 600–602
Monovalent ion exchange, 864–866
Multicomponent distillation
calculational difficulties, 183–189
complex methods (See Complex distillation processes)
composition profile, 193–198
computer simulation, 237–242
concentration profile, 195–198
examples
bubble-point calculation, 221–222
external mass balances, 186–189
matrix method, 184–189
theta (τ) method convergence, 184–189
external balance equations, 184–189
flow profile, 193–198
heavy key (HK) components, 184
heavy non-key (HNK) components, 184
intermediate components, 197
key components, 184
light key (LK) components, 184
light non-key (LNK) components, 184
Maxwell-Stefan equations, 649–653
Naphthali-Sandholm simultaneous
convergence method for, 227–228
non-key (NK) components, 184
profiles, 193–198
sandwich components, 197
schematic, 184
temperature profile, 193–198
total flow rates, 193–198
trial-and-error, 185
vapor-liquid equilibrium (VLE), 197–198
Multicomponent distillation, approximate methods
examples
Fenske equations, 227–228
Gilliland correlation, 235–237
minimum reflux, 232–233
number of stages, 235–237
optimum feed plate location, 235–237
total reflux, 227–228
Underwood equations, 232–233
feed plate, optimum location, 234–235
Fenske equations, 223–228
finite reflux ratios, 233–237
Gilliland correlation, 233–237
minimum reflux ratio, 228–233
stages, determining number of, 233–237
total reflux, 223–228
Underwood equations, 228–233
Multicomponent distillation, matrix method
boiling point (See Bubble-point; Temperature)
bubble-point procedure, 217
bubble-point temperature, 221–223 (See also Temperature)
computer simulation, 237–242
convergence, 215–217, 221–227
determination of VLE, 217–219
energy balances, 189–192
equations
matrix solution, 184–189
theta (τ) method convergence, 184–189
flow rates
correcting, 189–192
initial guess, 220–221
inverting tridiagonal matrices, 220
mass balances, 217–220
narrow-boiling procedure, 217
temperature calculations, 217 (See also Bubble-point)
temperature estimation, 221–223
theta (τ) method convergence, 221–222
Thomas algorithm, 220
Multicomponent flash distillation
example, 39–42
Rachford Rice equations, 37–38, 39–42
sequential solutions, 34–42
Multicomponent VLE. See Vapor-liquid equilibrium (VLE), multicomponent
Multiple-pass trays, 360
Multistage batch distillation, 340–344
Murphree efficiencies, 148–149, 366–367

N
Nanofiltration, 727
Naphthalene data, 587, 617, 823
Naphthali-Sandholm simultaneous convergence
method, 227–228
Narrow-boiling procedure, 217
Newtonian convergence
determining V/F, 37
multicomponent flash distillation, 37–38, 42–44

Index
Index

Nitrobenzene data, 487
Nitrogen data, 736, 814
Nitromethane data, 313, 314, 315
Nonane data, 33
Nonideal separations, 442–447
Non-key (NK) components, 184
Nonlinear isotherms, 851–855

O
O'Connell correlation, 368–369, 469–470
Octane data, 33, 51, 617
Octanol data, 309
Oldershaw design, 362, 369–370
Oleic acid data, 506
Open steam heating, 129–133
Operating cost effects, 425–432
Operating equations, 23
Optimum feed location, 88–90
Osmotic pressure, 750–751, 756
Outlet concentration profiles
 chromatography, 824–827, 882–884
 linear systems, 831–835, 841–846
 nonlinear systems, 886–888
Outlet ports, 365
Oxygen data, 736

P
Packed-bed column, 806–807
Packed columns
 diameter calculation
 absorption, 474–475
 description, 392–397
 example, 397–400
 stripping, 474–475
 economic trade-offs, 400–401
 fire prevention, 403–404
 flooding, 392–397
 internal parts, 388–390
 mass transfer analysis (HTU-NTU), 663–672
 overview, 388
 packings
 costs, 425
 data, 391, 394–395, 682, 683
 description, 388–390
 height of, 390–392
 HETP measurement, 391–392
 illustration, 389
 random, 388–390, 393, 402
 structured, 388–390, 393, 403
 pressure drop per foot, 401
 reflux ratio, 401
 safety, 403–404
 turndown capabilities, 388–389
Packed tower correlation, 675–683
Packings
 costs, 425
 data, 391, 394–395, 682, 683
 description, 388–390
 height of, 390–392
 HETP measurement, 391–392
 illustration, 388–390
 mass transfer analysis (HTU-NTU), 675–677
 random, 388–390, 393, 403
 structured, 388–390, 393, 403
Partial condensers, 140–141
Partially miscible extraction. See Extraction, partially miscible
Particle pellet density, 808
Passing streams, 81–84
Peclet number, 629
Pentane data, 33, 45, 98, 617
Pentanol data, 617
Perforated plates, 359–360
Permeability, 731–733
Permeance, 732
Permeate, 727
Permeate-in-series system, 729–730
Pervaporation, 771–780
 selectivity data, 774–775
Phase, effect on feeds, 107–109
Phase equilibrium, definition, 3
Physical absorption, 455
Pinch points
 definition, 147
 minimum reflux ratio, 228–233
Plait points, 522
Plate-and-frame system, 727–729
Polarities of compounds, 295–296
Poly(ethylene glycol) data, 516
Polymer membranes, 731
Polystyrene resins, 861–863
Ponchon-Savarit diagrams. See Enthalpy-composition diagrams
Potassium chloride data, 620
Prandtl number, 630
Pressure drop per foot, 401
Pressure swing adsorption (PSA), 837–846
Problem-solving
 checking answers, 5–6
 defining the problem, 5
 exploring the problem, 5
 generalizing to other problems, 6
 heuristics, 6
 How to Model It: Problem Solving for the Computer Age, 6
 motivation, 5
 planning an attack, 5
 prerequisite skills, 5–6
reaching an answer, 5
rules of thumb, 6
steps involved, 5–6
Profiles. See Composition profiles; Flow profiles;
Temperature profiles
Propane data, 33, 618, 812
Propanol data, 240, 440, 620
Proportional pattern waves, 851–852
Propylene data, 33
Publications
annotated bibliography, 8–9
batch distillation, 329
Chemical Engineering magazine, 420
Das New gross Distiller Buch, 329
How to Model It: Problem Solving for the
Computer Age, 6
Index of Learning Styles, 7
Liber de arte distillandi, 329
VLE data sources, 16–17
Punched hole pattern, sieve trays, 378
Purge cycles, 823–827
Purity levels, 152
Pyridine data, 566
Q
q (feed quality), 118–120
examples, 121–124
q-line. See feed lines
R
Rachford Rice equations, 37–38, 39–42
RADFRAC, 237–242, 721–724
Raffinate, 504, 522–523, 544
Random packings, 388–390, 393, 403
Raoult’s law, 33
Rate-based analysis, of distillation, 708–712,
721–724
Rate-transfer (RT) equation, see RT equation
Rayleigh equations, 331–332
Reboilers
intermediate, 143–144, 377–378
partial, 105
total, 141, 219
Reciprocating-plate columns (RPC), 557–558
Rectifying section, 83–84
Recycling versus reflux and boilup, 83
Reference books. See Publications
Reflux
class distillation, 81–84
definition, 81
minimum, 146–148
versus recycling, 83
subcooled, 153–155
total, 146–148
Reflux ratio
batch distillation, 340–344
cost, 340–344
cost effects, 427, 428, 430, 433
determining, 88
finite, 233–237
packed columns, 401
Underwood equations, 228–233
variable, 344
Regeneration steps, 819
Relative volatility, 27–28, 225
stage-by-stage calculations for, 189–193
Residue curves, 285–290
example, 445–447
Residuum Oil Supercritical Extraction (ROSE),
589
Resins, 861–862
Resources. See Publications
Retentate, 727
Retentate-in-series system, 729–730
Retentate-recycle mode, 729–730
Reusing distillation columns, 151–153
Reverse osmosis (RO)
with concentrated solutions, 764–765
collection polarization, 758–764
determining, 755–756, 755–758, 760–762,
762–764
membrane properties, 749–755
versus osmosis, 749–755
overview, 749
Reynolds analogy, 639
Reynolds number, 629
RO (reverse osmosis). See Reverse osmosis (RO)
ROSE. See Residuum Oil Supercritical Extraction
(ROSE)
RPC. See Reciprocating-plate columns (RPC)
RT (rate-transfer) equation, 736–740, 754, 757,
764–765, 767, 775, 778–779
S
Safety hazards
absorption column failure, 403
activated carbon solvent recovery, 835
bed fires, 892
fire prevention, packed columns, 403–404
respirators in adsorbers, 892
total reflux distillation, 146
Salt data. See sodium chloride data
Sandwich components, 197
Saturated extract, 524
Saturated raffinate, 522–523
Scaling up tray efficiencies, 369
SCFs (supercritical fluids), 587–589
Selectivity, membrane
gas permeation, 735–736
pervaporation, 774–775
RO, 753, 756
Self-sharpening waves, 857–861
Semipermeable membranes, 750
Separation methods. See Absorption, Adsorption,
Chromatography, Distillation, Extraction,
Ion exchange, Membrane separations,
Stripping, and Washing
Sephadex, 815
Sequencing distillation columns. See Synthesizing
column sequences
Sequential solutions
flash distillation, binary
energy balance, 23–28
enthalpy equations, 23–28
equilibrium data, plotting, 24–25
equilibrium equations, 23–28
examples, 26–28
fraction vaporized (V/F), 23
mass balance, 23–28
operating equations, 23
relative volatility, 27–28
flash distillation, multicomponent, 34–42
Settler design, 549–552
Sherwood number, 629, 633–635, 638, 658, 703,
759, 874
Shock waves, 851–852, 855–861
Sidestreams, 141–143
Sieve trays. See Trays, sieve
Silica gel, 811
data, 810, 815, 831, 898–899, 900
Simpson’s rule, 333–336, 343, 667
Simulated moving bed (SMB) systems, 846–851
Simulations. See Aspen Plus; Computer
simulations
Simultaneous convergence, 42–47
Simultaneous solutions
flash distillation, binary, 28–30
multicomponent flash distillation, 34–42
Single-stage extraction, 514–518, 528–530
Skarstrom cycle, 837
Sodium chloride data, 566, 595, 620, 756, 792
Solid-liquid extraction (SLE). See Leaching
Solubility envelope, 522
Solute movement analysis
basic chromatography
analysis of, 823–826
in a column, 819–821
counterflow, 823–827
elution chromatography, 823–826
for linear isotherms, 822–823
overview, 819
purge cycles, 823–827
regeneration steps, 819
derivation (mathematical) of solute movement
theory, 875–876
derivation (physical) of solute movement
theory, 821–823, 830–831
examples
diffuse waves, 852–855
pressure swing adsorption (PSA), 841–846
self-sharpening waves, 857–861
shock waves, 857–861
simulated moving bed (SMB) systems,
849–851
temperature swing adsorption (TSA),
831–835
thermal regeneration with linear isotherm,
831–835
linear systems
concentrated systems, 836
pressure swing adsorption (PSA), 837–846
safety hazards, 835
simulated moving bed (SMB) systems,
846–851
Skarstrom cycle, 837
temperature swing adsorption (TSA),
828–837
ture moving bed (TMB) systems, 847–849
nonlinear systems
constant pattern waves, 851–852, 861
diffuse waves, 852–855
nonlinear isotherms, 851–855
overview, 851–852
proportional pattern waves, 851–852
self-sharpening waves, 857–861
shock waves, 851–852, 855–861
Solvent gradients, 827
Solvents
adding, 297–300
selecting, 295–296, 506
Solvent-switching, batch distillation, 336–337
batch extraction, 520–522
Sorbents. See also Sorption processes
activated alumina, 811
activated carbon, 809
bulk density, 808
carbon molecular sieves (CMS), 809
definition, 806
equilibrium behavior, 811–816
equilibrium constants, 814–815
equipment, 806–807
example, 816–819
interstitial velocity, 807–808
isotherms, 811–816
Langmuir isotherms, 813–814
packed-bed column, 806–807
particle pellet density, 808
properties of, 810
silica gel, 811
structural density, 808
superficial velocity, 807
tortuosity (See tortuosity)
types of, 809–811
zeolite molecular sieves, 809
Sorel’s method, 106
Sorption processes. See also Adsorption;
Chromatography; Ion exchange; Sorbents
column mass balances, 873
design checklist, 890–892
energy balances, heat transfer, 875
equipment, 827
Knudsen diffusion, 872
mass transfer
detailed simulators, 876–877
and diffusion, 870–872
film theory, 624
lumped parameter, 873–875
surface diffusion, 872
thermal regeneration with linear isotherm,
831–835
Soybean oil data, 589
Spacing trays, 359, 371–372
Spiral-wound system, 728–729
Spray regime, 86
Spreadsheets
for binary distillation, 177–182
for diffusion, 661–662
for flash distillation, 73–77
for mass transfer, 661–662
for ternary distillation with constant relative
velocity, 209–213
Stage-by-stage balances. See Column distillation,
internal stage-by-stage balances
Stage-by-stage distillation, 2
Staged columns. See also Trays
bubble-caps, illustration, 359
diameter calculation
absorption, 474–475
stripping, 474–475
downcomers, 360–362
entrainment
bubble-cap trays, 359
inlet ports, 362–365
outlet ports, 365
vapor velocity, 367
equipment description, 357–365
inlets, 362–365
outlets, 362–365
perforated plates, 359–360
performance issues, 357–359
turndown, 357–359
valve assemblies, illustration, 358
weeping
inlet ports, 362–365
valve trays, 359
weirs, 362
weirs, 360–362
Stages, calculating number of for distillation
Gilliland correlation, 233–237
Lewis method, 105–112
McCabe-Thiele method, 112–116, 132–133
Steady-state binary diffusion, 604–607
Steam batch distillation, 337–339
Steam distillation, 275–279
Steam heating, 129–133
Stokes-Einstein equation, 621
Strippers, mass transfer analysis (HTUNTU),
626–628, 683–688
Stripping
analysis, 462–463
column diameter calculation, 474–475
computer simulations, 494–496
concentrated, 478–482
definition, 455
dilute multisolute, 476–478
equilibria, 457–459
matrix solution, 478–482
McCabe-Thiele diagrams, 463
O’Connell correlation, 469
Stripping distillation columns, 144–145
Stripping section in distillation, 83–84
Strong resins, 861
Structural density, 808
Structured packings, 388–390, 393, 403
Subcooled reflux, 153–155
Sucrose data, 620, 792
Sugar data, 594
Sulfur dioxide data, 687
Sum-of-resistances model, 626
Supercritical fluids (SCFs), 587–589
Superficial velocity, 807
Superheated boilup, 153–155
Superposition, 879–880
Surface diffusion, 872
Synthesizing column sequences
almost-ideal separations, 437–442
nonideal separations, 445–447

T

Temperature
calculating, 217
effect on distillation feeds, 107–109
estimating, 221–223
Temperature-composition diagrams, 21–22
Temperature gradient method, 827
Temperature profiles
 column distillation, 127–129
 multicomponent distillation, 193–198
Temperature programming in chromatography, 827
Temperature swing adsorption (TSA), 828–837
Thermal diffusivity, 602
Thermal equilibrium, 3
Thermal regeneration with linear isotherm, 831–835
Theta (τ) method convergence, 221–227
Thiodipropionitrile data, 506
Thomas algorithm, 220
TMB (true moving bed) systems, 847–849
Toluene data, 227, 283, 898, 902
Tortuosity, 808
 typical values, 810
Total flow rates, 193–198
Total reboilers, 141
Total reflux, 146–148, 223–228
Trays. See also Staged columns
 bubble-cap, 359
 chimney, 365
 column diameter calculation
 description, 370–374
 example, 374–376
 computer simulation, 416–418
 cross-flow pattern, 360
 double-pass, 360
 efficiencies
 determining, 367–368
 estimating, example, 369–370
 mass transfer, 528–530
 Murphree, 366–367
 O’Connell correlation, 368–369, 469–470
 scaling up, 369
 and vapor velocity, 367
 flow patterns, 360
 layout
 description, 378–383
 example, 383–385
 mass transfer analysis (HTU-NTU), 528–530
 selecting, 360–362
 spacing, 359, 371–372
 valve
 column diameter calculation, 386–387
 costs, 426
 description, 358–359
 design, 386–387
 dry tray pressure drop, 358–359
 efficiencies, 387
 flooding, 386–387
 turndown properties, 358–359
Trays, sieve
 column diameter calculation, 370–378
 costs, 426
 description, 357–358
 entrainment
 column diameter, 370–378
 example, 383–385
 hydraulics, 383–385
 tray layout, 378–385
 examples
 entrainment, 383–385
 hydraulics, 383–385
 layout, 383–385
 flooding, 370–378, 380, 382
 hydraulics
 description, 378–383
 example, 383–385
 illustration, 87, 363
 layout
 description, 378–383
 example, 383–385
 mechanical supports, 363
 operational limits, 383
 punched hole pattern, 378
 weeping, 383
Triangular diagrams
 conjugate lines, 522–523
 lever-arm rule, 524–527
 McCabe-Thiele diagram relationship to, 539–540
 mixing calculations, 524–527
 mixing point, 526
 saturated extract, 524
 saturated raffinate, 522–523
Trichloroethane data, 239
Triethylamine data, 570
True moving bed (TMB) systems, 847–849
TSA (temperature swing adsorption), 828–837
Tube-in-shell membrane systems, 727–729
Turndown
 packed columns, 388–389
 staged columns, 357–359
 valve trays, 358–359
Two-pressure distillation, 279–281, 321–323
U
 Ultrafiltration (UF), 765–771
 gel formation, 767–771
 retention data, 766
 Underwood equations, 228–233
Units and unit conversions, 921–922
Unit conversions, prerequisite skills, 7
Unit operation, 2
UOP (Universal Oil Products), 846–847

V
Valve assemblies, illustration, 358
Valve trays. See Trays, valve
van’t Hoff equation, 751
Vapor-liquid equilibrium (VLE)
absorption and stripping, 457–459
analysis simulation, 70
binary
enthalpy-composition diagrams, 19–21
graphical representations, 18–22
heterogeneous azeotrope, 266–270
maximum boiling azeotropes, 21–22
minimum boiling azeotropes, 21–22
saturated liquid curves, 18–19
saturated vapor lines, 18–19
temperature diagrams, 18–19
y-x diagrams, 18
data, forms and sources, 15–18
description, 15–18
with Excel, 73–74
extensive variables, 17
Gibbs phase rule, 17
Henry’s law, 457–459
intensive variables, 17
multicomponent
basic equipment, 30
DePriester charts, 31–34
K values, 31–34
Raoult’s law, 33–34
multicomponent distillation, 197–198
resource bibliography, 16–17
Vapor permeation, 727
Vapor velocity
entrainment, 367
tray efficiencies, 367
Variable pressure distillation, 80–81
Variable reflux ratio, batch distillation, 344
V/F (fraction vaporized), 23

W
Washing, 575–582, 595
Water data, 15–22, 99, 129, 266, 272, 280, 287, 292,
307–309, 458–459, 506–507, 538, 566, 617,
618, 620, 648, 756, 774–775, 792, 815
Water desalination, 749
Water softening, 861, 870
Weeping
inlet ports, 362–365
sieve trays, 383
valve trays, 359
weirs, 362
Weirs, 360–362
Wide-boiling feeds, 42–43, 478
Withdrawal lines, 141–143

X
Xylene data, 506, 831, 899

Y
y-x diagrams
equilibrium data, plotting, 24–25
isotherms, 21

Z
Zeolite molecular sieves, 809
data, 810, 812, 814