Cisco Networking Academy Program

Fundamentals of Java Programming

Companion Guide

ISBN: 1-58713-089-0

Technical Errata

August 13, 2004

Reader: Please refer to text for page numbers.

Chapter 1 (p. 3)

 How Java Programs Work on the Computer (p. 42)
*** Replace last paragraph, which starts with “Provided that there are no compiler errors, the third step is to start the JVM and instruct it to run the program.” {p. 43}
If there are no compiler errors, the third step is to start the JVM and instruct it to run the program. The program java.exe is used to launch the JVM and give it a .class file to run. This program is often referred to as the application launcher. It can be found in the bin directory of the Java SDK. The java.exe application launcher requires the .class file to meet some conditions. The java.exe program can be run from the command line of any OS. The labs in this Module explore different ways to run this program. The rules used to run java.exe are the same for all CLIs. The java.exe program requires the user to provide the name of the Java .class file that will run on the JVM. This .class file must define a set of instructions that are labeled as the main() method. The concept of methods and the rules used to define methods will be explored in this course. Students should know that the java.exe program expects a .class file that contains the main() method.

Figure 1-15 shows the flow of activity from when a source file is created to when a Java program is run. The JVM interprets the bytecode of the .class file to the language of a machine. A programmer has to compile the source file once and then can run it many times on different computers.

Understanding the Java 2 Software Development Kit

(p. 45)

***Addition to beginning of section (p. 45)
Most computer users are familiar with OS environments that allow them to launch a word processor, browse the Internet, or send e-mails. The command line is an older interface. Commands are typed to run programs. The command line interface differs from one OS to another. The Windows environment provides a command window with a prompt for the user to type in the commands. The UNIX environments provide similar windows, which are often referred to as the command shell.

The lab in this section gives the students examples of different command shell windows. The command line is where the programmer interacts with the computer OS. To access the command line on a Windows OS computer, open a DOS prompt window. On some computers an icon for the command window is provided on the desktop, or in the Start menu of the task bar. For an Apple or UNIX machine, open the console or terminal window. When java is typed at the command prompt, the help screen for the java command will appear. In a UNIX environment, the command line is a console window that shows the shell prompt.

***Addition to end of section (p. 46)
The OS of any computer will locate and run a program in one of two ways. The program is either in the directory from which the command is executed, or in a different directory, which is provided with the name of the file. If students type javac on the command line and an error message appears, two problems may exist. The OS may not know where the file javac.exe is located. This problem is easy to fix. Students can add the location of the file in front of the filename or they can edit the variable path. This is a little more difficult to do and students who do not know how to set OS variables should ask their instructor for help. The second problem is that the J2SDK may not be installed properly. The instructor should help students reinstall the J2SDK before they continue with this lesson if an error message is received.

The Java SDK does not provide an editor or an IDE for the creation of programs. In this course the BlueJ application is used as an IDE and must be installed.
Basic editing with the BlueJ IDE (p. 61)

***Addition to end of section, including replacement of last paragraph (p. 62)
To compile a Java program, BlueJ still uses the javac program, just as students did to compile the HelloStudent program. BlueJ also uses the same JVM launcher that is used at the command line. BlueJ is written in Java. The Java SDK must be installed before the BlueJ application is installed and launched. The Java programming language and its API are used to create applications for many different uses and to create tools to write Java programs.
Students must be familiar with the most frequently used functions of the BlueJ tool:

· Launch BlueJ

· Create and manage project folders

· Create and edit Java code for Java classes

· Compile and run the Java code, with the main() method and represent objects in the BlueJ environment

· Save projects as different phases with the file features of the tools

· Create HTML documentation for the Java classes

Case Study: JBANK, a Banking Application (p. 63)

***Addition before first paragraph (p. 63)
The JBANK is an electronic banking service that uses Java. Students will design Java classes and objects that will allow the JBANK to conduct business electronically. In some labs, students will create modified versions of the final program to show the variations in Java code.

***Addition after first paragraph (p. 63)
The main concepts in this case study are as follows:

· Create a set of classes to maintain information about a bank, customers, and the different types of accounts. A simple relationship between these objects is that a bank has many customers and each customer could have more than one type of account. All accounts types have some common properties.

· Create the JBANK application in phases. In each phase, students will be able to practice coding in the Java language. Students will learn to manage the classes for each phase with BlueJ project files.

· Apply the rules used to create, access, and manage customer accounts and customer funds in the class code.

Review the business rules:

· How many banks are defined?

· How many customers will be created for the bank?

· How many and what types of accounts will each customer be allowed to hold?

· What are the rules used to deposit money into an account?

· What are the rules used to withdraw money from an accounts?

· How many phases are defined for the creation of this application?

Chapter 2 (p. 73)

System Class (p. 111)
***Addition to beginning of section, including replacement of first paragraph (p. 111)
Chapter 1 introduced the Java program SayHello, shown in Example 2-6.

This section will review the SayHello source code to explore the use of pre-defined Java classes from the Java API. (p. 111)

It is easy to define the data and attributes for classes. It is more difficult to print, save data, connect to a network, and display graphics. These tasks require programmers to understand hardware and OS rules. OOP separates the functions of an application into different class definitions and enables the re-use of class definitions. Java has a range of pre-defined classes. These are in the Java SDK. The source code for these classes can be found in the folder src in the J2SDK folder. The Java SDK includes documentation on each of the classes. A programmer can use these classes to perform the functions that are needed to solve business problems. The API classes are pre-defined and well tested. (p. 111)
Defining and Modeling the JBANK Application (p.113)
***Addition to be included after, “Figure 2-33 displays what the JBANK application might look like at the end of the course. “
The JBANK will be developed in phases. In each phase the students will create a core set of classes.

In Phase 1 the students define the core classes for the application. In most programs, a core set of classes define the process that is used to handle important data. In a banking application, this data includes information about the bank, its customers, and accounts. The students will create a Bank class, a Customer class and an Account class. The Bank class has a list of customers and information about interest rates and the times the bank is open and closed. The Customer class has information about each customer such as names, addresses, and accounts held. The Account class defines the data for a single account. The Account class provides methods to maintain a balance and to deposit and withdraw from an account.

There are two labs for students to complete. The first lab requires students to answer some questions about the UML and the business rules. In the second lab, students will begin to define and model the Account class and the Customer class. In these labs, students will use the Teller class as the main entry point for the JBANK. This class will create Customer and Account objects. The Customer class is filled with data. This code is lengthy. This will teach students how to manage a class that holds a lot of data. The Customer class will go through more modifications in later Modules. Its primary use for now is to store customer information. The Account class is a simple class that holds account balance information. This class has methods that are used to deposit and withdraw from the account. This is a class that will also be changed in later Modules.

These labs describe each class as defined by the end-users. The UML diagram provides a definition for each class. In the labs the students will partially code the descriptions in the UML. Some of the descriptions have been grayed out. These will be completed in other labs.

Chapter 3 (p. 173)

Javadoc Parameters (p. 179)
***Addition to end of section, right before, “For more information, see Java Rules, by Douglas Dunn: Section 1.3, ‘Comments.’”

All javadoc comments should be placed before or on the line prior to each of these lines of code:

· Class definition

· Definition of each attribute

· Definition of methods and constructors

All javadoc comments placed inside the code braces of a method or constructor will be ignored. Since javadoc comments are used to provide information to a user of a class, comments should be placed above public and protected attributes and methods. Private attributes or methods do not need javadoc comments. The programmer may choose to include standard java comments enclosed in /* */ or preceded with //.

Stack, heap, static, and constant storage (p. 203)

What Heap Memory Means (p. 204)
***Addition to end of section; continuation of last paragraph (p. 205)
Heap memory is managed by the JVM with a Hash Table. This table lists the object IDs for objects on the heap and their locations. When a request is made to work with an object, the JVM uses the Hash Table to locate the object with the ID. The variable that references an object holds a value for its ID.

JBANK Application (p. 248)
***Replace paragraphs 2-5 with the following paragraph (p. 248)
Students will complete the code for the Bank class in this Module. The application is in its simplest form. It consists of a bank with customers who each have one account. More accounts will be added later.

Chapter 4 (p. 261)
Arithmetic Operators (p. 267)

*** Addition to end of section (p. 270)
Unary operators are often used to simplify an assignment expression. The arithmetic operations are implicitly defined as part of the assignment. The simple operators can be used as shown in Table 4-a.

***Table 4-a: Unary assignment operators
	Operator
	Examples

	=
	int x = 32;

x = 32 * 46;

float y = 42.34f;

long xL = 18446744073709551617L;

	+=
	int x = 45;

int y =56;

using += instead of

x += 90 instead of x = x+90

x += y instead of x = x +y

	-=
	int x = 70;

int y = 120;

x -= 50 instead of x = x-50;

x -= y instead of x = x – y

	*=
	int x = 34;

x *= 4 instead of x = x *4

	/=
	int x = 136;

x /= 2 instead of x = x /2;

A common operation is to increase and decrease numbers by a one. The operators in Java that provide this function are the increment, which adds by one and the decrement, which decreases by one. These operators can be placed before or after the value. The placement of the operator has an impact on the results. This is shown in Table 4-b. In the first two examples, the placement does not affect the results. In the next two examples it does. When the operators are placed before a value, they are called pre-fix operators. When they are placed after a value they are called post-fix operators. The placement of the increment and decrement operators will have an impact when the value is part of an expression.

***Table 4-b: Pre fix and post fix increment and decrement operators

	Examples
	Explanations

	increment operator ++ increases the value of the operand by one.

int x = 45;

++ x ;

int y = 45;

y ++;

	In these examples the increment operator is used in a statement where the operand is not part of another operation or expression.

 ++x results in x =46.

y ++ results in y =46

The value of x or Y would be increased by one regardless of whether the operator was placed before or after the operand in these statements.

	decrement operator -- decreases the value of the operand by one.

int x = 45;

-- x ;

int y = 45;

y --;

	In these examples the decrement operator is used in a statement where the operand is not part of another operation or expression.

 --x results in x =44.

y -- results in y =44

The value of x or Y would be decreased by one regardless of whether the operator was placed before or after the operand in these statements.

	increment operators

int y = 120;

int x;

x = ++ y;

int y;

int x = 56;

y = x ++;

	The use of prefix or post fix placement of the increment operator has an impact on the assignment.

Value of y will be 121, and the value of x will be 121. In this expression, the pre-fix operator increase the value of y before it is assigned to x.

Value of y will be 56, and the value of x will be 57. In this expression the post-fix operator increases the value of X after it has been assigned.

Pre-fix affects the value before it’s use in the expression, and post-fix affects the value after it’s use in the expression.

	decrement operators

int y = 120;

int x;

x =-- y;

int y;

int x = 56;

y = x --;

	The use of prefix or post fix placement of the decrement operator has an impact on the assignment.

Value of y will be 119, and the value of x will be 119. In this expression, the pre-fix operator decreses the value of y before it is assigned to x.

Value of y will be 56, and the value of x will be 55. In this expression the post-fix operator decreases the value of X after it has been assigned.

Pre-fix affects the value before it’s use in the expression, and post-fix affects the value after it’s use in the expression.

Precedence of Operators (p. 270)

*** Addition to end of section (p. 271)

Example 4-a shows the result of an unclear expression. The addition (+) and the increment (++) operator are both used. Since there are no parentheses to define the precedence, the expression is evaluated based on the spaces. When a choice has to be made, the ++ takes precedence over the + operator. This will increment the value of X after it is used in the expression. The final result is 60 when the values of the operands are used. In the second example the space between the two operators reduces confusion. The ++ operator acts in a pre-fix manner and increments the value of Y before it is used in the expression. This will produce a different result.

***Example 4-a: Output Results

	value of x and y in expression b = x + ++y;

x initial value is 30, value in expression is 30

y initial value is 30, value in expression is 31

result value of b is 61

Boolean Data (p. 276)

*** Addition to end of section before: “The code shown in Example 4-11 is an example of the declaration and initialization of a boolean data type variable.” (p. 277)
The value of a boolean variable can be assigned with the literals true and false it can also be assigned based on the result of a boolean expression. A boolean expression compares the result of one or more expressions. If x is assigned 10, and y is assigned 10 then a comparison of x with y with the greater than (>) operator will result in a false. If the two variables are compared with the equal to (=) operator it will result in a true.

(d) Bitwise Operators (p. 284)

*** Addition to beginning of section; including replacement of the first two paragraphs (p. 284)
A programmer can manipulate data at the bit level of the value that is represented. Two types of operators can be operated on at the bit level of a data value. These are shift and boolean operators. Shift operators change the position of the bits in a number to increase or decrease its value. Bitwise operators shift bits in the binary version of the left operand. For example, 2000 << 3, will shift the bits for the operand 2000 The number of times the bits will be shifted to the left are represented by the operand 3.

The operands should be integral types that are mainly int or long.
Table 4-c summarizes the shift operators in Java. A shift operator performs bit manipulation on data by shifting the bits of its first operand right or left. Each operator shifts the bits of the left-hand operand over by the number of positions indicated by the right-hand operand. The shift occurs in the direction indicated by the operator itself.

The binary representation of the integer number 13 is 1101. The statement 13 >> 1 shifts the highest bit to the right once. This results in the binary form of the number 6, which is 0110. The left-hand bits are filled with 0s as needed. The right hand bits of the original number are lost. The right shift is the same as 13 divided by 2 raised to the power of 1.

***Table 4-c: Bitwise Operations

	Operator
	Use
	Operation

	>>
	op1 >> op2
	shift bits of op1 right by distance op2

	<<
	op1 << op2
	shift bits of op1 left by distance op2

	>>>
	op1 >>> op2
	shift bits of op1 right by distance op2 (unsigned)

***Addition - add before “Collections of bits sometimes are used to save storage…” (p. 284)

Table 4-d shows the result of the bitwise logical operators. The & operator table shows that when its operands are numbers, the & operation performs the bitwise AND function on each parallel pair of bits in each operand. The AND function sets the resulting bit to 1 if the corresponding bit in both operands is 1 Suppose that you were to AND the values 13 and 12, like this: 13 & 12. The result of this operation is 12 because the binary representation of 12 is 1100, and the binary representation of 13 is 1101. When both of its operands are numbers, the | operator performs the inclusive or operation, and ^ performs the exclusive or (XOR) operation. Inclusive or means that if either of the two bits is 1, the result is 1. Exclusive or means that if the two operand bits are different the result is 1, otherwise the result is 0. The complement operator inverts the value of each bit of the operand: if the operand bit is 1 the result is 0 and if the operand bit is 0 the result is 1. Table 4-d shows additional examples in bitwise logical operations.

***Table 4-d: Bitwise Operations
	The & operator

	op1
	op2
	Result

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

	1101 //13
	1101 //13
	1101 //13

	Inclusive or | operator

	op1
	op2
	Result

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

	1101 //13
	| 1100 //12
	1101 //13

	Exclusive or ^ operation

	op1
	op2
	Result

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

	1101 //13
	^ 1100 //12
	0001 //1

*** Addition to end of section (p. 285)
Bitwise manipulations can be used to manage sets of boolean flags. A program may have many boolean flags to show the state of different components in a program, such as visible or draggable. A programmer could define a variable called flags for all of the components instead of variables for each one. Each bit within flags would represent the state of one of the flags. Bit manipulations can be used to set and get each flag. First, set up constants that indicate the flags for the program. Each flag should be a different power of 2 to make sure that each bit is used by only one flag. The code sample in Example 4-b sets flags to 0. This means that all flags are false since none of the bits are set.

***Example 4-b: Bitwise Logical Operations
	/**

 * Java Program BitwiseLogicalOperations.java

 *

 * @author Cisco teacher

 * @version March 2004

 */

public class BitwiseLogicalOperations

{

 static final int VISIBLE = 1;

 static final int DRAGGABLE = 2;

 static final int SELECTABLE = 4;

 static final int EDITABLE = 8;

 public static void main(String[] args)

 {

 int flags = 0;

 flags = flags | VISIBLE;

 flags = flags | DRAGGABLE;

 if ((flags & VISIBLE) == VISIBLE) {

 if ((flags & DRAGGABLE) == DRAGGABLE) {

 System.out.println("Flags are Visible and Draggable.");

 }

 }

 flags = flags | EDITABLE;

 if ((flags & EDITABLE) == EDITABLE) {

 System.out.println("Flags are now also Editable.");

 }

 }

}

Casting and Conversion (p. 285)

*** Addition to beginning of section (p. 285)
A value of one type often needs to be assigned to a variable of another type. In this case, some rules of assignment are applied. Java provides for the automatic conversion of types between variables that are of the same family of types. For example, a byte variable is assigned to an int easily and the conversion is implicit. A byte is smaller than an int and is of the same family of numeric types. An expression is often assignment compatible if the variable that receives the assignment has a data type that is at least as many bits as the expression type. If the two types are compatible, Java performs the conversion. For example, an int value can always be assigned to a long variable.

Java assigns default types to numeric literals. Table 4-d shows the default types. In the case of literal values, integrals are stored as int, and all floating point numbers are stored as double. When literals are assigned, make sure that the declaration of the literal value is correct. Table 4-e shows examples of correct and incorrect assignment statements.

***Table 4-d: Assignment types for numeric literals

	Literal value
	default type assignment

	12
	int

	23.45
	double

***Table 4-e: Assignment compatibility

	Expression
	Status
	Explanation

	int x = 24;
	OK
	24 is an int and the variable x is also an int

	byte b = 32;
	OK
	32 is an int, however automatic conversion allows the value of 32 to be placed in the byte variable

	byte b = 130;
	Not OK
	130 is an int and the value is larger than the maximum value that can be stored in a byte. In order to assign literals, not only must the numeric types be compatible, but the value must be within the range of values permissible for the target type. This code fails, because the compiler checks the range of the target variable.

	double d = 23.45
	OK
	23.45 is stored as a double and the target variable is a double. No conversion is required.

	float f = 23.45
	Not OK
	23.45 is a double, and although, this value can fit into a float, due to potential loss of precision, the compiler will not accept this assignment.

	float f = 23.45F
	OK
	Here the literal is being identified as a float, and therefore compatible with the target.

	long l = 2147483849
	Not OK
	The value 2147483849 is larger than the largest int (2147483648). Although a long can store a value larger than an int, literals that represent a long must be declared as such using the letter L.

	long l = 2147483849L
	OK
	2147483849L is explictily declared a long with the letter L.

Character Data Type (p. 288)

*** Addition to end of section (p. 288)
Operations on char data include the conversion of a char value to an int, or the conversion of an int value to a char. Data that is input to a program from most devices is received as a pattern of bits. In Java these bits need to be converted to an int, and then a char. The int value for every char is defined in the Unicode symbols for each language. The char value ‘9’ has an int value of 57. A reference that can help users convert from char to int is an ASCII subset of the Unicode chart, which can be found at the website www.unicode.org.

Table 4-f shows the conversion of char to an int and int to a char and sample operations on char data. The values in a char variable can be operated on the same as int values. The result is an int, which is then converted to a character based on the language-character set that is used.
***Table 4-f: Character Data Conversions and Operations
	char operations
	explanations

	char c1 = ‘a’;

int I = c1;
	No casting required, the int value for the char is assigned to the int variable

	int j = 98;

char c2 = (char) j;
	Explicit cast is required.

	char c3 = (char) (c1 + c2);
	Here the plus operator adds the int values for the char variables c1 and c2, and cast the result to a char.

	char d1 = ‘a’;

char d2 = ++d1 ; // results in ‘b’

char d3 = ++d1; // results in ‘c’

char e1 = ‘a’;

char e1 += 2; // this will be ‘c’
	The most frequent use of the + operation with the char values is to add a specific int to the char in order to access or create a sequential list of char values. For example if the first char value is ‘a’, then to print out the rest of the letters, or every alternate letter, one could add the value 1 or the value 2 to the char value ‘a’.

***Addition to end of Chapter, before Summary (p. 321)

Control structures in the JBank (p. 321)

The JBank project provides many opportunities to implement control structures. In the Account class, if statements are used to determine if amounts can be withdrawn from an account. The Teller main method uses a while loop to create customers. This accepts input from the keyboard.

***Begin Lab Activity (p. 321)

Lab 4.8.1 - Control Structures in the JBank

In this lab, students will implement code in the withdraw method to evaluate the amount withdrawn against the available balance. In the Teller class main method, students will implement a while loop to request the number of customers to be added, and a for loop to accept input for each customer. This will be used to create one customer at a time.

***End Lab Activity

Summary
***Addition to summary – Please add at the end of the current summary.

At the end of this Chapter, students were given the opportunity to implement control structures in the JBANK application.

Chapter 5 (p. 333)

Defined Constructor (p. 384)

*** Addition to section; complete section with additions is shown below; the text that was existing is underlined

*** Examples 5-3 and 5-4 are moved here; references in section “Define a Class” need to be removed (p. 337)
When a class definition includes an explicit constructor (defined constructor), the compiler uses the constructor. The compiler does not insert a null constructor in the class definition. A programmer may choose to include a no argument constructor, which is just like the null constructor. In Example 5-3, the code includes an explicitly defined no argument constructor. Unlike the null constructor, where no code is implemented, in this example the programmer has explicit instructions inside the constructor. (p. 384)
A programmer can include one or more constructors in a class. All constructors will have the same name as the class. To have more than one constructor, the programmer follows the rules for overloading. The rules and the insertion of multiple constructor definitions in a class are discussed later in this chapter in the section “Overloading Constructors.” Example 5-29 shows the TimeClock class, which now has an explicitly defined constructor. Example 5-4 shows an example of multiple constructors. Note that a null constructor has been explicitly defined. This was not inserted by the compiler, it was added by the programmer. (p. 384)
Method Syntax (p. 385)

*** Replacement for last bullet, “The arguments of a method are the message or data that a caller needs to provide.” (p. 387)
The arguments of a method define the type of data that a caller needs to provide. When calling a method, the caller needs to know the types of data required and not the names of the formal variables that will store the data. For example a method signature that states methodX(String s), will only require the caller to know that the method requires the reference to a String object. The call to the method will be methodX(“ hello”);.

Method Syntax (p. 385)

*** Addition to be inserted as new second paragraph
Figure 5-a shows how a pass-by-value for primitive data works. Note that the value of the variable in ClassA is not changed. Figure 5-b shows how pass-by-values for object references work. This concept is a little more complicated. ClassB is able to change the object that was created by ClassA. However, it is important to note that in both examples, ClassB cannot and does not change the actual value of the local variable in ClassA. If one considers 30 to be the value of the variable in Figure 5-a, then the object Account should be considered the value of the local variable in ClassB.

Figure 5-a Pass-by-value When Using Primitives

[image: image1.png]Pass-by-values when using primitives

classA
public static void main(String []
args) {

intx = 30;

inty;

ClassB cb = new ClassB();

y = cb.changeValue(x);
I/ other code print the value of x

‘“INI*E

classB
public int changeValue(int
someValue){
int x = someValue * 3;
return x;

}

local variable x

local variable y

) Jrpfig]

From the method call cb.changeValue(x), the following occurs:

local variable someValue

local variable x

Figure 5-b Pass-by-value When Using Object References

[image: image2.png]Pass-b

y-values when using object references

‘“INI*E

classA
public static void main(String] args) {
Account acct = new Account();
acct.setBalance(500.00);

ClassB cb = new ClassB();
cb.changeObject(acct);

Il other code print the value of x

)

classB
public boolean changeObject(Account a){
Account acent = a;
a.withdraw(500.00);
return true;

}

From the method call cb.changeObject(acct), the following occurs:

local variable acct references the account object. The value in the variable acct is a
hexadecimal number representing the reference to the object. The value in the
object variable balance is 500. The call to the setBalance method assgined this

variable the 500.00 value.

local variable a

local variable acct

copies the value to a

OX45678AB

OX45678AB

Using this in Constructors and Methods (p. 408)

*** Addition to be added to the end of the last paragraph (p. 409)

Note that in the method setStockNumber, the method returns a reference to the current object of the type MyStock. Since at compile time the actual reference is unknown, the this variable serves as a placeholder for the programmer to refer to the run-time object that is running the method.

Using this in Constructors and Methods (p. 408)

*** Addition to be inserted at the beginning of the section, as new first paragraph (p. 408)

Phase I of the JBANK application created the four classes Bank, Account, Customer and Teller. The Customer and Account classes are incomplete. While the complier has inserted the null constructor, these classes should be modified to allow for the creation of objects using explicit constructors. In this lab, the students will complete all the code that is needed in these classes to finish Phase I of the JBANK application.

Chapter 6 (p. 457)

*** Additional text to be added to the end of the chapter overview
Packages are entities that help manage classes as a collection. The Java language uses packages to hold collections of classes that share a common function. The classes in files that are part of a package must include a package statement in their definition, to be loaded properly for compile and execution, and an import statement to access classes in other packages. Proper access and use of packages requires that the operating system variable CLASSPATH is set properly. In order to access the Java API of core and extended class libraries, the CLASSPATH variable must be set to the directory where the Java packages are stored.

Classes in packages can inherit from other classes in the same package or other classes in other packages. The modifier protected influences the access of a class from classes in other packages. Packages can be compressed and stored as one archive file using the jar utility. This jar file is easily accessed by the Java platform. Packaging classes in an application and creating a jar file provides for ease of installation of an application.
Formatting Numbers (p. 496)

*** New section – add after section “Math Class”

When developing programs that use decimal numbers, programmers often need to control the formatting of these numbers for output purposes or they need to present numeric values in different formats for different locales and display numeric values in currency formats. The Java API provides a number of classes that format numeric values. Some of the frequently used classes for formatting values are stored the java.text package. Java uses packages to handle classes stored or organized under operating system directories. This concept is explored in later sections of this Module. To locate the API for the classes, navigate to the java.text package.

Here is an example that uses these classes to eliminate the problem mentioned in the previous paragraph. Locales represent a language or country-specific representation of how things are done. They are typically used either for text messages or number formats. For instance, in the United States people use the word "color" and in the United Kingdom, it is "colour". The java.util.Locale class is used to represent the different locales. For example, the statement System.out.println(34.56); is locale-dependent. The period in the number 34.56 is used as a decimal point in the United States, but not necessarily everywhere else. In some locales, this number would be printed as 34,56. When the API is used for formatting numbers, the programmer can control how the number is printed. Example 6-a shows code to format numbers for two different locales. Note the use of two new types of statements at the top of the code. These are the import statements. They are used to inform the compiler and the JVM about the location of classes that are not part of the core set of classes that form the Java API. Remember to code these import statements as shown for the program to compile and run successfully. When this code is run using the US_locale, it will produce the output that is shown. Different locales use different formats. The code could have also formatted the value using one statement such as NumberFormat.getInstance().format(1234.56). Recall that the dot operator allows the programmer to chain a number of methods. However, if the format is saved as shown in this example it could be re-used many times for different values in a program.

***Example 6-a: Formatting Classes Different Locales

	import java.text.NumberFormat;

import java.util.Locale;

/**
 * Java program DecimalFormat_locales.java

 *

 * @author Cisco teacher

 * @version March 2004

 */

public class DecimalFormat_locales

{

 public static void main(String args[]) {

 /* get format for default locale--

 * The NumberFormat class provides a single instance that represents

 * the format for the default locale of the machine on which the

 *program is executing

 */

 NumberFormat nf1 = NumberFormat.getInstance();

 /* Use the number format object to format a value. The format

 * method of the number format object nf1 is used in the following

 * line of code

 * The value is printed using the println method

 */

 System.out.println(nf1.format(1234.56));

 /* get format for German locale

 * In this line of code the Locale class is used to obtain the

 * GERMAN format object. Note the use of the static reference.

 * Note the use of the nf2.format() method to format the value.

 */

 NumberFormat nf2 =

 NumberFormat.getInstance(Locale.GERMAN);

 System.out.println(nf2.format(1234.56));

 }

 }

In addition to internationalizing number formats, it is often very important to be able to exercise fine control over formatting,

For example, the number of decimal places can be specified as shown in Example 6-b. In this example, a specific number format is set, using a notation like "####.000". This pattern means "four places before the decimal point, which are empty if not filled, and three places after the decimal point, which are 0 if not filled". The output of this program and the symbols used to format patterns are also shown in Example 6-b.

***Example 6-b: Controlling Decimal Places when Printing Numbers

	import java.text.DecimalFormat;

import java.util.Locale;

/**

 * Java program DecimalFormat_places.java

 *

 * @author Cisco teacher

 * @version March 2004

 */

public class DecimalFormat_places

{

 public static void main(String args[]) {

 // get format for default locale

 Locale.setDefault(Locale.US);

 DecimalFormat df1 = new DecimalFormat("####.000");

 System.out.println("Printing Us locale using format ####.000");

 System.out.println(df1.format(1234.56));

 // Decimal format that might be used in printing checks

 DecimalFormat df2 = new DecimalFormat("****###,###.00");

 System.out.println("\n\nPrinting Us locale using format ****###,###.00");

 System.out.println(df2.format(235123.5));

 // get format for German locale

 Locale.setDefault(Locale.GERMAN);

 DecimalFormat df3 = new DecimalFormat("####.000");

 System.out.println("\n\nPrinting German locale using format ****####.000");

 System.out.println(df3.format(1234.56));

 }

}

Example 6-c demonstrates that it is also possible to control exponent formatting and work with percentages.

***Example 6-c: Format Control for Exponents and Percentages

	import java.text.DecimalFormat;

import java.text.NumberFormat;

import java.util.Locale;

/**

 * Write a description of class DecimalFormat4 here.

 *

 * @author (your name)

 * @version (a version number or a date)

 */

public class DecimalFormat4

{

public static void main(String args[]) {

 System.out.println("Output using format to control exponentiation" +

 "and percentages");

 System.out.println("\n\n Output using format to control exponentiation-0.000E0000");

 DecimalFormat df = new DecimalFormat("0.000E0000");

 System.out.println(df.format(1234.56));

 System.out.println("\n\n Output using format to display percentages");

 NumberFormat nf = NumberFormat.getPercentInstance();

 System.out.println(nf.format(0.47));

 }

}

Example 6-d demonstrates the use of formatting for different currencies. Unfortunately, the currency symbols returned for things like euros and pounds are not the actual symbols. They are the three-digit currency codes from ISO 4217. When getCurrencyInstance() is used, the symbol is displayed as shown in the output for the code in Figure 6-d.

***Example 6-d: Formatting for Currencies

	import java.text.*;

import java.util.*;

/**

 * Java Program CurrencyFormatter.java.

 *

 * @author Cisco Teacher

 * @version March 2004

 */

public class CurrencyFormatter

{

 public static void main(String args[]) {

 StringBuffer buffer = new StringBuffer(100);

 // retrieves the Symbol for the US currency,--- $

 Currency dollars = Currency.getInstance("USD");

 // retrieves the Symbol for the UK (Great Britian) currency -- GBS

 Currency pounds = Currency.getInstance(Locale.UK);

 // adding string information to the StringBuffer object for use in later printing

 buffer.append("Dollars: ");

 buffer.append(dollars.getSymbol());

 buffer.append("\n");

 buffer.append("Pound Sterling: ");

 buffer.append(pounds.getSymbol());

 buffer.append("\n-----\n");

 // Applying the symbols to decimal values.

 double amount = 5000.25;

 NumberFormat usFormat = NumberFormat.getCurrencyInstance(Locale.US);

 buffer.append("Symbol: ");

 // retrieves the symbol for the US currency using the NumberFormat and the Currency object

 buffer.append(usFormat.getCurrency().getSymbol());

 buffer.append("\n");

 // formats the decimal values using the US locale format

 buffer.append(usFormat.format(amount));

 buffer.append("\n");

 // Retrieves the format for German locale

 NumberFormat germanFormat =

 NumberFormat.getCurrencyInstance(Locale.GERMANY);

 buffer.append("Symbol: ");

 // obtains the German format symbol which is the Euro

 buffer.append(germanFormat.getCurrency().getSymbol());

 buffer.append("\n");

 buffer.append(germanFormat.format(amount));

 // Output of formatting values and storiung it as strings in the StringBuffer object buffer.

 System.out.println(" Printing Currency formatted numbers");

 System.out.println("\n");

 System.out.println(buffer.toString());

 }

}

So far the code examples have demonstrated how to format numbers. Often the data that is input to a program comes in as a String. This String value has to be converted properly to an appropriate number. While the wrapper classes provided many methods for converting numbers, the NumberFormat class enables a programmer to convert the numbers using a specific format and locale pattern. This gives the programmer much flexibility in internationalizing the input interfaces in an application. Example 6-e shows parsing of String representations of formatted numbers, and the output from the code. In this example, the code uses both a default locale and the German locale. Both are concerned with parsing an identical String, which is "1234,56". The output shows the results of using different locales while parsing. For the default locale, which is the United States, the string "1234,56" is interpreted as a large integer "123456" and as a decimal number "1234.56" in the German locale. When parsing a string representation of a number, the programmer should be prepared to address improper or invalid data. Note that the parsing method is enclosed in code blocks with the label try and catch. This technique of protecting code that could result in errors is called exception handling. The students saw examples of this in the use of the System.in.read() and the Console class methods. Exception handling is explained in a later Module. In this example, students should learn to recognize this syntax as a way of ensuring that any errors that occur during parsing of the string are addressed appropriately.

***Example 6-e: Converting String Representations of Formatted Numbers

	import java.util.Locale;

 import java.text.NumberFormat;

 import java.text.ParseException;

/**

 * Write a description of class DecimalFormatParser here.

 *

 * @author (your name)

 * @version (a version number or a date)

 */

public class DecimalFormatParser

{

 public static void main(String args[]) {

 // Set default locale to US. In case previous code

 // executions have set the default to another locale.

 Locale.setDefault(Locale.US);

 // Get format for US locale

 NumberFormat nf1 = NumberFormat.getInstance();

 Object obj1 = null;

 // parse number based on format

 try {

 obj1 = nf1.parse("93456.560");

 }

 catch (ParseException e1) {

 System.err.println(e1);

 }

 System.out.println("Parse string \"93456.560\" using the Locale US");

 System.out.println(obj1);

 // get format for German locale

 NumberFormat nf2 =

 NumberFormat.getInstance(Locale.GERMAN);

 Object obj2 = null;

 // parse number based on format

 try {

 obj2 = nf2.parse("93456,560");

 }

 catch (ParseException e2) {

 System.err.println(e2);

 }

 System.out.println("\n\nParse string \"93456,560\"");

 System.out.println ("Using the Locale German. Note the use of the comma as the decimal placeholder");

 System.out.println(obj2);

 try{

 obj2 = nf2.parse("93456.560");

 }

 catch (ParseException e2){

 System.err.println(e2);

 }

 System.out.println("Parse string \"93456.560\" ");

 System.out.println ("Using the Locale German. Note the use of the US decimal placeholder\n" +

 " The decimal placeholder is ignored when using the German locale");

 System.out.println(obj2);

 }

}

In each of these examples, either the NumberFormat, or the DecimalFormat was used. These can be combined and a complex set of tests and patterns can be created to use one or the other. If internationalization of the application is not necessary, use the DecimalFormat objects. Example 6-f demonstrates the complexity that is introduced in the code to combine the use of NumberFormat and DecimalFormat.
***Example 6-f: Using DecimalFormat and NumberFormat

	import java.text.DecimalFormat;

 import java.text.NumberFormat;

 import java.util.Locale;

/**

 * Write a description of class DecimalFormatParser2 here.

 *

 * @author (your name)

 * @version (a version number or a date)

 */

public class DecimalFormatParser2

{

public static void main(String args[]) {

 DecimalFormat df = null;

 // get a NumberFormat object and cast it to

 // a DecimalFormat object

 try {

 df = (DecimalFormat)

 NumberFormat.getInstance(Locale.GERMAN);

 }

 catch (ClassCastException e) {

 System.err.println(e);

 }

 // set a format pattern

 df.applyPattern("####.00000");

 // format a number

 System.out.println(df.format(1234.56));

 }

}

Creating Dates (p. 504)

*** Addition to section; new third paragraph after, “…and create a Date instance using the Calendar class.” (p. 505)

There are three ways a Date object can be created to store and perform operations on date values. These are using the Date class, using the Calendar or GregorianCalendar class, and through the DateFormat, parsing a string representation of a date value.

*** Addition to section; place after, “…clock to the nearest millisecond, as shown in Example 6-24.” (p. 506)
The API for the Date class describes most of the constructors as deprecated. This suggests that the method has been replaced with an alternative method or way of creating or performing the same option.

There are two classes that are available for the creation of Calendar objects. These are the Calendar class and the GregorianCalendar class. These are shown in Figures 6-14 and 6-15. When using a Calendar object, the current instance of the calendar can be obtained and specific date values that will be stored as a date value in a Calendar object can be defined. In order to create a date with specific values for the date, use a Calendar object. To obtain a Calendar object, use the Calendar.getInstance() method. Use the Calendar.getTime() method to obtain the date as a Date object. The preferable way to create a date object is by using the GregorianCalendar class, which provides the standard calendar used by most of the world. Syntax for creating dates using the Date, Calendar, and GregorianCalendar classes is shown in Figure 6-a.

***Figure 6-a: Syntax for Creating Date Objects
	All classes using the Date, Calendar and GregorianCalendar classes must include the following import statement prior to the start of the class definition.

import java.util.*;

	Date class:

Date today = new Date();

long dateInMilliseconds = 1081730932701L ;

// don’t forget to assign the literal type declration L at the end of the number

Date date1 = new Date(dateInMilliseconds);

Today in France Sun Apr 11 18:05:39 GMT-07:00 2004

Today in Germany Sun Apr 11 18:05:39 GMT-07:00 2004

	

	GregorianCalendar class: Although you will be constructing an object of the type GregorianCalendar, you should create the variable referencing this object as of the ytpe Calendar.

Calendar now = new GregorianCalendar();

Calendar nowInJapan = new GregorianCalendar(Locale.JAPANESE);

// the GregorianCalendar class allows the input for day, month, year, hour min etc.

// in this example the GregorianCalendar(int year, int month, int date) constructor is used. Month value is 0-based. e.g., 0 for January.

Calendar christmas = new GregorianCalendar(2004,11,25);

Date today = now.getTime();

Date todayInJapan = nowInJapan.getTime();

Date xmas = christmas.getTime();

*** Addition to section; insert as new paragraph before last paragraph of the section. (p. 507)
The DateFormat class formats date and time values in a language independent manner. The SimpleDateFormat class allows for formatting, parsing, and normalization. Syntax for using the DateFormat and SimpleDate format classes is shown in Figure 6-b.

***Figure 6-b: Syntax for creating date objects using DateFormat and SimpleDateFormat classes
	Classes that use the Date, Calendar and GregorianCalendar, DateFormat and SimpleDateFormat classes must include the following statements preceding the defintion of the class.

import java.util.*;

import java.text.*;

	Four different int variables define the styles for the DateFormat.

SHORT is completely numeric, such as 12.13.52 or 3:30pm

MEDIUM is longer, such as Jan 12, 1952

LONG is longer, such as January 12, 1952 or 3:30:32pm

FULL is pretty completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST.

	DateFormat class:

 // creates a date format using the deafult locale and style

DateFormat df1 = DateFormat.getDateInstance();

// creates a date format of the style SHORT for the default locale

DateFormat dfShort = DateFormat.getDateInstance(DateFormat.SHORT);

// creates a date format of the style SHORT for the locale Italy.

 DateFormat dfShortItalian = DateFormat.getDateInstance(DateFormat.SHORT, Locale.ITALY);

Now you can use the Date formatter object, and parse a text string to convert a string to a date. When using the parse methods, you can parse the entire string, or parse a string at a certain location/position

Date someDate = df1.parse(“05/12/1953”);

Date date1 = df1.parse("Sep 11, 2000");

Date date2 = dfShort.parse("11/30/05");

//This examples uses a ParsePosition object to identify the position at whoch the parsing should occur.

Date dateOfBirth = df1.parse("My daugter was born on May 5, 1987",new ParsePosition(23));

	SimpleDateFormat class:

The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):

Letter

Date or Time Component

Presentation

Examples

G

Era designator

Text

AD

y

Year

Year

1996; 96

M

Month in year

Month

July; Jul; 07

w

Week in year

Number

27

W

Week in month

Number

2

D

Day in year

Number

189

d

Day in month

Number

10

F

Day of week in month

Number

2

E

Day in week

Text

Tuesday; Tue

a

Am/pm marker

Text

PM

H

Hour in day (0-23)

Number

0

k

Hour in day (1-24)

Number

24

K

Hour in am/pm (0-11)

Number

0

h

Hour in am/pm (1-12)

Number

12

m

Minute in hour

Number

30

s

Second in minute

Number

55

S

Millisecond

Number

978

z

Time zone

General time zone

Pacific Standard Time; PST; GMT-08:00

Z

Time zone

RFC 822 time zone

-0800

Pattern letters are usually repeated, as their number determines the exact presentation

Creates a SimpleDateFormat object using the default style and locale.

SimpleDateFormat sdf1 = new SimpleDateFormat();

Date date1 = sdf1.parse(“11/10/2005”);

Creates a SimpleDateFormat object using a pattern. This object will parse based in the pattern.

SimpleDateFormat sdf2 = new SimpleDateFormat(“E M d y”);

Date date2 = sdf2.parse(“Mon Apr 12 2004”);

Chapter 7 (p. 529)

Arrays of Primitives (p. 535)

*** Addition to section (sub-section under “Arrays”); add to end of section (p. 535)

The syntax for creating an array of primitives uses the [] array symbol. The statement int[] intArray = new int[5]; declares the array object to be of the type int[]. The [] symbol can be placed after the data type or after the variable that references the array object, as in int intArray[] = new int[5];. It is best to use the [] symbol after the data type, since this most clearly identifies the type of array that is declared. The symbol [] is reserved for declaring and creating array objects.

Arrays that store primitive data hold the values for each element in the array object. Since an array object is always created in heap memory, the elements of the array will be initialized to the default values for the data type.
Chapter 8 (p. 585)

(Inheritance (p. 586)

*** Addition to end of section (p. 588)

Subclasses are classes that derive a core set of attributes and behaviors from another class. The class they derive from is referred to as the superclass. Another set of terms used to describe this relationship is that of a parent class, which is Animal, and child class, which is Cat or Fish. In Figure 8-3, the Animal class is the superclass for Cat and Fish, and the Object class is the superclass for Animal and all Java classes. Note that the UML does not repeat a description of all the attributes and methods derived from the superclass. When an attribute from a parent or super class will be modified the UML will repeat this description. The UML will also describe any new behaviors or attributes that are added to the subclass.

The # symbol is introduced in this UML. This symbol represents the access modifier protected. The protected access modifier allows all the subclasses and other classes in the same package to access the method or variable. In this example, the walk() and eat() methods are protected. This allows the subclasses access to these methods, but not classes in other packages.
Abstraction (p. 588)

*** Addition to end of section (at the end of the “Specialization Through Subclasses” sub-section) (p. 590)

A subclass definition can include a method described in the parent class. The context in which this occurs is known as over-riding. This context suggests that the subclass version of a behavior is different than the parent class version of the behavior. Rules for overriding methods of a parent class are discussed in a later section. Some parent class methods must be overridden, in order to establish the subclass as a concrete class from which objects can be created. A parent class can hold general behaviors as in the example of the Animal class. However, in order to declare the class as an abstraction at least one method of the class must be defined as abstract and the class must be defined as abstract.

There are some important ideas regarding the abstract or concrete status of a class. A superclass can be either abstract or concrete. A subclass can also be abstract or concrete. A subclass can derive from an abstract parent class and continue to add new methods or attributes without overriding the parent class abstract methods. In this case, the subclass is also declared abstract and no objects can be created of this class. In order to make the subclass concrete, all abstract methods of the parent class must be overridden.

The Problem of Multiple Inheritance (p. 591)

*** Addition before last paragraph. (p. 592)

Figure 8-9 shows the API documentation for a class. Note that all API documentations present the inheritance hierarchy for the class. Also notice that the class definition statement includes the declaration that the TextField class extends TextComponent. The keyword extends is used to declare an inheritance relationship between the classes.

In Figure 8-10, the API documentation shows all the methods inherited from the parent class.

Polymorphism (p. 624)

*** Addition to beginning of section (p. 624)

To understand the concept of an object assuming many forms, review the code in Figure 8-a. Note that there are objects of one class being represented by reference variables that are of a different class. These statements are constructing objects that can be handled in different ways depending on the reference type. The second row in the table shows some objects that are created. Note in the first statement, the object is actually a Bird. The object will have all the attributes of the Bird class and the Animal class. In this statement, the reference to the object is through the variable of the type Animal. This statement to means that the object Bird, in this context will be seen only in the form of the Animal. The only behaviors and attributes accessible will that of the Animal part of the object.

***Figure 8-a: Polymorphism

	Class relationships

Bird class extends Animal implements Flyer

Eagle class extends Bird

A Bird is an Animal - Bird extends Animal

A Bird is a Flyer - Bird implements Flyer

An Eagle is a Bird – Eagle extends Bird

An Eagle is an Animal – Eagle extends Animal

An Eagle is a Flyer – Eagle implements Flyer

	Animal a = new Bird();

Flyer f = new Eagle();

Eagle b = new Eagle();

Bird b = new Eagle();

	Bird b = (Bird) a; // reference object in line 1 of previous row

Flyer f = (Flyer) a;

Eagle e = (Eagle) f; // reference object in line 2 of previous row

Bird b = (Bird) e;

In the second statement, the object created is an Eagle and the reference to the object is of the type Flyer. In this context, the object will take on the form of the Flyer and the behaviors of the Flyer are all accessible through the reference variable. Each of these statements shows that although an object is of a particular type, the form it takes is based on the reference type used to access the object.

The third row illustrates another perspective of polymorphism. In this row, the objects created in the first row are cast in a different form. For example the first statement casts the Bird object as its true form bird. The object is seen as a bird and in the second row, this same object is referenced as an Animal. Observe that any object can be referenced by any of the forms that the class implements or inherits. Note that the object Bird can be seen as an Animal, a Bird, or a Flyer.

Chapter 10 (p. 685)

Event-Delegation Model (p. 714)

*** Addition to beginning of section (p. 714)

All input and output should pass through the program GUI. The GUI consists of what the user will see on the screen and the code to process user actions. These can include moving a mouse over an object, selecting an item from a menu, entering text in a box, pressing a graphic that resembles a button, or closing or resizing a window. These represent a few of the possible user interactions that the code must be prepared to handle.

GUI programs are event driven. The user initiates an action by pressing a key on the keyboard or clicking a mouse. The GUI program must always be responsive to user input and take directions from the user.

In designing a GUI, keep in mind these principles:

· The user initiates all actions.

· The user must be able to initiate an action and receive a reasonable response.

· GUIs display graphical objects that suggest actions that a user can perform.

· GUIs provide responses whenever a user initiates an action.

To implement these principles, students need to master event-driven programming. They must design classes and write code that listens for events, or actions, initiated by a user and then responds to these actions.

In Java, events can be associated with GUI components and non-GUI components. One such example is an application that includes a class that observes network connections and notifies the Client class when the network connection is closed or a class that observes writing data to a file and notifies the Client class when the file is closed.

Event Objects (p. 716)

*** Addition to end of section (p. 718)

Frames and Windows are capable of generating the following types of window events:

· WindowOpened

· WindowClosing – action when a user closes a window

· WindowClosed

· WindowIconified – action when a user minimizes a window

· WindowDeiconified – action when a user restores a window to its previous size

· WindowActivated – action when a user has selected a window

· WindowDeactivated - action when a user has de-selected a window

Dialogs are capable of generating the following window events:

· WindowOpened

· WindowClosing

· WindowClosed

· WindowActivated

· WindowDeactivated

While the programmer may not want to listen to every action of the user with the GUI, the user will want to always have a way of closing or exiting from the Window. When using the AWT components, closing of windows requires the use of a WindowListener interface, and code to close the class in the windowClosing method. When using the swing component version of windows, the closing of a window is implemented as a default action. Sometimes a programmer may not want to use the default implementation for closing a window and will want to perform clean-up tasks such a resetting values and closing files before closing the window. In this case, the default method can be overridden.

Chapter 12 (p. 797)

***Addition to chapter introduction; insert as new second paragraph

(p. 797)
In addition to managing errors that might occur at the runtime of a code, programmers want to ensure the correct operations, or the correctness of a program. Assertions is a software engineering principle that enables the testing of the correctness of a program, and is available in the Java language through the keyword assert.

Error Handling in the Java Platform (p. 798)

*** Addition to section; add to end of second paragraph (p. 799)

In the output shown in Figure 12-1, the user has provided a value of zero for a number that will be used in a division operation. Since division by zero is not possible, an exception occurs. When this exception occurs, the JVM will create a specific type of exception object and present the information from this object to the user. The exception object will hold information that represents a string as a message. It could also hold other information depending on the design of the exception class. The output shows the message extracted from the exception object / by zero. The type of exception object that was created is also displayed. In this output the object is of the type ArithmeticException.

Specifying Exceptions (p. 820)

*** Addition to section; add onto paragraph “Example 12-14 demonstrates all three possible ways to throw exceptions.” (p. 821)

The setLetter() throws IOException. This method does not handle the exception within its code block and advertises that it passes the exception. The setScore(int score, int number) throws CustomException. This method throws a user defined exception, which is a subclass of Exception, and is checked by the compiler. The exception object is created by the use of the throw statement. The setDate(int i) throws ParseException catches the ParseException and then rethrows this in its catch clause using the statement throw p. Because the exception has not been fully handled in this method, the method declares the exception in its definition statement.
Software Testing with Assertions(p. 855)

***This is a new section to be added to the end of the chapter before the Summary section.

Assertions is a principle in Software engineering that has been around since at least 1967. The earliest reference to the use of assertions was Robert Bloyd’s article "Assigning Meanings to Programs" (Proceedings of the Symposium on Applied Mathematics, Vol. 19, pp. 19-32; American Mathematical Society, 1967).

The assertion principle is applied in the design of code to systematically prove the correctness of a program What the assertion principle describes are programming techniques and constructs that can be used in any programming language to test the correctness of a program.

Assertions

The simple idea of using assertions can have an unexpected influence on the design and implementation of a software program, affecting the reliability. Reliability of programs can have many different characterizations. For some users, this can be as simple as having a program that runs without crashing, especially when something important needs to be done. Software developers, other the other hand, define reliability as the probability of a system operating without failure over a specified time under a specified set of conditions. This can be explained in simpler terms as software that is robust and correct. Robustness pertains to the ability of a system to reasonably react to a wide variety of circumstances and possibly unexpected conditions. The java language handles robustness through its exception handling facility. Exceptions provide a structured means of handling unusual circumstances during program execution. Specifically, the exception facility allows explicitly noting exceptional conditions and provides a mechanism for handling such exceptional conditions in specific code blocks, the try-catch-finally blocks.

Correctness pertains to the adherence of a system to an explicit or external specification. For example, does the program do what it is specified to do. Correctness addresses a slightly different reliability concern than robustness. Exceptions facilitate robustness through an ability to recover gracefully from a range of exceptional conditions, whereas correctness deals with ensuring a program does the right thing during normal program flow. Since correctness pertains to normal conditions, the exception-handling facilities of Java do not readily assist correct program creation. One might consider assertions as a construct for programmers to ensure that a program “does the right thing” and exceptions as a construct that ensures that the program “does the thing right”.

In the context of a programming language, an assertion is a boolean expression that a developer specifically and explicitly demands must be true at a specific point of program execution. The assert boolean expression is introduced prior to the execution of a specific segment of code. In Java assertion technology is made available through the new Java language keyword, assert. The statement that uses the assert keyword, also known as the assert statement, has two syntactic forms as shown in figures 12-a and 12-b.

***Figure 12-a: Syntax for the assert Statement
	assert expression1;

The expression is a boolean type expression being asserted. This is the program condition that the programmer demands must be true during program execution. The asserted expression MUST be boolean-typed. In the following examples, the call to object.method(param) must be to a method that returns a boolean value. A compile-time error occurs if expression1 does not evaluate to type boolean.

examples:
assert x >0;
assert objectReference != null;
assert x == (y * 3);
assert object.method(parm); // the method must return a boolean value

***Figure 12-b: Syntax for the assert Statement
	assert expression1 : expression2;

Expression1 is the boolean expression being asserted. Expression2 is a means for passing a String to the assertion facility. The assertion facility in java that will cause the program to throw an exception if the assertion is false. This string serves as a message that will become part of the exception message. Use this version of the assert statement to provide a detail message for the AssertionError. The system passes the value of Expression2 to the appropriate AssertionError constructor, which uses the string representation of the value as the error's detail message. The purpose of the detail message is to capture and communicate the details of the assertion failure. The message should allow you to diagnose and ultimately fix the error that led the assertion to fail. Note that the detail message is not a user-level error message, so it is generally unnecessary to make these messages understandable in isolation, or to internationalize them. The detail message is meant to be interpreted in the context of a full stack trace, in conjunction with the source code containing the failed assertion.

examples:
assert x >0 : “the value cannot be a negative number”
assert objectReference != null: “ The object has not been created”
assert x == (y * 3): “ The value must be three times the value of y”
assert object.method(parm):”invalid parameter provided”

Assertions was introduced into the java language in version1.4 In order to allow for backward compatibility, enabling and disabling of assertions are provided when the JVM is launched. Assertions can be enabled or disabled depending on the status of the application, or based on business rules for the application. By default assertions are not enabled. Figures 12-c, 12-d, and 12-e show the command line syntax for compiling files with assertions and enabling and disabling assertions.
***Figure 12-c: Compiling Files that use Assertions

	Compiling Files That Use Assertions

In order for the javac compiler to accept code containing assertions, you must use the -source 1.4 command-line option as in this example:

 javac -source 1.4 MyClass.java

This flag is necessary so as not to cause source compatibility problems.

Compatibility With Existing Programs

· source mode 1.3 (default) — the compiler accepts programs that use assert as an identifier, but issues warnings. In this mode, programs are not permitted to use the assert statement.

· source mode 1.4 — the compiler generates an error message if the program uses assert as an identifier. In this mode, programs are permitted to use the assert statement.

***Figure 12-d: Syntax for Enabling and Disabling Assertions

	· Enabling and disabling assertion feature:
To enable assertions at various granularities, use the -enableassertions, or -ea, switch.
to disable assertions at various granularities, use the -disableassertions, or -da, switch

The granularities with which to enable or disable assertions are provided by

· no arguments
 Enables or disables assertions in all classes except system classes.

· packageName...
 Enables or disables assertions in the named package and any subpackages.

· ...
 Enables or disables assertions in the unnamed package in the current working directory.

· className

***Figure 12-e: Enabling and disabling assertion examples

	Examples for enabling assertions
-ea

enables assertions in all classes except system classes

-esa

enablessystemsassertions

-ea:<class name>
java –ea:Teller

turns on the assertion for the named class only- Teller

-ea:...
java –ea:… Teller

enables assertions for the default or unamed package

enables assertions for all the classes in the current (default) directory and runs the class Teller

-ea:<package name>...

java -ea: banking.jbank... Teller

enables assertion for the specified package name

This example turns on the assertion for all the classes in package banking.jbank and all it’s sub packages, and executes the class Teller.

Examples for disabling assertions

-da

disables assertions in all classes except system classes

-dsa

disablessystemsassertions

-da:<class name>
java –ea:Teller

turns off the assertion for the named class only- Teller

-da:...
java –da:… Teller

disables assertions for the default or unamed package

disables assertions for all the classes in the current (default) directory and runs the class Teller

-ea:<package name>...

java -da: banking.jbank... Teller

disables assertion for the specified package name

This example turns off the assertion for all the classes in package banking.jbank and all it’s sub packages, and executes the class Teller.

The –ea and –da switches can both be used at the same time, thus enabling assertions for some classes and disabling for others.

 java -ea:com.banking.jbank... -da:com.banking.jbank.Customer Teller

In this example, the assertions are enabled for all the classes in the package and subpackges for jbank, and the assertions are disabled just for the Customer class in the banking.jbank package, and the Teller class is executed.

Applying Assertions (p. 854)

Fundamental to Object Oriented programming and Java is reusability of classes. Reusability does not work without the underlying assurances to the user of a pre-built class, that the properties and operations of this code will work as expected, when the class is used properly. The interaction between the client code and pre-existing classes is viewed as analogous to a contract between two legal entities, each of which assumes specific responsibilities in exchange for certain expectations. The client agrees to and understands the proper use of the class as defined in the public interface, the designer of the class agrees to meet the expectations as specified in the public interface for the class. In Software engineering this implicit understanding and expectation is describes as a Design by Contract. To form a software contract, Design By Contract identifies three common uses for assertions, as shown in Figure 12-f.

***Figure 12-f: Assertions and Design by Contract

	1. Preconditions: conditions that must be true when entering a method

2. Postconditions: conditions that must be true when exiting a method

3. Invariants: conditions that must be true between all method calls

Preconditions, conditions that must be true upon entering a method, are issues of correctness, not robustness. Correspondingly, preconditions are best handled via the assertion facility. Included in the idea of preconditions, is Lock-Status Preconditions — preconditions concerning whether or not a given lock is held. Lock conditions apply to concurrent programming contexts (multi-threaded programming).

Figure 12-g shows a simple example of the use of assertions in code as a precondition. Assume that in the banking application, the banking rules state that the amount deposited in a savings account, per transaction, cannot exceed 50000.00. The SavingsAccount class has a deposit method that handles deposit amounts that exceeds this value, through the use of the exception facility. Here the method does the action correctly by throwing an exception when the rule is violated, the deposit method is doing the right thing. One does not however expect to have negative amounts passed to the method. Rather than using an exception to address negative values, the assert statement prior to the method call verifies that the appropriate value is used to call the method. Here the assert statement is doing the right thing. In this example, the programmer explicitly demands that the Thus when the method m1 is called with the negative number the assert statement will fail and throw the AssertionError.

***Figure 12-g: Precondition test using assertions
	public class Assertion1{
 Account acct;
 public void m1(double value, Account acct)
 {
 assert value > = 0.0; // value is not negative
 this.acct = acct;
 try{
 a.deposit(value);
 }
 catch (Exception e)
 { System.out.println(e.getMessage()); }

 }
 public static void main(String[] args)
 {

 Assertion1 a1 = new Assertion1();
 // call the m1 method to deposit money into a saving account
 a1.m1(3000.00, new SavingAccount(5000.00)); // will suceed
 a1.m1(-500,new SavingsAccount(5000.00)); // will fail
 }
}

// in the SavingsAccount class

class SavingsAccount extends Account{
// attributes and methods
public boolean deposit(double amount) throws AmountInvalidException{
 if (amount > 50000){
 throw new AmountInvalidException();
 }
}

Figure 12-h shows the use of an assert statement in internal invariant code. This is something in the code that must be true for all instances or executions of the code.

***Figure 12-h: Internal invariant test using assertions

	Prior to assertions, such an invariant might be represented with an internal comment as shown. Here the expectation is that the else section will only executes for the value of 2. The comment indicates an expectation of the condition that is associated with the else.

 if (i % 3 == 0) {

 ...

 } else if (i % 3 == 1) {

 ...

 } else { // We know (i % 3 == 2)
 ...

 }

However Note, this expectation may not be valid, if i is negative, as the % operator is not a true modulus operator, but computes the remainder, which may be negative. This is an apporpriate situation where the programmer can demand an explicit condition be met in order for the else code to execute. The assert statement shown below will make sure the code works correctly.

 if (i % 3 == 0) {

 ...

 } else if (i % 3 == 1) {

 ...

 } else {

 assert i % 3 == 2 : “invalid value “ + i;// the value of i is passed to the exception
 ...

 }

Figure 12-i shows a more complex example of the use of a control flow invariant in the switch structure. In this situation, the programmer omits the use of the default expecting that one of the other cases will always execute. The assumption is only one of the four values ‘a’,’b’,’c’,’d’ will be provided in choice. To test this assumption the assert statement in the default clause should be included. This example not only tests an invariant, it also checks an assumption about the flow of control of an application. The programmer of the switch statement probably assumed not only that the choice variable would always have one of four values, but also that one of the four cases would always be executed. The programmer did not expect the default clause to be executed. When testing control-flow using assert statements place an assertion at any location you assume will not be reached. Use the statement assert false;

***Figure 12-i: Control structures test using assertions

	Programmer expects only the values ‘a’,’b’,’c’,’d’ exist for choice, but does not ensure that they do.

switch(choice) {

 case ‘a’:

 ...

 break;

 case ‘b’:

 ...

 break;

 case ‘c’:

 ...

 break;

 case ‘d’:

 ...

 }

	Programmer expects only the values ‘a’,’b’,’c’,’d’ exist for choice, and ensures that they do by asserting that an exception is raised if this any other values are provided in the default clause.

switch(choice) {

 case ‘a’:

 ...

 break;

 case ‘b’:

 ...

 break;

 case ‘c’:

 ...

 break;

 case ‘d’:

 ...

 default:

 throw new AssertionError(suit);

 }

Note : default:

 assert false : choice;

The above alternative assert statement could have been used. This will work under some conditions and not others. For example if in each of the cases a return statement was included, this code would not work, since the assert would not include a return statement. However, by throwing and exception, the code will work, since the return statement is not used, when an exception is thrown. Addtionally, the AssertionError is thrown whether the assertion facility was enabled or disabled.

	Another example of the use of assertions with control flow.

 if (choice.equals(“blue”){

 }

 else if (choice.equals(“green”) {

 }

 else if (choice.equals(“red”) {

 }

 else

 {

 // should never reach this point

 assert false;

 }

This technique should be used with caution. If a statement is unreachable as defined in the Java Language Specification (JLS 14.20), you will get a compile time error if you try to assert that it is not reached. Again, an acceptable alternative is simply to throw an AssertionError.

 else {

 throw new AssertionError()

 }

Post condition tests with assertions can be used both in public and nonpublic methods. In Figure 12-j the first example uses an assert statement to check a post condition. The second example shows where one might occasionally find it necessary to save some data prior to performing a computation in order to check a post condition. Do this with two assert statements and a simple inner class that saves the state of one or more variables so they can be checked (or rechecked) after the computation. The method from example 1 is modified to turn the textual assertion of a post condition into a functional one:

Figure 12-k shows when not to use assertions.

***Figure 12-j: Post condition test using assertions

	Programmer expects only the values ‘a’,’b’,’c’,’d’ exist for choice, but does not ensure that they do.

switch(choice) {

 case ‘a’:

 ...

 break;

 case ‘b’:

 ...

 break;

 case ‘c’:

 ...

 break;

 case ‘d’:

 ...

 }

	Programmer expects only the values ‘a’,’b’,’c’,’d’ exist for choice, and ensures that they do by asserting that an exception is raised if this any other values are provided in the default clause.

switch(choice) {

 case ‘a’:

 ...

 break;

 case ‘b’:

 ...

 break;

 case ‘c’:

 ...

 break;

 case ‘d’:

 ...

 default:

 throw new AssertionError(suit);

 }

Note : default:

 assert false : choice;

The above alternative assert statement could have been used. This will work under some conditions and not others. For example if in each of the cases a return statement was included, this code would not work, since the assert would not include a return statement. However, by throwing and exception, the code will work, since the return statement is not used, when an exception is thrown. Addtionally, the AssertionError is thrown whether the assertion facility was enabled or disabled.

	Another example of the use of assertions with control flow.

 if (choice.equals(“blue”){

 }

 else if (choice.equals(“green”) {

 }

 else if (choice.equals(“red”) {

 }

 else

 {

 // should never reach this point

 assert false;

 }

This technique should be used with caution. If a statement is unreachable as defined in the Java Language Specification (JLS 14.20), you will get a compile time error if you try to assert that it is not reached. Again, an acceptable alternative is simply to throw an AssertionError.

 else {

 throw new AssertionError()

 }

***Figure 12-k: Inappropriate contexts for use of Assertions
	Do not use assertions for argument checking in public methods. Argument checking is typically part of the published specifications (or contract) of a method, and these specifications must be obeyed whether assertions are enabled or disabled.

Another problem with using assertions for argument checking is that erroneous arguments should result in an appropriate runtime exception (such as IllegalArgumentException, IndexOutOfBoundsException, or NullPointerException). When an assertion fails, only an AssertionError is thrwon. An assertion failure will not throw an appropriate exception, additonally, assertions can be enabled or disabled. Thus errornous arguments handled thorugh assertions, will fail, when the assertion is disabled.

	 Do not use assertions to do any work that your application requires for correct operation.

Because assertions may be disabled, programs must not assume that the boolean expression contained in an assertion will be evaluated. Violating this rule has dire consequences. For example, in the Banking application, if the GUI for the teller has a method that perform the action of deposting money to an account, you do not want to have the following code. In this code, the actual work of depositing amounts will not be executed is the assertion facility is disabled, the dire consequences is that money would not be deposited when it ought to. Your assertion might be to ensure that the deposit amount is not negative, thus testing a pre-condition before calling a method, as shown in the second example.

// example 1

 class TellerGUI{

 // gui components and handler code

 void processDeposit (){

 assert account.deposit(amount);

 }

}

// example 2

class TellerGUI{

 // gui components and handler code

 void processDeposit (){

 assert (amount >0);

 account.deposit(amount);

 }

}

Summary
***Addition to Chapter 12 Summary. Please add as new last paragraph of the summary. The beginning of the current last paragraph has been modified and it is included here as well.

This chapter also discussed the use of customized exceptions was explored as a tool used in many applications, specifically designed by the programmer to implement exceptions to normal business rules or activities.
Finally, the concept of software testing with assertions was introduced. Students learned that the assertion principle describes programming techniques and constructs that can be used to test the correctness of a program. A discussion of implementing assertions was also provided.

Chapter 14 (p. 913)

Additional Collection Handling Technologies

***This is a new section to be added to the end of the chapter before the Summary section. (p. 956)
Generics are a complicated topic with deep theoretical roots. Although there are a number of controversies surrounding the implementation of generics in the newer release of java, this section focuses on the simple concepts behind generics, with the intention of introducing a very powerful new feature of the language, that has been available as part of the software engineering canon for some time.

In order to take advantage of the new features explored in this lesson, the students must work with the java version 1.5. When compiling the code the following command must be used.

javac –version –source “1.5” {the rest of the switches and java source file}

When running classes using the new features it is a good idea to use the –version flag, so it can help you if you are accessing the wrong version of the binary class files.

Generics and Parameterized Types
Heterogeneous collections such as those found in Java are not type safe because you can put many different types of objects into the collection at the same time. A lack of type safety is not always a problem. However, in order to do anything beyond the methods defined on the Object base class, you will have to cast the object back to its actual type. Extra casting is also a performance problem, and it clutters the readability of code. These issues surrounding the handling of heterogeneous collections exists because of the lack of generics facilities in versions of java 1.4 and older, as shown in Figure 14-a.

***Figure 14-a: Generics or Parameterized types

	Generics

	Also refered to as parameterized types
Similar to C++ templates

Often used to implement typesafe collections

Does away with the need for a lot of typecasting in sourcecode

Allows for more strict compile time type safety

	Before java version 1.5 collections were:

 type unsafe, allowed for objects of different types to be stored in the collection

required casting to work with the objects in the collection

If objects of different types were stored in the collection, casting could result in ClassCastExceptions, requiring tests of the type of each object prior to casting the object.

Review the code in Figure 14-b. Note the following, the List collection is heterogeneous, and there is nothing in the definition of the List class or the language that permits constraints on the objects entered into this collection. Thus when the string “3” is added to the collection, the expectation of a set of numbers in the collection is not met. As this collection is used to operate on as a collection of numbers, errors will occur. The lack of a generic way of constraining the types of objects to be held in a collection, introduces both a type safety problems that have to be solved with extra steps to handle and verify the type of each object. In this second notice the cast that has to be used on the object returned by the get() method. Because collections handle all elements as objects, the methods of the collections also return the elements of the collections as objects. The programmer will have to include explicit type checking code using the instanceof operator, and then casting the object to the desired form 14-c. All in all, a lack of generics results in extra headaches for the developer.

***Figure 14-b: Class without the use of Generics

	import java.util.*;

public class NoGenerics
{

 public static void main(String [] args)
 {
 List listOfValues = new ArrayList();
 listOfValues.add(new Integer(1));
 listOfValues.add(new Integer(2);
 listOfValues.add("3");
 listOfValues.add(new Integer(4));
 System.out.println(sum(listOfValues));

 }

 public static int sumListofValues(List l)
 {
 Iterator numbers = l.iterator();

 int counter = 0;

 while(numbers.hasNext())
 {
 Integer integer = (Integer) numbers.next();
 counter += integer.intValue();
 }

 return counter;
 }

}

***Figure 14-c: Type checking in a non Genrics collection

	ArrayList listOfnames = new ArrayList();

listOfnames.add(“tom”);

listOfnames.add(“Kim”);

String s = (String) listOfnames.get(1);// get returns an Object. Have to cast this or will have a complier error

The primary goal of generics in Java is to allow a single class to work with a wide variety of types. This should not be confused with the notion that Collection and Map classes currently provide this, since in the previous example, the String object is permitted to exist along with Integer objects. In actuality, Collection objects hold references only to object types. The reason both String and Integer is acceptable to this List, is because the List works with all objects in the form of their parent type the Object class. What generics allows us to do, in the context of collections, is to parameterize the object-types allowed in a collection. Parameters are arguments that are used in methods, requiring that the parameters be provided for the method to execute. What generics allows us to do is to provide parameters of data types to classes. Thus when we create a List, we can restrict the type of data that can exist in that list. We can parameterize the data types for the List. In doing so, we ensure type-safe collections.
Figure 14-d shows the basic syntax for parameterzing collections. In this lesson we are mostly concerned with parameter zing the collections classes. The symbol used to declare the parameters for the class are <type>. Note the use of this symbol is similar to the use of the [] symbol to denote the array type. In the example of the ArrayList, you are in a sense binding the ArrayList object to the String type via use of this syntax.

***Figure 14-d: Parameterized collection

	ClassName <parameter type>

	ArrayList <String> list = new ArrayList<String>();

list.add(“Sam”);

list.add(new Integer(3);// will fail at compile time.

The complier type-checks the objects added to the list.

String s = list.get(0); // notice no cast required.

	Multiple parameters can be defined using ClassName <parameter, parameter..>

	ArrayList <Integer, Double> list = new ArrayList <Integer, Double>;

list.add(new Double(45.67));

list.add(new Integer(23.45));

list.add(“45.99”);// will result in a compile type error

Both the collection classes and the Iterators can be parameterized. In this next example a List object is parameterized and the Iterator object 14-e. The List is constrained to store only String objects. Adding anything other than a String to the list generates a compile time error. A typed iterator can be used to process the List.

***Figure 14-e: Parameterized iterators

	List <String> productList = new ArrayList <String> ();

namesList.add("Pencils");

namesList.add("Erasers");

namesList.add("NotePads");

// no need to cast here...

String productName = namesList.get(1);

System.out.println(productName);

	Iterator<String> it = productList.iterator();

while (it.hasNext()) {

 String productName = it.next();

 System.out.println(productName);

}

Figure 14-f shows the syntax to parameterize any class. This facility enables the creation of utility classes that can handle in the same ways objects of different types. The word generic applies truly to this context. What is suggested is the creation of a class, where the type of attributes of the class are not per-defined. The class is designed to handle any type, based on specific and or limited expectations. The letter A is not a type but a place holder for a type definition. The letter A will be replaced with the actual type during run time.

***Figure 14-f: Parameterized Classes

	public class Classname <parameter type>

	public class GenericExample <A> {

 private A variable;

 public void setData(A data){ }

 public A getData() { return data;}

}

In Java, generic declarations are compiled and type-checked into classes that can be reused directly, instead of expanded into additional classes providing several important advantages for the Java developer 14-g.

	· If a generic class is used multiple times in an application, only one copy of it exists, rather than one copy for each data type. Consequently, program size is reduced.

	· When a bug is found and a correction made, there is no need to recreate dependent classes that were expanded from the template -- the fix automatically applies to all uses of the generic class.

	· Since the generic code is used as a class, rather than expanded from a source code template, the source code does not need to be present to use the generic code. That means third-party library providers can distribute generified components in the same way that they deliver other classes. (And, since a generic class can be used as though it weren't generic at all, a developer who is unfamiliar with generics can use the libraries as they normally would.)

	· Compilation also reduces application size since the template isn't expanded into a different class each time it is used. Finally, since generics are compiled into classfiles, the source code is not required to use a generic library.

***Figure 14-g: Adavantages of using Generics
Figure 14-h shows the syntax for the use of a parameterized type class. In this example the class GenericExample is used to create two objects. ge is created with the type String, and ge2 is created with the type Customer. Once the type is set for the object the compiler checks enforce that the type is not violated. For example ge2.setData(“hello”) would not be acceptable.

***Figure 14-h: Using a Parameterized (Generics) class

	Using a parameterized class

	Creating object of a parameterized class:

GenericExample <String> ge = new GenericExample<String> ();

Calling a method of this object:
ge.setData(“Hello”);

Creating another object of the class GenericExample:

GenericExample <Customer> ge2 = new GenericExample <Customer>();

ge2.setData(new Customer());

Customer c = new Customer(“Name”,”12/12/1965”);

ge2.setData (c); // this will work fine

ge.setData(c) ; //will not work

ge2.setData(“hello”); // will not work

Enhanced for Loop Processing, for each
The current for loop construct is powerful, but somewhat ill-suited to iteration over collections. Figure 14-i shows the standard but verbose idiom to iterate over a collection. With the addition of generics the situation is a little better, eliminating the need for casts. The new version of java introduces an enhanced for loop, specifically designed for iteration over collections and arrays. Traditionally this is done using a foreach keyword. However the java language developers felt it unnecessary and counterproductive to add a keyword at this late date. Under the new syntax the code for iterating over a collection would be replaced with that shown in Figure 14-j. This code can be used to iterate over collections, arrays and simpler algorithms.

***Figure 14-i: Standard idiom for iteration

	 for (Iterator i = c.iterator(); i.hasNext();) { // No ForUpdate
 String s = (String) i.next();

 ...

 }

***Figure 14-j: Enhanced for loop syntax

	for (String s : c) {

 ...

 }

	Similarly, the following code could be used to calculate the sum of an int array.

 int sum = 0;

 for (int e : a) // e is short for element; i would be confusing

 sum += e;

The syntax for the enhanced for loop affects only the compiler; it demands no support from the VM. It does not require a new keyword and is fully compatible with all preexisting programs. The construct interacts harmoniously with existing elements of the language. For example, abrupt completion of an enhanced for statement is handled exactly like abrupt completion of any other for statement. The syntax for the enhanced for loop is :

for (Type Identifier : Expression)

Statement

The Type identifier declares a type for the value processed in each iteration. The expression is usually the collection for iteration.

The enhanced for loop does not represent any new ideas or functionality while providing a less verbose syntax for expressing intent. Iterating over collection content often calls for several lines of template code, the enhanced for loop allows developer to write less code to accomplish the same task. Compiler is generating the same instructions. The enhanced for does not result in any more efficient code at runtime. When used in conjunction with Generics to provide more compile time type safety.

Figure 14-k shows the pre-1.5 version of the for loop, used to iterate over a collection. Figure 14-l shows the newer enhanced for loop. The enhanced for loop also works with arrays as shown in figure 14-m.

***Figure 14-k: Unenhanced loop iteration

	List <String> productList = new ArrayList <String> ();

namesList.add("Pencils");

namesList.add("Erasers");

namesList.add("NotePads");

	// Retrieve an Iterator from the list

Iterator<String> it = productList.iterator();

// use the iterator to visit each element of the list

while (it.hasNext()) {

 String productName = it.next();

 System.out.println(productName);

}

***Figure 14-l: Enhanced loop iteration of a collection

	for (String productName : productList) {

 System.out.println(productName);

}

***Figure 14-m: Enhanced loop with an array

	String[] colors = {

 "Red",

 "Green",

 "Blue",

 "Yellow",

 "Magenta"

};

for(String color: colors) {

 System.out.println(color);

}

	int[] studentScores = {34,56,77,89,89,89,45,56};

int sum =0;

for(int score :studentScores){

 sum += score;

}

System.out.println (“The Average student score is “ + (sum / studentScores.length));

Autoboxing and Auto Unboxing
The problem with the collection API is that you cannot put primitive data types into it. Instead, you must use their object counter parts. For instance, you have to use the Integer class and convert back and forth as shown in Figure 14-n. To store the int in a collection, you will first wrap it into its wrapper object Integer. When retrieving the value from the collection, will need to cast the object to an integer and then extract the int value using the intValue() method. The second example shows that with generics the casting can be eliminated, though not the use of the wrapper classes.

***Figure 14-n: Handling Wrappers and primitives without Autoboxing

	int rate = 3;

List rates = new ArrayList();

rates.addElement(new Integer(rate));

int rate2 = ((Integer) rates.get(0)).intValue();

	int rate = 3;

List <Integer> rates = new ArrayList <Integer>();

rates.addElement(new Integer(rate));

int rate2 = rates.get(0).intValue();

Autoboxing eliminates the need for explicitly creating the wrapper objects. Figure 14-o shows that autoboxing automatically converts the primitive to its wrapper object, and converts the wrapper object to its primitive. Autoboxing works with all the primitives and their wrapper objects.

***Figure 14-o: Using Autoboxing UnBoxing

	List <Integer> rates = new ArrayList <Integer>();

rates.addElement(3);// automatically converts the int to an Integer object

int rate2 = rates.get(0; // automatically converts extracts the int value from the Integer.

// the following is possible in the Java 1.5

Integer intValue = 56;

int value = intValue;

Summary
***Addition to Chapter 14 Summary. Please add as new last paragraph of the summary.
This chapter concluded with a discussion of additional collection handling technologies that can be used by Java programmers. This discussion included the use of generics and parameterized types, enhanced for loops, and autoboxing.

1 of 1
PAGE
Page 15 of 51 Fundamentals of Java Programming 2.00
Copyright (2004, Cisco Systems, Inc.

