Chemical Process Safety

Third Edition
The Prentice Hall International Series in the Physical and Chemical Engineering Sciences had its auspicious beginning in 1956 under the direction of Neal R. Amundsen. The series comprises the most widely adopted college textbooks and supplements for chemical engineering education. Books in this series are written by the foremost educators and researchers in the field of chemical engineering.

Visit informit.com/ph/physandchem for a complete list of available publications.
Chemical Process Safety
Fundamentals with Applications

Third Edition

Daniel A. Crowl

Joseph F. Louvar
Contents

Preface xv
About the Authors xvii
On the Cover xviii
Nomenclature xix

1 Introduction 1

1-1 Safety Programs 2
1-2 Engineering Ethics 4
1-3 Accident and Loss Statistics 4
1-4 Acceptable Risk 12
1-5 Public Perceptions 14
1-6 The Nature of the Accident Process 15
1-7 Inherent Safety 20
1-8 Seven Significant Disasters 23
 Flixborough, England 23
 Bhopal, India 25
 Seveso, Italy 26
 Pasadena, Texas 27
 Texas City, Texas 29
 Jacksonville, Florida 30
 Port Wentworth, Georgia 30
Suggested Reading 31
Problems 32
2 Toxicology 37
 2-1 How Toxicants Enter Biological Organisms 38
 Gastrointestinal Tract 39
 Skin 39
 Respiratory System 40
 2-2 How Toxicants Are Eliminated from Biological Organisms 41
 2-3 Effects of Toxicants on Biological Organisms 42
 2-4 Toxicological Studies 43
 2-5 Dose versus Response 44
 2-6 Models for Dose and Response Curves 50
 2-7 Relative Toxicity 56
 2-8 Threshold Limit Values 56
 2-9 National Fire Protection Association (NFPA) Diamond 58
 On-Line Resources 59
 Suggested Reading 60
 Problems 60

3 Industrial Hygiene 65
 3-1 Government Regulations 66
 Laws and Regulations 66
 Creating a Law 66
 Creating a Regulation 66
 OSHA: Process Safety Management 71
 EPA: Risk Management Plan 73
 DHS: Chemical Facility Anti-Terrorism Standards (CFATS) 76
 3-2 Industrial Hygiene: Anticipation and Identification 78
 Material Safety Data Sheets 81
 3-3 Industrial Hygiene: Evaluation 84
 Evaluating Exposures to Volatile Toxicants by Monitoring 84
 Evaluating Worker Exposures to Dusts 88
 Evaluating Worker Exposures to Noise 89
 Estimating Worker Exposures to Toxic Vapors 91
 3-4 Industrial Hygiene: Control 99
 Respirators 101
 Ventilation 103
 On-Line Resources 109
 Suggested Reading 109
 Problems 110

4 Source Models 119
 4-1 Introduction to Source Models 119
 4-2 Flow of Liquid through a Hole 122
 4-3 Flow of Liquid through a Hole in a Tank 126
 4-4 Flow of Liquids through Pipes 131
 2-K Method 134
4-5 Flow of Gases or Vapors through Holes 140
4-6 Flow of Gases or Vapors through Pipes 146
 Adiabatic Flows 146
 Isothermal Flows 153
4-7 Flashing Liquids 163
4-8 Liquid Pool Evaporation orBoiling 169
4-9 Realistic and Worst-Case Releases 170
4-10 Conservative Analysis 172
 Suggested Reading 173
 Problems 174

5 Toxic Release and Dispersion Models 185
5-1 Parameters Affecting Dispersion 186
5-2 Neutrally Buoyant Dispersion Models 190
 Case 1: Steady-State Continuous Point Release with No Wind 194
 Case 2: Puff with No Wind 195
 Case 3: Non-Steady-State Continuous Point Release
 with No Wind 196
 Case 4: Steady-State Continuous Point Source Release with Wind 197
 Case 5: Puff with No Wind and Eddy Diffusivity Is a Function
 of Direction 197
 Case 6: Steady-State Continuous Point Source Release with Wind and Eddy
 Diffusivity Is a Function of Direction 198
 Case 7: Puff with Wind 198
 Case 8: Puff with No Wind and with Source on Ground 199
 Case 9: Steady-State Plume with Source on Ground 199
 Case 10: Continuous Steady-State Source with Source at Height \(H_r \), above
 the Ground 200
 Pasquill-Gifford Model 200
 Case 11: Puff with Instantaneous Point Source at Ground Level,
 Coordinates Fixed at Release Point, Constant Wind Only in \(x \) Direction
 with Constant Velocity \(u \) 204
 Case 12: Plume with Continuous Steady-State Source at Ground Level and
 Wind Moving in \(x \) Direction at Constant Velocity \(u \) 205
 Case 13: Plume with Continuous Steady-State Source at Height \(H_r \),
 above Ground Level and Wind Moving in \(x \) Direction at Constant
 Velocity \(u \) 206
 Case 14: Puff with Instantaneous Point Source at Height \(H_r \), above Ground
 Level and a Coordinate System on the Ground That Moves with the
 Puff 207
 Case 15: Puff with Instantaneous Point Source at Height \(H_r \), above Ground
 Level and a Coordinate System Fixed on the Ground at the Release
 Point 208
 Worst-Case Conditions 208
 Limitations to Pasquill-Gifford Dispersion Modeling 208
6 **Fires and Explosions** 245

6-1 The Fire Triangle 245
6-2 Distinction between Fires and Explosions 247
6-3 Definitions 247
6-4 Flammability Characteristics of Liquids and Vapors 249
 Liquids 250
 Gases and Vapors 253
 Vapor Mixtures 253
 Flammability Limit Dependence on Temperature 255
 Flammability Limit Dependence on Pressure 256
 Estimating Flammability Limits 256
6-5 Limiting Oxygen Concentration and Inerting 260
6-6 Flammability Diagram 262
6-7 Ignition Energy 270
6-8 Autoignition 270
6-9 Auto-Oxidation 271
6-10 Adiabatic Compression 272
6-11 Ignition Sources 273
6-12 Sprays and Mists 274
6-13 Explosions 275
 Detonation and Deflagration 276
 Confined Explosions 277
 Blast Damage Resulting from Overpressure 287
 TNT Equivalency 291
 TNO Multi-Energy Method 293
 Energy of Chemical Explosions 296
 Energy of Mechanical Explosions 298
 Missile Damage 301
 Blast Damage to People 301
 Vapor Cloud Explosions 303
 Boiling-Liquid Expanding-Vapor Explosions 304
Suggested Reading 304
Problems 305
7 Concepts to Prevent Fires and Explosions 317

7-1 Inerting 318
- Vacuum Purging 318
- Pressure Purging 321
- Combined Pressure-Vacuum Purging 323
- Vacuum and Pressure Purging with Impure Nitrogen 323
- Advantages and Disadvantages of the Various Pressure and Vacuum Inerting Procedures 325
- Sweep-Through Purging 325
- Siphon Purging 327
- Using the Flammability Diagram To Avoid Flammable Atmospheres 327

7-2 Static Electricity 333
- Fundamentals of Static Charge 333
- Charge Accumulation 334
- Electrostatic Discharges 335
- Energy from Electrostatic Discharges 337
- Energy of Electrostatic Ignition Sources 338
- Streaming Current 339
- Electrostatic Voltage Drops 342
- Energy of Charged Capacitors 342
- Capacitance of a Body 347
- Balance of Charges 350

7-3 Controlling Static Electricity 356
- General Design Methods To Prevent Electrostatic Ignitions 357
- Relaxation 358
- Bonding and Grounding 358
- Dip Pipes 359
- Increasing Conductivity with Additives 362
- Handling Solids without Flammable Vapors 363
- Handling Solids with Flammable Vapors 363

7-4 Explosion-Proof Equipment and Instruments 363
- Explosion-Proof Housings 365
- Area and Material Classification 365
- Design of an XP Area 366

7-5 Ventilation 367
- Open-Air Plants 367
- Plants Inside Buildings 368

7-6 Sprinkler Systems 370

7-7 Miscellaneous Concepts for Preventing Fires and Explosions 374
- Suggested Reading 374
- Problems 375
8 Chemical Reactivity 381
8-1 Background Understanding 382
8-2 Commitment, Awareness, and Identification of Reactive Chemical Hazards 384
8-3 Characterization of Reactive Chemical Hazards Using Calorimeters 390
 Introduction to Reactive Hazards Calorimetry 391
 Theoretical Analysis of Calorimeter Data 397
 Estimation of Parameters from Calorimeter Data 408
 Adjusting the Data for the Heat Capacity of the Sample Vessel 412
 Heat of Reaction Data from Calorimeter Data 413
 Using Pressure Data from the Calorimeter 414
 Application of Calorimeter Data 415
8-4 Controlling Reactive Hazards 416
Suggested Reading 418
Problems 418

9 Introduction to Reliefs 429
9-1 Relief Concepts 430
9-2 Definitions 432
9-3 Location of Reliefs 433
9-4 Relief Types and Characteristics 436
 Spring-Operated and Rupture Discs 436
 Buckling-Pin Reliefs 440
 Pilot-Operated Reliefs 440
 Chatter 441
 Advantages and Disadvantages of Various Reliefs 442
9-5 Relief Scenarios 443
9-6 Data for Sizing Reliefs 444
9-7 Relief Systems 444
 Relief Installation Practices 445
 Relief Design Considerations 447
 Horizontal Knockout Drum 448
 Flares 451
 Scrubbers 452
 Condensers 452
Suggested Reading 452
Problems 453

10 Relief Sizing 459
10-1 Conventional Spring-Operated Reliefs in Liquid Service 460
10-2 Conventional Spring-Operated Reliefs in Vapor or Gas Service 466
10-3 Rupture Disc Reliefs in Liquid Service 470
10-4 Rupture Disc Reliefs in Vapor or Gas Service 471
10-5 Two-Phase Flow during Runaway Reaction Relief 472
 Simplified Nomograph Method 478
10-6 Pilot-Operated and Bucking-Pin Reliefs 481
10-7 Deflagration Venting for Dust and Vapor Explosions 481
 Vents for Low-Pressure Structures 483
 Vents for High-Pressure Structures 485
10-8 Venting for Fires External to Process Vessels 488
10-9 Reliefs for Thermal Expansion of Process Fluids 492
 Suggested Reading 496
 Problems 497

11 Hazards Identification 505
11-1 Process Hazards Checklists 508
11-2 Hazards Surveys 508
11-3 Hazards and Operability Studies 524
11-4 Safety Reviews 530
 Informal Review 533
 Formal Review 534
11-5 Other Methods 537
 Suggested Reading 538
 Problems 538

12 Risk Assessment 549
12-1 Review of Probability Theory 550
 Interactions between Process Units 552
 Revealed and Unrevealed Failures 558
 Probability of Coincidence 562
 Redundancy 564
 Common Mode Failures 564
12-2 Event Trees 564
12-3 Fault Trees 569
 Determining the Minimal Cut Sets 572
 Quantitative Calculations Using the Fault Tree 575
 Advantages and Disadvantages of Fault Trees 576
 Relationship between Fault Trees and Event Trees 576
12-4 QRA and LOPA 577
 Quantitative Risk Analysis 577
 Layer of Protection Analysis 578
 Consequence 581
 Frequency 581
 Typical LOPA 585
 Suggested Reading 588
 Problems 588
13 Safety Procedures and Designs 597
13-1 Process Safety Hierarchy 598
 Process Safety Strategies 598
 Layers of Protection 598
13-2 Managing Safety 599
 Documentation 599
 Communications 599
 Delegation 599
 Follow-up 600
13-3 Best Practices 600
13-4 Procedures—Operating 600
13-5 Procedures—Permits 601
 Hot Work Permit 601
 Lock-Tag-Try Permit 601
 Vessel Entry Permit 602
13-6 Procedures—Safety Reviews and Accident Investigations 603
 Safety Reviews 603
 Incident Investigations 603
13-7 Designs for Process Safety 604
 Inherently Safer Designs 605
 Controls—Double Block and Bleed 606
 Controls—Safeguards or Redundancy 607
 Controls—Block Valves 608
 Controls—Explosion Suppression 608
 Flame Arrestors 608
 Containment 609
 Materials of Construction 610
 Process Vessels 610
 Deflagrations 612
 Detonations 612
13-8 Miscellaneous Designs for Fires and Explosions 615
13-9 Designs for Runaway Reactions 615
13-10 Designs for Handling Dusts 616
 Designs for Preventing Dust Explosions 617
 Management Practices for Preventing Dust Explosions 617
 Suggested Reading 617
 Problems 618

14 Case Histories 621
14-1 Static Electricity 622
 Tank Car Loading Explosion 622
 Explosion in a Centrifuge 622
 Duct System Explosion 623
 Conductor in a Solids Storage Bin 623
D Formal Safety Review Report for Example 10-4 669
E Saturation Vapor Pressure Data 679
F Special Types of Reactive Chemicals 681
G Hazardous Chemicals Data for a Variety of Chemical Substances 687

Index 695
Preface

The third edition of Chemical Process Safety is designed to enhance the process of teaching and applying the fundamentals of chemical process safety. It is appropriate for an industrial reference, a senior-level undergraduate course, or a graduate course in chemical process safety. It can be used by anyone interested in improving chemical process safety, including chemical and mechanical engineers and chemists. More material is presented than can be accommodated in a three-credit course, providing instructors with the opportunity to emphasize their topics of interest.

The primary objective of this textbook is to present the important technical fundamentals of chemical process safety. The emphasis on the fundamentals will help the student and practicing scientist to understand the concepts and apply them accordingly. This application requires a significant quantity of fundamental knowledge and technology.

The third edition has been rewritten to include new process safety technology, new references, and updated data that have appeared since the first edition was published in 1990 and the second edition in 2002. It also includes our combined experiences of teaching process safety in both industry and academia during the past 20 years.

The third edition contains two new chapters. Chapter 8, “Chemical Reactivity,” was added due to the recommendations from the US Chemical Safety Board (CSB) as a result of the T2 Laboratories accident investigation. Chapter 13, “Safety Procedures and Designs,” was added to consolidate some material that was scattered throughout the previous editions and to present a more complete and detailed discussion. We removed the chapter on accident investigations that appeared in the first and second editions; much of the content was moved to Chapter 13.

We continue to believe that a textbook on safety is possible only with both industrial and academic inputs. The industrial input ensures that the material is industrially relevant. The academic input ensures that the material is presented on a fundamental basis to help professors and students understand the concepts. Although the authors are (now) both from universities,
one has over 30 years of relevant experience in industry (J.F.L.), and the other (D.A.C.) has accumulated significant industrial and government consulting experience since the writing of the first edition.

Since the first edition was published, many universities have developed courses or course content in chemical process safety. This new emphasis on process safety is the result of the positive influences from industry and the Accreditation Board for Engineering and Technology (ABET). Based on faculty feedback, this textbook is an excellent application of the fundamental topics that are taught in the first three years of undergraduate education.

Although professors normally have little background in chemical process safety, they have found that the concepts in this text and the accompanying problems and solutions are easy to learn and teach. Professors have also found that industrial employees are enthusiastic and willing to give specific lectures on safety to enhance their courses.

This textbook is designed for a dedicated course in chemical process safety. However, we continue to believe that chemical process safety should be part of every undergraduate and graduate course in chemistry and chemical and mechanical engineering, just as it is a part of all the industrial experiences. This text is an excellent reference for these courses. This textbook can also be used as a reference for a design course.

Some will remark that our presentation is not complete or that some details are missing. The purpose of this book, however, is not to be complete but to provide a starting point for those who wish to learn about this important area. This book, for example, has a companion text titled *Health and Environmental Risk Analysis* that extends the topics relevant to risk analysis.

We are indebted to our many friends who helped us learn the fundamentals of chemical process safety and its application. Several of these friends have passed on—including G. Boicourt, J. Wehman, and W. Howard. We especially wish to thank S. Grossel, industrial consultant; B. Powers, retired from Dow Chemical Company; D. Hendershot, retired from Rohm and Haas; R. Welker, retired from the University of Arkansas; R. Willey of Northeastern University; R. Darby, retired from Texas A&M University; and Tom Spicer of the University of Arkansas. R. Willey of Northeastern University and V. Wilding of BYU provided very useful reviews of the entire manuscript. Several reviewers provided helpful comments on Chapter 8, “Chemical Reactivity,” including S. Horsch, H. Johnstone, and C. Mashuga of Dow Chemical Company; R. Johnson of Unwin Corporation; J. Keith of Michigan Technological University; and A. Theis of Fauske and Associates.

We also acknowledge and thank all the members of the Safety and Chemical Engineering Education (SACHE) Committee of the Center for Chemical Process Safety and the Safety and Loss Prevention Committee of the American Institute of Chemical Engineers. We are honored to be members of both committees. The members of these committees are the experts in safety; their enthusiasm and knowledge have been truly educational and a key inspiration to the development of this text.

Finally, we continue to acknowledge our families, who provided patience, understanding, and encouragement throughout the writing of these three editions.

We hope that this textbook helps prevent chemical plant and university accidents and contributes to a much safer future.

Daniel A. Crowl and Joseph F. Louvar
About the Authors

Daniel A. Crowl is the Herbert H. Dow Professor for Chemical Process Safety at Michigan Technological University. Professor Crowl received his B.S. in fuel science from Pennsylvania State University and his M.S. and Ph.D. in chemical engineering from the University of Illinois.

He is coauthor of the textbook *Chemical Process Safety: Fundamentals with Applications*, First and Second Editions, published by Prentice Hall. He is also author/editor of several AIChE books on process safety and editor of the safety section in the eighth edition of *Perry's Chemical Engineer's Handbook*.

Professor Crowl has won numerous awards, including the Bill Doyle award from AIChE, the Chemical Health and Safety Award from ACS, the Walton/Miller award from the Safety and Health Division of AIChE, and the Gary Leach Award from the AIChE Board.

Professor Crowl is a Fellow of AIChE, ACS Safety and Health Division, and CCPS.

Joseph F. Louvar has a B.S., M.S., and Ph.D. in chemical engineering. He is currently a professor at Wayne State University after having retired from the BASF Corporation. While working at the BASF Corporation, he was a director of BASF’s chemical engineering department; his responsibilities included the production of specialty chemicals, and he managed the implementation and maintenance of five processes that handled highly hazardous chemicals that were covered by Process Safety Management. As a professor at Wayne State University, he teaches chemical process safety, risk assessment, and process design.

Professor Louvar is the author of many safety-related publications and the coauthor of two books, *Chemical Process Safety: Fundamentals with Applications*, First and Second Editions, and *Health and Environmental Risk Analysis: Fundamentals with Applications*. Both books are published by Prentice Hall. Professor Louvar has been the chair of the Loss Prevention Committee and the Safety and Health Division. He is the CCPS staff consultant for the Undergraduate Education Committee, commonly known as the Safety and Chemical Engineering Education Committee (SACHE), and he is the coeditor of AIChE’s journal for process safety, *Process Safety Progress*.
The picture on the front cover shows the consequences of a waste receiver vessel explosion at the Bayer Cropscience plant in Institute, West Virginia on August 28, 2008. Due to start-up difficulties, a large amount of unreacted chemical accumulated in the receiver vessel. A runaway reaction occurred resulting in the explosion. See the complete investigation report at www.csb.gov. (Photo courtesy of the US Chemical Safety and Hazard Investigation Board.)
Nomenclature

\(a \) velocity of sound (length/time)
\(A \) area (length\(^2\)) or Helmholtz free energy (energy/mole); or process component availability; or arrhenius reaction rate pre-exponential constant (time\(^{-1}\))
\(A_t \) tank cross sectional area (length\(^2\))
\(\Delta A \) change in Helmholtz free energy (energy/mole)
\(B \) adiabatic reactor temperature increase (dimensionless)
\(C \) mass concentration (mass/volume) or capacitance (Farads)
\(C_0 \) discharge coefficient (unitless), or concentration at the source (mass/volume)
\(C_1 \) concentration at a specified time (mass/volume)
\(C_m \) concentration of dense gas (volume fraction)
\(C_p \) heat capacity at constant pressure (energy/mass deg)
\(C_{ppm} \) concentration in parts per million by volume
\(C_V \) heat capacity at constant volume (energy/mass deg)
\(C_{vent} \) deflagration vent constant (pressure\(^{1/2}\))
\(C_x \) concentration at location \(x \) downwind from the source (mass/volume)
\(\langle C \rangle \) average or mean mass concentration (mass/volume)
\(d \) diameter (length)
\(d_p \) particle diameter (length)
\(d_f \) diameter of flare stack (length)
\(D \) diffusion coefficient (area/time)
\(D_c \) characteristic source dimension for continuous releases of dense gases (length)
\(D_i \) characteristic source dimension for instantaneous releases of dense gas (length)
\(D_0 \) reference diffusion coefficient (area/time)
\(D_m\) molecular diffusivity (area/time)
\(D_{tid}\) total integrated dose due to a passing puff of vapor (mass time/volume)
\(E_a\) activation energy (energy/mole)
ERPG emergency response planning guideline (see Table 5-6)
EEGL emergency exposure guidance levels (see Section 5.5)
f Fanning friction factor (unitless) or frequency (1/time)
f\(\phi(t)\) failure density function
f\(v\) mass fraction of vapor (unitless)
F frictional fluid flow loss term (energy mass) or force or environment factor
FAR fatal accident rate (fatalities/10^8 hours)
FEV forced expired volume (liters/sec)
FVC forced vital capacity (liters)
g gravitational acceleration (length/time²)
g\(c\) gravitational constant (mass length/force time²)
g\(o\) initial cloud buoyancy factor (length/time²)
g\(x\) buoyancy factor at location \(x\) (length/time²)
G Gibbs free energy (energy/mole) or mass flux (mass/area time)
\(G_f\) mass flux during relief (mass/area time)
\(\Delta G\) change in Gibbs free energy (energy/mole)
h specific enthalpy (energy/mass)
\(h_L\) fluid level above leak in tank (length)
\(h^0_L\) initial fluid level above leak in tank (length)
h\(s\) leak height above ground level (length)
H enthalpy (energy/mole) or height (length)
\(H_f\) flare height (length)
\(H_t\) effective release height in plume model (length)
\(\Delta H\) change in enthalpy (energy/mole)
\(\Delta H_c\) heat of combustion (energy/mass)
\(\Delta H_{t}\) release height correction given by Equation 5-65
\(\Delta H_v\) enthalpy of vaporization (energy/mass)
I sound intensity (decibels)
\(ID\) pipe internal diameter (length)
IDLH immediately dangerous to life and health (see Section 5.5)
\(I_0\) reference sound intensity (decibels)
\(I_s\) streaming current (amps)
ISOC in-service oxygen concentration (volume percent oxygen)
\(j\) number of inerting purge cycles (unitless)
J electrical work (energy)
k non-ideal mixing factor for ventilation (unitless), or reaction rate (concentration¹-m/time)
k\(_1\), k\(_2\) constants in probit a equations
k\(_s\) thermal conductivity of soil (energy/length time deg)
K mass transfer coefficient (length/time)
K\(_b\) backpressure correction for relief sizing (unitless)
K\(_f\) excess head loss for fluid flow (dimensionless)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_i, K_∞</td>
<td>constants in excess head loss, given by Equation 4-38</td>
</tr>
<tr>
<td>K_G</td>
<td>explosion constant for vapors (length pressure/time)</td>
</tr>
<tr>
<td>K_j</td>
<td>eddy diffusivity in x, y or z direction (area/time)</td>
</tr>
<tr>
<td>K_P</td>
<td>overpressure correction for relief sizing (unitless)</td>
</tr>
<tr>
<td>K_{St}</td>
<td>explosion constant for dusts (length pressure/time)</td>
</tr>
<tr>
<td>K_V</td>
<td>viscosity correction for relief sizing (unitless)</td>
</tr>
<tr>
<td>K_0</td>
<td>reference mass transfer coefficient (length/time)</td>
</tr>
<tr>
<td>K^*</td>
<td>constant eddy diffusivity coefficient (area/time)</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
</tr>
<tr>
<td>LEL</td>
<td>lower explosion limit (volume %)</td>
</tr>
<tr>
<td>$LFL = LEL$</td>
<td>lower flammability limit (volume %)</td>
</tr>
<tr>
<td>LOC</td>
<td>limiting oxygen concentration (volume percent oxygen)</td>
</tr>
<tr>
<td>LOL</td>
<td>lower flammable limit in pure oxygen (volume %)</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>m_f</td>
<td>mass fraction</td>
</tr>
<tr>
<td>m_0</td>
<td>total mass contained in reactor vessel (mass)</td>
</tr>
<tr>
<td>m_{LR}</td>
<td>mass of limiting reactant in Equation (8-34) (mass)</td>
</tr>
<tr>
<td>m_T</td>
<td>total mass of reacting mixture in Equation (8-34) (mass)</td>
</tr>
<tr>
<td>m_{TNT}</td>
<td>mass of TNT</td>
</tr>
<tr>
<td>m_v</td>
<td>mass of vapor</td>
</tr>
<tr>
<td>M</td>
<td>molecular weight (mass/mole)</td>
</tr>
<tr>
<td>M_0</td>
<td>reference molecular weight (mass/mole)</td>
</tr>
<tr>
<td>M_a</td>
<td>Mach number (unitless)</td>
</tr>
<tr>
<td>MOC, MSOC</td>
<td>Minimum oxygen concentration or maximum safe oxygen concentration. See LOC</td>
</tr>
<tr>
<td>MTBC</td>
<td>mean time between coincidence (time)</td>
</tr>
<tr>
<td>MTBF</td>
<td>mean time between failure (time)</td>
</tr>
<tr>
<td>n</td>
<td>number of moles or reaction order</td>
</tr>
<tr>
<td>OSFC</td>
<td>out of service fuel concentration (volume percent fuel)</td>
</tr>
<tr>
<td>p</td>
<td>partial pressure (force/area)</td>
</tr>
<tr>
<td>p_d</td>
<td>number of dangerous process episodes</td>
</tr>
<tr>
<td>p_s</td>
<td>scaled overpressure for explosions (unitless)</td>
</tr>
<tr>
<td>P</td>
<td>total pressure or probability</td>
</tr>
<tr>
<td>P_b</td>
<td>backpressure for relief sizing (psig)</td>
</tr>
<tr>
<td>PEL</td>
<td>permissible exposure level (see Section 2.8)</td>
</tr>
<tr>
<td>PFD</td>
<td>probability of failure on demand</td>
</tr>
<tr>
<td>P_g</td>
<td>gauge pressure (force/area)</td>
</tr>
<tr>
<td>P_{max}</td>
<td>maximum pressure for relief sizing (psig)</td>
</tr>
<tr>
<td>P_s</td>
<td>set pressure for relief sizing (psig)</td>
</tr>
<tr>
<td>P_{sat}</td>
<td>saturation vapor pressure</td>
</tr>
<tr>
<td>q</td>
<td>heat (energy/mass) or heat intensity (energy/area time)</td>
</tr>
<tr>
<td>q_f</td>
<td>heat intensity of flare (energy/time area)</td>
</tr>
<tr>
<td>q_g</td>
<td>heat flux from ground (energy/area time)</td>
</tr>
<tr>
<td>q_s</td>
<td>specific energy release rate at set pressure during reactor relief (energy/mass)</td>
</tr>
<tr>
<td>Q</td>
<td>heat (energy) or electrical charge (coulombs)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Q_m</td>
<td>mass discharge rate (mass/time)</td>
</tr>
<tr>
<td>Q_o</td>
<td>instantaneous mass release (mass)</td>
</tr>
<tr>
<td>Q_v</td>
<td>ventilation rate (volume/time)</td>
</tr>
<tr>
<td>r</td>
<td>radius (length)</td>
</tr>
<tr>
<td>R</td>
<td>electrical resistance (ohms) or reliability</td>
</tr>
<tr>
<td>\bar{R}</td>
<td>Sachs scaled distance, defined by Equation 6-29 (unitless)</td>
</tr>
<tr>
<td>R_d</td>
<td>release duration for heavy gas releases (time)</td>
</tr>
<tr>
<td>RHI</td>
<td>reaction hazard index defined by Equation 14-1</td>
</tr>
<tr>
<td>r_t</td>
<td>vessel filling rate (time$^{-1}$)</td>
</tr>
<tr>
<td>R_g</td>
<td>ideal gas constant (pressure volume/mole deg)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number (unitless)</td>
</tr>
<tr>
<td>S</td>
<td>entropy (energy/mole deg) or stress (force/area)</td>
</tr>
<tr>
<td>S_m</td>
<td>material strength (force/area)</td>
</tr>
<tr>
<td>SPEGL</td>
<td>short term public exposure guideline (see Section 5.5)</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>t_d</td>
<td>positive phase duration of a blast (time)</td>
</tr>
<tr>
<td>t_e</td>
<td>emptying time</td>
</tr>
<tr>
<td>t_p</td>
<td>time to form a puff of vapor</td>
</tr>
<tr>
<td>t_v</td>
<td>vessel wall thickness (length)</td>
</tr>
<tr>
<td>t_w</td>
<td>worker shift time</td>
</tr>
<tr>
<td>Δt_v</td>
<td>venting time for reactor relief</td>
</tr>
<tr>
<td>T</td>
<td>temperature (deg)</td>
</tr>
<tr>
<td>T_d</td>
<td>material decomposition temperature (deg)</td>
</tr>
<tr>
<td>T_i</td>
<td>time interval</td>
</tr>
<tr>
<td>TLV</td>
<td>threshold limit value (ppm or mg/m3 by volume)</td>
</tr>
<tr>
<td>T_m</td>
<td>maximum temperature during reactor relief (deg)</td>
</tr>
<tr>
<td>T_s</td>
<td>saturation temperature at set pressure during reactor relief (deg)</td>
</tr>
<tr>
<td>TWA</td>
<td>time weighted average (ppm or mg/m3 by volume)</td>
</tr>
<tr>
<td>TXD</td>
<td>toxic dispersion method (see Section 5.5)</td>
</tr>
<tr>
<td>u</td>
<td>velocity (length/time)</td>
</tr>
<tr>
<td>u_d</td>
<td>dropout velocity of a particle (length/time)</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>average velocity (length/time)</td>
</tr>
<tr>
<td>$\langle \bar{u} \rangle$</td>
<td>mean or average velocity (length/time)</td>
</tr>
<tr>
<td>U</td>
<td>internal energy (energy/mole) or overall heat transfer coefficient (energy/area deg time) or process component unavailability</td>
</tr>
<tr>
<td>UEL</td>
<td>upper explosion limit (volume %)</td>
</tr>
<tr>
<td>$UFL = UEL$</td>
<td>upper flammability limit (volume %)</td>
</tr>
<tr>
<td>UOL</td>
<td>upper flammable limit in pure oxygen (volume %)</td>
</tr>
<tr>
<td>ν</td>
<td>specific volume (volume/mass)</td>
</tr>
<tr>
<td>ν_l</td>
<td>specific volume of liquid (volume/mass)</td>
</tr>
<tr>
<td>ν_v</td>
<td>specific volume of vapor (volume/mass)</td>
</tr>
<tr>
<td>ν_{lg}</td>
<td>specific volume change with liquid vaporization (volume/mass)</td>
</tr>
<tr>
<td>V</td>
<td>total volume or electrical potential (volts)</td>
</tr>
<tr>
<td>V_c</td>
<td>container volume</td>
</tr>
<tr>
<td>W</td>
<td>width (length)</td>
</tr>
</tbody>
</table>
Nomenclature

W_e
expansion work (energy)

W_s
shaft work (energy)

x
mole fraction or Cartesian coordinate (length), or reactor conversion (dimensionless), or distance from the source (length)

x_r
is the distance from the source to the transition (length),

x_v
is the virtual distance (length), and

x_{nb}
is the distance used in the neutrally buoyant model to compute the concentration downwind of the transition. (length)

X_f
distance from flare at grade (length)

y
mole fraction of vapor (unitless) or Cartesian coordinate (length)

Y
probit variable (unitless)

Y_G
gas expansion factor (unitless)

z
height above datum (length) or Cartesian coordinate (length) or compressibility (unitless)

z_e
scaled distance for explosions (length/mass$^{1/3}$)

Greek Letters

α
velocity correction factor (unitless) or thermal diffusivity (area/time)

β
thermal expansion coefficient (deg$^{-1}$)

δ
double layer thickness (length)

ε
pipe roughness (length) or emissivity (unitless)

ε_t
relative dielectric constant (unitless)

ε_0
permittivity constant for free space (charge2/force length2)

η
explosion efficiency (unitless)

Φ
nonideal filling factor (unitless), or phi-factor for calorimeter thermal inertia (dimensionless)

γ
heat capacity ratio (unitless)

γ_c
conductivity (mho/cm)

Γ
dimensionless activation energy

χ
function defined by Equation 9-10

λ
frequency of dangerous episodes

λ_d
average frequency of dangerous episodes

μ
viscosity (mass/length/time) or mean value or failure rate (faults/time)

μ_V
vapor viscosity (mass/length/time)

Ψ
overall discharge coefficient used in Equation 10-15 (unitless)

ρ
density (mass/volume)

ρ_L
liquid density (mass/volume)

ρ_{ref}
reference density for specific gravity (mass/volume)

ρ_V
vapor density (mass/volume)

ρ_x
density at distance x downwind from source (mass/volume)

σ
standard deviation (unitless)

$\sigma_r, \sigma_y, \sigma_z$
dispersion coefficient (length)

τ
relaxation time, or dimensionless reaction time

τ_i
inspection period for unrevealed failures
τ_0 operation period for a process component
τ_r period required to repair a component
τ_u period of unavailability for unrevealed failures
ζ zeta potential (volts)

Subscripts

a ambient
ad adiabatic
c combustion
f formation or liquid
g vapor or gas
H higher pressure
i initiating event
j purges
L lower pressure
m maximum
s set pressure
o initial or reference

Superscripts

° standard
' stochastic or random variable
Introduction

In 1987, Robert M. Solow, an economist at the Massachusetts Institute of Technology, received the Nobel Prize in economics for his work in determining the sources of economic growth. Professor Solow concluded that the bulk of an economy's growth is the result of technological advances.

It is reasonable to conclude that the growth of an industry is also dependent on technological advances. This is especially true in the chemical industry, which is entering an era of more complex processes: higher pressure, more reactive chemicals, and exotic chemistry.

More complex processes require more complex safety technology. Many industrialists even believe that the development and application of safety technology is actually a constraint on the growth of the chemical industry.

As chemical process technology becomes more complex, chemical engineers will need a more detailed and fundamental understanding of safety. H. H. Fawcett said, “To know is to survive and to ignore fundamentals is to court disaster.”¹ This book sets out the fundamentals of chemical process safety.

Since 1950, significant technological advances have been made in chemical process safety. Today, safety is equal in importance to production and has developed into a scientific discipline that includes many highly technical and complex theories and practices. Examples of the technology of safety include

- Hydrodynamic models representing two-phase flow through a vessel relief
- Dispersion models representing the spread of toxic vapor through a plant after a release, and

• Mathematical techniques to determine the various ways that processes can fail and the probability of failure

Recent advances in chemical plant safety emphasize the use of appropriate technological tools to provide information for making safety decisions with respect to plant design and operation. The word “safety” used to mean the older strategy of accident prevention through the use of hard hats, safety shoes, and a variety of rules and regulations. The main emphasis was on worker safety. Much more recently, “safety” has been replaced by “loss prevention.” This term includes hazard identification, technical evaluation, and the design of new engineering features to prevent loss. The subject of this text is loss prevention, but for convenience, the words “safety” and “loss prevention” will be used synonymously throughout.

Safety, hazard, and risk are frequently used terms in chemical process safety. Their definitions are

• Safety or loss prevention: the prevention of accidents through the use of appropriate technologies to identify the hazards of a chemical plant and eliminate them before an accident occurs.
• Hazard: a chemical or physical condition that has the potential to cause damage to people, property, or the environment.
• Risk: a measure of human injury, environmental damage, or economic loss in terms of both the incident likelihood and the magnitude of the loss or injury.

Chemical plants contain a large variety of hazards. First, there are the usual mechanical hazards that cause worker injuries from tripping, falling, or moving equipment. Second, there are chemical hazards. These include fire and explosion hazards, reactivity hazards, and toxic hazards.

As will be shown later, chemical plants are the safest of all manufacturing facilities. However, the potential always exists for an accident of catastrophic proportions. Despite substantial safety programs by the chemical industry, headlines of the type shown in Figure 1-1 continue to appear in the newspapers.

1-1 Safety Programs

A successful safety program requires several ingredients, as shown in Figure 1-2. These ingredients are

• System
• Attitude
• Fundamentals
• Experience
• Time
• You
First, the program needs a system (1) to record what needs to be done to have an outstanding safety program, (2) to do what needs to be done, and (3) to record that the required tasks are done. Second, the participants must have a positive attitude. This includes the willingness to do some of the thankless work that is required for success. Third, the participants must understand and use the fundamentals of chemical process safety in the design, construction, and operation of their plants. Fourth, everyone must learn from the experience of history or be doomed to repeat it. It is especially recommended that employees (1) read and understand

Figure 1-1 Headlines are indicative of the public’s concern over chemical safety.

Figure 1-2 The ingredients of a successful safety program.
case histories of past accidents and (2) ask people in their own and other organizations for their experience and advice. Fifth, everyone should recognize that safety takes time. This includes time to study, time to do the work, time to record results (for history), time to share experiences, and time to train or be trained. Sixth, everyone (you) should take the responsibility to contribute to the safety program. A safety program must have the commitment from all levels within the organization. Safety must be given importance equal to production.

The most effective means of implementing a safety program is to make it everyone’s responsibility in a chemical process plant. The older concept of identifying a few employees to be responsible for safety is inadequate by today’s standards. All employees have the responsibility to be knowledgeable about safety and to practice safety.

It is important to recognize the distinction between a good and an outstanding safety program.

- A good safety program identifies and eliminates existing safety hazards.
- An outstanding safety program has management systems that prevent the existence of safety hazards.

A good safety program eliminates the existing hazards as they are identified, whereas an outstanding safety program prevents the existence of a hazard in the first place.

The commonly used management systems directed toward eliminating the existence of hazards include safety reviews, safety audits, hazard identification techniques, checklists, and proper application of technical knowledge.

1-2 Engineering Ethics

Most engineers are employed by private companies that provide wages and benefits for their services. The company earns profits for its shareholders, and engineers must provide a service to the company by maintaining and improving these profits. Engineers are responsible for minimizing losses and providing a safe and secure environment for the company’s employees. Engineers have a responsibility to themselves, fellow workers, family, community, and the engineering profession. Part of this responsibility is described in the Engineering Ethics statement developed by the American Institute of Chemical Engineers (AICHE), shown in Table 1-1.

1-3 Accident and Loss Statistics

Accident and loss statistics are important measures of the effectiveness of safety programs. These statistics are valuable for determining whether a process is safe or whether a safety procedure is working effectively.

Many statistical methods are available to characterize accident and loss performance. These statistics must be used carefully. Like most statistics they are only averages and do not reflect the potential for single episodes involving substantial losses. Unfortunately, no single method is capable of measuring all required aspects. The three systems considered here are
Table 1-1 American Institute of Chemical Engineers Code of Professional Ethics

Fundamental principles

Engineers shall uphold and advance the integrity, honor, and dignity of the engineering profession by
1. using their knowledge and skill for the enhancement of human welfare;
2. being honest and impartial and serving with fidelity the public, their employers, and clients;
3. striving to increase the competence and prestige of the engineering profession.

Fundamental canons

1. Engineers shall hold paramount the safety, health, and welfare of the public in the performance of
 their professional duties.
2. Engineers shall perform services only in areas of their competence.
3. Engineers shall issue public statements only in an objective and truthful manner.
4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees,
 and shall avoid conflicts of interest.
5. Engineers shall build their professional reputations on the merits of their services.
6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity, and dignity of the
 engineering profession.
7. Engineers shall continue their professional development throughout their careers and shall provide
 opportunities for the professional development of those engineers under their supervision.

• OSHA incidence rate,
• Fatal accident rate (FAR), and
• Fatality rate, or deaths per person per year

All three methods report the number of accidents and/or fatalities for a fixed number of workers during a specified period.

OSHA stands for the Occupational Safety and Health Administration of the United States
government. OSHA is responsible for ensuring that workers are provided with a safe working
environment. Table 1-2 contains several OSHA definitions applicable to accident statistics.

The OSHA incidence rate is based on cases per 100 worker years. A worker year is
assumed to contain 2000 hours (50 work weeks/year × 40 hours/week). The OSHA incidence
rate is therefore based on 200,000 hours of worker exposure to a hazard. The OSHA incidence
rate is calculated from the number of occupational injuries and illnesses and the total number
of employee hours worked during the applicable period. The following equation is used:

\[
\text{OSHA incidence rate (based on injuries and illness)} = \frac{\text{Number of injuries and illnesses} \times 200,000}{\text{Total hours worked by all employees during period covered}}
\] (1-1)
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>First aid</td>
<td>Any one-time treatment and any follow-up visits for the purpose of observation of minor scratches, cuts, burns, splinters, and so forth that do not ordinarily require medical care. Such one-time treatment and follow-up visits for the purpose of observation are considered first aid even though provided by a physician or registered professional personnel.</td>
</tr>
<tr>
<td>Incident rate</td>
<td>Number of occupational injuries and/or illnesses or lost workdays per 100 full-time employees.</td>
</tr>
<tr>
<td>Lost workdays</td>
<td>Number of days (consecutive or not) after but not including the day of injury or illness during which the employee would have worked but could not do so, that is, during which the employee could not perform all or any part of his or her normal assignment during all or any part of the workday or shift because of the occupational injury or illness.</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even though provided by a physician or registered professional personnel.</td>
</tr>
<tr>
<td>Occupational injury</td>
<td>Any injury such as a cut, sprain, or burn that results from a work accident or from a single instantaneous exposure in the work environment.</td>
</tr>
<tr>
<td>Occupational illness</td>
<td>Any abnormal condition or disorder, other than one resulting from an occupational injury, caused by exposure to environmental factors associated with employment. It includes acute and chronic illnesses or diseases that may be caused by inhalation, absorption, ingestion, or direct contact.</td>
</tr>
<tr>
<td>Recordable cases</td>
<td>Cases involving an occupational injury or occupational illness, including deaths.</td>
</tr>
<tr>
<td>Recordable fatality cases</td>
<td>Injuries that result in death, regardless of the time between the injury and death or the length of the illness.</td>
</tr>
<tr>
<td>Recordable nonfatal cases without lost workdays</td>
<td>Cases of occupational injury or illness that do not involve fatalities or lost workdays but do result in (1) transfer to another job or termination of employment or (2) medical treatment other than first aid or (3) diagnosis of occupational illness or (4) loss of consciousness or (5) restriction of work or motion.</td>
</tr>
<tr>
<td>Recordable lost workday cases due to restricted duty</td>
<td>Injuries that result in the injured person not being able to perform their regular duties but being able to perform duties consistent with their normal work.</td>
</tr>
<tr>
<td>Recordable cases with days away from work</td>
<td>Injuries that result in the injured person not being able to return to work on their next regular workday.</td>
</tr>
<tr>
<td>Recordable medical cases</td>
<td>Injuries that require treatment that must be administered by a physician or under the standing orders of a physician. The injured person is able to return to work and perform his or her regular duties. Medical injuries include cuts requiring stitches, second-degree burns (burns with blisters), broken bones, injury requiring prescription medication, and injury with loss of consciousness.</td>
</tr>
</tbody>
</table>

bOSHA regulations, 29 CFR 1904.12.
An incidence rate can also be based on lost workdays instead of injuries and illnesses. For this case

\[
\text{OSHA incidence rate} \quad \text{(based on lost workdays)} = \frac{\text{Number of lost workdays} \times 200,000}{\text{Total hours worked by all employees during period covered.}}
\]

(1-2)

The definition of a lost workday is given in Table 1-2.

The OSHA incidence rate provides information on all types of work-related injuries and illnesses, including fatalities. This provides a better representation of worker accidents than systems based on fatalities alone. For instance, a plant might experience many small accidents with resulting injuries but no fatalities. On the other hand, fatality data cannot be extracted from the OSHA incidence rate without additional information.

The FAR is used mostly by the British chemical industry. This statistic is used here because there are some useful and interesting FAR data available in the open literature. The FAR reports the number of fatalities based on 1000 employees working their entire lifetime. The employees are assumed to work a total of 50 years. Thus the FAR is based on \(10^8\) working hours. The resulting equation is

\[
\text{FAR} = \frac{\text{Number of fatalities} \times 10^8}{\text{Total hours worked by all employees during period covered.}}
\]

(1-3)

The last method considered is the fatality rate or deaths per person per year. This system is independent of the number of hours actually worked and reports only the number of fatalities expected per person per year. This approach is useful for performing calculations on the general population, where the number of exposed hours is poorly defined. The applicable equation is

\[
\text{Fatality rate} = \frac{\text{Number of fatalities per year}}{\text{Total number of people in applicable population.}}
\]

(1-4)

Both the OSHA incidence rate and the FAR depend on the number of exposed hours. An employee working a ten-hour shift is at greater total risk than one working an eight-hour shift. A FAR can be converted to a fatality rate (or vice versa) if the number of exposed hours is known. The OSHA incidence rate cannot be readily converted to a FAR or fatality rate because it contains both injury and fatality information.
Table 1-3 Accident Statistics for Selected Industries

<table>
<thead>
<tr>
<th>Industrial activity</th>
<th>OSHA incident rates (U.S.)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recordable(^a)</td>
<td>Days away from work(^a)</td>
<td>Fatality(^b,(^2)</td>
<td>FAR (U.K.)(^c)</td>
<td></td>
</tr>
<tr>
<td>Agriculture(^1)</td>
<td>6.1</td>
<td>3.2</td>
<td>24.1</td>
<td>27</td>
<td>7.4</td>
</tr>
<tr>
<td>Chemical and allied products</td>
<td>3.3</td>
<td>1.9</td>
<td>2.5</td>
<td>2.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Coal mining</td>
<td>4.7</td>
<td>3.2</td>
<td>50</td>
<td>26.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Construction</td>
<td>5.4</td>
<td>2.8</td>
<td>10</td>
<td>11.1</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle manufacturing</td>
<td>9.3</td>
<td>5.0</td>
<td>1.3</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>All manufacturing</td>
<td>5.6</td>
<td>3.0</td>
<td>3.3</td>
<td>2.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

\(^1\)Crop and animal products.

\(^2\)Fatalities per 100,000 employed.

Example 1-1

A process has a reported FAR of 2. If an employee works a standard 8-hr shift 300 days per year, compute the deaths per person per year.

Solution

Deaths per person per year = \((8 \text{ hr/day}) \times (300 \text{ days/yr}) \times (2 \text{ deaths/10}^8 \text{ hr})\)

= \(4.8 \times 10^{-5}\).

Typical accident statistics for various industries are shown in Table 1-3. A FAR of 1.2 is reported in Table 1-3 for the chemical industry. Approximately half these deaths are due to ordinary industrial accidents (falling down stairs, being run over), the other half to chemical exposures.\(^2\)

The FAR figures show that if 1000 workers begin employment in the chemical industry, 2 of the workers will die as a result of their employment throughout all of their working lifetimes. One of these deaths will be due to direct chemical exposure. However, 20 of these same

1000 people will die as a result of nonindustrial accidents (mostly at home or on the road) and 370 will die from disease. Of those that perish from disease, 40 will die as a direct result of smoking.\(^3\)

Table 1-4 lists the FARs for various common activities. The table is divided into voluntary and involuntary risks. Based on these data, it appears that individuals are willing to take a substantially greater risk if it is voluntary. It is also evident that many common everyday activities are substantially more dangerous than working in a chemical plant.

For example, Table 1-4 indicates that canoeing is much more dangerous than traveling by motorcycle, despite general perceptions otherwise. This phenomenon is due to the number of exposed hours. Canoeing produces more fatalities per hour of activity than traveling by motorcycle. The total number of motorcycle fatalities is larger because more people travel by motorcycle than canoe.

Example 1-2

If twice as many people used motorcycles for the same average amount of time each, what will happen to (a) the OSHA incidence rate, (b) the FAR, (c) the fatality rate, and (d) the total number of fatalities?

\(^3\)Kletz, “Eliminating Potential Process Hazards.”

Table 1-4 Fatality Statistics for Common Nonindustrial Activities\(^a,b\)

<table>
<thead>
<tr>
<th>Activity</th>
<th>FAR (deaths/10^8 hours)</th>
<th>Fatality rate (deaths per person per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voluntary activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staying at home</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Traveling by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>57</td>
<td>17×10^{-5}</td>
</tr>
<tr>
<td>Bicycle</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Motorcycle</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>Canoeing</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Rock climbing</td>
<td>4000</td>
<td>4×10^{-5}</td>
</tr>
<tr>
<td>Smoking (20 cigarettes/day)</td>
<td></td>
<td>500×10^{-5}</td>
</tr>
<tr>
<td>Involuntary activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Struck by meteorite</td>
<td></td>
<td>6×10^{-11}</td>
</tr>
<tr>
<td>Struck by lightning (U.K.)</td>
<td></td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>Fire (U.K.)</td>
<td></td>
<td>150×10^{-7}</td>
</tr>
<tr>
<td>Run over by vehicle</td>
<td></td>
<td>600×10^{-7}</td>
</tr>
</tbody>
</table>

Solution

a. The OSHA incidence rate will remain the same. The number of injuries and deaths will double, but the total number of hours exposed will double as well.

b. The FAR will remain unchanged for the same reason as in part a.

c. The fatality rate, or deaths per person per year, will double. The fatality rate does not depend on exposed hours.

d. The total number of fatalities will double.

Example 1-3

If all riders used their motorcycles twice as much, what will happen to (a) the OSHA incidence rate, (b) the FAR, (c) the fatality rate, and (d) the total number of fatalities?

Solution

a. The OSHA incidence rate will remain the same. The same reasoning applies as for Example 1-2, part a.

b. The FAR will remain unchanged for the same reason as in part a.

c. The fatality rate will double. Twice as many fatalities will occur within this group.

d. The number of fatalities will double.

Example 1-4

A friend states that more rock climbers are killed traveling by automobile than are killed rock climbing. Is this statement supported by the accident statistics?

Solution

The data from Table 1-4 show that traveling by car (FAR = 57) is safer than rock climbing (FAR = 4000). Rock climbing produces many more fatalities per exposed hour than traveling by car. However, the rock climbers probably spend more time traveling by car than rock climbing. As a result, the statement might be correct but more data are required.

Recognizing that the chemical industry is safe, why is there so much concern about chemical plant safety? The concern has to do with the industry's potential for many deaths, as, for example, in the Bhopal, India, tragedy. Accident statistics do not include information on the total number of deaths from a single incident. Accident statistics can be somewhat misleading in this respect. For example, consider two separate chemical plants. Both plants have a probability of explosion and complete devastation once every 1000 years. The first plant employs a single operator. When the plant explodes, the operator is the sole fatality. The second plant employs 10 operators. When this plant explodes, all 10 operators succumb. In both cases the FAR and OSHA incidence rate are the same; the second accident kills more people, but there are a correspondingly larger number of exposed hours. In both cases the risk taken by an individual operator is the same.4

It is human nature to perceive the accident with the greater loss of life as the greater tragedy. The potential for large loss of life gives the perception that the chemical industry is unsafe.

4Kletz, “Eliminating Potential Process Hazards.”
Loss data\(^5\) published for losses after 1966 and in 10-year increments indicate that the total number of losses, the total dollar amount lost, and the average amount lost per incident have steadily increased. The total loss figure has doubled every 10 years despite increased efforts by the chemical process industry to improve safety. The increases are mostly due to an expansion in the number of chemical plants, an increase in chemical plant size, and an increase in the use of more complicated and dangerous chemicals.

Property damage and loss of production must also be considered in loss prevention. These losses can be substantial. Accidents of this type are much more common than fatalities. This is demonstrated in the accident pyramid shown in Figure 1-3. The numbers provided are only approximate. The exact numbers vary by industry, location, and time. “No Damage” accidents are frequently called “near misses” and provide a good opportunity for companies to determine that a problem exists and to correct it before a more serious accident occurs. It is frequently said that “the cause of an accident is visible the day before it occurs.” Inspections, safety reviews, and careful evaluation of near misses will identify hazardous conditions that can be corrected before real accidents occur.

Safety is good business and, like most business situations, has an optimal level of activity beyond which there are diminishing returns. As shown by Kletz,\(^6\) if initial expenditures are made on safety, plants are prevented from blowing up and experienced workers are spared. This results in increased return because of reduced loss expenditures. If safety expenditures increase, then the return increases more, but it may not be as much as before and not as much as achieved by spending money elsewhere. If safety expenditures increase further, the price of the product increases and sales diminish. Indeed, people are spared from injury (good humanity), but the cost is decreased sales. Finally, even higher safety expenditures result in uncompetitive product pricing: The company will go out of business. Each company needs to determine an appropriate level for safety expenditures. This is part of risk management.

From a technical viewpoint, excessive expenditures for safety equipment to solve single safety problems may make the system unduly complex and consequently may cause new safety

\(^6\) Kletz, “Eliminating Potential Process Hazards.”
Table 1-5 All Accidental Deaths*

<table>
<thead>
<tr>
<th>Type of death</th>
<th>1998 deaths</th>
<th>2007 deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor-vehicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public nonwork</td>
<td>38,900</td>
<td>40,955</td>
</tr>
<tr>
<td>Work</td>
<td>2,100</td>
<td>1,945</td>
</tr>
<tr>
<td>Home</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Subtotal</td>
<td>41,200 (43.5%)</td>
<td>43,100 (35.4%)</td>
</tr>
<tr>
<td>Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-motor-vehicle</td>
<td>3,000</td>
<td>2,744</td>
</tr>
<tr>
<td>Motor-vehicle</td>
<td>2,100</td>
<td>1,945</td>
</tr>
<tr>
<td>Subtotal</td>
<td>5,100 (5.4%)</td>
<td>4,689 (3.9%)</td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-motor-vehicle</td>
<td>28,200</td>
<td>43,300</td>
</tr>
<tr>
<td>Motor-vehicle</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Subtotal</td>
<td>28,400 (30.0%)</td>
<td>43,500 (35.7%)</td>
</tr>
<tr>
<td>Public</td>
<td>20,000 (21.1%)</td>
<td>30,500 (25%)</td>
</tr>
<tr>
<td>All classes</td>
<td>94,700</td>
<td>121,789</td>
</tr>
</tbody>
</table>

problems because of this complexity. This excessive expense could have a higher safety return if assigned to a different safety problem. Engineers need to also consider other alternatives when designing safety improvements.

It is also important to recognize the causes of accidental deaths, as shown in Table 1-5. Because most, if not all, company safety programs are directed toward preventing injuries to employees, the programs should include off-the-job safety, especially training to prevent accidents with motor vehicles.

When organizations focus on the root causes of worker injuries, it is helpful to analyze the manner in which workplace fatalities occur (see Figure 1-4). Although the emphasis of this book is the prevention of chemical-related accidents, the data in Figure 1-4 show that safety programs need to include training to prevent injuries resulting from transportation, assaults, mechanical and chemical exposures, and fires and explosions.

1-4 Acceptable Risk

We cannot eliminate risk entirely. Every chemical process has a certain amount of risk associated with it. At some point in the design stage someone needs to decide if the risks are
"acceptable." That is, are the risks greater than the normal day-to-day risks taken by individuals in their nonindustrial environment? Certainly it would require a substantial effort and considerable expense to design a process with a risk comparable to being struck by lightning (see Table 1-4). Is it satisfactory to design a process with a risk comparable to the risk of sitting at home? For a single chemical process in a plant composed of several processes, this risk may be too high because the risks resulting from multiple exposures are additive.7

7Modern site layouts require sufficient separation of plants within the site to minimize risks of multiple exposures.
Figure 1-5 Results from a public opinion survey asking the question, “Would you say chemicals do more good than harm, more harm than good, or about the same amount of each?” Source: The Detroit News.

Engineers must make every effort to minimize risks within the economic constraints of the process. No engineer should ever design a process that he or she knows will result in certain human loss or injury, despite any statistics.

1-5 Public Perceptions

The general public has great difficulty with the concept of acceptable risk. The major objection is due to the involuntary nature of acceptable risk. Chemical plant designers who specify the acceptable risk are assuming that these risks are satisfactory to the civilians living near the plant. Frequently these civilians are not aware that there is any risk at all.

The results of a public opinion survey on the hazards of chemicals are shown in Figure 1-5. This survey asked the participants if they would say chemicals do more good than harm, more harm than good, or about the same amount of each. The results show an almost even three-way split, with a small margin to those who considered the good and harm to be equal.

Some naturalists suggest eliminating chemical plant hazards by “returning to nature.” One alternative, for example, is to eliminate synthetic fibers produced by chemicals and use natural fibers such as cotton. As suggested by Kletz,8 accident statistics demonstrate that this will result in a greater number of fatalities because the FAR for agriculture is higher.

8Kletz, “Eliminating Potential Process Hazards.”
Table 1-6 Three Types of Chemical Plant Accidents

<table>
<thead>
<tr>
<th>Type of accident</th>
<th>Probability of occurrence</th>
<th>Potential for fatalities</th>
<th>Potential for economic loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td>High</td>
<td>Low</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Explosion</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>Toxic release</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Example 1-5
List six different products produced by chemical engineers that are of significant benefit to mankind.

Solution
Penicillin, gasoline, synthetic rubber, paper, plastic, concrete.

1-6 The Nature of the Accident Process

Chemical plant accidents follow typical patterns. It is important to study these patterns in order to anticipate the types of accidents that will occur. As shown in Table 1-6, fires are the most common, followed by explosion and toxic release. With respect to fatalities, the order reverses, with toxic release having the greatest potential for fatalities.

Economic loss is consistently high for accidents involving explosions. The most damaging type of explosion is an unconfined vapor cloud explosion, where a large cloud of volatile and flammable vapor is released and dispersed throughout the plant site followed by ignition and explosion of the cloud. An analysis of the largest chemical plant accidents (based on worldwide accidents and 1998 dollars) is provided in Figure 1-6. As illustrated, vapor cloud explosions

Figure 1-6 Types of loss for large hydrocarbon-chemical plant accidents. Data from The 100 Largest Losses, 1972–2001.
account for the largest percentage of these large losses. The “other” category of Figure 1-6 includes losses resulting from floods and windstorms.

Toxic release typically results in little damage to capital equipment. Personnel injuries, employee losses, legal compensation, and cleanup liabilities can be significant.

Figure 1-7 presents the causes of losses for these largest accidents. By far the most frequent cause is mechanical failures, such as pipe failures due to corrosion, erosion, and high pressures, and seal/gasket failures. Failures of this type are usually due to poor maintenance or the poor utilization of the principles of inherent safety (Section 1-7) and process safety management (Section 3-1). Pumps, valves, and control equipment will fail if not properly maintained. The second largest cause is operator error. For example, valves are not opened or closed in the proper sequence or reactants are not charged to a reactor in the correct order. Process upsets caused by, for example, power or cooling water failures account for 3% of the losses.

Human error is frequently used to describe a cause of losses. Almost all accidents, except those caused by natural hazards, can be attributed to human error. For instance, mechanical failures could all be due to human error as a result of improper maintenance or inspection. The term “operator error,” used in Figure 1-7, includes human errors made on-site that led directly to the loss.

![Figure 1-7](image-url) Causes of losses for largest hydrocarbon-chemical plant accidents. Data from *The 100 Largest Losses, 1972–2001.*
Figure 1-8 presents a survey of the type of hardware associated with large accidents. Piping system failure represents the bulk of the accidents, followed by storage tanks and reactors. An interesting result of this study is that the most complicated mechanical components (pumps and compressors) are minimally responsible for large losses.

The loss distribution for the hydrocarbon and chemical industry over 5-year intervals is shown in Figure 1-9. The number and magnitude of the losses increase over each consecutive 10-year period for the past 30 years. This increase corresponds to the trend of building larger and more complex plants.

The lower losses between 1992 and 1996 are likely the temporary result of governmental regulations that were implemented in the United States during this time; that is, on February 24, 1992, OSHA published its final rule “Process Safety Management of Highly Hazardous Chemicals (PSM).” This rule became effective on May 26, 1992. As shown, however, the lower losses between 1992 and 1996 were probably a start-up benefit of PSM because in the last 5-year period (1997-01) the losses went up again.
Accidents follow a three-step process. The following chemical plant accident illustrates these steps.

A worker walking across a high walkway in a process plant stumbles and falls toward the edge. To prevent the fall, he grabs a nearby valve stem. Unfortunately, the valve stem shears off and flammable liquid begins to spew out. A cloud of flammable vapor rapidly forms and is ignited by a nearby truck. The explosion and fire quickly spread to nearby equipment. The resulting fire lasts for six days until all flammable materials in the plant are consumed, and the plant is completely destroyed.

This disaster occurred in 1969 and led to an economic loss of $4,161,000. It demonstrates an important point: Even the simplest accident can result in a major catastrophe.

Most accidents follow a three-step sequence:

- Initiation (the event that starts the accident)
- Propagation (the event or events that maintain or expand the accident), and
- Termination (the event or events that stop the accident or diminish it in size)

In the example the worker tripped to initiate the accident. The accident was propagated by the shearing of the valve and the resulting explosion and growing fire. The event was terminated by consumption of all flammable materials.

Safety engineering involves eliminating the initiating step and replacing the propagation steps with termination events. Table 1-7 presents a few ways to accomplish this. In theory, accidents can be stopped by eliminating the initiating step. In practice this is not effective: It is unrealistic to expect elimination of all initiations. A much more effective approach is to work on all three areas to ensure that accidents, once initiated, do not propagate and will terminate as quickly as possible.

Example 1-6

The following accident report has been filed.10

Failure of a threaded 1½" drain connection on a rich oil line at the base of an absorber tower in a large (1.35 MCF/D) gas producing plant allowed the release of rich oil and gas at 850 psi and −40°F. The resulting vapor cloud probably ignited from the ignition system of engine-driven recompressors. The 75’ high × 10’ diameter absorber tower eventually collapsed across the pipe rack and on two exchanger trains. Breaking pipelines added more fuel to the fire. Severe flame impingement on an 11,000-horsepower gas turbine–driven compressor, waste heat recovery, and super-heater train resulted in its near total destruction.

Identify the initiation, propagation, and termination steps for this accident.

10 *One Hundred Largest Losses*, p. 10.

Solution

Initiation: Failure of threaded 1\(\frac{1}{2}\)" drain connection

Propagation: Release of rich oil and gas, formation of vapor cloud, ignition of vapor cloud by re-compressors, collapse of absorber tower across pipe rack

Termination: Consumption of combustible materials in process

As mentioned previously, the study of case histories is an especially important step in the process of accident prevention. To understand these histories, it is helpful to know the definitions of terms that are commonly used in the descriptions (see Table 1-8).

1-7 Inherent Safety

An inherently safe plant\(^{11,12}\) relies on chemistry and physics to prevent accidents rather than on control systems, interlocks, redundancy, and special operating procedures to prevent accidents. Inherently safer plants are tolerant of errors and are often the most cost effective. A process that does not require complex safety interlocks and elaborate procedures is simpler, easier to operate, and more reliable. Smaller equipment, operated at less severe temperatures and pressures, has lower capital and operating costs.

In general, the safety of a process relies on multiple layers of protection. The first layer of protection is the process design features. Subsequent layers include control systems, interlocks, safety shutdown systems, protective systems, alarms, and emergency response plans. Inherent safety is a part of all layers of protection; however, it is especially directed toward process design features. The best approach to prevent accidents is to add process design features to prevent hazardous situations. An inherently safer plant is more tolerant of operator errors and abnormal conditions.

Although a process or plant can be modified to increase inherent safety at any time in its life cycle, the potential for major improvements is the greatest at the earliest stages of process development. At these early stages process engineers and chemists have the maximum degree of freedom in the plant and process specifications, and they are free to consider basic process alternatives, such as changes to the fundamental chemistry and technology.

The following four words are recommended to describe inherent safety:

- Minimize (intensification)
- Substitute (substitution)
- Moderate (attenuation and limitation of effects)
- Simplify (simplification and error tolerance)
The types of inherent safety techniques that are used in the chemical industry are illustrated in Table 1-9 and are described more fully in what follows.

Minimizing entails reducing the hazards by using smaller quantities of hazardous substances in the reactors, distillation columns, storage vessels, and pipelines. When possible, hazardous materials should be produced and consumed in situ. This minimizes the storage and transportation of hazardous raw materials and intermediates.

Vapor released from spills can be minimized by designing dikes so that flammable and toxic materials will not accumulate around leaking tanks. Smaller tanks also reduce the hazards of a release.

While minimization possibilities are being investigated, substitutions should also be considered as an alternative or companion concept; that is, safer materials should be used in place of hazardous ones. This can be accomplished by using alternative chemistry that allows the use of less hazardous materials or less severe processing conditions. When possible,
Table 1-9 Inherent Safety Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Typical techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize (intensification)</td>
<td>Change from large batch reactor to a smaller continuous reactor</td>
</tr>
<tr>
<td></td>
<td>Reduce storage inventory of raw materials</td>
</tr>
<tr>
<td></td>
<td>Improve control to reduce inventory of hazardous intermediate chemicals</td>
</tr>
<tr>
<td></td>
<td>Reduce process hold-up</td>
</tr>
<tr>
<td>Substitute (substitution)</td>
<td>Use mechanical pump seals vs. packing</td>
</tr>
<tr>
<td></td>
<td>Use welded pipe vs. flanged</td>
</tr>
<tr>
<td></td>
<td>Use solvents that are less toxic</td>
</tr>
<tr>
<td></td>
<td>Use mechanical gauges vs. mercury</td>
</tr>
<tr>
<td></td>
<td>Use chemicals with higher flash points, boiling points, and other less hazardous properties</td>
</tr>
<tr>
<td></td>
<td>Use water as a heat transfer fluid instead of hot oil</td>
</tr>
<tr>
<td>Moderate (attenuation and limitation of effects)</td>
<td>Use vacuum to reduce boiling point</td>
</tr>
<tr>
<td></td>
<td>Reduce process temperatures and pressures</td>
</tr>
<tr>
<td></td>
<td>Refrigerate storage vessels</td>
</tr>
<tr>
<td></td>
<td>Dissolve hazardous material in safe solvent</td>
</tr>
<tr>
<td></td>
<td>Operate at conditions where reactor runaway is not possible</td>
</tr>
<tr>
<td></td>
<td>Place control rooms away from operations</td>
</tr>
<tr>
<td></td>
<td>Separate pump rooms from other rooms</td>
</tr>
<tr>
<td></td>
<td>Acoustically insulate noisy lines and equipment</td>
</tr>
<tr>
<td></td>
<td>Barricade control rooms and tanks</td>
</tr>
<tr>
<td>Simplify (simplification and error tolerance)</td>
<td>Keep piping systems neat and visually easy to follow</td>
</tr>
<tr>
<td></td>
<td>Design control panels that are easy to comprehend</td>
</tr>
<tr>
<td></td>
<td>Design plants for easy and safe maintenance</td>
</tr>
<tr>
<td></td>
<td>Pick equipment that requires less maintenance</td>
</tr>
<tr>
<td></td>
<td>Pick equipment with low failure rates</td>
</tr>
<tr>
<td></td>
<td>Add fire- and explosion-resistant barricades</td>
</tr>
<tr>
<td></td>
<td>Separate systems and controls into blocks that are easy to comprehend and understand</td>
</tr>
<tr>
<td></td>
<td>Label pipes for easy “walking the line”</td>
</tr>
<tr>
<td></td>
<td>Label vessels and controls to enhance understanding</td>
</tr>
</tbody>
</table>

toxic or flammable solvents should be replaced with less hazardous solvents (for example, water-based paints and adhesives and aqueous or dry flowable formulations for agricultural chemicals).

Another alternative to substitution is moderation, that is, using a hazardous material under less hazardous conditions. Less hazardous conditions or less hazardous forms of a material include (1) diluting to a lower vapor pressure to reduce the release concentration, (2) refrigerating to lower the vapor pressure, (3) handling larger particle size solids to minimize dust, and (4) processing under less severe temperature or pressure conditions.
Containment buildings are sometimes used to moderate the impact of a spill of an especially toxic material. When containment is used, special precautions are included to ensure worker protection, such as remote controls, continuous monitoring, and restricted access.

Simpler plants are friendlier than complex plants because they provide fewer opportunities for error and because they contain less equipment that can cause problems. Often, the reason for complexity in a plant is the need to add equipment and automation to control the hazards. Simplification reduces the opportunities for errors and misoperation. For example, (1) piping systems can be designed to minimize leaks or failures, (2) transfer systems can be designed to minimize the potential for leaks, (3) process steps and units can be separated to prevent the domino effect, (4) fail-safe valves can be added, (5) equipment and controls can be placed in a logical order, and (6) the status of the process can be made visible and clear at all times.

The design of an inherently safe and simple piping system includes minimizing the use of sight glasses, flexible connectors, and bellows, using welded pipes for flammable and toxic chemicals and avoiding the use of threaded pipe, using spiral wound gaskets and flexible graphite-type gaskets that are less prone to catastrophic failures, and using proper support of lines to minimize stress and subsequent failures.

1-8 Seven Significant Disasters

The study of case histories provides valuable information to chemical engineers involved with safety. This information is used to improve procedures to prevent similar accidents in the future.

The seven most cited accidents (Flixborough, England; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; and Port Wentworth, Georgia) are presented here. All these accidents had a significant impact on public perceptions and the chemical engineering profession that added new emphasis and standards in the practice of safety. Chapter 14 presents case histories in considerably more detail.

The Flixborough accident is perhaps the most documented chemical plant disaster. The British government insisted on an extensive investigation.

Flixborough, England

The accident at Flixborough, England, occurred on a Saturday in June 1974. Although it was not reported to any great extent in the United States, it had a major impact on chemical engineering in the United Kingdom. As a result of the accident, safety achieved a much higher priority in that country.

The Flixborough Works of Nypro Limited was designed to produce 70,000 tons per year of caprolactam, a basic raw material for the production of nylon. The process uses cyclohexane, which has properties similar to gasoline. Under the process conditions in use at Flixborough (155°C and 7.9 atm), the cyclohexane volatilizes immediately when depressurized to atmospheric conditions.
The process where the accident occurred consisted of six reactors in series. In these reactors cyclohexane was oxidized to cyclohexanone and then to cyclohexanol using injected air in the presence of a catalyst. The liquid reaction mass was gravity-fed through the series of reactors. Each reactor normally contained about 20 tons of cyclohexane.

Several months before the accident occurred, reactor 5 in the series was found to be leaking. Inspection showed a vertical crack in its stainless steel structure. The decision was made to remove the reactor for repairs. An additional decision was made to continue operating by connecting reactor 4 directly to reactor 6 in the series. The loss of the reactor would reduce the yield but would enable continued production because unreacted cyclohexane is separated and recycled at a later stage.

The feed pipes connecting the reactors were 28 inches in diameter. Because only 20-inch pipe stock was available at the plant, the connections to reactor 4 and reactor 6 were made using flexible bellows-type piping, as shown in Figure 1-10. It is hypothesized that the bypass pipe section ruptured because of inadequate support and overflexing of the pipe section as a result of internal reactor pressures. Upon rupture of the bypass, an estimated 30 tons of cyclohexane volatilized and formed a large vapor cloud. The cloud was ignited by an unknown source an estimated 45 seconds after the release.

The resulting explosion leveled the entire plant facility, including the administrative offices. Twenty-eight people died, and 36 others were injured. Eighteen of these fatalities occurred in the main control room when the ceiling collapsed. Loss of life would have been substantially greater had the accident occurred on a weekday when the administrative offices were filled with employees. Damage extended to 1821 nearby houses and 167 shops and factories. Fifty-three civilians were reported injured. The resulting fire in the plant burned for over 10 days.

This accident could have been prevented by following proper safety procedures. First, the bypass line was installed without a safety review or adequate supervision by experienced engineering personnel. The bypass was sketched on the floor of the machine shop using chalk!

Figure 1-10 A failure of a temporary pipe section replacing reactor 5 caused the Flixborough accident.
Second, the plant site contained excessively large inventories of dangerous compounds. This included 330,000 gallons of cyclohexane, 66,000 gallons of naphtha, 11,000 gallons of toluene, 26,400 gallons of benzene, and 450 gallons of gasoline. These inventories contributed to the fires after the initial blast. Finally, the bypass modification was substandard in design. As a rule, any modifications should be of the same quality as the construction of the remainder of the plant.

Bhopal, India

The Bhopal, India, accident, on December 3, 1984, has received considerably more attention than the Flixborough accident. This is due to the more than 2000 civilian casualties that resulted.

The Bhopal plant is in the state of Madhya Pradesh in central India. The plant was partially owned by Union Carbide and partially owned locally.

The nearest civilian inhabitants were 1.5 miles away when the plant was constructed. Because the plant was the dominant source of employment in the area, a shantytown eventually grew around the immediate area.

The plant produced pesticides. An intermediate compound in this process is methyl isocyanate (MIC). MIC is an extremely dangerous compound. It is reactive, toxic, volatile, and flammable. The maximum exposure concentration of MIC for workers over an 8-hour period is 0.02 ppm (parts per million). Individuals exposed to concentrations of MIC vapors above 21 ppm experience severe irritation of the nose and throat. Death at large concentrations of vapor is due to respiratory distress.

MIC demonstrates a number of dangerous physical properties. Its boiling point at atmospheric conditions is 39.1°C, and it has a vapor pressure of 348 mm Hg at 20°C. The vapor is about twice as heavy as air, ensuring that the vapors will stay close to the ground once released.

MIC reacts exothermically with water. Although the reaction rate is slow, with inadequate cooling the temperature will increase and the MIC will boil. MIC storage tanks are typically refrigerated to prevent this problem.

The unit using the MIC was not operating because of a local labor dispute. Somehow a storage tank containing a large amount of MIC became contaminated with water or some other substance. A chemical reaction heated the MIC to a temperature past its boiling point. The MIC vapors traveled through a pressure relief system and into a scrubber and flare system installed to consume the MIC in the event of a release. Unfortunately, the scrubber and flare systems were not operating, for a variety of reasons. An estimated 25 tons of toxic MIC vapor was released. The toxic cloud spread to the adjacent town, killing over 2000 civilians and injuring an estimated 20,000 more. No plant workers were injured or killed. No plant equipment was damaged.

The exact cause of the contamination of the MIC is not known. If the accident was caused by a problem with the process, a well-executed safety review could have identified the problem. The scrubber and flare system should have been fully operational to prevent the release. Inventories of dangerous chemicals, particularly intermediates, should also have been minimized.
Methyl isocyanate route

\[
\text{CH}_3\text{NH}_2 + \text{COCl}_2 \rightarrow \text{CH}_3\text{N} = \text{C} = \text{O} + 2\text{HCl}
\]

Methylamine \hspace{1cm} Phosgene \hspace{1cm} Methyl isocyanate

\[
\text{CH}_3\text{N} = \text{C} = \text{O} + \alpha\text{-Naphthol} \rightarrow \text{Carbaryl}
\]

Nonmethyl isocyanate route

\[
\text{OH} + \text{COCl}_2 \rightarrow \alpha\text{-Naphthol chloroformate} + \text{HCl}
\]

\[
\text{O} - \text{C} - \text{Cl} + \text{CH}_3\text{NH}_2 \rightarrow \text{O} - \text{CNHCH}_3 + \text{HCl}
\]

Figure 1-11 The upper reaction is the methyl isocyanate route used at Bhopal. The lower reaction suggests an alternative reaction scheme using a less hazardous intermediate. Adapted from *Chemical and Engineering News* (Feb. 11, 1985), p. 30.

The reaction scheme used at Bhopal is shown at the top of Figure 1-11 and includes the dangerous intermediate MIC. An alternative reaction scheme is shown at the bottom of the figure and involves a less dangerous chloroformate intermediate. Another solution is to redesign the process to reduce the inventory of hazardous MIC. One such design produces and consumes the MIC in a highly localized area of the process, with an inventory of MIC of less than 20 pounds.

Seveso, Italy

Seveso is a small town of approximately 17,000 inhabitants, 15 miles from Milan, Italy. The plant was owned by the Icmesa Chemical Company. The product was hexachlorophene, a bactericide, with trichlorophenol produced as an intermediate. During normal operation, a small
amount of TCDD (2,3,7,8-tetrachlorodibenzo- \textit{p}aradioxin) is produced in the reactor as an undesirable side-product.

TCDD is perhaps the most potent toxin known to humans. Animal studies have shown TCDD to be fatal in doses as small as \(10^{-9}\) times the body weight. Because TCDD is also insoluble in water, decontamination is difficult. Nonlethal doses of TCDD result in chloracne, an acne-like disease that can persist for several years.

On July 10, 1976, the trichlorophenol reactor went out of control, resulting in a higher than normal operating temperature and increased production of TCDD. An estimated 2 kg of TCDD was released through a relief system in a white cloud over Seveso. A subsequent heavy rain washed the TCDD into the soil. Approximately 10 square miles were contaminated.

Because of poor communications with local authorities, civilian evacuation was not started until several days later. By then, over 250 cases of chloracne were reported. Over 600 people were evacuated, and an additional 2000 people were given blood tests. The most severely contaminated area immediately adjacent to the plant was fenced, the condition it remains in today.

TCDD is so toxic and persistent that for a smaller but similar release of TCDD in Duphar, India, in 1963 the plant was finally disassembled brick by brick, encased in concrete, and dumped into the ocean. Less than 200 g of TCDD was released, and the contamination was confined to the plant. Of the 50 men assigned to clean up the release, 4 eventually died from the exposure.

The Seveso and Duphar accidents could have been avoided if proper containment systems had been used to contain the reactor releases. The proper application of fundamental engineering safety principles would have prevented the two accidents. First, by following proper procedures, the initiation steps would not have occurred. Second, by using proper hazard evaluation procedures, the hazards could have been identified and corrected before the accidents occurred.

Pasadena, Texas

A massive explosion in Pasadena, Texas, on October 23, 1989, resulted in 23 fatalities, 314 injuries, and capital losses of over $715 million. This explosion occurred in a high-density polyethylene plant after the accidental release of 85,000 pounds of a flammable mixture containing ethylene, isobutane, hexane, and hydrogen. The release formed a large gas cloud instantaneously because the system was under high pressure and temperature. The cloud was ignited about 2 minutes after the release by an unidentified ignition source.

The damage resulting from the explosion made it impossible to reconstruct the actual accident scenario. However, evidence showed that the standard operating procedures were not appropriately followed.

The release occurred in the polyethylene product takeoff system, as illustrated in Figure 1-12. Usually the polyethylene particles (product) settle in the settling leg and are removed through the product takeoff valve. Occasionally, the product plugs the settling leg, and
the plug is removed by maintenance personnel. The normal—and safe—procedure includes closing the DEMCO valve, removing the air lines, and locking the valve in the closed position. Then the product takeoff valve is removed to give access to the plugged leg.

The accident investigation evidence showed that this safe procedure was not followed; specifically, the product takeoff valve was removed, the DEMCO valve was in the open position, and the lockout device was removed. This scenario was a serious violation of well-established and well-understood procedures and created the conditions that permitted the release and subsequent explosion.

The OSHA investigation13 found that (1) no process hazard analysis had been performed in the polyethylene plant, and as a result, many serious safety deficiencies were ignored or overlooked; (2) the single-block (DEMCO) valve on the settling leg was not designed to fail to a safe

\footnotesize13Occupational Safety and Health Administration, \textit{The Pasadena Accident: A Report to the President} (Washington, DC: US Department of Labor, 1990).
closed position when the air failed; (3) rather than relying on a single-block valve, a double block and bleed valving arrangement or a blind flange after the single-block valve should have been used; (4) no provision was made for the development, implementation, and enforcement of effective permit systems (for example, line opening); and (5) no permanent combustible gas detection and alarm system was located in the region of the reactors.

Other factors that contributed to the severity of this disaster were also cited: (1) proximity of high-occupancy structures (control rooms) to hazardous operation, (2) inadequate separation between buildings, and (3) crowded process equipment.

Texas City, Texas

A petroleum refinery had large explosions on March 23, 2005, that killed 15 workers and injured about 180. The explosions were the result of a sudden release of flammable liquid and vapor from an open vent stack in the refinery’s isomerization (ISOM) unit. The ISOM unit converts pentane and hexane into isopentane and isohexane (gasoline additive). The unit works by heating the pentane and hexane in the presence of a catalyst. This unit includes a splitter tower and associated process equipment, which is used to prepare the hydrocarbon feed of the isomerization reactor.

This accident was during the startup of this ISOM process unit. In this startup, hydrocarbons were pumped into the splitter tower for three hours without any liquid being removed and transferred to storage (which should have happened). As a result, the 164-foot-tall tower was overfilled. The resulting high pressure activated three pressure relief valves, and the liquid was discharged to a vented blowdown drum. The blowdown drum overfilled with hydrocarbons, producing a geyser-like release from the vented stack. The flammable hydrocarbons pooled on the ground, releasing vapors that ignited, resulting in multiple explosions and fires. Many of those killed were working in or around two contractor office trailers located near a blowdown drum.

The CSB investigation identified the following major findings: (1) the occupied trailers were sited in an unsafe location (all 15 fatalities occurred in or around two contractor trailers); (2) the ISOM unit should not have been started up because there were existing and known problems that should have been repaired before a startup (known equipment malfunctions included a level indicator and alarm, and a control valve); and (3) previously there were at least four other serious releases of flammables out of this blowdown drum vent, and even though these serious near-misses revealed the existing hazard, no effective investigations were conducted nor were appropriate design changes made (a properly designed flare system would have burned these effluents to prevent this unsafe release of the flammable liquid and combustible vapors).

Jacksonville, Florida

CSB investigated an accident15 that occurred in a chemical manufacturing plant (gasoline additive) on December 19, 2007. A powerful explosion and fire killed 4 employees and injured 32, including 4 employees and 28 members of the public who were working in surrounding businesses. This plant blended and sold printing solvents and started to manufacture methylcyclopentadienyl manganese tricarbonyl (MCMT) in a 2500-gallon batch reactor in January of 2004.

The accident occurred while the plant was producing its 175th batch of MCMT. The process included two exothermic reactions, the first a necessary step in the production of MCMT, and the second an unwanted side reaction that occurs at about 390°F, which is slightly higher than the normal operating temperature. The reactor cooling failed (line blockage or valve failure), and the temperature increased, setting off both runaway reactions uncontrollably. About ten minutes after the initial cooling failure, the reactor burst and its contents exploded due to the uncontrolled high temperatures and pressures. The pressure burst the reactor and the reactor’s contents exploded with a TNT equivalent to 1400 pounds of TNT. Debris from the reactor was found up to one mile away, and the explosion damaged buildings within one-quarter mile of the facility.

CSB found that (1) the cooling system was susceptible to only single-point failures due to the lack of design redundancy, (2) the reactor relief system was incapable of relieving the pressure from the runaway reactions, and (3) despite a number of previous and similar near-misses the company employees failed to recognize the hazards of the runaway reactions associated with this manufacturing process (even though the two owners of the company had undergraduate degrees in chemistry and chemical engineering).

The CSB recommendations in this accident investigation report focused on improving the education of chemical engineering students on the hazards of reactive chemicals.

Port Wentworth, Georgia

On February 7, 2008, a series of sugar dust explosions at a sugar manufacturing facility resulted in 14 fatalities and 36 injuries.16 This refinery converted raw sugarcane into granulated sugar. A system of screw and belt conveyors and bucket elevators transported granulated sugar from the refinery to storage silos, and to specialty sugar processing areas.

A recently installed steel cover panel on the belt conveyor allowed explosive concentrations of sugar dust to accumulate inside the enclosure. The first dust explosion occurred in this enclosed steel belt conveyor located below the sugar silos. An overheated bearing in the steel belt conveyor was the most likely ignition source. This primary explosion dispersed sugar dust that

had accumulated on the floors and elevator horizontal surfaces, propagating more explosions throughout the buildings. Secondary dust explosions occurred throughout the packing buildings, parts of the refinery, and the loading buildings. The pressure waves from the explosions heaved thick concrete floors and collapsed brick walls, blocking stairwell and other exit routes.

The CSB investigation identified three major causes: (1) The conveying equipment was not designed to minimize the release of sugar dust and eliminate all ignition sources in the work areas; (2) housekeeping practices were poor; and (3) the company failed to correct the ongoing and known hazardous conditions, despite the well-known and broadly published hazards associated with combustible dusts.

Prior to this Port Wentworth accident, CSB undertook a study in 2005 concerning the extent of the industrial dust explosion problem. They identified 200 fires and explosions due to dusts over a 25-year period that took 100 lives and caused 600 injuries. The tragic event in Port Wentworth demonstrates that dust explosions in industry continue to be a problem.

Suggested Reading

General Aspects of Chemical Process Safety

Bhopal

Seveso

Flixborough

General Case Histories

Problems

1-1. An employee works in a plant with a FAR of 4. If this employee works a 4-hr shift, 200 days per year, what is the expected deaths per person per year?

1-2. Three process units are in a plant. The units have FARs of 0.5, 0.3, and 1.0, respectively.
 a. What is the overall FAR for the plant, assuming worker exposure to all three units simultaneously?
 b. Assume now that the units are far enough apart that an accident in one would not affect the workers in another. If a worker spends 20% of his time in process area 1, 40% in process area 2, and 40% in process area 3, what is his overall FAR?

1-3. Assuming that a car travels at an average speed of 50 miles per hour, how many miles must be driven before a fatality is expected?

1-4. A worker is told her chances of being killed by a particular process are 1 in every 500 years. Should the worker be satisfied or alarmed? What is the FAR (assuming normal working hours) and the deaths per person per year? What should her chances be, assuming an average chemical plant?

1-5. A plant employs 1500 full-time workers in a process with a FAR of 5. How many industrial-related deaths are expected each year?

1-6. Consider Example 1-4. How many hours must be traveled by car for each hour of rock climbing to make the risk of fatality by car equal to the risk of fatality by rock climbing?
1-7. Identify the initiation, propagation, and termination steps for the following accident reports.\(^{18}\) Suggest ways to prevent and contain the accidents.

a. A contractor accidentally cut into a 10-in propane line operating at 800 psi at a natural gas liquids terminal. The large vapor cloud estimated to cover an area of 44 acres was ignited about 4–5 min later by an unknown source. Liquid products from 5 of 26 salt dome caverns fed the fire with an estimated 18,000–30,000 gal of LPGs for almost 6 hr before being blocked in and the fires extinguished. Both engine-driven fire pumps failed, one because intense radiated heat damaged its ignition wires and the other because the explosion broke a sight glass fuel gauge, spilling diesel fuel, which ignited, destroying the fire pump engine.

b. An alkylation unit was being started up after shutdown because of an electrical outage. When adequate circulation could not be maintained in a deisobutanizer heater circuit, it was decided to clean the strainer. Workers had depressurized the pipe and removed all but three of the flange bolts when a pressure release blew a black material from the flange, followed by butane vapors. These vapors were carried to a furnace 100 ft away, where they ignited, flashing back to the flange. The ensuing fire exposed a fractionation tower and horizontal receiver drums. These drums exploded, rupturing pipelines, which added more fuel. The explosions and heat caused loss of insulation from the 8-ft × 122-ft fractionator tower, causing it to weaken and fall across two major pipelines, breaking piping — which added more fuel to the fire. Extinguishment, achieved basically by isolating the fuel sources, took 2½ hours.

The fault was traced to a 10-in valve that had been prevented from closing the last ¾-inch by a fine powder of carbon and iron oxide. When the flange was opened, this powder blew out, allowing liquid butane to be released.

1-8. The airline industry claims commercial airline transport has fewer deaths per mile than any other means of transportation. Do the accident statistics support this claim? In 1984 the airline industry posted 4 deaths per 10,000,000 passenger miles. What additional information is required to compute a FAR? a fatality rate?

1-9. A university has 1200 full-time employees. In a particular year this university had 38 reportable lost-time injuries with a resulting 274 lost workdays. Compute the OSHA incidence rate based on injuries and lost workdays.

1-10. Based on workplace fatalities (Figure 1-4) and assuming you are responsible for a safety program of an organization, what would you emphasize?

1-11. Based on the causes of the largest losses (Figure 1-7), what would you emphasize in a safety program?

1-12. After reviewing the answers to Problems 1-10 and 1-11, can inherent safety help?

1-13. What conclusions can you derive from Figure 1-9?

1-14. What is the worst thing that could happen to you as a chemical engineer in industry?

1-15. An explosion has occurred in your plant and an employee has been killed. An investigation shows that the accident was the fault of the dead employee, who manually charged the

\(^{18}\)One Hundred Largest Losses.
wrong ingredient to a reactor vessel. What is the appropriate response from the following groups?

a. The other employees who work in the process area affected.
b. The other employees elsewhere in the plant site.
c. Middle management.
d. Upper management.
e. The president of the company.
f. The union.

1-16. You have just begun work at a chemical plant. After several weeks on the job you determine that the plant manager runs the plant with an iron fist. He is a few years away from retirement after working his way up from the very bottom. Also, a number of unsafe practices are performed at the plant, including some that could lead to catastrophic results. You bring up these problems to your immediate supervisor, but he decides to do nothing for fear that the plant manager will be upset. After all, he says, “We’ve operated this plant for 40 years without an accident.” What would you do in this situation?

1-17. a. You walk into a store and after a short while you decide to leave, preferring not to do any business there. What did you observe to make you leave? What conclusions might you reach about the attitudes of the people who manage and operate this store?
b. You walk into a chemical plant and after a short while you decide to leave, fearing that the plant might explode at any moment. What did you observe to make you leave? What conclusions might you reach about the attitudes of the people who manage and operate this chemical plant?

Comment on the similarities of parts a and b.

1-18. A large storage tank is filled manually by an operator. The operator first opens a valve on a supply line and carefully watches the level on a level indicator until the tank is filled (a long time later). Once the filling is complete, the operator closes the valve to stop the filling. Once a year the operator is distracted and the tank is overfilled. To prevent this, an alarm was installed on the level gauge to alert the operator to a high-level condition. With the installation of the alarm, the tank now overfills twice per year. Can you explain?

1-19. Careful numbering of process equipment is important to avoid confusion. On one unit the equipment was numbered J1001 upward. When the original allocation of numbers ran out the new equipment was numbered JA1001 upward. An operator was verbally told to prepare pump JA1001 for repairs. Unfortunately, he prepared pump J1001 instead, causing an upset in the plant. What happened?

1-20. A cover plate on a pump housing is held in place by eight bolts. A pipefitter is instructed to repair the pump. The fitter removes all eight bolts only to find the cover plate stuck on the housing. A screwdriver is used to pry off the cover. The cover flies off suddenly, and toxic liquid sprays throughout the work area. Clearly the pump unit should have been isolated, drained, and cleaned before repair. There is, however, a better procedure for removing the cover plate. What is this procedure?
1-21. The liquid level in a tank 10 m in height is determined by measuring the pressure at the bottom of the tank. The level gauge was calibrated to work with a liquid having a specific gravity of 0.9. If the usual liquid is replaced with a new liquid with a specific gravity of 0.8, will the tank be overfilled or underfilled? If the actual liquid level is 8 m, what is the reading on the level gauge? Is it possible that the tank will overflow without the level gauge indicating the situation?

1-22. One of the categories of inherent safety is simplification/error tolerance. What instrumentation could you add to the tank described in Problem 1-21 to eliminate problems?

1-23. Pumps can be shut-in by closing the valves on the inlet and outlet sides of the pump. This can lead to pump damage and/or a rapid increase in the temperature of the liquid shut inside the pump. A particular pump contains 4 kg of water. If the pump is rated at 1 HP, what is the maximum temperature increase expected in the water in °C/hr? Assume a constant water heat capacity of 1 kcal/kg/°C. What will happen if the pump continues to operate?

1-24. Water will flash into vapor almost explosively if heated under certain conditions.
 a. What is the ratio in volume between water vapor at 300 K and liquid water at 300 K at saturated conditions?
 b. Hot oil is accidentally pumped into a storage vessel. Unfortunately, the tank contains residual water, which flashes into vapor and ruptures the tank. If the tank is 10 m in diameter and 5 m high, how many kilograms of water at 300 K are required to produce enough water vapor to pressurize the tank to 8 in of water gauge pressure, the burst pressure of the tank?

1-25. Another way of measuring accident performance is by the LTIR, or lost-time injury rate. This is identical to the OSHA incidence rate based on incidents in which the employee is unable to continue their normal duties. A plant site has 1200 full-time employees working 40 hr/week and 50 weeks/yr. If the plant had 2 lost-time incidents last year, what is the LTIR?

1-26. A car leaves New York City and travels the 2800-mi distance to Los Angeles at an average speed of 50 mph. An alternative travel plan is to fly on a commercial airline for 4 1/2 hr. What are the FARs for the two methods of transportation? Which travel method is safer, based on the FAR?

1-27. A column was used to strip low-volatile materials from a high-temperature heat transfer fluid. During a maintenance procedure, water was trapped between two valves. During normal operation, one valve was opened and the hot oil came in contact with the cold water. The result was almost sudden vaporization of the water, followed by considerable damage to the column. Consider liquid water at 25°C and 1 atm. How many times does the volume increase if the water is vaporized at 100°C and 1 atm?

1-28. Large storage tanks are designed to withstand low pressures and vacuums. Typically they are constructed to withstand no more than 8 in of water gauge pressure and 2.5 in of water gauge vacuum. A particular tank is 30 ft in diameter.
a. If a 200-lb person stands in the middle of the tank roof, what is the resulting pressure (in inches of water gauge) if the person's weight is distributed across the entire roof?

b. If the roof was flooded with 8 in of water (equivalent to the maximum pressure), what is the total weight (in pounds) of the water?

c. A large storage tank was sucked in when the vent to the outside became plugged and the operator turned on the pump to empty the tank. How did this happen?

Note: A person can easily blow to a pressure of greater than 20 in of water gauge.

1-29. A 50-gal drum with bulged ends is found in the storage yard of your plant. You are unable to identify the contents of the drum. Develop a procedure to handle this hazard. There are many ways to solve this problem. Please describe just one approach.

1-30. The plant has been down for extensive maintenance and repair. You are in charge of bringing the plant up and on-line. There is considerable pressure from the sales department to deliver product. At about 4 AM a problem develops. A slip plate or blind has accidentally been left in one of the process lines. An experienced maintenance person suggests that she can remove the slip plate without depressurizing the line. She said that she routinely performed this operation years ago. Since you are in charge, what would you do?

1-31. Gasoline tank trucks are load restricted in that the tank must never be between 20% and 80% full when traveling. Or it must be below 20% and above 80%. Why?

1-32. In 1891 the copper industry in Michigan employed 7702 workers. In that year there were 28 fatalities in the mines. Estimate the FAR for this year, assuming that the workers worked 40-hour weeks and 50 weeks per year. Compare the result to the published FAR for the chemical industry.

1-33. The Weather Channel reports that, on average, about 42 Americans are killed by lightning each year. The current population of the U.S. is about 300 million people. Which accident index is suitable for this information: FAR, OSHA incident rate, or deaths per person per year? Why? Calculate the value of the selected index and compare it to published values.

1-34. The CSB video “Preventing Harm from Sodium Hydrosulfide” presents an incident involving sodium hydrosulfide (NaSH) and hydrogen sulfide (H₂S). Go on-line and find at least two material safety data sheets (MSDS) for both of these chemicals. Tabulate the following physical properties for these chemicals at room temperature and pressure, if available: physical state density, PEL, TLV, and vapor pressure. List any other concerns that might be apparent from the MSDS. Which of these properties are of major concern in using these chemicals?
ABET (Accreditation Board for Engineering and Technology), 643
Absolute sound scale, exposure to noise, 89
Accelerating Rate Calorimeter (ARC), 392–394, 397
Acceptable risk
determining, 12–14
determining using QRA or LOPA, 577–578
public perceptions of, 14–15
Accident and loss statistics
basing on FAR, 7
basing on OSHA incident rates, 5–7
for common activities, 9–10
data for, 8–9
determining safety expenditures, 11–12
expansion of total loss figures, 11
overview of, 4–5
property damage and loss of production in, 11
in various industries, 8
workplace fatalities, 12–13
Accident pyramid, 11
Accidents
defeating process of, 19–20
defined, 21
investigating, 603–604
nature of process, 15–18
root causes of deaths from, 12–13
safety reviews of previous, 531
studying case histories to prevent, 20–21, 621–622
Accumulation, relief, 432–433
ACGIH, toxic effect criteria, 225, 229
Activation energy
calorimeter data analysis, 398, 400–403, 405
estimating parameters from calorimeter data, 408–412
Active safety
defined, 598
reactive chemicals, 417
Acute toxicity, 43
Additives
for conductivity, 362–363
Jacksonville case history, Florida, 30
Adiabatic compression, fires, 272–273
Adiabatic conditions
calorimeter data analysis for heat capacity of vessel, 412–413
calorimeter data analysis for temperature rise, 399–402
Adiabatic conditions (continued)
characterization of reactive chemicals, 390
estimating parameters from calorimeter data, 408–412
reaction tracking limits for calorimeters, 392, 395
using calorimeter as close as possible to, 391
Adiabatic pipe flows
defined, 146
example, 159–161
as method of choice, 163
as model for compressible gas discharges, 158
overview of, 146–153
Advanced Reactive System Screening Tool. See ARSST (Advanced Reactive System Screening Tool) calorimeter
AICHe (American Institute of Chemical Engineers)
Code of Ethics, 5, 600
SACHE Process Safety Certificate Program, 643
training recommendations, 643
AIHA (American Industrial Hygiene Association), 225–228
Airflow velocity, local ventilation, 107
AIT (autoignition temperature)
adriabatic compression and, 272–273
auto-oxidation sometimes leading to, 271
definition of, 247
overview of, 270–271
for selected hydrocarbons, 653–658
Alveoli, 40
American Industrial Hygiene Association (AIHA), 225–228
American Institute of Chemical Engineers. See AICHe (American Institute of Chemical Engineers)
AND logic function
fault trees, 570–572, 575–576
interactions between process units, 552
Anticipation of potential hazards
defined, 65
role of industrial hygienist, 78–80
using material safety data sheets, 81–83
Antistatic additives, for conductivity, 362–363
API Vessel Code, 468
APTAC (Automatic Pressure Tracking Adiabatic Calorimeter)
detecting high self-heat rates with, 397
operation of, 395–396
overview of, 392–393
reducing phi-factor, 394–395
ARC (Accelerating Rate Calorimeter), 392–394, 397
Arrhenius equation, calorimeter data analysis, 398, 402, 408–412
ARSST (Advanced Reactive System Screening Tool) calorimeter
low phi-factor of, 394
operation times, 392, 395
overview of, 391–392
screening studies using, 396
Assets, security, chemical plant, 76–77
Atmospheric dispersion of toxic materials, 186–190
Atmospheric stability, Pasquill-Gifford dispersion model, 201–204
Audits section, OSHA Process Safety Management, 73
Auto-oxidation, causing fires, 271–272
Autoignition, causing fires, 270–271
Autoignition temperature. See AIT (autoignition temperature)
Automatic Pressure Tracking Adiabatic Calorimeter. See APTAC (Automatic Pressure Tracking Adiabatic Calorimeter)
Awareness, chemical facility anti-terrorism standards, 78
Backpressure
balanced bellows reliefs in liquid service and, 464–465
defined, 433
rupture disc reliefs in vapor or gas service and, 471–472
spring-operated reliefs in liquid and, 462
spring-operated reliefs in vapor or gas service and, 466–468
Balance of charges, static electricity, 350–356
Balanced bellows reliefs
 advantages and disadvantages of, 442
 backpressure correction in liquid service, 464–465
 backpressure correction in vapor or gas service, 468
 overview of, 437–438
 viscosity correction factor in liquid service for, 462–463
Basic events, fault trees, 571–572
Best practices, safety procedures and designs, 600
Bhopal case history, India
 overview of, 25–26
 suggested reading, 31
Bhopal, India
 EPA Risk Management Plan, 73–76
 OSHA Process Safety Management, 71–73
Biological organisms
 effect of toxicants on, 42–43
 elimination of toxicants from, 41–42
 entrance of toxicants into, 38–41
Blast waves
 damage resulting from overpressure, 287–291
 damage to people, 301–302
 defined, 275
 energy of chemical explosions, 296–298
 multi-energy model for VCEs, 293–294
BLEVE (boiling-liquid expanding-vapor explosion), 248, 303
Block valves, 608
Blood counts, determining toxic exposure, 42
Bloodstream, entry of toxicants into, 38–39
Blowdown drums, relief systems, 433, 447
Blowout panels, deflagration venting for dust and vapor, 482–483
Body (person), capacitance of, 347–350
Boiling-liquid expanding-vapor explosion (BLEVE), 248, 303
Boiling, liquid pool evaporation or, 169–170
Bonding
 preventing electrostatic ignitions via, 358–361
 preventing sparks via, 357
 safely transferring solids via, 363–364
Britter and McQuaid model, 209–219
Brode’s equation, 298–300
Brush discharge, electrostatic
 defined, 337
 energy of charged capacitors, 345–346
 energy of electrostatic ignition sources, 338–339
 preventing, 357–358
Buckling-pin reliefs
 advantages and disadvantages, 442
 overview of, 440
 sizing, 481
Buildings
 deflagration venting for dust and vapor, 481–488
 designing ventilation for plants inside, 368–370
 estimating consequences of explosion in, 282–287
 missile damage, 301
Buoyancy, of material released
 affecting dispersion of toxic materials, 186–191
 dense gas dispersion, 209–210
 effect of release momentum, 233–234
 neutrally buoyant dispersion. See Neutrally buoyant dispersion models
Butadiene explosion case history, system design, 632
Bypass laboratory hoods, local ventilation, 105–106
Calorimetry
 adjusting data for heat capacity of sample vessel, 412–413
 application of data, 415
 estimation of parameters from data, 408–412
 example, 406–408
 heat of reaction data, 413–414
 introduction to, 391–397
 overview of, 390–391
 theoretical analysis of data, 397–405
 types of calorimeters, 392
 using pressure data from, 414–415
Capacitors
 capacitance of body, 347–350
 energy of charged, 342–347
 types of industrial, 348
Choked adiabatic pipe flows, 149–151, 159–161
Choked flow of gas through hole, 142–145
Choked isothermal pipe flows, 155–156, 162
Choked pressure
 flow of gases or vapors through holes, 142
 spring-operated reliefs in vapor or gas service, 469–470
Chronic toxicity, 43
Classification
 area and material, 365–366
 sprinkler specifications, 370–371
Cleanup procedure, Formal Safety Review Report, 674
Closed-cup flash point procedures, 250–251
Code of Federal Regulation (CFR), 68
Codes
 accidents from failure to use, 600
 relief system, 447, 496
Coincidence, probability of, 562–563
Combined pressure-vacuum purging, 323
Combustion
 definition of, 247
 estimating flammability limits as heat of, 257–258
 explosions from detonation vs. deflagration, 276–277
Commitment, to reactive chemical management, 384
Common mode failures, risk assessment, 564
Communications, managing safety, 599
Components, fault tree, 570
Condensers, relief system, 452
Conductors
 energy of electrostatic ignition sources, 338–339
 in solid storage bin, case history, 623
 static charge buildup and, 333–334
 streaming current, 339–342
Confined explosions
 definition of, 248
 explosion apparatus for dusts, 280–281
 explosion apparatus for vapors, 279–280
 explosion characteristics, 281–287
 overview of, 277–279
Confined space permit, safety operating procedure, 602–603
Conical pile discharge, 336–337, 357
Consequence
 defined, 21
 layer of protection analysis, 578–581
 LOPA analysis determining frequency, 581–585
 LOPA analysis, typical study, 586–587
 LOPA analysis vs. QRA, 581
Consequence modeling
 conservative analysis in, 172
 source models in. See Source models
 toxic release and dispersion models in. See
 Toxic release and dispersion models
Conservative analysis, consequence modeling and, 172
Contact and frictional charging, in static electricity, 334
Containment systems, designing process safety, 609–610
Continuous concentration data [C(t)], 84
Continuous release
 dense gas dispersion for, 210–212
 dense gas transition to neutrally buoyant gas, 219–220
 example, 214
 non-steady-state continuous point release with no wind, 196
 plume with continuous steady-state source at ground level, 205–206
 plume with continuous steady-state source at height above ground level, 206–207
 steady-state continuous point release with no wind, 194–195
 steady-state continuous point source release with wind, 197
 steady-state continuous point source release with wind and eddy diffusivity is function of direction, 198
Continuous steady-state source with source at height above ground model, 200–204
Contractors, OSHA Process Safety Management, 72
Control techniques, industrial hygiene
- defined, 65
- evaluation of, 84
- overview, 99
- personal protective equipment, 101
- respirators, 101–103
- types of, 100
- ventilation, 103–109

Controls, process safety design
- block valves, 608
- double block and bleed systems, 606–607
- explosion suppression, 608
- safeguards or redundancy, 607

Coordinate systems, dispersion models, 193

Corona discharge, electrostatic, 337

Costs
- of chemical plant accidents, 15–16
- choosing purging process, 322
- dilution ventilation, 107
- sweep-through purging vs. siphon purging, 327
- ventilation, 103

CSAT (Chemical Security Assessment Tool), 76
CSB (Chemical Safety and Hazard Investigation Board), 382
C(t), continuous concentration data, 84
Cubic law, explosion characteristics, 282
Cyclohexane, case history, 23–25

Dalton’s law, vacuum purging, 319–320
Damage estimates, for explosions, 289
Darcy formula, adiabatic pipe flow, 150
Data, for sizing reliefs, 444
dB (decibels), evaluating noise intensity, 89–91
dBA (absolute decibels), evaluating noise intensity, 89–90
DDT (deflagration to detonation transition), 276–277
De-energize process, lock-tag-try permits, 602
Deflagration index, for gases and dusts, 281–287
Deflagration to detonation transition (DDT), 276–277
Deflagration vents
- dust and vapor explosions, 481–483
- high-pressure structures, 485–488

low-pressure structures, 483–485
suggested reading, 496

Deflagrations
- definition of, 248
- designing process safety, 612
- dust, 287
- explosions resulting from, 276–277
- gas and vapor, 283
- using data for relief scenarios, 444

Delay, chemical facility anti-terrorism standards, 77

Delegation, managing safety, 599

Deluge systems, vessels, 370–371
DEMCO valve, 28–29

Dense gas dispersion
- dense gas defined, 209
- examples, 213–219
- overview of, 209–213
- transition to neutrally buoyant gas, 219–225

Department of Homeland Security (DHS), Chemical Facility Anti-Terrorism Standards, 76–78

Dermal absorption
- eliminating toxicants, 41–42
- identifying potential hazards, 79
- permeability of toxicants, 39–40
- of toxicants, 38–39

Designs
- case histories of system, 631–637
- preventing accidents by adding process features, 20
- preventing electrostatic ignitions. See Static electricity
- relief systems, 447

Designs, process safety
- containment, 609–610
- controls, block valves, 608
- controls, double block and bleed, 606–607
- controls, explosion suppression, 608
- controls, safeguards or redundancy, 607
- deflagrations, 612
- detonations, 612–615
- flame arrestors, 608–609
- inherently safer designs, 605–606
Index 701

materials of construction, 610
process vessels, 610–612
Detection, chemical facility anti-terrorism standards, 77
Deterrence, chemical facility anti-terrorism standards, 77
Detonations
definition of, 248
designing process safety, 612–615
explosions resulting from, 276–277
Detoxification, 41
DHS (Department of Homeland Security), Chemical Facility Anti-Terrorism Standards, 76–78
Dielectric constants
balance of charges, 352–356
capacitance of body, 347–350
energy of charged capacitors, 344
streaming current, 340
Differential Scanning Calorimeter (DSC), 391–392, 395–396
Dilution ventilation
designing for plants inside buildings, 368–370
overview of, 107–109
Dimensionless equations, calorimeters, 399–402
Dip pipes, and electrostatic ignitions, 359, 362
Disasters, case histories of seven significant, 23–31
Discharge coefficient
conventional spring-operated reliefs in liquid, 462
conventional spring-operated reliefs in vapor or gas service, 468
flow of gases or vapors through holes, 141–142, 145
flow of liquid through hole, 124–125
flow of liquid through hole in tank, 126
nomograph method for two-phase reactor relief, 479–480
Dispersion coefficients
dense gas dispersion, 214
Pasquill-Gifford puff model, 201–204
Dispersion models
consequence analysis procedure for, 119–120
conservative analysis in, 172
dense gas dispersion. See Dense gas dispersion
effect of release momentum and buoyancy, 233–234
neutrally buoyant. See Neutrally buoyant dispersion models
overview of, 185–186
parameters affecting dispersion, 186–190
problems, 236–244
release mitigation, 234–235
suggested reading, 235–236
toxic effect criteria, 225–233
Documentation, safety, 599
Dose-response curve, 49
Dose units, toxicology, 43
Dose versus response, toxicological studies, 43, 44–51
Double block and bleed systems, process safety, 606–607
Double-layer charging, in static electricity, 334
Dow
calorimeter technology, 391
Chemical Exposure Index, 513, 518–521
F&EI. See F&EI (Fire and Explosion Index)
Downwind concentrations of toxic material
dense gas dispersion examples, 213–219
dense gas transition to neutrally buoyant gas, 221–225
estimating using dispersion model, 185–186
estimating with neutrally buoyant dispersion models. See Neutrally buoyant dispersion models
as parameter affecting dispersion, 186
DSC (Differential Scanning Calorimeter), 391–392, 395–396
Ducts
system explosion, static electricity, 623
ventilation, 103–104
Duphar case history, India, 27
Dust explosions
case history, 30–31
characteristics of, 284–287
confined explosions, 277–279
definition of, 248
deflagration vents for, 481–488
Dust explosions (continued)
designs for preventing, 617
inerting, 318
pharmaceutical company case history, 644
sugar refinery case history, 643–644
Dusts
designs for handling, 616–617
determining explosive nature of, 280–281
evaluating worker exposures to, 88
inhalant of toxicants as, 41
ED (effective dose) curves, 50, 56
Eddy diffusivity
in continuous steady-state source with source at
height above ground, 200–204
in non-steady-state continuous point release
with no wind, 196
in puff with no wind, 195–198
in puff with no wind and with source on
ground, 199
in puff with wind, 198–199
in steady-state continuous point release with no
wind, 194–195
in steady-state continuous point release with
wind, 197
in steady-state continuous point source release
with wind, 197–198
EEG (electroencephalogram), determining toxic
exposure, 42
EEGLs (emergency exposure guidance levels),
toxic effects, 225, 228–230
Effect models, 119
Effective dose (ED) curves, 50, 56
Electroencephalogram (EEG), determining toxic
exposure, 42
Electrostatic discharges
causes of, 334
charge accumulation processes, 334–335
electrostatic voltage drops, 342
energy from, 337–338
overview of, 335–337
streaming current, 339–342
Elephant trunks, local ventilation, 107
Emergency exposure guidance levels (EEGLs),
toxic effects, 225, 228–230
Emergency Planning and Community Right-to-
Know Act, 229
Emergency planning and response, OSHA
Process Safety Management, 73
Emergency response planning guidelines. See
ERPGs (emergency response planning
guidelines)
Emergency response program, Risk Management
Plan, 75–76
Employee participation, OSHA Process Safety
Management, 71
Enclosed hoods, local ventilation, 104–107
Energy
of charged capacitors, 342–347
of chemical explosions, 296–298
from electrostatic discharges, 337–338
of electrostatic ignition sources, 338–339
explosions resulting from rapid release of, 275
of mechanical explosions, 298–301
release rate in fires vs. explosions, 246
of tempered reaction systems, 473
Engineering Code of Ethics, safety best
practices, 600
Engineering data, Formal Safety Review
Report, 670
Engineering Ethics statement, 4–5
Entry routes
identification of potential hazards, 79
toxins entering biological organisms, 38–41
Environmental control techniques
overview of, 101
respirators, 101–103
ventilation, 103–109
Environmental Protection Agency. See EPA
(Environmental Protection Agency)
EPA (Environmental Protection Agency)
federal legislation for chemical process safety,
69–70
Risk Management Plan, 73–76
toxic effect criteria, 225, 229
toxic endpoints specified by, 231
Equations, for flammability diagrams, 659–667
Equilibrium rate model (ERM), low-quality choked flow, 473–474
Equipment
designing relief systems to protect, 430
ERM (equilibrium rate model), low-quality choked flow, 473–474
ERPGs (emergency response planning guidelines) data for, 226–228
developing emergency response plans, 229
Dow CEI estimate based on, 518, 521–523
hierarchy of alternative concentration guidelines, 232
toxic effect criteria, 225–228
Ethylene explosions, case histories, 632–634, 636–637
Ethylene, flammability diagram for, 267
Ethylene oxide explosions, case histories, 631–632, 634
Evaluation, industrial hygiene defined, 65
monitoring exposures to volatile toxicants, 84–88
overview of, 84
worker exposures during vessel filling operations, 97–99
worker exposures to dusts, 88
worker exposures to noise, 89–91
worker exposures to toxic vapors, 91–96
Evaporation
estimating for liquid, 93–96
estimating worker exposures during vessel filling operations, 97–99
liquid pool boiling or, 169–170
Event trees
relationship between fault trees and, 576–577
risk assessment and, 564–569
Excretion, eliminating toxicants through, 41
Existing events, fault trees, 570
Expansion factor
adiabatic pipe flow, 150–152
correlations for pressure drop ratio and, 153
isothermal pipe flow, 156–158
Explosion-proof equipment and instruments area and material classification, 365–366
designing XP area, 366–367
housings, 365
overview of, 363–365
Explosion proof (XP) environment, 365–367
Explosion suppression systems
designing process safety, 608
mitigating dust explosions, 617
Explosions
apparatus for dusts, 280–281
apparatus for vapors, 279–280
blast damage resulting from overpressure, 287–291
blast damage to people, 301–302
boiling-liquid expanding-vapor, 304
causes of, 16–17
characteristics of, 281–287
chemical plant, 15
confined, 277–279
definitions, 247–249
deflagration venting for dust and vapor, 481–488
detonation and deflagration, 276–277
energy of chemical, 296–298
energy of mechanical, 298–301
fires, 247
missile damage, 301
nature of accident process, 15–16
overview of, 275
parameters affecting behavior of, 275
problems, 305–315
suggested reading, 304–305
three-step process of, 18
TNO multi-energy method, 293–296
TNT equivalency, 291–292
vapor cloud, 303–304
Explosions, case histories
Flixborough, England, 24
Jacksonville, Florida, 30
Pasadena, Texas, 27–29
Explosions, case histories
Port Wentworth, Georgia, 30–31
resulting from chemical reactivity, 630–631
resulting from lack of training, 642–645
resulting from procedures, 637–641
resulting from static electricity, 622–625
resulting from system designs, 631–637
Texas City, Texas, 29

Explosions, preventing
controlling static electricity, 356–367
defeating accident process, 19–20
explosion-proof equipment and instruments, 363–367
inerting. See Inerting
miscellaneous design features, 373–374
overview of, 317
problems, 375–379
sprinkler systems, 370–372
static electricity. See Static electricity
suggested reading, 374–375
ventilation, 367–370

Exterior hoods, local ventilation, 104–107

F&EI (Fire and Explosion Index)
defined, 119
determining general process hazards, 516–518
example, 518–521
as form of hazards survey, 508
form used in, 513–515
overview of, 513
process of, 514
selected data for, 516

Fanning friction factor
flow of liquid through pipes, 132
isothermal pipe flow, 155

Fans, ventilation, 103–104

FAR statistics, 7–10

Fatality rate
accident and loss statistics based on, 7
for common activities, 9–10
statistics for nonindustrial industries, 9
for various industries, 8

Fatty tissue, eliminating toxicants via, 41

Fault trees
advantages and disadvantages, 576
determining minimal cut sets, 572–575
quantitative calculations using, 575–576
relationship between event trees and, 576–577
risk assessment with, 569–572

FEC (forced expired volume), determining toxic exposure, 42

Federal Register (FR), 67

Final temperature
adjusting calorimeter data for heat capacity of sample vessel, 413
calorimeter data analysis, 400–408
estimating parameters from calorimeter data, 408–412

Fire and Explosion Index. See F&EI (Fire and Explosion Index)

Fire point, 247

Fire triangle
designs for handling dusts, 616
eliminating ignition sources, 273–274
overview of, 245–247

Fires. See also Explosions
autoignition, 270–271
autoignition from auto-oxidation, 271–272
causes of, 16–17
cauing boiling-liquid expanding-vapor explosions, 303
defeating accident process, 19–20
definitions related to, 247–249
estimating flammability limits, 256–260
explosions vs., 247
external to process vessels, venting, 488–492
fire triangle, 245–247
flammability diagram, 262–270
flammability limit dependence on pressure, 256
flammability limit dependence on temperature, 255
flammability of gases and vapors, 253
flammability of liquids, 249–253
flammability of vapor mixtures, 253–255
ignition energy, 270
ignition from diabatic compression, 272–273
ignition from sprays and mists, 274–275
Index

ignition sources, 273–274
overview of, 245
problems, 305–315
suggested reading, 304–305
three-step process of, 18
as type of chemical plant accident, 15

Fires, preventing
controlling static electricity, 356–363
explosion-proof equipment and instruments, 363–367
inerting. See Inerting
limiting oxygen concentration through inerting, 260–262
miscellaneous design features, 373–374
overview of, 317
problems, 375–379
sprinkler systems, 370–372
static electricity. See Static electricity
suggested reading, 374–375
ventilation, 367–370

First Aid, OSHA definition of, 6

Flame arrestors, 608–609

Flammability
data for, 653–658
of gases and vapors, 253
of liquids, 249–253

Flammability data for selected hydrocarbons, 653–658

Flammability diagram
equations for gas mixtures, 659–664
equations for placing vessels into/out of service, 664–667
overview of, 262–270
preventing flammable mixtures, 327–333

Flammability limits
data for, 653–658
definition of, 248
dependence on pressure, 256
dependence on temperature, 255
determining for gases and vapors, 253
determining for liquids, 250–253
estimating, 256–260
in pure oxygen, 259
sprays and mists affecting, 274–275
of vapor mixtures, 253–255
Flammability triangle, 617
Flares, relief systems, 451–452
Flash point temperatures. See FP (flash point)
temperatures
Flashing liquids source model, 163–169
Flexing, as rupture disc limitation, 438
Flixborough case history, England, 23–25, 32
Flow of gases or vapors through holes source model, 140–145
Flow of gases or vapors through pipes source model
adiabatic flows, 146–153
examples, 159–163
isothermal flows, 153–158
overview of, 146
Flow of liquid through hole in tank source model, 126–131
Flow of liquid through hole source model, 122–126
Flow of liquid through pipes source model
2-K method, 134–137
example, 137–140
loss coefficients for, 135
overview of, 131–144
Flow path diameter, liquid through pipes, 132–133
Flow path length, liquid through pipes, 132
FMECA (failure mode, effects, and criticality analysis), hazards identification, 538
Follow-up, safety, 600
Forced expired volume (FEV), determining toxic exposure, 42
Forced vital capacity (FVC), determining toxic exposure, 42

Formal Safety Review Report
equipment setup, 670–672
for Example 10-4, 666–667
introduction, 670
overview of, 534–537
procedures, 672–674
raw materials and products, 670
safety checklist, 674–677
summary, 669–670
FP (flash point) temperatures
defined, 247
predicting fire and explosion hazard of liquids, 250–253
for selected hydrocarbons, 653–658
FR (Federal Register), 67
Free expansion release source models, 140–145
Free-field overpressure, blast damage, 288
Free-hanging canopies and plenums, local ventilation, 107
Frequency, failure
determining using LOPA, 581–585
determining using QRA or LOPA, 577
estimating with event trees, 567, 569
lowering using LOPA, 578–581
Frictional losses
in adiabatic pipe flows, 147
in flow of liquid through hole, 123–124, 126
in flow of liquid through hole in tank, 131
in flow of liquid through pipes, 131
Fuels
blending tank explosion, case history, 640–641
fire triangle, 245–247
flammability diagram, 262–270
FVC (forced vital capacity), determining toxic exposure, 42

Gas mixtures, equations for flammability diagrams, 659–664
Gases
behavior of explosions, 275
designing relief device for, 432
determining flammability limits of, 253
estimating energy of explosion for pressurized, 298–301
explosion characteristics of, 281–283
flammability diagram for, 262–270
flow through holes, 140–145
flow through pipes, 146–163
inerting, 318
lethal concentration of, 50
minimum ignition energy for selected, 271
rupture disc reliefs in, 471–472
spring-operated reliefs in, 466–470
toxic release and dispersion models for. See Toxic release and dispersion models
Gasoline additive, case history, 30
Gastrointestinal tract, ingestion of toxicants, 39
Gauge pressure, flow of liquid through hole, 123, 126–128
Gaussian distribution, biological response to toxicant, 44–50
General process hazard factor, F&EI, 517
Gravity, affect on dust particle behavior, 286
Ground conditions
affecting dispersion of toxic materials, 189–190
continuous steady-state source with source at height above ground, 200–204
dense gas dispersion example, 215–216
plume with continuous steady-state source at ground level and wind, 205–206
puff with instantaneous point source at ground level, 204–205
puff with instantaneous point source at height above ground level, 207, 208
puff with no wind and with source on ground, 199
steady-state plume with source on ground, 199
Grounding
preventing electrostratic ignitions, 358–361
preventing sparks, 357
safely transferring solids, 363–364
for solids with flammable vapors, 363
Guide words, HAZOP procedure, 524–526, 528–530

Hand, porosity of skin on, 40
Hardware, as cause of chemical plant accidents, 17
Hazard assessment, Risk Management Plan, 74–75
Hazard evaluation, 505
Hazardous chemicals. See also Chemical reactivity
controlling reactive hazards, 416–418
data for variety of chemical substances, 687–693
Hazardous conditions
defined, 2, 21
using industrial hygiene to assess/prevent. See Industrial hygiene
Ignition energy, fires, 270
Ignition sources
charged capacitors, 342–347
for dust explosions, 617
electrostatic, 338–339
electrostatic ignitions. See Static electricity; Static electricity, controlling
in fire triangle, 245–247
for fires, 273–274
too plentiful to use as primary prevention mechanism, 327
In-service oxygen concentrations (ISOCs), 330–331, 666–667
Incident rates, OSHA
for accident and loss, 5–7
for common activities, 9–10
not readily converted to FAR or fatality rate, 7
for various industries, 8
Incidents
accidents beginning with, 119
definition, 21
investigating, 603–604
realistic and worst-case, 170–171
safety reviews of previous, 531
Incompatible chemicals
chemical compatibility matrix and hazards, 385, 388
defined, 382
screening for reactive chemical hazards, 385–386
sources of information on hazards of, 389
Independent protection layers, LOPA. See IPIs (independent protection layers), LOPA
Induction charging, static electricity, 334
Industrial hygiene
anticipation and identification, 78–83
two-year overview, 99–101
two-year respirators, 101–103
two-year ventilation, 103–109
evaluating exposure to volatile toxicants, 84–88
evaluating worker exposures during vessel filling operations, 97–99
evaluating worker exposures to dusts, 88
evaluating worker exposures to noise, 89–91
evaluating worker exposures to toxic vapors, 91–96
evaluation, overview of, 84
online resources, 109
overview of, 65–66
problems, 110–117
regulation and law, overview, 66–71
regulation, DHS Chemical Facility Anti-Terrorism Standards, 76–78
regulation, EPA Risk Management Plan, 73–76
regulation, OSHA Process Safety Management, 71–73
suggested reading, 109–110
Industries, OSHA incident rates for various, 8
Inerting
combined pressure-vacuum purging, 323–324
concept of, 318
as effective method for preventing ignition. See Inerting
handling solids with flammable vapors, 363–364
limiting oxygen concentration, 260–262
pressure purging, 321–323
pressure-vacuum purging advantages and disadvantages, 325
pressure-vacuum purging with impure nitrogen, 323–325
siphon purging, 327
sweep-through purging, 325–326
using flammability diagram for, 327–333
vacuum purging, 318–321
Informal safety review, 533–534
Ingestion
eliminating toxicants from, 41–42
identifying potential hazards, 79
of toxicants, 38–39
of toxicants through GI tract, 39
Inhalation
eliminating toxicants, 41–42
identifying potential hazards, 79
role of respiratory system, 40–41
of toxicants, 38–39
Inherent safety
defined, 416, 598
mechanical failures from not utilizing principles of, 16
overview of, 20–23
using inherently safer designs, 605–606
Inherently safer designs (IST), 605
Initiation events
defeating accident process, 19–20
frequency values assigned to, 581–582
typical LOPA study, 586–587
Injection
eliminating toxicants received from, 41–42
identifying potential hazards, 79
of toxicants, 38–39
of toxicants through skin, 39–40
Installation practices, relief, 445–446
Instantaneous release
dense gas dispersion for, 210–212
dense gas transition to neutrally buoyant gas, 220–225
puff with instantaneous point source at ground level, 204–205
puff with instantaneous point source at height above ground level, 207–209
Instruments, explosion-proof, 363–367
Insurance requirements, relief designs, 447
Intended reactions, 616
Interactions
chemical, 382
between process units, 552–558
Intermediate events, fault trees, 571–572
IPLs (independent protection layers), LOPA
classifying system or action of, 582–583
equation for gas mixtures, 663–664
equations for placing vessels into/out of service, 666–667
equations for pressurized gases, 299–300
determining flammability limits, 256–260
edetermining vapor mixtures, 253–255
process of creating, 66
United States Code, 68
Layer of protection analysis. See LOPA (layer of protection analysis)
Layers of protection, process safety strategies, 598
LC (lethal concentration), gases, 50
LD (lethal dose) curves, 49–50, 56
Le Chatelier equation, 253–255
Leak testing vessel case history, procedures, 637–638
LEL (lower explosion limit), 248
LEPCs (Local Emergency Planning Committees), 75–76
Lethal concentration (LC), gases, 50
Lethal dose (LD) curves, 49–50, 56
Level of concern (LOC), EPA toxic effects, 229
LFL (lower flammability limit)
definition of, 248–249
determining for vapor mixtures, 253–255
equations for gas mixtures, 663–664
equations for placing vessels into/out of service, 666–667
estimating flammability limits, 256–260
LFL (lower flammability limit) (continued)
flammability of sprays and mists, 274–275
limiting oxygen concentration through inerting, 260–262
preventing electrostatic ignitions through design, 357
using flammability diagram, 266, 328–331
Light hydrocarbon explosion, case history, 632–633
Lightning-like discharge, electrostatic, 337, 358
Likelihood, case history definition, 21
Limited aperture release, 121, 123
Limiting oxygen concentration and inerting, fires, 260–262
Liquid
estimating vaporization rate of, 93–96
estimating worker exposures during vessel filling operations, 97–99
flow of liquid through hole in tank source model, 126–131
flow of liquid through hole source model, 122–126
flow of liquid through pipes model. See Flow of liquid through pipes source model
reliefs for thermal expansion of process fluids, 492–495
rupture disc reliefs in, 470–471
spring-operated reliefs in, 460–465
Liquid flashing source model, 163–169
Liquid pool evaporation or boiling source model, 169–170
Liver
determining toxic exposure through, 43
detoxification process in, 41
LOC (level of concern), EPA toxic effects, 229
LOC (limiting oxygen concentration)
data for, 261
equations for gas mixtures, 659, 663
equations for placing vessels into/out of service, 665–667
through inerting. See Inerting
using flammability diagram, 264–270, 329–333
Local Emergency Planning Committees (LEPCs), 75–76
Local ventilation
designing for plants inside buildings, 368–370
overview of, 107–109
Location of reliefs, 433–434
Lock-tag-try permits, 601–602
Log dose curves, 49
Logic diagram, fault trees, 569–570
Logic transfer components, fault trees, 571
LOL (lower oxygen limit), estimating flammability limits, 258–260
LOPA (layer of protection analysis)
consequence, 581
defined, 577
frequency, 581–585
overview of, 578–581
typical, 585–587
Loss Control Credit Factors, F&EI, 515
Loss distribution, 18, 24
Loss prevention
accident and loss statistics. See Accident and loss statistics
defined, 2
industrial hygiene and. See Industrial hygiene
Lost workdays, 6–8
Low-pressure structures, deflagration venting for, 483–485
Lower explosion limit (LEL), 248
Lower flammability limit. See LFL (lower flammability limit)
Lower oxygen limit (LOL), flammability, 258–260
Lower respiratory tract toxicants, 40
Lungs
absorption of toxicants through, 40
eliminating toxicants through, 42
evaluating worker exposures to dusts, 88
MAC (maximum allowable concentration), 56
Mach numbers
adiabatic pipe flow, 148, 151, 160
flow of gases or vapors through pipes, 146
isothermal pipe flow, 155, 162
Maintenance programs, fires and explosions, 373
Man working in vessel case history, procedures, 638
Management process, safety
 incident investigations, 603–604
OSHA Process Safety Management, 73
 overview of, 599–600
 preventing dust explosions, 617
 review of, 603
Mass discharge rate, 128, 172
Mass equivalents, unit conversion constants, 649
Mass flow rate
 adiabatic pipe flow, 150, 153
 flashing liquids, 166–169
 flow of gases or vapors through holes, 142, 145
 flow of gases or vapors through pipes, 159–163
 flow of liquid through hole, 124–125
 flow of liquid through hole in tank, 127–128
 isothermal pipe flow, 154
 liquid pool evaporation or boiling, 169–170
Material factor (MF), F&EI, 513–517
Material Safety Data Sheets (MSDS), 81–83
Materials of construction
 designing process safety, 610
 designing process safety for vessels, 610–612
MAWP (maximum allowable working pressure)
 creating containment system using, 610
 defined, 432–433
 location of reliefs, 433–434
 two-phase flow during runaway reaction relief, 476–478
Maximum allowable working pressure. See MAWP (maximum allowable working pressure)
Maximum probable days of outage (MPDO), F&EI, 517–518, 549
Maximum probably property damage (MPPD), F&EI, 517–518, 549
MCMT (methylcyclopentadienyl manganese tricarbonyl), 30
Mean time between failures (MTBF), 551, 556–559
Mechanical energy balance
 adiabatic pipe flow, 146–147
 flow of gases or vapors through holes, 140–141
 flow of liquid through pipes, 131
 isothermal pipe flow, 154–155
Mechanical explosions, 248, 298–301
Mechanical failures
 causing chemical plant accidents, 16
 hardware associated with, 17
 preventing dust explosions, 617
Mechanical integrity, OSHA Process Safety Management, 72
Medical treatment, OSHA definition of, 6
Methane, flammability diagram for, 266
Methyl isocyanate (MIC), 25–26
methylcyclopentadienyl manganese tricarbonyl (MCMT), 30
MF (material factor), F&EI, 513–517
MIC (methyl isocyanate), 25–26
MIE (minimum ignition energy)
 energy from electrostatic discharges vs., 337–338
 energy of electrostatic ignition sources vs., 339
 overview of, 270–271
 for select gases, 271
Minimal cut sets, fault trees, 572–576
Minimization, for inherent safety, 20–21
Minimum ignition energy. See MIE (minimum ignition energy)
Missile damage, from explosions, 301–302
Mists, flammability of, 274–275
Mitigation factors, source models, 119
Moderation, and inherent safety, 20, 22–23
Momentum of material released
 dispersion of toxic materials, 190
 effect of, 233–234
Monitoring, exposure to volatile toxicants, 84–88
Monitors, manual fire protection with, 372–373
MPDO (maximum probable days of outage), F&EI, 517–518, 549
MPPD (maximum probably property damage), F&EI, 517–518, 549
MSDS (Material Safety Data Sheets), 81–83
MTBF (mean time between failures), 551, 556–559
National Electrical Code (NEC), 58–59
National Fire Protection Association (NFPA) diamond, 58–59
National Institute for Occupational Safety and Health (NIOSH), 67–68, 225, 228
National Research Council's Committee on Toxicology, 225, 228–229
“Near-miss” incidents, safety reviews, 531
NEC (National Electrical Code), 58–59
Negative pressure ventilation, 103–104
Nervous system disorders, determining toxic exposure, 42
Neutral atmospheric stability, dispersion of toxins, 186
Neutrally buoyant dispersion models
continuous steady-state source with source at height above ground, 200–204
dense gas transition to neutrally buoyant gas, 219–225
non-steady-state continuous point release with no wind, 196
overview of, 190–194
plume with continuous steady-state source at ground level, 205–206
plume with continuous steady-state source at height above ground level, 206–207
puff with instantaneous point source at ground level, 204–205
puff with instantaneous point source at height above ground level, 207–209
puff with no wind, 195–196
puff with no wind and eddy diffusivity is function of direction, 197–198
puff with no wind and with source on ground, 199
puff with wind, 198–199
steady-state continuous point release with no wind, 194–195
steady-state continuous point source release with wind, 197
steady-state continuous point source release with wind and eddy diffusivity is function of direction, 198
steady-state plume with source on ground, 199–200
New Jersey Department of Environmental Protection, 225, 229
NFPA (National Fire Protection Association)
diamond, 58–59
NIOSH (National Institute for Occupational Safety and Health), 67–68, 225, 228
Nitrobenzene sulfonic acid decomposition case history, chemical reactivity, 630
Nitrogen
pressure and vacuum purging with impure, 323–325
preventing fires and explosions. See Inerting using flammability diagram to prevent flammability, 327–333
using large quantities in sweep-through purging, 325–326
Noise, evaluating exposures to, 89–91
Nomograph method, two-phase reactor relief, 478–481
Non-steady-state continuous point release with no wind, 196
Non-XP environment, 365
Nonisothermal releases
Britter and McQuaid model for, 212–213
dense gas dispersion example, 218–219
Normal distribution, biological response to toxicants, 44–50
Normal operating procedures, Formal Safety Review Report, 672–673
Nuclear power plants, quantifying hazards and risks, 569
Occupational illness, 5–7
Occupational injury, 5–7
Occupational Safety and Health Administration. See OSHA (Occupational Safety and Health Administration)
Odor thresholds, 78, 80, 84
Open-air plants, preventing fires and explosions, 367–368
Open-cup flash point procedures, 250
Operating pressure, reliefs, 432–433
Operating procedures
case histories of poor, 637–641
incident investigations, 603–604
OSHA Process Safety Management, 72
overview of, 600–601
permits, 601–603
safety review of, 603
Operation time, of calorimeter types, 392, 395–397
OR logic function
fault trees, 569–572
interactions between process units, 552
Organic oxidation case history, chemical reactivity, 631
Organic solvents, source of fires and explosions, 245
Orifice method, flow of gases or vapors through pipes, 163
Orifice-type leak, flow of liquid through hole, 125–126
OSFC (out-of-service fuel concentration), 328–330, 664–667
OSHA (Occupational Safety and Health Administration)
glossary of terms, 6
incidence rate statistics, 5–6
legislation for chemical process safety, 69–71
permissible exposure levels, 58
Process Safety Management, 71–73
PSM rule, 17
responsibilities of, 67–68
right of enforcement, 68
venting for fires external to process vessels, 489
OSHAAct (Occupational Safety and Health Act) of 1970
relevance to chemical engineering practice, 70–71
responsibilities of, 67–69
out-of-service fuel concentration (OSFC), 328–330, 664–667
Overdesign, in conservative analysis, 172
Overpressure
Baker-Strehlow method of estimating, 296
blast damage resulting from, 287–291, 301–302
correction for spring-operated reliefs in liquid service, 463–465
definition of, 249
energy of chemical explosions, 297–298
nomograph method for two-phase reactor relief, 478–481
peak, 275
preventing deflagrations, 612
reliefs and, 430–433
required vent area for two-phase flow, 459–460
spring-operated reliefs in vapor or gas service, 470
TNO multi-energy method of estimating, 293–296
TNT equivalency method of estimating, 291–292
Oxidizers
in fire triangle, 245–247
types of, 685–686
Oxygen
estimating flammability limits, 258–260
flammability diagram, 262–265
limiting concentration through inerting. See Inerting
P&IDs (process and instrumentation diagrams), 524, 603
Parallel process components, 552–558
Parameters, estimating from calorimeter data, 408–412
Pasquill-Gifford dispersion modeling, 199, 208–209
Pasquill-Gifford dispersion modeling, 199, 208–209
Penalty column, F&EI, 513–514, 517
Patterns, chemical plant accident, 15–20
Peak overpressure, 275, 287–291
PEL (permissible exposure level) values, OSHA, 58, 225, 229, 687–693
Penalty column, F&EI, 513–514, 517
People
blast damage to, 301–302
capacitance of, 347–350
relief systems protecting, 430
Permissible exposure level (PEL) values, OSHA, 58, 225, 229
Permits, as safety operating procedure, 601–603
Peroxidizable compounds
- categories of chemicals susceptible to, 682
- chemical reactivity and, 626–628
- isopropyl ether case history, 630

Personal protective equipment, 38, 101

Pesticides, Bhopal case history, 25–26

Petroleum, Texas City case history, 29

PFDs (probability of failure on demand), LOPA
- for active IPLs and human actions, 584
- overview of, 581–582
- for passive IPLs, 582–583
- typical LOPA study, 587

PFDs (process flow diagrams)
- HAZOP study, 524
- safety review of, 603

PHA (process hazard analysis), OSHA, 72, 585–587

Pharmaceutical company case history, 643–644

Phenol-formaldehyde runaway reaction case history, 639

Phi-factors, calorimeters, 392, 394

Pigment and filter case history, static electricity, 624

Pilot-operated reliefs, 440–442, 481

Pipefitter’s helper case history, static electricity, 624

Pipes
- failures causing chemical plant accidents, 17
- flashing liquids escaping through, 165–169
- flow of gases or vapors through, 163–169
- flow of liquid through. See Flow of liquid
 through pipes source model
- two-phase flashing flow through, 473–474

Plants inside buildings, ventilation for, 368–370

Plume release
- of airborne toxic materials, 186–188
- Britter and McQuaid model for, 211–212
- with continuous steady-state source, 205–207
- defined, 187
- effect of momentum and buoyancy, 233–234
- overview of, 190
- release of continuous puffs in, 191
- steady-state plume with source on ground, 199

Podbielniak extraction system. See Formal Safety Review Report

Poisons, toxicology and, 37

Polyethylene, Pasadena case history, 27–29

Polymerizing compounds, 686

Port Wentworth case history, Georgia, 30–31

Positive pressure ventilation, 103–104

PRA (probabilistic risk assessment), 505–506

Pre-startup safety review, OSHA Process Safety Management, 72

Pressure. See also Set pressure
- calculating using calorimeter data, 414–415
- designing process safety, 610–615
- designing relief systems for rising. See Relief systems
- flammability limit dependence on, 256
- relief devices for excessive. See Reliefs

Pressure drop ratio
- adiabatic pipe flow, 151–152
- correlations for expansion factor and, 153
- isothermal pipe flow, 156–157

Pressure fronts
- blast damage resulting from overpressure, 287–291
- explosion characteristics, 282
- explosions from detonation vs. deflagration, 276–277

Pressure purging
- advantages and disadvantages of, 325
- combined with vacuum purging, 323–324
- with impure nitrogen, 323–325
- reducing oxygen concentration using, 321–323

Pressure rates
- in confined explosions, 279
- determining explosive nature of vapors, 280
- using explosion characteristics, 281

Pressure-vacuum purging, 323–325

Pressure waves, 275–276

Prevention program, Risk Management Plan, 75

Probabilistic risk assessment (PRA), 505–506

Probabilities of failure on demand. See PFDs
- (probabilities of failure on demand), LOPA

Probability of coincidence, risk assessment, 562–563
Probability theory
common mode failures, 563
interactions between process units, 552–558
probability of coincidence, 562–563
redundancy, 563
revealed and unrevealed failures, 558–562
review, 550–551
Probit analysis
estimating blast damage effects, 301–302
overview of, 51–55
suggested reading, 60
toxic effect criteria using, 225–233
Procedural methods, reactive chemicals safety, 417
Procedural safety, 598
Procedures
case histories about poor operating, 637–641
Formal Safety Review Report, 672–674
Process and instrumentation diagrams (P&IDs), 524, 603
Process flow diagrams (PFDs)
HAZOP study, 524
safety review of, 603
Process hazard analysis (PHA), OSHA, 72, 585–587
Process hazards checklists, 507–512
Process safety information, OSHA, 71
Process Safety Management (PSM), OSHA, 17, 71–75
Process safety strategies, 598
Process Unit Risk Analysis summary, F&EI, 515
Process units, interactions between, 552–558
Production loss, accident and loss statistics, 11
Propagating brush discharge, electrostatic, 335–336, 357
Propagation events, defeating accident process, 19–20
Property damage, accident pyramid for, 11
Protection layers. See LOPA (layer of protection analysis)
Protective clothing, 38
PSM (Process Safety Management), OSHA, 17, 71–75
Public perceptions
of acceptable risk, 14–15
of chemical exposure, 2–3
Puff release
Britter and McQuaid model for, 211–213
defined, 188
dense gas dispersion in, 209–219
describing plumes using, 191
effect of momentum and buoyancy, 233–234
with instantaneous point source at ground level, 204–205
with instantaneous point source at height above
ground level, 207–209
with no wind, 195–196
with no wind and eddy diffusivity is function of
direction, 197–198
with no wind and with source on ground, 199
overview of, 190–191
Pasquill-Gifford dispersion coefficients for, 201–204
with wind and eddy diffusivity is function of
direction, 198
worst-case, 208
Pumps, system design case histories, 633
Push-pull hoods, local ventilation, 104–107
Pyrophoric and spontaneously combustible
chemicals, 681
QRA (quantitative risk assessment), 505, 577–578
Qualitative estimates of consequences, LOPA, 581
Quantitative calculations
LOPA consequence categorization, 581
using event tree, 569
using fault trees, 575–576
RAGAGEP (Recognized and Generally Acceptable Good Engineering Practices), 600
Raw materials and products, Formal Safety
Review Report, 670
Reaction data, calorimeters, 413–414
Reaction fronts, detonation vs. deflagration, 248,
276–277
Reaction hazard index (RHI), 626, 629–630
Reaction onset temperature
adjusting calorimeter data for heat capacity of vessel, 413
calorimeter data analysis, 400–408
estimating parameters from calorimeter data, 408–412
Reaction order, calorimeter data, 409–412
Reactions, Formal Safety Review Report, 670
Reactive chemical hazards. See Chemical reactivity
Realistic releases, and consequence modeling, 170–171
Receiving hoods, local ventilation, 104–107
Recognized and Generally Acceptable Good Engineering Practices (RAGAGEP), 600
Recordable cases
accident statistics for various industries, 8
OSHA definitions of, 6
Recording, HAZOP procedure results, 526–528
Redundancy
creating containment system with, 610
designing process safety, 608
preventing runaway reactions, 616
risk assessment and, 564
Reflected overpressure, blast damage, 288
Regulations
creating, 66–71
DHS Chemical Facility Anti-Terrorism Standards, 76–78
EPA Risk Management Plan, 73–76
OSHA Process Safety Management, 71–73
relief design, 431, 447
Relative toxicity, toxicants, 56
Relaxation time
balance of charges, 351–356
energy of charged capacitors, 345
increasing to prevent electrostatic ignitions, 357–358
streaming current and, 339–340
Release incidents
in consequence analysis procedure, 120
identifying in toxic release model, 185–186
realistic vs. worst-case, 171
Release mechanisms, 121–122, 140–145
Releases
in conservative analysis, 172
effect of buoyancy, 233–234
fires vs. explosions, 246
height affecting dispersion of toxic materials, 190
mitigation of, 196, 234–236
realistic and worst-case, 170–171
Relief scenarios, 443
Relief sizing calculations
buckling-pin reliefs, 481
deflagration vents for dust and vapor explosions, 481–488
overview of, 459–460
pilot-operated reliefs, 481
problems, 497–503
rupture disc reliefs in liquid service, 470–471
rupture disc reliefs in vapor or gas service, 471–472
spring-operated reliefs in liquid service, 460–465
spring-operated reliefs in vapor or gas service, 466–470
suggested reading, 496–497
for thermal expansion of process fluids, 492–495
for two-phase flow during runaway reaction relief, 472–481
venting for fires external to process vessels, 488–492
Relief systems
condensers, 452
defined, 433
design considerations, 447
designing, 444–445
designing to reduce valve chatter, 441
flares, 451–452
horizontal knockout drums, 448–450
installation practices, 445–446
scrubbers, 452
suggested reading, 452–457
Reliefs
advantages and disadvantages of various, 442
buckling-pin, 440
concepts, 430–432
Safety (continued)
culture, case history, 642–643
engineering, 19–20
inherent, 20–23

Safety instrumented functions (SIFs), LOPA, 585
Safety integrity levels (SILs), LOPA, 585

Safety procedures and designs
best practices, 600
containment, 609–610
controls, block valves, 608
controls, double block and bleed, 606–607
controls, explosion suppression, 608
controls, safeguards or redundancy, 607
deflagrations, 612
detonations, 612–615

flame arrestors, 608–609
Formal Safety Review Report, 673–674
inherently safer designs, 605–606
layers of protection, 598
managing safety, 599–600
materials of construction, 610
operating procedures, accident investigations, 603–604
operating procedures, overview, 600–601
operating procedures, permits, 601–603
operating procedures, safety reviews, 603
overview of, 597
preventing dust explosions, 616–617
preventing fires and explosions, 615–617
preventing runaway reactions, 615–616
problems, 618–620
process safety strategies, 598
process vessels, 610–612
suggested reading, 617–618

Safety programs
calculating root causes of accidental deaths, 12–13
determining appropriate expenditures for, 11–12
implementing successful, 2–4

Safety relief valve, spring-loaded pressure relief, 439

Safety review
defined, 507
formal, 534–537
informal, 533–534
as operating procedure, 603
overview of, 530–533
of procedures, 641

Safety valve, spring-loaded pressure relief, 439

Saturation vapor pressures, 93–96, 679

Scaling problem, in reactive chemical hazards, 390–391

Scenarios
case history definition, 21
layers of protection to lower frequency of accident, 579–581
relief, 443

Screening flowchart, reactive chemical hazards, 384–385

Scrubbers, relief systems, 452
Security, of fixed chemical sites, 76–77, 109

Self-heat rates
calorimeter data analysis, 403–408
estimating parameters from calorimeter data, 410–412
increased reactor volume and, 390–391
reactive hazards calorimetry and, 391–397
Self-reacting chemicals, 382

Semi-quantitative consequences categorization, LOPA, 580–581

Series process components, interactions between process units, 552–558

Set pressure
conventional spring-operated reliefs in liquid, 462
defined, 432
relief vent area calculation for, 459
rupture discs designed to rupture at specified, 438

Seveso case history, Italy, 26–27, 31–32

Shaft work, flow of liquid through hole, 123

Shock duration, from blast waves, 287
Shock waves
- blast damage resulting from overpressure, 287–291
 - defined, 249, 275
 - from detonation, 276
 - from dust explosions, 285

Short-term exposure limits. See TLV-STELs (short-term exposure limits)

Short-term public emergency guidance levels (SPEGLs), 225, 229

Shutdown, accidents at, 586–587

Side-on overpressure, blast damage, 288

SIFs (safety instrumented functions), LOPA, 585

SILs (safety integrity levels), LOPA, 585

Simplification, for inherent safety, 20, 23

Siphon purging, 327

SIT (spontaneous ignition temperature), 270–271

Site Security Plan (SSP), CFATS regulation, 76–77

Skin
- absorption of toxicants through, 39–40
- determining toxic exposure through, 42
- eliminating toxicants through, 42

Solids
- electrostatic calculations for, 340–342
- handling with flammable vapors, 363
- handling without flammable vapors, 363

Solow, Robert M., 1

Solvents, Formal Safety Review Report, 670

Sonic pressure ratio
- adiabatic pipe flow, 151, 161
- isothermal pipe flow, 162

Sonic velocity
- adiabatic pipe flow, 146–147, 149–150
- explosions from detonation/deflagration and, 276–277
- flow of gases or vapors through holes, 141, 143
- flow of gases or vapors through pipes, 146
- isothermal pipe flow, 153–154

Source models
- conservative analysis, 172
- developing in toxic release model, 185–186
- flashing liquids, 163–169
- flow of gases or vapors through holes, 140–145
- flow of gases or vapors through pipes, 146–163
- flow of liquid through hole, 122–126
- flow of liquid through hole in tank, 126–131
- flow of liquid through pipes, 131–140
- introduction to, 119–122
- liquid pool evaporation or boiling, 169–170
- overview of, 119
- problems, 174–184
- realistic and worst-case releases, 170–171
- selecting to describe release incident, 120
- suggested reading, 173

Sources, ignition, 273–274

Spark discharge, electrostatic
- defined, 335
- energy of charged capacitors, 345
- energy of electrostatic ignition sources, 338–339
- importance of controlling. See Static electricity, controlling
- preventing by grounding and bonding, 357

Special process hazard factor, F&EI, 517

SPEGLs (short-term public emergency guidance levels), 225, 229

Spirometers, 42

Spontaneous combustion, 271–272, 681

Spontaneous ignition temperature (SIT), 270–271

Sprays, flammability of, 274–275

Spring-operated reliefs
- advantages and disadvantages, 442
- installation practices, 445
- in liquid service, 460–465
- overview of, 436–437
- relief vent area calculation for, 459
- types of, 439–440
- in vapor or gas service, 466–470

Spring-operated valves, 437–438

Sprinkler systems, 370–372

SSP (Site Security Plan), CFATS regulation, 76–77

Stable atmospheric stability, dispersion of toxic materials, 187, 189
Stagnation pressure, blast damage, 288

Standard deviation, biological response to toxicant, 44–50

Standards. See also Regulations

accidents from failure to use, 600

importance of construction, 610

Startup, accidents at, 586–587

Static discharge energy, 339

Static electricity

balance of charges, 350–356

capacitance of body, 347–350

case histories, 622–625

charge accumulation, 334–335

energy from electrostatic discharges, 337–338

energy of charged capacitors, 342–347

energy of electrostatic ignition sources, 338–339

fundamentals of static charge, 333–334

lessons learned regarding, 624–625

streaming current, 339–342

Static electricity, controlling

bonding and grounding, 358–361

dip pipes, 359, 362

general design methods to prevent ignition, 357–358

handling solids with flammable vapors, 363

handling solids without flammable vapors, 363

increasing conductivity with additives, 362–363

overview of, 356–357

preventing dust explosions, 617

relaxation, 358

St classes, for dusts, 284

Steady-state continuous point

release with no wind, 194–195

source release with wind, 193–194, 197

source release with wind and eddy diffusivity is function of direction, 198

Steady-state plume with source on ground model, 199–200

Stoichiometric combustion

equations for gas mixtures, 663–664

equations for placing vessels into/out of service, 665

using flammability diagram to prevent, 327–331

Stoichiometric concentration

estimating flammability limits, 256–257

flammability diagram, 264

Stoichiometry, Formal Safety Review Report, 670

Storage, eliminating toxicants through, 41

Stratum corneum, permeability of toxins through, 39–40

Streaming current, 339–342, 343

Stress analysis, relief design considerations, 447

Substitutions, for inherent safety, 20–21

Sugar dust explosions, case history, 30–31, 643–644

Summary, Formal Safety Review Report, 669–670

SVA (security vulnerability assessment), CFATS regulation, 76–77

Sweep-through purging, 325–326

System designs, case histories of, 631–637

T2 Laboratories in Jacksonville, Florida, 382

Tank car loading explosion, 622, 625

Tanks

flashing liquids in, 163–169

flow of liquid through holes in, 126–131

TCDD (2,3,7,8-tetrachlorodibenzoparadioxin), 26–27

TD (toxic dose) curves, 50, 56

Technological advances, chemical process safety, 1–2

Temperature

calorimeter data analysis, 399–408

designing relief device for rising. See Reliefs

estimating heat of reaction data from calorimeter data, 413–414

estimating parameters from calorimeter data, 408–412

flammability limit dependence on, 255

Tempered reaction systems, 472–473

Termination events, in accident process, 19–20

Terminology

case history, 21

chemical process safety, 6
fires and explosions, 247–249
inherent safety, 20
OSHA work-related losses, 6
reliefs, 432–433
Texas City case history, Texas, 29
Thermal expansion of process fluids, reliefs for, 492–495
Thermal radiation, 301–302, 451
Thermal scan mode, calorimeters, 391, 393
Thermodynamic availability method, explosion of pressurized gases, 299–300
Threshold limit values. See TLVs (threshold limit values)
Throttling releases, gas and vapor discharges, 140
Time-weighted average (TWA), exposure to toxicants, 84–88
TLV-Cs (ceiling concentrations), 225, 229
TLV-STELs (short-term exposure limits)
 developing emergency response plans, 232
toxic effect criteria, 225, 229
TLVs (threshold limit values)
 for chemical agents, 56–58
data for, 688–693
evaluating exposure to volatile toxicants, 84–88
evaluating worker exposures to dusts, 88
suggested reading, 60
toxic effect criteria, 225
TNO multi-energy method, explosions, 293–296
TNT equivalency method, 290–292
Top event, fault trees, 570–572
Total containment, relief systems, 447
Total energy balance, adiabatic pipe flow, 147–148
Total loss figures, accident and loss statistics, 11
Toxic dose (TD) curves, 50, 56
Toxic effect criteria, 225–233
Toxic hazard, 37
Toxic release
 Bhopal, India case history, 25–26
 causes of, 16–17
defeating accident process, 19–20
 estimating vaporization rate of liquid, 93–96
 estimating worker exposure to toxic vapors, 91–93
 estimating worker exposures during vessel filling operations, 97–99
Seveso, Italy case history, 27
significant losses from, 16
three-step process of, 18
as type of chemical plant accident, 15
Toxic release and dispersion models
dense gas dispersion. See Dense gas dispersion
dense gas transition to neutrally buoyant gas, 219–225
effect of release momentum and buoyancy, 233–234
neutrally buoyant. See Neutrally buoyant
dispersion models
overview of, 185–186
parameters affecting dispersion, 186–190
problems, 236–244
release mitigation, 234–235
suggested reading, 235–236
toxic effect criteria, 225–233
Toxicity, defined, 37
Toxicity dispersion (TXDS) methods, 225, 229
Toxicological studies, 44–50
Toxicology
dose versus response, 44–51
effect of toxicants on biological organisms, 42–43
how toxicants are eliminated from biological organisms, 41–42
how toxicants enter biological organisms, 38–41
models for dose and response curves, 51–56
NFPA diamond, 58–59
online resources, 59–60
overview of, 37–38
problems, 60–64
relative toxicity, 56
suggested reading, 60
threshold limit values, 56–58
toxicological studies, 43
Trade secrets section, OSHA Process Safety Management, 73
Training
case histories, 637–644
lessons learned, 645
OSHA Process Safety Management, 72
Tramp metal problem, preventing dust explosions, 617
Transport, charging by, 335
Trichlorophenol, 26–27
TWA (time-weighted average), exposure to toxicants, 84–88
Two-phase flow reliefs
required vent area as function of overpressure in, 459–460
during runaway reaction, 472–481
runaway reactions resulting in, 431, 444
scrubbers and, 452
suggested reading, 469–497
using calorimeter data to characterize, 430
venting for fires external to process vessels, 488–492
2-K method
adiabatic pipe flow, 150–151
flow of liquid through pipes, 134–137
TXDS (toxicity dispersion) methods, 225, 229
UEL (upper explosion limit), 248
UFL (upper flammability limit)
data for, 653–658
definition of, 248–249
determining for vapor mixtures, 253–255
estimating flammability limits, 256–260
flammability diagram, 266
flammability limit dependence on pressure, 256
preventing electrostatic ignitions through design, 357
Unacceptable risk, determining, 577–578
Unallowed events, fault trees, 570
Unconfined explosions, 248
Undeveloped events, fault trees, 571–572
Unit conversion constants, 649
Unrevealed failures, risk assessment, 558–562
Unstable atmospheric stability, dispersion of toxic materials, 186
UOL (upper oxygen limit), 258–260
Upper explosion limit (UEL), 248
Upper flammability limit. See UFL (upper flammability limit)
using flammability diagram for, 262–270

VCEs (vapor cloud explosions)
from boiling-liquid expanding-vapor explosions, 303
causes of, 16–17
defeating accident process, 19–20
Flixborough, England case history, 24
nature of accident process, 15–16
Pasadena, Texas case history, 27–29
Texas City, Texas case history, 29
three-step process of, 18
understanding, 303
using TNO multi-energy model for, 293–296
using TNT equivalency method for, 292

Velocity head loss, 151–152, 156–158

Velocity of fluid
flow of gases or vapors through holes, 142
flow of liquid through hole, 123–124
flow of liquid through hole in tank, 127

Vent Sizing Package (VSP), 472, 475–476
Vent Sizing Package2 (VSP2) calorimeter, 392–395, 397

Ventilation
dilution, 107–109
estimating vaporization rate of liquid, 93–96
estimating worker exposure to toxic vapors, 91–93
for fires external to process vessels, 488–492
handing flammable materials for plants inside buildings, 368–370
local, 104–107
mitigating dust explosions with, 617
overview of, 103–104
preventing fires and explosions, 367–370
suggested reading, 110

Vessel entry permit, safety operating procedure, 602–603

Vessels
adjusting calorimeter data for heat capacity of, 412–413
boiling-liquid expanding-vapor explosions in, 303
case history of leak testing, 637–638
case history of man working in, 638
deflagration venting for dust and vapor explosions, 481–488
designing process safety for, 610–612
estimating consequences of explosion, 282–287
estimating worker exposures during filling operations, 97–99
flashing liquids in, 163–169
placing into/out of service, 664–667
using flammability diagram to prevent flammable atmospheres, 327–333
venting for fires external to, 488–492
water spray protection system around, 370–371

Vinyl chloride explosion case history, procedures, 637–641

Viscosity correction factor, 462–463

Voltage
bonding and grounding, 358–361
electrostatic voltage drops, 342
static charge buildup creating, 334

Volume equivalents, unit conversion constants, 649
VSP (Vent Sizing Package), 472, 475–476
VSP2 (Vent Sizing Package) calorimeter, 392–395, 397

Vulnerability, of chemical plant assets, 76–77

Walsh-Healy Act, 67
Waste disposal, Formal Safety Review Report, 674
Water damage, from sprinkler systems, 370
Water-reactive chemicals, 683–685
Weld failure case history, and training, 642
Wet pipe sprinkler system, 370
“What if” analysis, hazards identification, 537

Wind
affecting dispersion of toxic materials, 186–190
in neutrally buoyant dispersion models. See Neutrally buoyant dispersion models
open-air plants for ventilation, 367–368

Worst-case releases
consequence modeling, 170–171
neutrally buoyant dispersion models, 208

XP (explosion proof) environment, 365–367