
85

C H A P T E R 3

Basic SOA Using REST

In this chapter, I describe the basic tools and techniques for implementing
SOA components using the REST paradigm. REST stands for Representa-
tional State Transfer. It was first introduced by Roy Fielding1 in his 2000
doctoral dissertation [Fielding]. For the past several years, a great debate
has been going on about the merits of the REST versus SOAP architectural
styles for Web Services. It is not my intention, in this book, to weigh in on
either side of that debate. My feeling is that both approaches are useful for
implementing SOA components. For simple applications, REST is an easy
way to get started.

If you are an advanced Java programmer, you might find the first half of
this chapter to be very basic. I have intentionally started out with simplistic
examples, using only HTTP and servlets, so that readers who are not
advanced in Java can come up the learning curve and get a sense of the
basics before introducing the Java Web Services (JWS) APIs. If you have a
good grounding in HTTP and Java servlets, please feel free to skip the
introductory material and focus on the sections dealing with JAX-WS.

3.1 Why REST?

Some readers may wonder why this book starts with REST before discuss-
ing SOAP and WSDL-based Web Services. The reason is that REST is easy
to understand. By starting with REST, I can describe some of the basic SOA
Web Services concepts without getting into the complexities of SOAP and
WSDL. Also, the limitations of REST provide the motivation for introduc-
ing SOAP and WSDL in Chapter 4. If you are not interested in REST, feel
free to skip ahead to Chapter 4.

1. Fielding is one of the principal authors of the HTTP specification and a co-founder of the
Apache HTTP Server project.

86 Basic SOA Using REST

3.1.1 What Is REST?

REST-style services (i.e., RESTful services) adhere to a set of constraints
and architectural principles that include the following:

■ RESTful services are stateless. As Fielding writes in Section 5.1.3 of
his thesis, “each request from client to server must contain all the
information necessary to understand the request, and cannot take
advantage of any stored context on the server.”

■ RESTful services have a uniform interface. This constraint is usually
taken to mean that the only allowed operations are the HTTP opera-
tions: GET, POST, PUT, and DELETE.

■ REST-based architectures are built from resources (pieces of infor-
mation) that are uniquely identified by URIs. For example, in a
RESTful purchasing system, each purchase order has a unique URI.

■ REST components manipulate resources by exchanging representa-
tions of the resources. For example, a purchase order resource can
be represented by an XML document. Within a RESTful purchasing
system, a purchase order might be updated by posting an XML doc-
ument containing the changed purchase order to its URI.

Fielding writes that “REST-based architectures communicate primarily
through the transfer of representations of resources” (Section 5.3.3). This is
fundamentally different from the Remote Procedure Call (RPC) approach
that encapsulates the notion of invoking a procedure on the remote server.
Hence, RPC messages typically contain information about the procedure to
be invoked or action to be taken. This information is referred to as a verb in
a Web service request. In the REST model, the only verbs allowed are
GET, POST, PUT, and DELETE. In the RPC approach, typically many
operations are invoked at the same URI. This is to be contrasted with the
REST approach of having a unique URI for each resource.

These are the basic principles behind REST. However, when people
talk about the benefits of RESTful systems today, they usually are not
strictly applying these principles. For example, among REST advocates,
keeping shopping cart data on the server and maintaining a session related
to the shopping process that is using the cart is acceptable.2 In fact, the
XML/HTTP Binding provided by JAX-WS for implementing RESTful

2. Storing session information or shopping cart data on the server is a clear violation of
Fielding’s original REST concept since it violates the requirement that a service be stateless.

3.1 Why REST? 87

services provides for session management capabilities using cookies, URL
rewriting, and SSL session IDs.

More significant deviations from Fielding’s definition of REST involve
getting around the “uniform interface” constraint by embedding verbs and
parameters inside URLs. The Amazom.com REST interface, for example,
includes verbs in query strings and doesn’t have unique URIs for each
resource. Systems like this, although labeled as RESTful, are really starting
to look very much like RPC using XML over HTTP without SOAP.

For the purposes of this book, I am not going to wade into a debate on
what is or isn’t RESTful. I simply define RESTful Web Services in contrast
to SOAP Web Services. Table 3–1 illustrates the principal differences.

This is consistent with common usage in the REST versus SOAP debates.
REST uses simple XML over HTTP without a WSDL interface definition.

3.1.2 Topics Covered in This Chapter

In addition to introducing RESTful Web Services, this chapter introduces
and reviews some basic techniques for integrating Enterprise Information
Systems (EISs) using XML, XSLT, HTTP, and Java. For each example, I
demonstrate how to implement it with and without JWS. The versions of
the examples without JWS use basic Java HTTP and XML techniques. Both
approaches are provided to give you a sense of what is really happening,
under the covers, when a Web service is consumed or deployed using JWS.
This should give you a better understanding of the mechanisms underlying
JWS and when to use them. For simple Web services, often it is easier to

Table 3–1 RESTful Web Services versus SOAP Web Services

REST SOAP

Message Format XML XML inside a SOAP Envelope
Interface Definition noneaa

a. Some would argue that XML Schema could be used as an interface definition for REST-
ful services. Not only is that approach possible, but it is used in many practical cases. How-
ever, it is not a complete interface solution because many, if not most, RESTful services
incorporate HTTP parameters (e.g., URL query strings) in addition to XML as part of their
invocation interface. Chapter 9 looks at the Yahoo! Shopping RESTful interface, which uses
HTTP parameters in this manner.

WSDL
Transport HTTP HTTP, FTP, MIME, JMS, SMTP, etc.

88 Basic SOA Using REST

work with the basic Java tools than to pull out all the power of JWS. On the
other hand, you will see from these examples how things can quickly get
complicated and require the power of the JWS technologies.

Since one focus of this book is on SOA-style development for the enter-
prise, many of the examples deal with EIS—the basic infrastructure of most
corporate computing environments. This chapter describes

■ Structuring EIS Records as XML documents
■ Getting EIS records from a REST service (with and without JWS)
■ Posting EIS records to a REST service (with and without JWS)
■ Basic SOA-style integration of REST services using XSLT for data

transformation
■ Deploying a REST service to be used for getting EIS records—in

other words, an HTTP GET service (with and without JWS)
■ Deploying a REST service to be used for posting EIS records—in

other words, an HTTP POST service (with and without JWS)

3.2 XML Documents and Schema for EIS Records

The first step toward implementing an SOA component that consumes
or provides EIS records involves formatting the EIS records that need to
be exchanged as XML documents. This process is formalized by creating
an XML Schema to represent the structure of an XML document for a
particular EIS record. This section introduces some simple examples
that are used throughout this chapter to illustrate the role of XML and
XML Schema in SOA-style applications development based on Web Ser-
vices. Understanding these examples requires a basic knowledge of XML
and XML Schema. If you are new to XML, you should get an introduc-
tory text such as Beginning XML by David Hunter et al. [Hunter]. For
the necessary background on XML Schema, I suggest Definitive XML
Schema by Priscilla Walmsley [Walmsley]. Alternatively, if you know
basic XML, but need to brush up on XML Schema, you can probably
find all you need to know for this book by reading through the W3C’s
“XML Schema Part 0: Primer” [XSD Part 0].

To illustrate how XML is used, I employ an example based on the ficti-
tious XYZ Corporation. The example illustrates real SOA challenges faced
by many companies. XYZ Corporation has an Order Management System
(OMS) that needs to be integrated with a Customer Service System (CSS).
The OMS should be thought of as an EIS, such as SAP, for taking customer

3.2 XML Documents and Schema for EIS Records 89

orders and tracking them through delivery. The CSS should be thought of
as an EIS, such as Oracle’s Siebel Customer Relationship Management
Applications, that is used by customer service employees as a tool for han-
dling customer inquiries.

XYZ Corporation would like to build an SOA application bridging the
OMS and the CSS. Every time a new order is entered in the OMS (or an
existing order is updated), the new SOA application should transfer that
information to the CSS and add it to the relevant customer’s history log.
The purpose of this SOA application is to ensure that customer service rep-
resentatives have fast access, through the CSS, to basic customer order
information. If customer service representatives need access to more
detailed order information from the OMS, the CSS will contain the keys
within the customer history log (updated via the SOA application) to query
the OMS and access that detailed information.

Figure 3–1 illustrates what an OMS order record looks like as it might
appear on a user interface.

Figure 3–1 An OMS order record as it appears in the user interface.

Order

Order Number ENT1234567

Header Sales Organization: NE
 Purchase Date: 2001-12-09
 Customer Number: ENT0072123
 Payment Method: PO
 Purchase Order: PO-72123-0007
 Guaranteed Delivery: 2001-12-16

Order Items Item Number: 012345
 Storage Location: NE02
 Target Quantity: 50
 Unit of Measure: CNT
 Price per UOM: 7.95
 Description: 7 mm Teflon Gasket

 Item Number: 543210
 Target Quantity: 5
 Unit of Measure: KG
 Price per UOM: 12.58
 Description: Lithium grease with PTFE/Teflon

Other Information This order is a rush.

90 Basic SOA Using REST

The structure displayed in the user interface provides a guide to con-
structing an XML document for the EIS order record. Note that the record
is divided into four sections that contain data: Order Number, Order
Header, Order Items, and Other Information. Example 3–1 illustrates how
this record can be represented as an XML document.

Example 3–1 An XML Representation of the Order Record Appearing in Figure 3–1

 4 <Order xmlns="http://www.example.com/oms"
 5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 6 xsi:schemaLocation="http://www.example.com/oms
 7 http://soabook.com/example/oms/orders.xsd">
 8 <OrderKey>ENT1234567</OrderKey>
 9 <OrderHeader>
 10 <SALES_ORG>NE</SALES_ORG>
 11 <PURCH_DATE>2005-12-09</PURCH_DATE>
 12 <CUST_NO>ENT0072123</CUST_NO>
 13 <PYMT_METH>PO</PYMT_METH>
 14 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 15 <WAR_DEL_DATE>2005-12-16</WAR_DEL_DATE>
 16 </OrderHeader>
 17 <OrderItems>
 18 <item>
 19 <ITM_NUMBER>012345</ITM_NUMBER>
 20 <STORAGE_LOC>NE02</STORAGE_LOC>
 21 <TARGET_QTY>50</TARGET_QTY>
 22 <TARGET_UOM>CNT</TARGET_UOM>
 23 <PRICE_PER_UOM>7.95</PRICE_PER_UOM>
 24 <SHORT_TEXT>7 mm Teflon Gasket</SHORT_TEXT>
 25 </item>
 26 <item>
 27 <ITM_NUMBER>543210</ITM_NUMBER>
 28 <TARGET_QTY>5</TARGET_QTY>
 29 <TARGET_UOM>KG</TARGET_UOM>
 30 <PRICE_PER_UOM>12.58</PRICE_PER_UOM>
 31 <SHORT_TEXT>Lithium grease with PTFE/Teflon</SHORT_TEXT>
 32 </item>
 33 </OrderItems>
 34 <OrderText>This order is a rush.</OrderText>
 35 </Order>

book-code/chap03/eisrecords/src/xml/order.xml

3.2 XML Documents and Schema for EIS Records 91

Note the use of namespaces in this example. The Order element is from
the namespace http://www.example.com/oms. Note that http://www.exam-
ple.com is the URL used by XYZ Corporation as the base part of its corporate
namespaces. The /oms indicates, more specifically, the namespace associated
with the OMS. When developing SOA systems with XML, it is important to
use namespaces, because documents originating from different systems may
use the same tags (e.g., “item”), and it is important to interpret the tag in the
proper context. For more information on namespaces and how they are used,
see the World Wide Web Consortium’s (W3C) Recommendation
[Namespaces in XML].

In addition to namespaces, when developing SOA systems based on
XML, it is important to employ XML Schema to validate documents. Just as
a relational database management system allows you to impose constraints
on data values and format within the database schema, so XML Schema can
be used to validate the integrity of XML documents. XML Schema is
important for maintaining data quality and integrity when sharing informa-
tion among multiple systems.

Notice that the Order element of order.xml contains the attribute:

xsi:schemaLocation="http://www.example.com/oms
http://soabook.com/example/oms/orders.xsd"

This attribute associates order.xml with an XML Schema and contains
two references. First, http://www.example.com/oms gives the namespace
to be used for interpreting the schema. Second, http://soabook.com/
example/oms/orders.xsd is a location where the schema can be found.

Example 3–2 shows just a fragment3 of the schema used to validate
order.xml. As indicated by the file reference printed at the bottom of the
example, the entire schema document can be found at com/javector/
chap4/eisrecords/order.xsd. This schema (order.xsd) and its instance
document (the order.xml file) are simplified examples of the SAP XML
interface for the business object SalesOrder within the Logistics Module.

Although this example is simplified, it illustrates the major issues faced
when creating an SOA application that accesses SAP or another EIS.

3. Because fragments published in this book correspond directly to the source files in the
accompanying download package, sometimes—for XML documents—the closing tags get
cut off. Although that can sometimes make the structure look confusing or “off balance,” I
decided that was better than including the entire XML file in cases where the length could
run on for several pages.

http://soabook.com/example/oms/orders.xsd
http://soabook.com/example/oms/orders.xsd

92 Basic SOA Using REST

Example 3–2 A Fragment of the XML Schema for Validating an Order Document

 4 <schema targetNamespace="http://www.example.com/oms"
 5 xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:oms="http://www.example.com/oms" version="1.0"
 7 elementFormDefault="qualified">
 8 <element name="Orders" type="oms:OrdersType"/>
 9 <element name="Order" type="oms:OrderType"/>
 10 <complexType name="OrdersType">
 11 <sequence>
 12 <element ref="oms:Order" maxOccurs="unbounded"/>
 13 </sequence>
 14 </complexType>
 15 <complexType name="OrderType">
 16 <annotation>
 17 <documentation>A Customer Order</documentation>
 18 </annotation>
 19 <sequence>
 20 <element name="OrderKey">
 21 <annotation>
 22 <documentation>
 23 Unique Sales Document Identifier
 24 </documentation>
 25 </annotation>
 26 <simpleType>
 27 <restriction base="string">
 28 <maxLength value="10"/>
 29 </restriction>
 30 </simpleType>
 31 </element>
 32 <element name="OrderHeader" type="oms:BUSOBJ_HEADER">
 33 <annotation>
 34 <documentation>
 35 Order Header referencing customer, payment, sale organization information.
 36 </documentation>
 37 </annotation>
 38 </element>
 39 <element name="OrderItems">
 40 <annotation>
 41 <documentation>Items in the Order</documentation>
 42 </annotation>
 43 <complexType>
 44 <sequence>
 45 <element name="item" type="oms:BUSOBJ_ITEM"

3.2 XML Documents and Schema for EIS Records 93

 46 maxOccurs="unbounded"/>
 47 </sequence>
 48 </complexType>
 49 </element>

book-code/chap03/eisrecords/src/xml/orders.xsd

Notice that schemas allow you to restrict values and specify formats for
data. For example, the element OrderKey, that is the unique identifier for
sales documents, is restricted to being, at most, 10 characters in length. The
restriction is accomplished using the restriction element in the simple type
definition of OrderKey. Restrictions on simple types like this are known as
facets. For further explanation of simple type facets, see [XSD Part 0]. Fac-
ets are an important data quality management tool in an SOA environment
because they enable you to ensure that the data being shared across systems
is properly formatted and can be interpreted by the receiving system.

Next, Figure 3–2 shows the Customer History Record from the Cus-
tomer Service System (CSS). Consider how it relates to orders and how it is
used within the CSS.

The simple SOA application described in this chapter is responsible for
linking the OMS to the CSS to ensure that each time an order is created or
modified in the OMS, a corresponding Customer History Record is sent
and entered in the Customer History Log within the CSS. The Customer
History Log is a record of all transactions the customer has had with XYZ
Corporation. It is important to note that not all of the order information is
stored in the Customer History Log within the CSS. Only enough is stored
so that if a customer calls with a question about an order, the customer service

Figure 3–2 A Customer History Record as it appears on a CSS form.

Customer Number ENT0072123

Order Lookup
Information

 Order Number: ENT1234567
 PO Number: PO-72123-0007
 Item Number: 012345
 Item Number: 543210
 Other Information: This order is a rush.

Customer History Record

94 Basic SOA Using REST

representative can pull up the History Log and drill down to individual
order records stored in the OMS to answer the customer’s questions. Indi-
vidual, detailed order records are retrieved from the OMS in real time
using the keys stored in the CSS.

The architecture is designed this way to avoid storing lots of redundant data
in the CSS and OMS. The problem with redundant data is that it takes up
unnecessary disk space, and tends to get out of sync with the original data, cre-
ating data quality problems that can be quite difficult to debug and clean up.

The form in Figure 3–2 shows the minimal set of information that
needs to be moved from the OMS to the CSS. Example 3–3 shows how that
information is structured as an XML record. The OMS sends this type of
XML to the CSS each time there is a new order.

Example 3–3 XML Representation of the Screen Pictured in Figure 3–2

 4 <css:CustomerHistoryEntry xmlns:css="http://www.example.com/css"
 5 xmlns="http://www.example.com/css"
 6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 7 xsi:schemaLocation="http://www.example.com/css
 8 http://soabook.com/example/css/custhistentries.xsd">
 9 <CustomerNumber>ENT0072123</CustomerNumber>
 10 <OrderLookupInfo>
 11 <OrderNumber>ENT1234567</OrderNumber>
 12 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 13 <ITM_NUMBER>012345</ITM_NUMBER>
 14 <ITM_NUMBER>543210</ITM_NUMBER>
 15 <OrderText>This order is a rush.</OrderText>
 16 </OrderLookupInfo>
 17 </css:CustomerHistoryEntry>

book-code/chap03/eisrecords/src/xml/custhistentry.xml

In this example, the CustomerNumber element uniquely identifies the
customer and is referenced by the CUST_NO element, inside the Order-
Header element illustrated in Figure 3–1. Likewise, the OrderNumber ele-
ment inside the OrderLookupInfo element referenced the OrderKey
element illustrated in Figure 3–1. These constraints could be enforced
within the schema by using the unique, key, and keyref XML Schema Ele-
ments (see Section 5 of [XSD Part 0]). However, for simplicity, those types
of constraints are left out for now.

3.2 XML Documents and Schema for EIS Records 95

Example 3–4 shows a fragment of the schema for validating the Cus-
tomer History Record. This schema is important for validating the quality of
the data being reformatted and exchanged by the SOA application bridge.

Example 3–4 XML Schema for an Entry in the CSS Customer History Log

 4 <schema targetNamespace="http://www.example.com/css"
 5 xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:css="http://www.example.com/css" version="1.0"
 7 elementFormDefault="qualified">
 8 <element name="CustomerHistoryEntries"
 type="css:CustomerHistoryEntriesType"/>
9 <element name="CustomerHistoryEntry" type="css:CustomerHistoryEntryType"/>

 10 <complexType name="CustomerHistoryEntriesType">
 11 <sequence>
 12 <element ref="css:CustomerHistoryEntry" maxOccurs="unbounded"/>
 13 </sequence>
 14 </complexType>
 15 <complexType name="CustomerHistoryEntryType">
 16 <sequence>
 17 <element name="CustomerNumber">
 18 <annotation>
 19 <documentation>Unique Customer Identifier</documentation>
 20 </annotation>
 21 <simpleType>
 22 <restriction base="string">
 23 <maxLength value="10"/>
 24 </restriction>
 25 </simpleType>
 26 </element>
 27 <element name="OrderLookupInfo">
 28 <annotation>
29 <documentation>Keys and searchable text that can be used to look

 30 up additional order information from the OMS</documentation>
 31 </annotation>
 32 <complexType>
 33 <sequence>
 34 <element name="OrderNumber">
 35 <annotation>
 36 <documentation>Unique Sales Order Identifier - Key for CSS
 37 lookup of order records</documentation>
 38 </annotation>
 39 <simpleType>

96 Basic SOA Using REST

 40 <restriction base="string">
 41 <maxLength value="10"/>
 42 </restriction>
 43 </simpleType>
 44 </element>

book-code/chap03/eisrecords/src/xml/custhistentries.xsd

As in Example 3–2, you can see the facets are used to restrict the values
for CustomerNumber and OrderNumber. Notice that schemas allow us to
restrict values and specify formats for data. For example, the element
OrderKey, that is the unique identifier for sales documents, is restricted to
being, at most, 10 characters in length. The restriction is accomplished
using the restriction element in the simple type definition of OrderKey.

3.2.1 No WSDL Doesn’t Necessarily Mean No Interfaces

The previous examples show how XML Schema can be used to define
structure for XML documents. That structure is critical for defining how
applications interact with each other in an SOA-style Web Services infra-
structure. It is a fundamental principle of systems integration design that
applications must interact across well-defined interfaces. Even in this
simple example, as illustrated in Example 3–4, you can see how XML
Schema can be used to define the structure of an update record to the
CSS Customer History Log. The Customer History schema defines the
interface to the Customer History Log. In this manner, any system that
needs to update the CSS with customer activity can map whatever form
their data is in to the custhistentry.xsd schema and send it as a mes-
sage to the CSS. The following two concepts, illustrated by the simple
examples in this section, provide the foundation for SOA-style integra-
tion using Web Services:

1. XML documents are used to exchange messages between applications.
2. XML Schema documents define the application interfaces.

Point (2) is important to bear in mind. It tells you that, even when using
RESTful services (without WSDL and SOAP), the schema of the XML doc-
uments being exchanged between SOA components can be used to define
interfaces for the services. Unfortunately, this use of XML Schema to for-
malize interfaces for RESTful services is not universally accepted as part of

3.3 REST Clients with and without JWS 97

the REST framework.4 If you plan to use REST for your SOA applications,
however, I strongly encourage you to provide XML Schema to define the
message structure interface for each service.

This section gave you a quick introduction to how EIS records can be rep-
resented as XML documents. In the next section, we begin to look at the basics
of messaging—sending XML over the Hypertext Transfer Protocol (HTTP).

3.3 REST Clients with and without JWS

A basic capability you often need when implementing an SOA Web service
is easily downloading and uploading XML files from/to an HTTP server. For
example, suppose that the OMS runs a nightly batch job and writes all new
and changed orders from the previous day to a set of XML documents that
can be accessed using a Web service named NewOrders. The CSS can then,
each morning, retrieve those files and update its Customer History. This is a
simple, but common and highly practical, form of SOA-style loosely cou-
pled integration.

The next few sections focus on uploading/downloading XML docu-
ments with bare-bones RESTful Web Services. I show how to write cli-
ents for RESTful services with and without JWS. This material may seem
very basic to advanced Java programmers, but it is always good to review
the basics before diving into a complex subject like SOA with Java Web
Services.

It is a common misconception that implementing Web Services with
Java requires lots of heavy machinery like JAX-WS. This is not the case, as
even J2SE 1.4 provides powerful tools for HTTP communication and XML
processing that enable you to build and consume RESTful Web services.
JAX-WS and the other JWS tools provide many advantages, of course,
which we discuss later in this section and throughout the rest of this book.

Doing REST without JWS gives you a hands-on appreciation for what
HTTP can and cannot do. It quickly becomes clear that, although it is easy
to do simple things without the JWS machinery, as you get more ambitious,
you start to need some more powerful tools to handle invocation, serializa-
tion, and the other components of an SOA Web Services infrastructure.

Since this is a book about Java, I start with the assumption that the EISs
have Java APIs for accessing the needed records. The challenge addressed

4. Perhaps this is because such interface definitions complicate the REST model, and REST
proponents like to position it as simpler than SOAP.

98 Basic SOA Using REST

in the next few sections is to deploy a Java API as a Web service or to invoke
a Web service using Java.

3.3.1 Getting EIS Records from a REST Service without
Using JWS

This section briefly examines how to get an XML document from a REST-
ful Web service. In this example, the Web service is accessed with an HTTP
GET request. The client application needs to issue the HTTP GET, and
process the HTTP response stream that contains the XML document.
Instead of using the JWS APIs (e.g., JAX-WS), I simply use the
javax.net.HttpURLConnection class to handle most of the work related to
generating the HTTP GET and processing the response.

Figure 3–3 illustrates the XML transfer process from the client’s side.
Note that the client is implemented as the class GetNewOrders and that it
uses instances of the classes URL and HttpURLConnection. The following

Figure 3–3 The client uses the HttpURLConnection class to make an HTTP
GET request and receive an HTTP response.

Web ServiceClient

HTTP “GET”
request to
download XML
document

HTTP response
containing XML
document

GetNewOrders

3

HttpURLConnection

connect(...)

URL

openConnection(...)

1

2

InputStream

read(...)

4

SenderReceiver
XML Message

3.3 REST Clients with and without JWS 99

steps show how these classes work together to implement the XML docu-
ment download protocol.

1. The client uses the URL.openConnection() method to create an
instance of HttpURLConnection representing a connection to the
Web service’s URL.

2. HttpURLConnection.connect() sends the HTTP GET request that
has been configured using the Web service’s URL.

3. The Web service processes the request and writes the appropriate
XML document to the HTTP response stream.

4. The HttpURLConnection’s InputStream is used to read the HTTP
response’s XML document.

In the implementation of this example, the client simply writes the
XML document to the console. You will see it print out on your console
when you run it (instructions follow). In a real SOA-style loosely coupled
application, the document might be parsed, transformed, and sent to
another component of the distributed application. An example of such pro-
cessing is provided in Section 3.4.

Example 3–5 shows the client-side code for issuing the HTTP GET
request and receiving the XML document via the HTTP response. Notice
that the String used to construct the URL instance is passed to the client as
args[0]. The HttpULRConnection—con—doesn’t send the HTTP request
until its connect() method gets invoked. Before this happens, the setRe-
questMethod() is invoked to specify that a GET request should be sent.

Example 3–5 Implementing a Java Client to Download an XML Document from
a RESTful Web Service

 27 public static void main(String[] args) throws Exception {
 28
 29 if (args.length != 1) {
 30 System.err.println
 31 ("Usage: java GetNewOrders <Web Service URL>");
 32 System.exit(1);
 33 }
 34 // Create the HTTP connection to the URL
 35 URL url = new URL(args[0]);
 36 HttpURLConnection con =
 37 (HttpURLConnection) url.openConnection();
 38 con.setRequestMethod("GET");
 39 con.connect();

100 Basic SOA Using REST

 40 // write the XML from the input stream to standard out
 41 InputStream in = con.getInputStream();
 42 byte[] b = new byte[1024]; // 1K buffer
 43 int result = in.read(b);
 44 while (result != -1) {
 45 System.out.write(b,0,result);
 46 result =in.read(b);
 47 }
 48 in.close();
 49 con.disconnect();
 50 }

book-code/chap03/rest-get/client-http/src/java/samples/GetNewOrders.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install 5

... and when that command finishes, enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-http.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/rest-
get/endpoint-servlet and enter:
 ant undeploy

In this example, the HttpURLConnection class does all the work. It sends
the HTTP GET request to the Web service URL6 and provides access to the
response as an InputStream. Now, let’s look at how this is done using JWS.

5. mvn is the command to run Maven, the build tool used throughout this book. See Appen-
dix B, Software Configuration Guide, for details about installing and running the examples in
this book.
6. In this example, the URL where the RESTful service deployed is http://localhost:8080/
rest-get-servlet/NewOrders (assuming your Java EE Web container is running on local-
host:8080). You can always see what parameters are used to invoke code in the examples by
examining the build.xml file from the directory where you are running the example.

3.3 REST Clients with and without JWS 101

3.3.2 Getting EIS Records from a REST Service with JWS

When using the JAX-WS 2.0 API to create a client that consumes a REST-
ful Web service, the javax.xml.ws.Dispatch<T>7 interface does most of
the work—performing a role similar to HttpURLConnection.

Figure 3–4 shows how the JAX-WS-based client works. This time, the
class GetNewOrders is implemented using the javax.ws.xml.Service
class. Service is an abstraction that provides a client interface to a Web
service. First introduced in JAX-RPC 1.0, Service is designed to repre-
sent a WSDL defined service. Since RESTful services do not have WSDL

7. A detailed discussion of the javax.xml.ws.Dispatch<T> interface is provided in
Chapter 6, Section 6.2, where the JAX-WS client API is explained in depth.

Figure 3–4 The JAX-WS-based client uses an instance of Dispatch<Source>
to make an HTTP GET request and receive an HTTP response.

Web ServiceClient

HTTP GET
request to
download XML
document

HTTP response
containing XML
document

GetNewOrders

4

Dispatch<Source>

invoke(...)

Service

createDispatch(...)

addPort(...)

2

1

3

Source
5

SenderReceiver
XML Message

102 Basic SOA Using REST

representations, the Service API is a little awkward for our purposes here
(as you can see in the discussion of the code). However, that is how the
JAX-WS API is designed.

In this example, Service is used to create an instance of
javax.xml.ws.Dispatch<Source>, which enables XML message-level
interaction with the target Web service. Dispatch is the low-level JAX-WS
2.0 API that requires clients to construct messages by working directly with
the XML, rather than with a higher-level binding such as JAXB 2.0 schema-
derived program elements. For many REST proponents, however, this is
exactly the programming paradigm they want—direct access to the XML
request and response messages.

The following steps trace the execution of the JAX-WS version of the
GetNewOrders client illustrated in Figure 3–4.

1. The client uses the Service.addPort() method to create a port
within the Service instance that can be used to access the RESTful
Web service.

2. Next, the Service.createDispatch() method is invoked to create
an instance of Dispatch<Source>—a Dispatch instance that enables
you to work with XML request/response messages as instances of
javax.xml.transform.Source.

3. The Dispatch.invoke() method then packages the XML
request—per the JAX-WS 2.0 HTTP Binding—and sends it to the
RESTful service. The invoke() method waits for the response
before returning.

4. The service processes the HTTP GET and sends an HTTP response
that includes the XML.

5. The invoke() method returns the response XML message as an
instance of Source.

Example 3–6 shows the code used to implement the JAX-WS version of
GetNewOrders. Browsing through this code, you can see some of the awk-
wardness that comes from applying the WSDL-oriented Service API in a
REST context. First, notice that you have to create QName instances for the
Service instance and the “port” that corresponds to the RESTful Web ser-
vice. In a SOAP scenario, these qualified names would correspond to the
WSDL definitions for the wsdl:service and wsdl:port. Since there is no
WSDL when invoking a RESTful service, these QName instances are gratu-
itous in this example. They are required by the API, but not used to invoke
the RESTful service.

3.3 REST Clients with and without JWS 103

Example 3–6 The GetNewOrders Client As Implemented with JAX-WS

 35 public static void main(String[] args) throws Exception {
 36 if (args.length != 1) {
 37 System.err.println
 38 ("Usage: java GetNewOrders <Web Service URL>");
 39 System.exit(1);
 40 }
 41 QName svcQName = new QName("http://sample", "svc");
 42 QName portQName = new QName("http://sample", "port");
 43 Service svc = Service.create(svcQName);
 44 svc.addPort(portQName, HTTPBinding.HTTP_BINDING, args[0]);
 45 Dispatch<Source> dis =
 46 svc.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);
 47 Map<String, Object> requestContext = dis.getRequestContext();
 48 requestContext.put(MessageContext.HTTP_REQUEST_METHOD, "GET");
 49 Source result = dis.invoke(null);
 50 try {
 51 TransformerFactory.newInstance().newTransformer()
 52 .transform(result, new StreamResult(System.out));
 53 } catch (Exception e) {
 54 throw new IOException(e.getMessage());
 55 }
 56 }

book-code/chap03/rest-get/client-jaxws/src/java/samples/GetNewOrders.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-jaxws.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-get/endpoint-servlet and enter:
 ant undeploy

104 Basic SOA Using REST

Looking at the code in Example 3–6, you can also see that the
addPort() method takes a URI parameter that defines the transport bind-
ing. The default is SOAP over HTTP, but in this case, the HTTPBind-
ing.HTTP_BINDING URI is used to specify the JAX-WS 2.0 HTTP Binding.
The final parameter passed to the addPort() method is the URL of the
RESTful Web service—in this case, args[0].

Once the port for the RESTful service has been added by the
addPort() method, it can be used to create an instance of Dis-
patch<Source>. The type parameter—in this case, Source—is passed as a
parameter to the createDispatch() method. The type of payload is speci-
fied as well. Here, I have specified Service.Mode.PAYLOAD (as opposed to
Service.Mode.MESSAGE). When working with SOAP, the MESSAGE mode
indicates that you want to work with the entire SOAP envelope as opposed
to just the SOAP body (or payload). In the REST scenario, there is no enve-
lope, so PAYLOAD is the option that makes sense.

Besides Source, the other valid type parameters for Dispatch are JAXB
objects, java.xml.soap.SOAPMessage, and javax.activation.Data-

Source. In Chapter 6,8 I look at examples using JAXB and SOAPMessage.
DataSource enables clients to work with MIME-typed messages—a sce-
nario I don’t cover in this book.

How does this implementation compare with the HttpURLConnection
version illustrated in Example 3–5? Table 3–2 illustrates some similarities
and differences.

As you can see, the JAX-WS version gives us a much richer interface,
although in a simple REST scenario like this, it is not always that useful. A
URL is an adequate representation of a RESTful service since there is no

8. Chapter 6 is a detailed overview of the JAX-WS client-side API.

Table 3–2 HttpURLConnection versus JAX-WS

HttpURLConnection
Version JAX-WS Version

Representation of the
RESTful Web service

java.net.URL javax.xml.ws.Service

Invocation Object java.net.
HttpURLConnection

javax.xml.ws.Dispatch

Message Form java.io.InputStream javax.xml.transform.Source

3.3 REST Clients with and without JWS 105

associated WSDL to provide further definition anyway. About the only
other information that is needed is whether to use HTTP POST or HTTP
GET. As we have seen, Service is really designed to be a Java representa-
tion of WSDL, so it’s not particularly helpful here.

The Dispatch interface, on the other hand, is better suited for working
with XML request/response than HttpURLConnection. First, its invoke()
method captures the request/response semantics of the HTTP Binding bet-
ter than the HttpURLConnection.connect() method. Second, rather than
reading and writing streams, the Dispatch interface enables us to work
directly with XML representations such as Source. This is much more natu-
ral, as we will see when we start linking RESTful services together and
using XSLT for data transformation (Section 3.4).

Having looked at clients that get XML from a RESTful Web service, the
next two sections show how to send XML to such a service. These sections
also demonstrate how to pass parameters to the RESTful service as part of
the URL.

3.3.3 Sending EIS Records to a REST Service without
Using JWS

In Section 3.3.1, I used HttpURLConnection to implement a “pull” architecture
for XML document messaging—in other words, the document is “pulled” by
the client from the Web service. In a “pull” architecture, the receiver of the
XML document initiates the transfer. In the code example provided, we used
the HTTP GET method to serve as the request mechanism.

Sending XML to a RESTful Web service is not much different from
getting XML. The main differences for the “push” architecture are that the
sender initiates the transfer and the HTTP POST method is used. This
architecture is used, for example, when the OMS wants to upload all new
and changed orders to the CSS on a regular basis. To implement such an
upload process, the CSS would need to provide a Web service where the
OMS could post XML documents.

In this example, I implement a “push” architecture using HttpURLCon-
nection.

Figure 3–5 illustrates push messaging. As you can see, it is similar to
the previous example, except that the client is now the sender of mes-
sages and the Web service is the receiver. The following steps are illus-
trated in the figure:

1. The client uses the URL.openConnection() method to create an
instance of HttpURLConnection representing a connection to the

106 Basic SOA Using REST

RESTful Web service’s URL. In this example, the URL has a parame-
ter: SourceSystem=OMS. This parameter indicates that the XML doc-
ument being sent comes from the “OMS” system.

2. HttpURLConnection.connect() begins the HTTP POST request to
the Web service’s URL.

3. The client writes the XML document to the HTTP request stream,
essentially appending it to the POST request that has been started.

4. The RESTful service processes the HTTP POST.
5. The response—a simple “200 OK”—is sent back to the client indi-

cating that the document has been received.

Example 3–7 shows the client-side code for implementing the HTTP
POST with an HttpULRConnection. Notice that we use setRequest-
Method("POST") to configure the HTTP request as a POST. After that, the
connect() method initiates the HTTP request, and the remaining code writes
the XML document (specified by the filename args[0]) to the output stream.

Figure 3–5 Push messaging with HTTP POST.

Web Service

establish HTTP POST connection to
http://<somepath>?SourceSystem=OMS

appending the XML document
to the POST request

receiving the HTTP response code

Client

PostCustomerHistory

4

HttpURLConnection

connect(...)

URL

openConnection(...)

getResponseCode(...)

1

5

OutputStream

write(...)

3

2

Sender Receiver
XML Message

3.3 REST Clients with and without JWS 107

Example 3–7 Client Uses POST to Upload an XML Document to the Web Service

 28 public static void main(String[] args) throws Exception {
 29 if (args.length != 2) {
 30 System.err.println
 31 ("Usage: java PostCustomerHistory <XML file name> "
 32 + "<Web Service URL>");
 33 System.exit(1);
 34 }
 35 FileInputStream in = new FileInputStream(args[0]);
 36 URL url = new URL(args[1]);
 37 HttpURLConnection con =
 38 (HttpURLConnection) url.openConnection();
 39 con.setDoOutput(true);
 40 con.setRequestMethod("POST");
 41 con.connect();
 42 OutputStream out = con.getOutputStream();
 43 // write the XML doc from file to the HTTP connection
 44 byte[] b = new byte[1024]; // 1K buffer
 45 int result = in.read(b);
 46 while (result != -1) {
 47 out.write(b,0,result);
 48 result = in.read(b);
 49 }
 50 out.close();
 51 in.close();
 52 // write HTTP response to console
 53 System.out.println(con.getResponseCode() +
 54 " " + con.getResponseMessage());
 55 }

book-code/chap03/rest-post/client-http/src/java/samples/
PostCustomerHistory.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

108 Basic SOA Using REST

4. Go to <book-code>/chap03/rest-post/client-http.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-servlet and enter:
 ant undeploy

What you can’t see here is the form of the URL that is passed in as
args[1]. To see the URL being used, you can look at the <book-code>/
chap03/rest-post/endpoint-servlet/build.xml file containing the goal used to
invoke this service. You will see that the URL has the form:

http://<somepath>?SourceSystem=OMS

The parameter SourceSystem specifies where the XML document (i.e.,
the customer history entry) is coming from. In this example, the only value for
SourceSystem that the RESTful Web service accepts is “OMS.” Try changing
the URL inside build.xml to specify SourceSystem=XYZ and see what hap-
pens. You will get an error message indicating the source is not supported yet.

The URL parameter SourceSystem is a parameter of the RESTful Web
service. That is one way parameters are passed to RESTful services. Chapter
4 discusses how SOAP services get parameters—they are embedded in the
SOAP message itself. You can also design a RESTful service that receives
parameters in the XML document, but this is kind of like reinventing SOAP.

The REST approach of using URL parameter passing is simple, but it
also has drawbacks. The primary drawback is that there is no interface
description of a RESTful service, so there is no way to determine—without
some other form of documentation—what URL parameters are required.
Some REST purists handle that objection by pointing out that URL parame-
ters are not needed for proper REST systems where resources are uniquely
defined by URIs. In this example, the URL could instead have the form:

http://<somepath>/OMS

In this case, the convention is that you post customer histories from the
OMS to the .../OMS URI, and customer histories from the XYZ system to
the .../XYZ URI, and so on.

Other REST advocates, who are slightly less purist, argue that URL
parameters are fine as long as they are nouns rather than verbs. An example
of a verb parameter would be something like:

3.3 REST Clients with and without JWS 109

http://<somepath>/ShoppingCart?action=clear

In this case, the action parameter specifies an operation to be carried
out on the resource—clearing the shopping cart. Specifying verbs like this is
a big REST no-no, but you can still find lots of so-called RESTful services
out there that are implemented this way.

My perspective on this debate is that, even if we follow the REST pur-
ists and do away with URL parameters, we have just changed the syntax, not
the semantics. The underlying semantics (and therefore the implementa-
tion) defines a resource (Customer History System) that can receive
updates from various sources (e.g., OMS, XYZ), and needs to know what
the source is.

If you implement that semantics by embedding parameters in the URL
path—rather than by using URL parameters—you have only made the sys-
tem’s interface even harder to understand. For example, when you use the
URL parameter form (e.g., http://<somepath>?SourceSystem=OMS), at
least you can tell that the OMS is a parameter designating the source sys-
tem. However, when you use the normalized version without parameters
(e.g., http://<somepath>/OMS), you don’t get any clues as to the meaning
of the “OMS.”

But, in either case, REST still provides you with no way to document
your interface—in other words, no WSDL. In my opinion, this is the pri-
mary reason why SOAP is more appropriate than REST for SOA-style
systems integration. Doing systems integration is all about defining the
interfaces between systems. If you don’t have a language in which to
express the interfaces (i.e., no WSDL), it is very hard to be rigorous
about defining the interfaces. As indicated in Section 3.2.1, you can try
to work around this REST limitation by using XML Schema to define the
interface. That approach works, but in addition to not being standard
practice, it has other limitations. For example, in the case just discussed,
the parameter (SourceSystem=OMS) is not part of the XML message
received by the RESTful service. So, to define an interface that specifies
this parameter, you would have to refactor the RESTful service to accept
a parameter inside the XML message that indicates the source system.
The basic problem here is that URL parameters, since they are not part
of the XML message, cannot be specified in an XML Schema-based
interface definition.

This example has shown how to develop an HttpURLConnection-based
client for sending XML documents to a RESTful service that requires URL
parameters. The next section shows you how to do the same thing using
JAX-WS 2.0.

110 Basic SOA Using REST

3.3.4 Sending EIS Records to a REST Service with JWS

As in Section 3.3.2, the client in this section uses javax.xml.ws.Service
and javax.xml.ws.Dispatch rather than java.net.URL and HttpURLCon-
nection. The major difference from that section is that here, the XML doc-
ument is being pushed to the service. To do that, the XML document needs
to be stored as an instance of a Java class that can be used by the Dis-
patch<Source> instance. In this case, the type parameter is Source, so a
Source instance must be created from the XML document that is to be sent
to the RESTful service.

This example also illustrates how to get HTTP-related information from
the Dispatch object by accessing its response context. As demonstrated
here, a bit more work is needed to get the HTTP status code than with the
simple HttpURLConnection.getResponseCode() method used in the previ-
ous example.

Figure 3–6 illustrates push messaging as implemented with JAX-WS
2.0. There is a little more detail here than shown in the HttpURLConnection
example from Figure 3–5. The steps are as follows:

1. The client uses the Service.addPort() method to create a port
within the Service instance that can be used to access the RESTful
Web service.

2. Next, the Service.createDispatch() method is invoked to create
an instance of Dispatch<Source>—a Dispatch instance that enables
you to work with XML request/response messages as instances of
javax.xml.transform.Source.

3. The XML file to be posted to the RESTful service is wrapped in an
instance of javax.xml.transform.stream.StreamSource. Stream-
Source implements the Source type parameter required by Dis-
patch<Source>.

4. The Dispatch.invoke() method then packages the XML document
into an HTTP POST request—per the JAX-WS 2.0 HTTP Bind-
ing—and sends it to the RESTful service. The invoke() method
waits for the response before returning.

5. The service processes the HTTP POST and sends an HTTP
response that includes an HTTP response code.

6. Because the HTTP response code is part of the HTTP message
(transport level), and not part of the XML payload, to examine it the
client invokes Dispatch.getResponseContext() to get the HTTP
context for the response.

3.3 REST Clients with and without JWS 111

7. The HTTP context is represented as a Map<String, Object> instance.
This map provides access to the HTTP headers and other information
that is outside the XML payload. Here, it is used to access the HTTP
response code (i.e., 200 for “OK,” 500 for “Server Failure,” etc.).

Example 3–8 shows the implementation of PostCustomerHistory using
JAX-WS. It is similar to Example 3–6, and you should review the discussion
of REST and JAX-WS given there.

Figure 3–6 Push messaging with HTTP POST and JAX-WS 2.0.

XML File
(customer

history
entry)

HTTP
Response

Code

Web Service

establish HTTP POST connection to
http://<somepath>?SourceSystem=OMS

appending the XML document
to the POST request

receiving the HTTP response code

Client

PostCustomerHistory

5

Dispatch<Source>

Service

createDispatch(...)

addPort(...)

getResponseContext(...)

2

6

invoke(...) 4

1

3

7

Sender Receiver
XML Message

StreamSource

Map<String, Object>

112 Basic SOA Using REST

The main difference here from the HttpURLConnection version
(Example 3–7) is that the Dispach.invoke() method is invoked with a
StreamSource parameter that is constructed from the XML file being
posted to the RESTful Web service. Notice that there is no need to write
the XML out to a stream as in the HttpURLConnection example. The Dis-
patch<Source> instance lets you deal with the XML request and response
payloads as instances of Source.

Example 3–8 The PostCustomerHistory Client as Implemented with JAX-WS

 33 public static void main(String[] args) throws Exception {
 34 if (args.length != 2) {
 35 System.err.println
 36 ("Usage: java XMLUploadSender <XML file name> "
 37 + "<Web Service URL>");
 38 System.exit(1);
 39 }
 40 QName svcQName = new QName("http://sample", "svc");
 41 QName portQName = new QName("http://sample", "port");
 42 Service svc = Service.create(svcQName);
 43 svc.addPort(portQName, HTTPBinding.HTTP_BINDING, args[1]);
 44 Dispatch<Source> dis =
45 svc.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);

 46 dis.invoke(new StreamSource(new File(args[0])));
 47 Map<String, Object> respContext = dis.getResponseContext();
 48 Integer respCode =
 49 (Integer) respContext.get(MessageContext.HTTP_RESPONSE_CODE);
 50 System.out.println("HTTP Response Code: "+respCode);
 51 }

book-code/chap03/rest-post/client-jaxws/src/java/samples/PostCustomerHistory.java

To run this example, do the following. After the example is run, the
results (customer history entries) are written by the application to a tempo-
rary file of the form ${user.home}/tmp/soabook*.xml. So, you can look to
your ${user.home}/tmp directory to verify that the example ran properly.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

3.3 REST Clients with and without JWS 113

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-post/client-jaxws.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-servlet and enter:
 ant undeploy

As you can see from this example, getting the HTTP response code
from the Dispatch instance is a little awkward. First, you need to request
the response context. That is because Dispatch is not an HTTP-specific
interface. So, it doesn’t make sense for Dispatch to have a convenience
method like HttpURLConnection.getResponseCode(). The JAX-WS
Expert Group envisions scenarios where Dispatch is used with non-HTTP
bindings. So, the way it works is that the Dispatch.getResponseContext()
method provides an instance of Map<String, Object> that contains context
information about the underlying protocol.

The getResponseContext method is inherited from the
javax.xml.ws.BindingProvider interface (of which Dispatch is a sub-
interface). BindingProvider provides a representation of the underlying
protocol binding (e.g., XML/HTTP or SOAP/HTTP) being used for Web
Services communication. When a BindingProvider does a request/
response, the request and response messages are embedded in a context
that is binding-specific. The message and its context move through a chain
of handlers during the invocation process. All this is beyond the scope of
our simple discussion here, but it is useful background (see Chapter 6 for a
detailed discussion of JAX-WS client-side handlers). The response context
represents the final state of the message context after the invocation is com-
pleted. So, access to the response context is provided through the JAX-WS
handler framework APIs.

The way this handler framework manifests itself here is that the keys
that are used to look up information in the response context are provided
by javax.ws.handler.MessageContext. As shown in the code, Message-
Context.HTTP_RESPONSE_CODE is the key used to access the HTTP
response code.

In the HttpURLConnection case, there is no distinction between the
message and its context. One works directly with the HTTP requests and
responses. So, the processing model is simpler. However, the drawback

114 Basic SOA Using REST

is that you have to create your own code to extract the XML messaging
from the HTTP communications. In these simple examples, that doesn’t
seem like a big deal. The only manifestation of that extraction process so
far has been reading and writing XML to the HTTP input and output
streams. However, as the complexity of the processing increases, dealing
with messages rather than streams becomes a valuable additional layer of
abstraction. For example, when you want to introduce handlers to do
Java/XML binding or reliable messaging, you don’t want to have to cre-
ate your own handler framework for pre- and post-processing of the
HTTP streams.

That wraps up our basic discussion about how to invoke RESTful Web
services. Next, the discussion turns to XSLT—the XML data transformation
language—and how it can be used to implement basic SOA-style loosely
coupled integration of multiple Web services.

3.4 SOA-Style Integration Using XSLT and JAXP for Data
Transformation

Some readers may be wondering why a book about SOA with Java Web Ser-
vices would include a section on XSLT. The reason is that XLST provides a
powerful and efficient data transformation engine that can be used to trans-
late messages from one format to another. When building SOA applications,
developers commonly encounter problems where they need to integrate
systems that require the same message type (e.g., purchase order) in differ-
ent formats. XSLT provides a standard mechanism for translating between
message formats when messages are represented as XML documents.

The perceding section introduced two Web services:

■ The OMS “NewOrders” Web service that provides access to the new
orders that have come in during the past day

■ The CSS “CustomerHistory” Web service that receives updates to
the customer history database

This section shows how to build a simple SOA application that links
these two Web services together. I am going to walk through an example
that gets the new orders, transforms them into customer history entries, and
posts those entries to the CSS. This example introduces data transformation
using XSLT—a cornerstone of SOA-style loosely coupled integration.

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 115

3.4.1 How and Why to Use XSLT for Data Transformation

A core component of any SOA system is its capability to transform data
from one format to another. Often referred to as data transformation, this
capability is most naturally addressed within the Web Services context using
eXtensible Stylesheet Language Transformations (XSLT). We assume the
reader is familiar with the basics of XSLT. Our focus is on the application of
XSLT to SOA-style loosely coupled integration. To brush up on XSLT, see
the W3C’s Web site at www.w3.org/Style/XSL/. In addition to the specifica-
tion (the examples in this book use Version 1.0—see [XSLT 1.0]), the site
has links to a variety of helpful tutorials. Another good refresher can be
found in Sun’s Java/XML Tutorial (http://java.sun.com/webservices/jaxp/
dist/1.1/docs/tutorial/xslt/index.html). Sun’s tutorial is especially useful
because it discusses the JAXP APIs along with XSLT.

Because XSLT is a sophisticated data transformation language, it can
take a long time to learn in depth. Fortunately, the data transformations
required by most SOA applications need to use only a small part of the
XSLT language that does not take a long time to learn. If you are struggling
to understand this section of the book, you should have no trouble once you
review the Sun tutorial. There is no need to study XSLT in great depth at
this point!

XSLT makes sense as the transformation tool of choice within SOA
integration frameworks, because it is a universally accepted standard and
the transformation engines that interpret XSLT to perform data transforma-
tions keep getting better and faster. Although it may be expedient to write
some quick and dirty code to perform a simple transformation here and
there, it does not make sense to leave the data transformation language and
processing unstandardized when developing a framework for SOA integra-
tion that will be used across an organization.

To demonstrate how XSLT can be used for data transformation, we con-
sider a scenario where the new orders, accessed from the OMS, are used to
create customer history records that update the CSS customer history data-
base. The business reason for doing this is so that users of the CSS have fast
access to an up-to-date record of the transactions a customer has made with
the company. Such information needs to be available nearly instantly when
handling customer care telephone calls, for example. If the customer care
representative needs to examine the details of any transaction in the customer
history, the information stored there from the OMS provides important keys,
such as OrderKey and ITM_NUMBER, that will enable detailed information to be
retrieved from the OMS rapidly.

www.w3.org/Style/XSL/
http://java.sun.com/webservices/jaxp/dist/1.1/docs/tutorial/xslt/index.html
http://java.sun.com/webservices/jaxp/dist/1.1/docs/tutorial/xslt/index.html

116 Basic SOA Using REST

Figure 3–7 illustrates the data mapping that transforms an OMS order
record into a CSS customer history record. The order record and customer
history record are introduced in Figure 3–1 and Figure 3–2, respectively.

Figure 3–7 A data mapping for the transformation from a sales order to a customer his-
tory record.

Customer Number ENT0072123

Order Lookup
Information

 Order Number: ENT1234567
 PO Number: PO-72123-0007
 Item Number: 012345
 Item Number: 543210
 Other Information: This order is a rush.

Customer History Record

Order

Order Number ENT1234567

Header Sales Organization: NE
 Purchase Date: 2001-12-09
 Customer Number: ENT0072123
 Payment Method: PO
 Purchase Order: PO-72123-0007
 Guaranteed Delivery: 2001-12-16

Order Items Item Number: 012345
 Storage Location: NE02
 Target Quantity: 50
 Unit of Measure: CNT
 Price per UOM: 7.95
 Description: 7 mm Teflon Gasket

 Item Number: 543210
 Target Quantity: 5
 Unit of Measure: KG
 Price per UOM: 12.58
 Description: Lithium grease with PTFE/Teflon

Other Information This order is a rush.

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 117

As illustrated in Figure 3–7, the Customer Number in the Order
becomes a foreign key in the Customer History Record, which links it back
to other information about the customer. Order Number, PO Number, and
Item Number are mapped over because having them in the CSS will enable
additional SOA components to be built that provide quick lookups from a
customer history record to detailed order, purchase order, and item infor-
mation in the OMS and other systems. Note that there may be multiple
instances of an item number in a customer history record, if an order
includes more than one type of item.

The following examples review the XSLT for transforming a set of OMS
orders into a set of CSS customer history entries. The set of orders is for-
matted as an oms:Orders element in the schema http://soabook.com/
example/oms/orders.xsd (Example 3–2). The set of customer histories is
formatted as a css:CustomerHistoryEntries element in the schema
http://soabook.com/example/css/custhistentries.xsd (Example 3–
4). The XSL transformation from an order to a customer history is repre-
sented pictorially in Figure 3–7.

The XSLT language is declarative. It defines transformations of source
documents to target documents. An XSL transformation comprises a set of
template rules—represented by instances of the xsl:template element—
that are children of the root xsl:stylesheet element. Hence, an XSLT
document is often referred to as a stylesheet. The template elements in the
stylesheet define the structure of the target document that is created from
the source.

XSLT uses the XPath language (see [XPath]) to identify chunks of data
in the source document (e.g., OrderKey). Together with the template rules,
the XPath expressions determine where to place the chunks of data in the
target document.

Example 3–9 illustrates a stylesheet for transforming orders to cus-
tomer histories. This discussion breaks the stylesheet into bite-size chunks.
The example shows the beginning of the XSLT document, including the
xsl:stylesheet namespace declarations and xsl:output element.

Example 3–9 XSLT for Customer History—Namespaces and Output Elements

 4 <xsl:stylesheet version="1.0"
 5 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 6 xmlns:oms="http://www.example.com/oms">
 7 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>

book-code/chap03/xslt/etc/order_to_history.xslt

http://soabook.com/example/oms/orders.xsd
http://soabook.com/example/oms/orders.xsd
http://soabook.com/example/css/custhistentries.xsd

118 Basic SOA Using REST

As you can see, the prefix oms is used to denote the Order Management
System namespace: http://www.example.com/oms. The xsl:output ele-
ment controls the format of the stylesheet output. The attribute
method="xml" indicates that the result should be output as XML. Note that
this stylesheet does not specify that the output should be indented (i.e., it
does not include the attribute indent="yes"). You should avoid specifying
visual formatting such as indentation in the base-level transformation. I rec-
ommend using a separate XSLT stylesheet to format XML for human-read-
able output when necessary. Note that the encoding is specified
(encoding="UTF-8"), as it is throughout this book, as UTF-8.

The next portion of the XSLT, shown in Example 3–10, provides the
rules for processing the oms:Orders element.

Example 3–10 XSLT for Customer History—Creating the Customer History Entry

 11 <xsl:template match="oms:Orders">
 12 <CustomerHistoryEntries xmlns="http://www.example.com/css"
 13 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 14 xsi:schemaLocation="http://www.example.com/css
 15 http://soabook.com/example/css/custhistentries.xsd">
 16 <xsl:apply-templates/>
 17 </CustomerHistoryEntries>
 18 </xsl:template>
 19 <xsl:template match="oms:Order">
 20 <CustomerHistoryEntry xmlns="http://www.example.com/css">
 21 <CustomerNumber>
 22 <xsl:apply-templates select="./oms:OrderHeader/oms:CUST_NO"/>
 23 </CustomerNumber>
 24 <OrderLookupInfo>
 25 <xsl:apply-templates select="./oms:OrderKey"/>
 26 <xsl:apply-templates
 27 select="./oms:OrderHeader/oms:PURCH_ORD_NO"/>
 28 <xsl:apply-templates
 29 select="./oms:OrderItems/oms:item/oms:ITM_NUMBER"/>
 30 <xsl:apply-templates select="./oms:OrderText"/>
 31 </OrderLookupInfo>
 32 </CustomerHistoryEntry>
 33 </xsl:template>

book-code/chap03/xslt/etc/order_to_history.xslt

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 119

At the beginning of the block, you see a template being defined to
match the pattern “oms:Orders”—in other words, it matches the
oms:Orders element in the source document. Inside this template, you see
the definition of a CustomerHistoryEntries element. The contents
appearing inside the template form the output for the target document. So,
this template provides the rules for transforming an oms:Orders element
into a css:CustomerHistoryEntries element.

Now, notice that this template has the instruction <xsl:apply-tem-
plates/> inside it. Inside a template, XML in the xsl namespace is inter-
preted as instructions and not as content to be output to the target
document. This particular instruction tells the XSLT processor to apply the
other templates in the stylesheet to the children of the oms:Orders node
and insert the results into the target document. So, that is how the
css:CustomerHistoryEntries element gets constructed in the target doc-
ument. Its opening and closing tags are specified in this template. Its chil-
dren are defined by the results of the <xsl:apply-templates> instruction
and are inserted between the opening and closing tags.

Continuing to examine Example 3–10, you can see that the bottom
half defines another template matching the oms:Order element. So, if
any children of oms:Orders are instances of oms:Order, these children
will be processed by this template and the results will be inserted the
CustomerHistoryEntries tags. Looking inside this template for
oms:Order, you can see that it contains the contents for an element, Cus-
tomerHistoryEntry, and the two top-level elements CustomerNumber
and OrderLookupInfo. Now, look inside the tags for CustomerNumber and
you see another xsl:apply-templates instruction. However, this one
has the attribute:

select="./oms:OrderHeader/oms:CUST_NO"

This template is providing the instructions for filling in the contents of
the CustomerNumber element. And the XPath expression ./oms:Order-
Header/oms:CUST_NO restricts the children of oms:Order that this template
is applied to. That XPath expression tells the XSLT processor to only apply
templates to oms:CUST_NO elements that are children of oms:OrderHeader.
In this manner, the XPath expression reaches into the source document,
pulls out the oms:CUST_NO element, processes it, and inserts the results
inside the CustomerNumber tags. That is how oms:CUST_NO gets transformed
into css:CustomerNumber and inserted into the right place in the target
document.

120 Basic SOA Using REST

Looking at some of the other xsl:apply-templates instructions occur-
ring in Example 3–10, you can see that the <OrderLookupInfo> element is
populated from the source elements specified by the XPath expressions:
./oms:OrderKey, ./oms:OrderHeader/PURCH_ORD_NO, ./oms:OrderItems/
item/ITM_NUMBER, and ./oms:OrderText. Notice that these XPath expres-
sions correspond to the dotted line mappings in Figure 3–7.

Continuing to review this stylesheet, now have a look at Example 3–11,
which shows the templates that match these XPath expressions.

Example 3–11 XSLT for Customer History—Detail-Level Templates

 37 <xsl:template match="oms:CUST_NO">
 38 <xsl:value-of select="."/>
 39 </xsl:template>
 40 <xsl:template match="oms:OrderKey">
 41 <OrderNumber xmlns="http://www.example.com/css">
 42 <xsl:value-of select="."/>
 43 </OrderNumber>
 44 </xsl:template>
 45 <xsl:template match="oms:PURCH_ORD_NO">
 46 <PURCH_ORD_NO xmlns="http://www.example.com/css">
 47 <xsl:value-of select="."/>
 48 </PURCH_ORD_NO>
 49 </xsl:template>
 50 <xsl:template match="oms:ITM_NUMBER">
 51 <ITM_NUMBER xmlns="http://www.example.com/css">
 52 <xsl:value-of select="."/>
 53 </ITM_NUMBER>
 54 </xsl:template>
 55 <xsl:template match="oms:OrderText">
 56 <OrderText xmlns="http://www.example.com/css">
 57 <xsl:value-of select="."/>
 58 </OrderText>
 59 </xsl:template>

book-code/chap03/xslt/etc/order_to_history.xslt

Here you can see, for example, that the template matching
oms:OrderKey simply returns the value of that element (the instruction
<xsl:value-of select="."/> returns the string value of the current
node). The net result is that this stylesheet maps the value of

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 121

oms:OrderKey to a subelement in the target document named OrderNum-
ber that is a child of CustomerHistoryEntry.

Having walked through an example of an XSLT, the next section looks
at how such transformations are applied using Java.

3.4.2 XSLT Processing Using JAXP

XSLT processing in Java is accomplished using the Java API of XML Pro-
cessing (JAXP) [JSR 206]. Specifically, the JAXP javax.xml.trans-
form.Transformer class can be used to convert a source document to a
target document according to the rules specified in a stylesheet. JAXP pro-
vides the foundation from which all Java XML processing is built.

Figure 3–8 shows a simplified architecture diagram illustrating the role
of the JAXP API. A variety of different types of Java applications can use the
JAXP API, including servlets, JSPs, and EJBs. All of these use JAXP to
access the various capabilities that are included in any JAXP implementa-
tion, such as a SAX parser, a DOM implementation, and an XSL processor
that supports XSLT. The package javax.xml.parsers provides a common
factory interface to access different implementations of SAX and DOM
(e.g., Xerces) as well as XSLT (e.g., Xalan). The interfaces for SAX and
DOM are found in the org.xml.sax and org.w3c.dom packages, respec-
tively. The XSLT APIs are found in the javax.xml.transform packages.

As shown in Figure 3–8, JAXP isolates a Java application (e.g., client,
servlets, JSP, EJB) from the implementation of the XSLT transformer, and
the SAX and DOM parsers. JAXP defines factory classes that instantiate
wrapper objects on the transformer and parser implementations. The trans-
former/parser implementation classes that are used at runtime are deter-
mined by system property and/or classpath settings.

JAXP is an important enabling standard making it feasible to use Java and
Web Services for constructing SOA-style systems integration applications. Not
only does it integrate the XML parsing and transformation standards with Java,
but also it isolates the SOA application components from the SAX, DOM, and
XSLT implementations. This is important, because as better and faster imple-
mentations come to market, SOA components will be able to take advantage of
them to improve the performance without needing to be rewritten.

By using the JAXP architecture and XML for messaging, most of the
data transformation work involved in integrating SOA components with
Java boils down to writing XSLT. The example used to demonstrate this is
illustrated in Figure 3–9. This application reads orders from an OMS Web
service, transforms them into customer history updates, and writes these
updates to a CSS Web service.

122 Basic SOA Using REST

This example is constructed by tying together the examples from Sections
3.3.2 and 3.3.4 and using XSLT in the middle to transform the orders into
customer histories. The steps in the process illustrated in Figure 3–9 are:

1. A Service instance is used to create two Dispatch<Source>
instances—one to invoke the OMS Web service, and the other to
invoke the CSS Web service.

2. The first Dispatch<Source> instance’s invoke method is used to get
the orders from the OMS Web service.

3. The orders (an XML document) are returned from invoke() as a
Source instance.

4. The XSLT stylesheet file (order_to_history.xslt) is used, by a
TransformerFactory, to construct a Transformer instance based on
the stylesheet.

5. The Transfomer.transform() method is invoked to apply the
stylesheet rules to the Source instance (orders). The resulting cus-

Figure 3–8 Architecture of the Java API for XML Processing (JAXP).

Web
ServerJava CE

Client

Java API for XML Processing (JAXP)

JSP

Java EE 5 Application Server

Java
Servlet

EJB
Container

Enterprise
JavaBean

SAX Parser
(e.g., Xerces)

DOM Parser
(e.g., Xerces)

XSLT Transformer
(e.g., Xalan)

Java
Applications

JAXP
Implementation

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 123

tomer histories (an XML document—see Example 3–3) are written to a
Result instance that has been created.

6. In this case, the Result instance is created as a wrapper from a
ByteArrayInputStream. So, the XML is extracted from the underly-
ing array and wrapped in a StreamSource object that can be con-
sumed by the second Dispatch instance.

7. Lastly, as in Figure 3–6, the Dispatch.invoke() method is used to
post the customer histories XML to the CSS Web service.

The code in Example 3–12 shows how the steps from Figure 3–9 are
implemented. The Java used to create and invoke the Dispatch instances
(to get and send the XML to the RESTful Web services) is the same as in

Figure 3–9 SOA-style integration with XSLT for data transformation.

Client

OrderToCustHist Dispatch<Source>

Service

addPort(...)
2invoke(...)

createDispatch(...)

Source

4

Dispatch<Source>

invoke(...)

3

StreamSource

7

Transformer

Stylesheet
order_to_history.xslt

TransformerFactory

newTransformer(...) transform(...)

Result

ByteArrayInputStream

Customer
Service System
(CSS)
Web Service

Customer
Histories
(XML
Message)

Order
Management
System (OMS)
Web Service

Orders
(XML
Message)

5

6

1

124 Basic SOA Using REST

Example 3–6 and Example 3–8—please see those discussions for an over-
view of how Dispatch works in this scenario.

Example 3–12 Java Code That Applies the XSLT for Customer History

51 // Get the new orders
52 Service svc = Service.create(svcQName);
53 svc.addPort(orderQName, HTTPBinding.HTTP_BINDING, newOrdersUrl);
54 Dispatch<Source> getOrdersDispatch =
55 svc.createDispatch(orderQName, Source.class, Service.Mode.PAYLOAD);
56 Source newOrdersSource =
57 getOrdersDispatch.invoke(new StreamSource(new StringReader("<empty/>")));
58 // Instantiate a Transformer using our XSLT file
59 Transformer transformer =
60 TransformerFactory.newInstance().newTransformer
61 (new StreamSource(new File(xsltFile)));
62 // Transform the new orders into history entry files
63 ByteArrayOutputStream ba = new ByteArrayOutputStream();
64 transformer.transform(newOrdersSource, new StreamResult(ba));
65 // Update the customer histories
66 svc.addPort(histQName, HTTPBinding.HTTP_BINDING, addCustHistUrl);
67 Dispatch<Source> postCustomerHistoryDispatch =
68 svc.createDispatch(histQName, Source.class, Service.Mode.PAYLOAD);
69 postCustomerHistoryDispatch
70 .invoke(new StreamSource(new StringReader(ba.toString())));

book-code/chap03/xslt/src/java/samples/OrderToCustHist.java

To see how the XSLT is implemented, look to the middle of the exam-
ple code where an instance of the default TransformerFactory is obtained
using TransformerFactory.newInstance(). Using this factory, a Trans-
former is created by passing the XSLT file (the one discussed previously
that implements the mapping illustrated in Figure 3–7) as a StreamSource
to the newTransformer() method. The resulting Transformer then applies
the XSLT to the Source instance obtained by invoking the getOrdersDis-
patch instance. As shown here, the second parameter used in the invoca-
tion of transformer.transform() is a StreamResult wrapping an
underlying ByteArrayOutputStream. In this manner, the results of the XSL
transformation are written to that byte array. The end of the example code
shows how that byte array is wrapped inside a StreamSource that can be
passed to the postCustomerHistoryDispatch.invoke() method to post
the customer histories to the CSS Web service.

3.5 RESTful Services with and without JWS 125

To run this example, do the following. After the example is run, the
results (customer history entries) are written by the application to a tempo-
rary file of the form ${user.home}/tmp/soabook*.xml. So, you can look to
your ${user.home}/tmp directory to verify that the example ran properly.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/endpoint-servlet.
5. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

6. Go to <book-code>/chap03/xslt.
7. To run the client enter:

 mvn install

8. To undeploy the Web service, go back to <book-code>/chap03/
rest-get/endpoint-servlet and enter:
 ant undeploy

9. Do the same in the directory <book-code>/chap03/rest-post/end-
point-servlet.

That concludes this brief introduction to data transformation using
XSLT with JAXP. XML processing with JAXP is examined in more detail in
Chapter 5 where data binding is introduced and JAXB is compared with
SAX and DOM. The next two sections of this chapter look at how RESTful
services are deployed—with and without the JWS.

3.5 RESTful Services with and without JWS

The focus now switches from client-side consumption of RESTful Web
Services to development and deployment of such services themselves. As
in Section 3.3, this section examines how to deploy such services both
with and without JAX-WS. As before, the purpose here is to compare
and contrast the JWS approach with the bare-bones approach of simply

126 Basic SOA Using REST

working with Java’s HTTP servlet tools to build and deploy a simple
RESTful service.

Again, the example used to illustrate the concepts in this section is a basic
building block of SOA Web Services—the deployment of a simple download
service. In this case, it is the “New Orders” service discussed from the client
perspective in previous sections. This section examines how to deploy a Java
class that provides a getNewOrders() method both with and without JAX-WS.

3.5.1 Deploying a REST Service without Using JWS

This section provides the first example in the book of how to deploy a Java
method as a Web service. It is the simplest RESTful Web service imagin-
able—the service consumed by the client in Section 3.3.2. This service sim-
ply returns an XML document containing the “new orders.”

Example 3–13 shows a mock object implementation of the getNew-
Orders() method. This implementation of OrderManager is called a mock
object because it is a “mock-up” of a real OrderManager class. It is a stub
implementation of the server side. The getNewOrders() method returns
the contents of a hard-coded file (/orders.xml) instead of providing a live
interface to an Order Management System. Throughout this book, mock
objects like this are used to illustrate the Java classes that are deployed as
Web Services. This strategy provides realistic examples you can actually run,
without requiring you to have any actual back-end systems to provide Order
Management or Customer Service implementations.

Example 3–13 The OrderManager.getNewOrders(...) Method to Be Deployed As a
Web Service

 26 public class OrderManager {
 27
 28 public Source getNewOrders() throws FileNotFoundException {
 29 // get the resource that provides the new orders
 30 InputStream src = getClass().getResourceAsStream("/orders.xml");
 31 if (src == null) {
 32 throw new FileNotFoundException("/orders.xml");
 33 }
 34 return new StreamSource(src);
 35 }
 36
 37 }

book-code/chap03/rest-get/endpoint-servlet/src/java/samples/OrderManager.java

3.5 RESTful Services with and without JWS 127

Several questions arise when considering how to enable this method as
a Web service:

1. How is the class instantiated?
2. How is the Source instance returned by getNewOrders() converted

into an XML stream in an HTTP response message?
3. How is the class deployed as a Web service?

These three questions mirror the three components of a Web Services
Platform Architecture outlined in Chapter 1, Section 1.2. Question #1 is
about invocation—the first component of a Web Services Platform Architec-
ture. To invoke a Web service, you must be able to get an instance of its
implementation class. Question #2 is about serialization—the second compo-
nent of a Web Services Platform Architecture. The Java object that is
returned must be serialized to XML that can be written out “onto the wire.”
Question #3 is about deployment—the third component of a Web Services
Platform Architecture.

This section gives simple answers to these questions, as the example
shows how to deploy the Java method as a Web service using a dedicated
servlet. However, what is interesting to note is that, even in this simple case,
the solutions need to deal with all three of the Web Services Platform
Architecture components.

In this example, the Web service is accessed with an HTTP GET
request. The servlet needs to handle the HTTP GET request, instantiate
the Java class, invoke the getNewOrders() method, and write the results
out as XML in the HTTP GET response. Figure 3–10 shows the basic
architecture.

As illustrated here, this simple architecture deploys a RESTful Web ser-
vice using the java.servlet.http.HttpServlet class. The GetNewOrders-
Servlet class acts as a front-end to the OrderManager that mediates between
the HTTP request/response messages and invokes the Java method that
implements the Web service. The steps illustrated in the figure are:

1. The client sends an HTTP GET request to the appropriate URL (a
URL that has been associated, in the servlet container’s configura-
tion, with the GetNewOrders class).

2. The servlet container wraps the HTTP request stream in an instance
of HTTPServletRequest and passes it to the GetNewOrdersServlet’s
doGet() method.

3. The doGet() method creates an instance of the OrderManager class
and invokes the getNewOrders() method.

128 Basic SOA Using REST

4. The getNewOrders() method returns the new orders XML docu-
ment as an instance of javax.xml.transform.Source.

5. An instance of javax.xml.transform.Transformer is used to write
the new orders Source to the ServletOutputStream (wrapped in an
instance of java.xml.transform.stream.StreamResult).

6. The getNewOrders() method returns and the HTTP response con-
taining the new orders XML document is returned to the client.

Example 3–14 shows the code for the GetNewOrdersServlet’s doGet()
method. This code is straightforward, but there are a few items to notice
and think about. First, as you can see, the servlet has to instantiate the
OrderManager class. This assumes that OrderManager is available to the
class loader. In this example, I accomplish that by bundling the OrderMan-
ager class in the WAR that is deployed. This is the simplest way to get an
instance of a class that needs to be deployed as a Web service, but it is not
always feasible. For example, if the class is implemented as an EJB, you will
need to request its interface from the EJB container, instead of instantiat-
ing an instance. Furthermore, suppose the class requires other container

Figure 3–10 RESTful service deployed using HTTPServlet.

Servlet ContainerClient

HTTP GET request

HTTP response
containing the XML
new orders
document

GetNewOrdersServlet
(extends HTTPServlet)

doGet(...)
1

2
OrderManager

getNewOrders(...)

Source

(new orders)

Tranformer

transform()

StreamResult

ServletOutputStream

3

4

5

6

SenderReceiver
XML Message

3.5 RESTful Services with and without JWS 129

services (e.g., JNDI and a database connection). In the real world, it is not
so easy to just deploy a POJO by packaging its class definition into a WAR.
Even in this example, using a mock object, the returned data (orders.xml)
needs to be packaged into the WAR along with the deployed class. How you
get an instance of a class being deployed as a Web services is a topic I cover
in some detail when we explore the design of the SOA-J in Chapter 11.

Another item to notice is the use of the HttpServletResponse.setCon-
tentType("text/xml") method to set the content type of the HTTP response.
This is important, because many REST clients (including early versions of the
GlassFish implementation of Dispatch) will fail if the content type is not
"text/xml." You need to be doubly careful with this, because some of the
HttpServletResponse methods (e.g., sendError(int sc, String msg)), on
some servlet containers, change the content type to "text/xml" since their
error messages are implemented as HTML content.

Lastly, notice the use of the default instance of Transformer to simply
write XML from a Source to a Result. Unlike in Section 3.4, here I am not
doing any XSL transformation. I am just using the Transformer to write the
XML returned by the OrderManager to the ServletOutputStream.

Example 3–14 The GetNewOrdersServlet doGet(...) Method

 33 public void doGet(HttpServletRequest req,
 34 HttpServletResponse res)
 35 throws IOException, ServletException {
 36 // invoke the Java method
 37 OrderManager om = new OrderManager();
 38 Source src = om.getNewOrders();
 39 // write the file to the HTTP response stream
 40 ServletOutputStream out = res.getOutputStream();
 41 res.setContentType("text/xml");
 42 StreamResult strRes = new StreamResult(out);
 43 try {
 44 TransformerFactory.newInstance().newTransformer()
 45 .transform(src, strRes);
 46 } catch (Exception e) {
 47 throw new IOException(e.getMessage());
 48 }
 49 out.close();
 50 }

book-code/chap03/rest-get/endpoint-servlet/src/java/samples
/GetNewOrdersServlet.java

130 Basic SOA Using REST

The instructions for deploying and invoking this servlet are included
with Example 3–6.

Example 3–15 shows the deployment descriptor for the Web service
implemented by the GetNewOrdersServlet class (together with OrderMan-
ager). This is the standard web.xml file, which is placed into the WEB-INF
subdirectory of the WAR package used to deploy this Web service.

Example 3–15 The web.xml Deployment Descriptor Bundled in the
GetNewOrdersServlet WAR

 9 <web-app>
 10 <servlet>
 11 <servlet-name>GetNewOrdersServlet</servlet-name>
 12 <servlet-class> samples.GetNewOrdersServlet </servlet-class>
 13 </servlet>
 14 <servlet-mapping>
 15 <servlet-name>GetNewOrdersServlet</servlet-name>
 16 <url-pattern>/NewOrders</url-pattern>
 17 </servlet-mapping>
 18 </web-app>

book-code/chap03/rest-get/endpoint-servlet/src/webapp/WEB-INF/web.xml

Notice in Example 3–15 that the servlet GetNewOrdersServlet is
mapped to the URL pattern /NewOrders. The deployment tool you use to
deploy the WAR determines the context root for the Web application. In
this case, the GlassFish default is being used—and it takes the context root
from the name of the WAR file (chap03-rest-get-endpoint-servlet-
1.0.war). And the base URL for the servlet container is http://local-
host:8080 (unless you have customized the profile section of the <book-
code>/pom.xml file when you installed the code example—see Appendix B,
Section B.5). So, the URL for this Web service becomes:

http://localhost:8080/chap03-rest-get-endpoint-servlet-1.0/NewOrders

That pretty much wraps up the “how-to” discussion for creating and
deploying a simple REST Web service using a servlet to invoke a Java
method. As you can see, it is not hard to use servlets for deployment of basic
RESTful Web services. The three questions posed at the beginning of the
section have been answered as follows:

3.5 RESTful Services with and without JWS 131

1. The Web service implementation class (i.e., OrderManager) is instan-
tiated using the no-arg default constructor. This assumes that such a
constructor exists and that the class definition is on the classpath. It
also assumes that all resources required by the class are available.

2. The object returned by getNewOrders() is converted into an XML
stream using a Transformer. This is a very simple scenario where the
method being deployed returns a result that is already represented
as an XML infoset. In most cases, the result will be a Java object that
is not an XML infoset representation and requires serialization.

3. The class is deployed by bundling it with a dedicated servlet.

Problems are encountered, however, when you want to deploy multiple
services. Using the architecture described in this section, you need to have a
servlet for each Web service. That quickly becomes cumbersome and ineffi-
cient. What is needed is an invocation subsystem so that a single servlet can be
used to invoke more than one service. However, to do that requires a method
of mapping URLs to services at a finer granularity than provided by the
web.xml file. As you can see in Example 3–15, the web.xml mapping is from a
single URL to a single servlet. So, for a single servlet to handle multiple URLs
(and multiple Web services), additional deployment meta-data must be added
to this simple architecture that falls outside of the servlet processing model.
One way to do this might be to map all base URLs of the form http://exam-
ple.com/services/* to the servlet. Then, local paths such as /getNewOrder,
/addCustomerHistory, and so on are mapped to individual Web services.

In fact, this approach is used by a variety of Web Services engines,
including Apache Axis [AXIS] and the SOA-J engine introduced in Chapter
11. JWS also offers a variation on this approach, which I examine in detail in
Chapter 7. For now, I’m going to defer further discussion of deployment
issues and move on to the nuts and bolts of how to deploy this “New
Orders” example Web service using JAX-WS and JSR-181 annotations.

3.5.2 Deploying a RESTful Service with JWS

This section illustrates how a Web service is deployed using JWS. This is the
same service that was deployed in Section 3.5.1. However, the operation of
the service—as deployed using JWS—is very different.

The primary difference here is that instead of using a servlet as in
Example 3–14, the JWS version uses an instance of Provider<Source> to
implement the RESTful service. Example 3–16 shows how it is imple-
mented. The @WebServiceProvider annotation used in this example is
defined by the JAX-WS 2.0 specification. It is used to declare a reference

132 Basic SOA Using REST

to a Web Service that implements a Provider<Source> interface. The
@WebServiceProvider annotation is required for deploying a RESTful
Web service and is discussed in more detail in Chapter 7, which covers
JAX-WS server-side development and deployment.

The Provider<Source> interface is basically the server-side version of
Dispatch<Source> discussed in Section 3.3.2. It enables you to create a
Web service that works directly with the XML message as an instance of
javax.xml.transform.Source—rather than a JAXB 2.0 representation of
the XML message. Along with @WebServiceProvider, the
javax.xml.ws.Provider interface is explained in greater detail in Chapter
7. In this section, my goal is just to give you a quick example of how a
RESTful service can be created and deployed with JAX-WS.

The @BindingType annotation (javax.xml.ws.BindingType) used in
Example 3–16 is also defined by the JAX-WS 2.0 specification and is used to
specify the binding that should be employed when publishing an endpoint.
The property value indicates the actual binding. In this case, you can see
that the value is specified as follow:

value=HTTPBinding.HTTP_BINDING

This indicates that the XML/HTTP binding should be used, rather than
the default SOAP 1.1/HTTP. This is how REST endpoints are specified in
JAX-WS 2.0—by setting the @BindingType. If one were to leave the @Bind-
ingType annotation off this example, the Java EE 5 container would deploy
it as a service that expects to receive a SOAP envelope, rather than straight
XML over HTTP (i.e., REST).

Example 3–16 GetNewOrdersProvider Implements Provider<Source> to
Create a RESTful Web Service

 21 import javax.xml.transform.Source;
 22 import javax.xml.ws.BindingType;
 23 import javax.xml.ws.Provider;
 24 import javax.xml.ws.WebServiceProvider;
 25 import javax.xml.ws.http.HTTPBinding;
 26 import javax.xml.ws.http.HTTPException;
 27
 28 @WebServiceProvider
 29 @BindingType(value=HTTPBinding.HTTP_BINDING)
 30 public class GetNewOrdersProvider implements Provider<Source> {
 31

3.5 RESTful Services with and without JWS 133

 32 public Source invoke(Source xml) {
 33 OrderManager om = new OrderManager();
 34 try {
 35 return om.getNewOrders();
 36 } catch (Throwable t) {
 37 t.printStackTrace();
 38 throw new HTTPException(500);
 39 }
 40 }
 41
 42 }

book-code/chap03/rest-get/endpoint-jaxws/src/java/samples
/GetNewOrdersProvider.java

The Provider<Source> interface specifies the invoke() method, which
receives and returns an instance of Source. As shown in this example, inside
the invoke() message, the OrderManager class gets instantiated and the
OrderManager.getNewOrders() method is invoked to implement the Web
service functionality. So, instead of wrapping the OrderManager inside an
HttpServlet.doGet() method, as in Example 3–14, this example wraps the
service implementation class inside a Provider.invoke() method.

At this point, it is worth asking the same questions posed in Section 3.5.1.
In particular:

1. How is the class instantiated?
2. How is the Source instance returned by getNewOrders() converted

into an XML stream in an HTTP response message?
3. How is the class deployed as a Web service?

As you can see from the code, some of these questions get very different
answers when a RESTful Web service is implemented as a Provider<Source>
than when it is implemented using an HttpServlet. These differences serve to
contrast the JAX-WS 2.0 approach to Web Services deployment with the
straightforward servlet implementation of the preceding section.

The answer to the first question is the same in both cases—the class is
instantiated each time the service is invoked. However, the answer to the sec-
ond question is different in this case. Here, the Source instance can be
returned directly. It does not need to be converted into a stream and written
out to the HTTP response message. These details related to the binding of

134 Basic SOA Using REST

the service to the HTTP transport are handled by the JAX-WS run-time
implementation. Lastly, the answer to the third question is also very different.
Java EE 5 supports many options for deploying Web services—these are all
discussed in Chapter 8. A web.xml deployment descriptor can be used (even
though this is not a servlet!), but is not required. In fact, it is possible to
deploy a JWS Web service without any deployment descriptors. The Java EE
5 container can often deploy a service based entirely on its annotations.

Figure 3–11 shows the architecture supporting the RESTful Web ser-
vice created and deployed here using JAX-WS 2.0.

As illustrated here, this JWS architecture deploys the RESTful Web ser-
vice using the java.servlet.http.Provider<Source> class. The GetNew-
OrdersProvider class acts as a front-end to the OrderManager that mediates
between the XML request/response messages and invokes the Java method
that implements the Web service. The steps illustrated in the figure are:

1. The client sends an HTTP POST request to the appropriate URL (a
URL that is specified at deployment time—either in a deployment
descriptor or by a deployment tool). Notice that a POST request is used
here, rather than a GET request. That is because early implementations
of JAX-WS allowed RESTful Web services only to accept POST
requests. Recent versions support both POST and GET requests.

Figure 3–11 RESTful service deployed using Provider<Source>.

Java EE 5 ContainerClient

HTTP POST request

HTTP response
containing the XML
new orders
document

GetNewOrdersProvider
(Provider<Source>)

invoke(...)
1

2
OrderManager

getNewOrders(...)

Source

(new orders)

3

4

5

SenderReceiver
XML Message

3.5 RESTful Services with and without JWS 135

2. The JWS container extracts the XML message from the HTTP
POST request and passes it to the GetNewOrders.invoke() method.
This functionality is provided by the JAX-WS runtime.

3. The invoke() method creates an instance of the OrderManager class
and invokes the getNewOrders() method.

4. The getNewOrders() method returns the new orders XML docu-
ment as an instance of javax.xml.transform.Source.

5. The instance of Source—the Web service’s return XML mes-
sage—is inserted into the HTTP response message and returned
to the caller. This functionality (i.e., wrapping the XML response
message inside the HTTP response message) is provided by the
JAX-WS runtime.

In some ways, the JWS implementation of this RESTful Web service is
simpler than its servlet-based counterpart discussed in Section 3.5.1. The
simplification comes from not having to translate between HTTP request/
response messages and the XML request/response messages. JAX-WS han-
dles that translation so that the developer can work directly with the XML
messages. In other ways, however, the JWS implementation shown here
seems more cumbersome. Two annotations are required—@WebService-
Provider and @BindingType. If you are not used to annotations, these can
make the example seem confusing.

To deploy and invoke this RESTful Web service example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-jaxws.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-jaxws.
5. To run the client enter:

 ant run-jaxws

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-jaxws and enter:
 ant undeploy

136 Basic SOA Using REST

3.6 Conclusions

In this chapter, I provided a broad introduction to consuming, creating,
and deploying RESTful Web Services—using standard java.net.*
classes and servlets, as well as the JAX-WS 2.0 APIs and annotations. A
primary goal of this chapter was to highlight the similarities and differ-
ences between traditional Java techniques and the JAX-WS 2.0 approach
to Web Services. Another goal was to provide a grounding in some of the
basic XML processing techniques used to implement SOA-style integra-
tion of RESTful Web services.

In the next chapter, I look at the Java/XML data binding problem
and how it can be addressed using traditional JAXP approaches, as well
as using JAXB. As I did in this chapter, I compare and contrast the
approaches so that you can see the power available to you from the JAXB
machinery, but also some of the drawbacks. I help you to determine in
which situation JAXB provides the most value and where you are better
off using other binding tools.

