Numerics

100+-Mbps QoS policy, 470
6PE routers, 274
6VPE functionality, 327

A

ABRs (Area Border Routers), 91
AC (Attached Circuit), 42
access. See also remote access
dial-in, 14
DSL, 15
Internet
 following default routes, 305, 307
 via NAT/firewall services, 309
 via PE-CE links, 307–308
IPv6, 272
via NAT/firewall services, 309
POP network structure, 280, 284–285
provisioning, 131
QoS, 470
VPN, 3–5
 autonomous system boundaries, 19–22
 Carrier’s Carrier architecture, 16–18
CE routers, 7
components, 5
IPv6, 30–41
label allocating (PE routers), 8–9
Layer 2, 41–45
multicast, 22–30
packet delivery, 12–13
PE routers, 6–7
remote, 14–15
route target formats (PE routers), 10

VPNv4 prefix creation (PE routers), 9–10
WRED drop profiles, 238
Add/Drop Multiplexers (ADM), 118, 270
addresses
 autoconfiguration, 33
 IPv6, 32
 multicast allocation, 216
NAT, 30
Safi, 311
adjacencies, 28, 82–85
ADM (Add/Drop Multiplexer), 118
advertisements
 inter-AS VPNv4 exchanges, 20
 interval timers, 324
AF (Assured Forwarding), 59
affinities (traffic engineering), 70
Africa Telecom, VPOPs, 421
agents, SAA, 371
aggregation
 core QoS engineering, 65
 traffic engineering (Diffserv), 86–89
algorithms
 Dijkstra, 74
 exponential back-off, 102
 load balancing, 82. See also load balancing
allocation, 300
labels (PE-routers), 8–9
MAM, 345
multicast address, 216
names (VPN), 132
RD, 132, 201
routes, 300
“Always-on” connectivity, 31
American Registry for Internet Numbers
 (ARIN), 119
anycast addresses, 33
any-to-any connectivity, 4
applications
peer-to-peer, 31
requirements (QoS), 49–51
APS (Automatic Protection Switching), 121
architecture
Carrier’s Carrier, 8–9, 16–18, 208
ICA protocol, 465
IPv6, 37
Managed Telephony Service, 452
national telco design study, 194
routing, 293–294
SNA, 339
VPN, 3–5
CE routers, 7
components, 5
label allocation (PE routers), 8–9
PE routers, 6–7
VPNv4 prefix creation (PE routers), 9–10
worldwide network, 286–292
Area Border Routers (ABRs), 91
ARF (Automatic Route Filtering), 297
ARIN (American Registry for Internet Numbers), 119
ASBR (Autonomous System Boundary Router), 5, 292
Fast Reroute, 420
inter-AS VPNv4 exchanges, 20
multiarea/multi-AS, 91
policy control at boundaries, 421
VPNv4 routes, 297–299
AsiaPac, 288
QoS, 340–349, 351–356
TE, 383–385
assignment of labels, 12
Assured Forwarding (AF), 59
ATM (Asynchronous Transfer Mode)
marking, 466
pseudowires
design, 332–333
PE router failures, 400
TE, 391–393
PVCs, 352–356
trunking, 370–371
Attached Circuit (AC), 42
attacks, DoS, 125, 196
attributes, 69
connector formats, 312
inter-AS TE LSPs, 404
LSP, 88
SoO, 133
TE LSP, 69–72
traffic engineering, 73
autoconfiguration, 33
automatic meshing, TE LSPs, 85
Automatic Protection Switching (APS), 121
automatic provisioning, 376–377
Automatic Route Filtering (ARF), 297
automatic summarization, 145
autonomous system boundaries, 19–22
Autonomous System Boundary Router. See ASBR
Autoroute, 76
availability
networks, 95–115
troubleshooting, 164
B

backbones
 label forwarding design, 125, 194–198
 link types, 293
 Multicast design, 218
 national telco design study, 191
 packets, 12
 USCom links, 124
back-door links, 143
backups
 Fast Reroute, 112
 path computation, 113
tunnels, 165, 259
 configuration of, 395–400
 design (level POPs), 262
 level 1/level 2 POPs, 267
 NHOP/NNHOP, 264
 period of time in use, 268
bandwidth
 dynamic TE-LSPs, 378–379, 382
 fish problem solutions, 77
 fragmentation, 248
 hierarchies, 234
 maximum reservable, 374–375
 QoS, 346
 TE LSPs, 246
 traffic engineering, 69, 86
BASs (Broadband Access Servers), 191
BGP (Border Gateway Protocol)
 IPv4, 195
 standardizing, 142
tuning, 324
BLSRs (Bidirectional Line Switch Rings), 118
bootstrap router (BSR), 217–218

Border Gateway Protocol. See BGP
boundaries, 421
branch offices, 427–428
 locations, 429–430
Layer 3 MPLS VPN design, 448
 requirements, 441
QoS, 470
traffic
classification, 465
flowing, 472–475
Broadband Access Servers (BASs), 191
BSR (bootstrap router), 217–218

call agents, 188
Call Detail Record (CDR), 244
Candidate BSRs (C-BSRs), 217
capacity
 core QoS engineering, 66
 planning, 54
 traffic engineering, 68
capex (capital expenditure), 428
Carrier Carrier’s service, 207–212
 architecture, 8–9, 16–18
 QoS (network edge), 241
Carrier Supporting Carrier (CSC) PE routers, 17
C-BSRs (Candidate BSRs), 217
CBTS (CoS-Based Tunnel Selection), 89, 385
CBWFQ (Class-based Weighted Fair Queuing), 60
CDR (Call Detail Record), 244
central-site extranets, 11
CE-router (customer edge router), 5, 7
 egress policy, 359
 egress QoS policies, 233
 IP address allocation, 146
 routing protocol design, 140–145
CITRIX Independent Computing Architecture, 465
class of recovery (CoR), 164
class of service. See CoS
Class-Based Weighted Fair Queuing (CBWFQ), 60
classes
 mapping, 334
 services
 large enterprise design study, 463
 mapping, 467
classification
 ATMs, 466
 CoS, 241
 customer-specific, 241
 traffic, 67
classifiers, traffic, 58
CLI (command-line interface)
 collection of management results, 243
 pseudowires, 44
collection of management results, 243
cloud topologies (for telephony transit), 190
C-network (customer network), 5
Coarse Wave Division Multiplexing (CWDM), 122
collaboration, 279
coloring schemes (traffic engineering), 70
command-line interface (CLI)
 collection of management results, 243
 pseudowires, 44
 commands
 ip icmp rate-limit unreachable, 315
 maximum routes, 316
 maximum-prefix, 316
 neighbor maximum-prefix, 142
 no auto-summary, 145
 show ip bgp neighbor, 139
 vrf upgrade-cli, 330
commercial clauses, 52
commitments (SLS), 52
components
 CE-router egress QoS policies, 236
 pseudowire, 42
 recovery, 95–115
 traffic engineering, 69–72
 VPN, 5
 CE routers, 7
 label allocation (PE routers), 8–9
 PE routers, 6–7
 route target formats (PE routers), 10
 VPNv4 prefix creation (PE routers), 9–10
computation
paths
 backup tunnels, 113
 inter-AS TE LSP, 406
 multiarea/multi-AS, 90–95
 TE LSPs, 73–74, 88, 246
routing tables, 180
SPF, 102–104
TE-LSP paths, 382
collectors, traffic, 58
confederations (Layer 3 MPLS VPN services), 136
configuration
 6PE routers, 274
 ARF, 297
 autoconfiguration, 33
 automatic provisioning, 376–377
 backup tunnels, 395–400
 bandwidth, 70
 Carrier’s Carrier service, 210
 data center PE router VRF templates, 442
 data-MDTs, 220
 exponential back-off, 257
 Fast IS-IS, 399
 hold-off timers, 270, 398
 IPv6 VPN design, 328
 IS-IS, 180–181
 Layer 3 MPLS VPN, 131
 maximum reservable bandwidth, 245,
 374–375
 mVPN, 218
 OC-3 links, 375
 OSPF timers, 256
 PE-routers, 134, 202
 PHB, 56
 preemptions (traffic engineering), 71
 prefix prioritization, 171
 pseudowire, 44
 queues, 467
 reuse limits, 142
 routing exchanges, 7
 SRLG memberships, 262
 static routing, 141
 TE LSPs
 automatic meshing, 85
 deployment scenarios, 77–79
 forwarding adjacency, 82–85
 load balancing, 82
 reoptimization, 79–81
 routing, 76
 signaling, 75–76
congestion
 TCP, 61
 traffic engineering, 68
connections. See also access
 Carrier’s Carrier architecture, 8–9, 16–18,
 208
 data centers, 440
 dial-in, 215
 DSL, 15
 firewalls, 444
 intercontinental, 292
 interexchange carrier design study, 117
 interregion, 292
 ISDN, 213
 Layer 3 VPN remote access, 14–15
 metro, 434–435
 regional services, 301
 regions, 296
 scaling, 4
connectors formats, 312
Constraint Shortest Path First (CSPF), 72
constraints, 69
 backup tunnels, 259, 395
 bandwidth, 87
 SRLG, 266
 TE LSP, 69–72
contiguous TE LSPs, 404
control planes
 mechanisms, 54–55
 mPE-routers, 205–207
 operations (IPv6), 37
 PE-route requirements, 135–136
 protection (VPN), 316
convergence, 317
 computing, 103
IS-IS, 178–180
points, 322
routing, 320–324
CoR (class of recovery), 164
core egress QoS service policy template, 355
core networks
 POPs, 431–432
 QoS, 154–157, 224
 across regions, 358
 North America, 356–358
 regions, 340–356
core packets, 186
core QoS engineering, 65–66
core routing design, 437–438
CoS (class of service)
 classification for, 241
 TCS, 52
CoS-Based Tunnel Selection (CBTS), 89, 385
cost constraints (for recovery design), 165
CSC (Carrier Supporting Carrier) PE routers, 17
CSPF (Constraint Shortest Path First), 72
cycles, recovery, 97, 438
cycles, recovery, 97, 438
D
dampening (routes), 142
data centers, 433–434
 connectivity requirements, 440
 layer 3 MPLS VPNs, 442
data planes
 operations (IPv6), 39
 protection (VPN), 316–317
data-MDTs (mVPN design), 220
default MDT, 310
delay, 438
 QoS metrics, 50
 VPN Video CoS, 339
delivery of VPN packets, 12–13
denial of service (DoS) attacks, 125, 196
Dense Mode (PIM-DM), 25
dense wavelength division multiplexing
 (DWDM), 118, 186
design. See also configuration
 Globalnet service provider study, 278–289,
 291–294
 ATM pseudowire, 332–333
design objectives, 294
Internet services, 303–309
IPv6 VPN, 326–332
Layer 3 MPLS, 295–303
MPLS traffic engineering, 372–382, 385–393
mVPN services, 310–312
network recovery, 393–400
QoS, 333–343, 365–372
routing architecture, 293
scalability, 313–325
security, 313–325
virtual POPS, 401–410, 413–421
interexchange carrier study, 117
large enterprise design study, 425–427
branch offices, 427–428
core network POPS, 431–432
core routing, 437–438
data centers, 433–434
Layer 3 MPLS
metro connections, 434–435
objectives, 436
office locations, 429–430
QoS, 462–470, 474–475
VoIP, 452–461
VPNs, 439–450
national design study, 185–190
Carrier’s Carrier service, 207–212
IPv6, 272, 275
label forwarding, 194–198
Layer 3 MPLS VPN, 199–206
mVPN service access, 216–220
objectives, 194
POP, 190–191
QoS, 221–244
recovery, 255–272
remote access, 212–215
TE, 245–255
OSPF, 258
QoS, 67. See also QoS
routing protocols, 140–145
static routing, 141
USCom (interexchange carrier study)
environment, 117–124
label forwarding, 125–129
Layer 3 MPLS VPN service, 129–148
objectives, 124
QoS, 162
recovery, 163–181
traffic engineering, 163
destinations (traffic engineering), 69
detection
failure, 394
national telco design study, 256
PSTN, 258
faults, 195
IS-IS time, 178
link failures, 176
dial-in access. See also access; connections
national telco design study, 212
VPN remote access, 14
differentiated Services (DS) fields, 56
differentiated Services Codepoint (DSCP), 57
differentiation, IETF DiffServ models (QoS), 55–64
DiffServ, 86–89
DiffServ-aware MPLS Traffic Engineering (DS-TE), 341
digital Subscriber Line. See DSL
Dijkstra algorithm, 74
directed LDP sessions, 42
disabling
ARF, 297
unused services and protocols, 314
discovery
 automatic meshing (TE LSPs), 85
 neighbors (IPv6), 33
distributed path computation, 73
distribution
 MDT, 310
 routes, 146
 source multicast trees, 23–24
 utilization curves, 53–55
DLCI (Data Link Connection Identifier), 448
 domains
 end-customer networks, 4
 multicast, 26
DoS (denial of service) attacks, 125, 196
double booking, avoidance of, 81
drop profiles, WRED, 238
DS (Differentiated Services) fields, 56
DSCP (Differentiated Services Codepoint), 57
 mapping, 334, 473
 precedence values, 59
DSCP-to-EXP mapping, 464
DSL (Digital Subscriber Line). See also
 access; connections
 access, 15
 national telco design study, 212
DS-TE (DiffServ-aware MPLS Traffic
 Engineering), 341
DWDM (dense wavelength division
 multiplexing), 118, 186
dynamic TE LSP bandwidth adjustments, 378–382
dynamic times, 102–104

e
 edge devices, 191
droge networks, 241. See also networks
dynamic QoS engineering, 66
dynamic TE, 383, 385
DoS (denial of service) attacks, 125, 196
double booking, avoidance of, 81
drop profiles, WRED, 238
DS (Differentiated Services) fields, 56
DSCP (Differentiated Services Codepoint), 57
 mapping, 334, 473
 precedence values, 59
DSCP-to-EXP mapping, 464
DSL (Digital Subscriber Line). See also
 access; connections
 access, 15
 national telco design study, 212
DS-TE (DiffServ-aware MPLS Traffic
 Engineering), 341
DWDM (dense wavelength division
 multiplexing), 118, 186
dynamic TE LSP bandwidth adjustments, 378-382
dynamic times, 102-104

E
 edge devices, 191
 edge networks, 241. See also networks
dynamic QoS engineering, 66
dynamic TE, 383, 385
DoS (denial of service) attacks, 125, 196
double booking, avoidance of, 81
drop profiles, WRED, 238
DS (Differentiated Services) fields, 56
DSCP (Differentiated Services Codepoint), 57
 mapping, 334, 473
 precedence values, 59
DSCP-to-EXP mapping, 464
DSL (Digital Subscriber Line). See also
 access; connections
 access, 15
 national telco design study, 212
DS-TE (DiffServ-aware MPLS Traffic
 Engineering), 341
DWDM (dense wavelength division
 multiplexing), 118, 186
dynamic TE LSP bandwidth adjustments, 378-382
dynamic times, 102-104
See EIGRP

Enterprise Resource Planning (ERP), 158

environments
 branch offices, 427–430
 core network POPs, 431–432
 data centers, 433–434
 metro connections, 434–435
 networks, 278–279

ERP (Enterprise Resource Planning), 158

Ethernet
 metro connections (UK), 434
 national telco design study, 191

EuroBank, 427

Europe, Middle East, Africa. See EMEA

event-driven reoptimization, 81

exchanges
 interexchange carrier design study, 117
 internal/external route, 18
 routing, 7

EXP
 DSCP-to-EXP mapping, 464
 mapping, 334

Expedited Forwarding (EF), 342
 non-EF tunnels, 392
 PHB, 59
 queues, 334
 exponential back-off, 102, 257

export policies (VPNs), 134

extensions
 IGP routing, 74
 traffic engineering, 88

external routes, Carrier’s Carrier architecture, 17

extranets
 central-site, 11
 VPNs, 130, 200

F

FA (forwarding avoidance), 173
failures
 detection, 394
 national telco design study, 256
 PSTN, 258
 links (USCom), 124
 notification, 257
 PE-PSTN routers, 271
 recovery. See recovery

Fast Ethernet, 469

Fast IS-IS configuration, 180, 399

Fast Reroute, 394, 420
 FRR, 125
 MPLS TE, 107–115
 protection by (traffic engineering), 72
faults, detection, 195

FCC (Federal Communications Commission), 117

FEC (Forwarding Equivalence Class), 42

Federal Communications Commission (FCC), 117

FIB (Forwarding Information Base), 196, 258

fields, DS, 56
filtering, 127
 ARF, 297
 LDP, 127
 PE-routers, 146
 RTs, 320
 VPNv4 routes, 297–299

firewalls
 connectivity, 444
 Internet access via, 309

fish problem, the, 68, 77
flaps, penalties, 142
Flash updates, 141
flooding
 inter-AS links, 95
 new IS-IS LSPs, 179
flow
 pseudowire packets, 45
 traffic, 70
formats
 connector attributes, 312
 RD, 133
 routes
 distinguishers, 9
 targets (PE-routers), 10
forwarding
 AF, 59
 EF, 59
 IPv6, 34
 labels, 194–198
 LFIB, 13
 mVPN, 28–30
 packets
 Carrier’s Carrier architecture, 17
 VPN, 12–13
 RPF, 25
 TE LSPs, 82–85
 VRFs, 6–7
forwarding adjacency (FA), 173
Forwarding Equivalence Class (FEC), 42
Forwarding Information Base (FIB), 196, 258
fragmentation, 238, 248
Frame Relay, 428
Frame Relay traffic shaping, 237
FRR (fast rerouting), 125
FRTS (Frame Relay traffic shaping), 237
full mesh TE_LSPs, 376–377

G
Gateway Load Balancing Protocol (GLBP), 439
gateways
 media (VoIP), 188
 VHG, 14
generations, LSA, 256
Gigabit Ethernet
 metro connections (UK), 434
 national telco design study, 191
 QoS, 470
GLBP (Gateway Load Balancing Protocol), 439
global protection, 106
global recovery, 97
global restorations, 105
global routing tables, 305
global unicast addresses, 33
Globalnet service provider design study
 ATM pseudowire, 332–333
 design objectives, 294
 intercontinental connectivity, 292
 Internet services, 303–309
 IPv6 VPN, 326–332
 Layer 3 MPLS VPN, 295–303
 MPLS traffic engineering, 372–382, 385–393
 mVPN services, 310–312
networks
 environments, 278–279
 recovery, 393–400
 POP network structure, 280, 284–285
 QoS, 333–343
 routing architecture, 293–294
scalability, 313–325
security, 313–325
service portfolios, 279
virtual POPs, 401–410, 413–421
worldwide architecture, 286–292
groups
update, 138
VPNs, 441

H
headers, IPv6, 31
hello timers, 438

hierarchies
bandwidth, 234
traffic engineering, 73
VPNs, 17, 208
higher-priority TE LSPs, 71
high-speed links, utilization curves, 53–55
hold-off timer configuration, 270, 398
hops
delay, 438
next-hop backup tunnels, 396
PHB, 56
serialization delay at, 50
host routing, 438
HSRP (Hot Standby Router Protocol), 438

I
IANA (Internet Assigned Numbers Authority), 22
iBGP multipath support (VPNv4), 204
ICA (Independent Computing Architecture) protocol, 465
IETF (Internet Engineering Task Force), 50, 55–64
IGMPv3 (Internet Group Management Protocol version 3), 26
IGP (Interior Gateway Protocol), 292
PE-CE routing design, 143
routing extensions, 74
TE LSP extensions, 88
import policies (VPNs), 134
importing remote routing information, 10
Independent Computing Architecture (ICA) protocol, 465
infrastructure
branch office locations, 429
data centers, 433–434
national telco design study, 186
POP, 431–432
input drops (prevention at VPNv4 RRs), 139
instances, VRFs, 6–7
instantiation, PHB, 161
Integrated Services Digital Network, 14, 213
interaction of protocols, 318
inter-AS
back-to-back VRF connections, 19–20
connectivity, 19
links, flooding, 95
mVPNs
SAFI template, 312
system flow, 313
Option “A” (back-to-back VRFs), 446
TE LSPs
attributes of, 404
packets, 417
path computation, 406
recovery, 419, 421
reoptimization of, 415
routing, 415
VPNv4 exchange connections, 20
interconnections, branch offices, 429
intercontinental connectivity, 292
Interexchange Carrier (IXC), 117
interexchange carrier design study, 117
Interface Group MIB, 131
interfaces
 100+Mbps QoS, 470
 CLI
 collection of management results, 243
 pseudowires, 44
 input drops (prevention at VPNv4 RRs), 139
 MTI, 28
 PNNI, 278
Interior Gateway Protocol (IGP), 292
inter-Local Access and Transport Area (LATA), 117
Intermediate System-to-Intermediate System (IS-IS), 98, 292
internal routes, Carrier’s Carrier architecture, 17
Internet, 309
 access
 following default routes, 305–307
 via PE-CE links, 307–308
 IPv6, 272
 QoS, 335–338
 routing tables via global/VRF, 305
 RR deployment, 128
 services, 303–309
 RR deployment, 198
 separation of, 126
 SLAs, 149
 shared-edge services, 295
Internet + Internet services, 200
Internet Assigned Numbers Authority (IANA), 22
Internet Engineering Task Force (IETF), 50
Internet Group Management Protocol version 3 (IGMPv3), 26
Internet Protocol. See IP
Internet Protocol version 4. See IPv4
Internet Protocol version 6. See IPv6
Internet service provider, 185. See also access; connections
interoperator partnerships, 293
inter-POP connectivity (USCom), 123
inter-provider connectivity, 19
interprovider VPNs, 365–367
interregion connectivity, 292
intersubsidiary connectivity requirements, 440
intra-AS mVPN solution, 311
intranets, VPNs, 130, 200
IP (Internet Protocol)
 addresses, 9
 routing
 computing convergence time, 103
 recovery, 98
 tunneling, 26
 VPN categories, 130
ip icmp rate-limit unreachable command, 315
IP Performance Metric Working Group (IPPM), 50
IPv4 (Internet Protocol version 4)
 mapped IPv6 addresses, 33
 Unicast connectivity, 216
IPv6 (Internet Protocol version 6)
 over MPLS networks, 30–41
 national telco design study, 272, 275
VPN
 network recovery, 400
 QoS, 369
 service design, 326–332
ISDN (Integrated Services Digital Network), 14, 213
IS-IS (Intermediate System-to-Intermediate System), 292
configuration, 180–181
convergence, 178–180
recovery, 98
isolation of end-customer network domains, 4
ISP (Internet service provider), 185. See also access; connections
IXC (Interexchange Carrier), 117

J

jitter, 338
Johannesburg POP, conversion of, 401

L

L2TP network server (LNS), 14
Label Distribution Protocol (LDP), 12, 125–127
Label Edge Router (LER), 63
Label Forwarding Information Base (LFIB), 13
labels
forwarding, 194–198
PE-router allocation, 8–9
virtual circuit, 42
VPN assignment, 12
Label-Switched Path. See LSP
large city-to-large city connectivity, 186
large customer attachments (Carrier’s Carrier service), 210
large enterprise design study, 425–430
branch offices, 427–428
core network POPs, 431–432
core routing, 437–438
data centers, 433–434
Layer 3 MPLS
VoIP, 452–461
VPNs, 439, 443–450
metro connections, 434–435
objectives, 436
office locations, 429
QoS, 462–470, 474–475
last-resort unconstrained option (TE LSPs), 255, 390
LATA (inter-Local Access and Transport Area), 117
latency, 338
Layer 2
VPN, 41–45
VPNs, 194
Layer 2 Tunneling Protocol. See L2TP
Layer 3 (MPLS)
VoIP, 452–461
VPN, 295–303, 358–365, 439, 443–450
national telco design study, 199–206
separation of services, 126
layers, recovery, 95–115

LDP (Label Distribution Protocol), 12, 125, 194
filtering, 127
troubleshooting, 197
leased lines, six-queue policy, 468
LEC (Local Exchange Carrier), 117
LER (Label Edge Router), 63
LFIB (Label Forwarding Information Base), 13
link-local unicast addresses, 33
links
coloring schemes (traffic engineering), 70
delay, 438
failure detection, 176
IGP routing extensions, 74
inter-AS flooding, 95
low-speed serialization, 238
maximum reservable bandwidth, 374–375
MPC networks, 270
nonrevertive/revertive, 114
OC-3, 375
PE-CE, 307–308
restored reuse, 175–176
sub-100-Mbps, 467
troubleshooting, 165–169
types, 293
USCom backbones, 124
liveliness (LSP), 196
L-LSPs, 62
LNS (L2TP network server), 14
load balancing
backup tunnels, 113
Carrier’s Carrier service, 209
support, 202
TE LSPs, 82
Local Exchange Carrier (LEC), 117
local policies, marking ATMs, 466
local recovery, 97
locations (offices), 429–430
Layer 3 MPLS VPN design, 448
requirements, 441
loops, temporary avoidance, 171–175
LoS (loss of signal), 256
loss
packets, 197
QoS metrics, 50
lower-priority TE LSPs, 71
lower-speed links
core QoS engineering, 66
serialization, 238
LSA (link state advertisement)
dynamic timers, 102–104
generation, 256
LSPs (Label-Switched Paths), 9, 88
last-resort unconstrained option, 255
TE LSPs
bandwidth, 246
provisioning, 254
reoptimization of, 252
M
maintenance, routers, 177
MAM (Maximum Allocation Model), 86, 345
Managed Telephony Service architecture, 452
Managed Voice Service QoS, 466
management of VPNs, 201–202
manual reoptimization, 81
mapping
DSCP, 473
DSCP-to-EXP, 464
QoS, 334
service classes, 467
traffic, 221
MAR (Maximum Allocation Model with Reservation), 86
marking ATMs, 466
Maximum Allocation Model (MAM), 86, 345
Maximum Allocation Model with Reservation (MAR), 86
maximum reservable bandwidth, 245, 374–375
maximum routes command, 316
Maximum Segment Size (MSS), 135
maximum-prefix command, 316
MDT (multicast distribution tree), 310
mechanisms, QoS, 53
media gateways (VoIP), 188
memberships (SRLG), 262
meshing (TE LSPs), 85
metrics
 QoS application requirements, 49–51
 traffic engineering optimization, 72
metro connections, 434–435
migration, VPOPs, 405–414
mode of operation before failure (MPLS TE Fast Reroute), 108
models
 MAM, 345
 QoS, 67
modification of dynamic TE-LSP bandwidth, 378–379, 382
Modular QoS CLI (MQC), 346
monitoring
 SLAs, 242–243, 371–372
 TE, 254–255
 TE-LSPs, 389–390
MP-BGP (Multiprotocol BGP), 9
 core design, 447
 inter-AS mVPN solution, 311
 scaling, 318
MPC (Multiservice Packet Core), 186, 270
mPE routers
 control planes, 205–207
 egress QoS policies, 240
 ingress QoS policies, 239
MPLS Traffic Engineering (MPLS TE), 68.
 See also traffic engineering
MQC (Modular QoS CLI), 346
MSS (Maximum Segment Size), 135
multicast
 addresses, 33, 216
 distribution tree (MDT), 310
 domains, 26
 forwarding with mVPN, 28–30
 packet encapsulation, 195
 routing protocols, 217
 traffic QoS, 368–369
 VPNs, 22–30
Multicast Tunnel Interface (MTI), 28
multicasting, deployment of, 450
multiple dynamic routing protocols, PE-routers, 8
multiple failures, troubleshooting, 176
multiple preemptions (traffic engineering), 71
multipriority schemes, 248
Multiprotocol BGP. See MP-BGP
Multiservice Packet Core (MPC), 186, 270
multiservice PE-routers, 200
multi-VRF CE router-to-PE router links, 449
mVPN
 design, 310–312
 forwarding, 28–30
 PIM adjacencies, 28
MYI (Multicast Tunneling Interface), 28

N

naming conventions
 customer VRF, 201
 VRF, 132
NAPs (Network Access Points), 117
NASs (Network Access Servers), 191
NAT (Network Address Translation), 30, 309, 444
national telco design study, 185–190
Carrier's Carrier service, 207–212
IPv6, 272
label forwarding, 194–198
Layer 3 MPLS VPN, 199–206
mVPN service application, 216–220
objectives, 194
POP, 190–191
QoS, 221–244
recovery, 255–272
remote access, 212–215
TE, 245–255
NBAR (Network-Based Application Recognition), 465
neighbor maximum-prefix command, 142
neighbor, discovery (IPv6), 33
NetFlow, 70
Network Access Points (NAPs), 117
Network Access Servers (NASs), 191
Network Address Translation (NAT), 30, 444
network environments, 278–279
network management system (NMS), 202
Network Operations Center (NOC), 200
Network Termination Units (NTUs), 434
Network-Based Application Recognition (NBAR), 465
network-based VPN, 4. See also VPN networks, 5
access. See access availability, 95–115
core, 154–157, 224
edge, 66
Layer 3 MPLS VPN CsC (QoS), 241
QoS, 157–162, 359–365
end-customer domains, 4
environments, 278–279
branch offices, 427–428
core POPs, 431–432
data centers, 433–434
metro connections, 434–435
office locations, 429–430
Layer 3, 3–5
MPC links, 270
national telco design study, 185–190
Carrier's Carrier service, 207–212
IPv6, 272, 275
label forwarding, 194–198
Layer 3 MPLS VPN, 199–206
mVPN service application, 216–220
objectives, 194
POP, 190–191
QoS, 221–244
recovery, 255–272
remote access, 212–215
TE, 245–255
recovery, 393–400, 419–421
USCom (interexchange carrier design study), 117–124
label forwarding, 125–129
Layer 3 MPLS VPN design, 129–148
objectives, 124
QoS, 162
recovery, 163–181
traffic engineering, 163
new IS-IS LSPs, flooding, 179
next-hop (NHOP) backup tunnels, 165, 396
next-next hop (NNHOP) backup tunnels, 165
NMS (network management system), 202
- no auto-summary command, 145

NOC (Network Operations Center), 200
- nodes
 - routing table computation, 180
 - troubleshooting, 177–178
- nondisruptive reoptimization, 81
- non-EF tunnels, 392
- nonrevertive links, 114

North America, 289
- QoS, 356–358
- TE, 382–383
- notification of failures, 257

NTUs (Network Termination Units), 434

OAM (Operations, Administration, and Maintenance), 41

OC-3 configuration template, 375

offices
- locations
 - Layer 3 MPLS VPN design, 448
 - requirements, 441

QoS, 470
- traffic
 - classification, 465
 - flowing, 472–475

packets

offline path computation, 73

off-net voice call, 460

one-hop backup tunnels, 165

one-way delays, 50

online path computation, 73

Open Shortest Path First (OSPF), 98
- operational constraints (of recovery design), 164

operational expenditure (opex), 428

operational security (VPNs), 314–315

Operations, Administration, and Maintenance (OAM), 41

options
- last-resort unconstrained (TE LSPs), 255
- network management VPNs, 201
- Set of Ordered Path (traffic engineering), 73

OSPF (Open Shortest Path First)
- deployment, 143–144
- design, 258
- recovery, 98
- out-of-profile packets, 58
- overlay VPN, 4

Packet over SONET (PoS), 118

packets
- Carrier’s Carrier architecture, 17
- core, 186
- inter-AS TE LSPs, 417
- loss, 197
- Multicast encapsulation, 195
- out-of-profile, 58
- pseudowire flow, 45
- QoS, 49
 - application requirements, 49–51
 - IETF DiffServ models, 55–64
packets

mechanisms, 53
SLAs, 52–53, 65–68
utilization curve comparisons, 53–55
SPD tuning, 205
VPN delivery, 12–13
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discovery, 33
tuning, 205
parameters
discovery, 33
resizing, 381
partnerships, 293
Path Computation Element (PCE), 92, 410
Path MTU Discovery (PMTU), 135
paths
discov...
Points of Presence (POPs), 117
Point-to-Point Protocol over ATM, 15
Point-to-Point Protocol over Ethernet, 15
Point-to-Point SLS models, 53
policies
100+Mbps QoS, 470
collection at ASBR boundaries, 421
DSCP mapping, 473
import/export (VPN), 134
QoS, 419
six-queue, 467
sub-100-Mbps, 467
To-Fab QoS, 231
policing, 58, 241
POPs (Points of Presence), 117, 277
backup tunnels, 262
core network, 431–432
inter-POP connectivity (USCom), 123
Layer 3 MPLS VPN design, 446
level 1 design (USCom), 119
MPC, 186
national telco design study, 190–191
network structure, 280, 284–285
SLA commitments, 337
virtual POP design, 401–410, 413–421
POP-to-POP SLA commitments, 335
portfolios, services, 279
PoS (Packet over SONET), 118
PPPoA (Point-to-Point Protocol over ATM), 15
PPPoE (Point-to-Point Protocol over Ethernet), 15
PQ (Priority Queuing), 60
preemption
TE LSPs, 249
traffic engineering, 71
prefixes
discovery, 33
prioritization, 170–171
restrictions, 142
VPNv4, 9–10
prioritization of prefixes, 170–171
priority, defining (preemption), 71
Priority Queuing (PQ), 60
private, 441
private autonomous system numbers, 441
Private Network-Network Interface (PNNI), 278
process IDs (OSPF), 144
profiles, WRED, 350
propagation
delay, 438
delay end-to-end, 50
protection, 293
by fast reroute (traffic engineering), 72
comparison to restoration, 96
traffic engineering paths, 106
VPNs, 316–317
Protocol-Independent Multicast (PIM), 25
protocols
BGP, 142
disabling, 314
EIGRP, 82
IGP, 143
interaction, 318
LDP, 12, 125, 194
routing
design, 140–145
Multicast, 217
RSVP-TE, 12
RTCP, 244
TCP, 61
TDP, 12
<table>
<thead>
<tr>
<th>P-router (provider router)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-router (provider router), 5</td>
</tr>
<tr>
<td>provider edge (PE) routers. See PE-routers provider network (P-network), 5</td>
</tr>
<tr>
<td>provider router (P-router), 5</td>
</tr>
<tr>
<td>provisioning access, 131</td>
</tr>
<tr>
<td>backup tunnels, 398</td>
</tr>
<tr>
<td>services, 195</td>
</tr>
<tr>
<td>TE LSPs, 254</td>
</tr>
<tr>
<td>pseudowire edge (PE) equipment, 42</td>
</tr>
<tr>
<td>pseudowire identifier (PWid), 42</td>
</tr>
<tr>
<td>pseudowires, 41–45</td>
</tr>
<tr>
<td>ATM PE router failures, 400</td>
</tr>
<tr>
<td>TE, 391</td>
</tr>
<tr>
<td>ATM design, 332–333</td>
</tr>
<tr>
<td>QoS, 370–371</td>
</tr>
<tr>
<td>PSTN (Public Switched Telephone Network), 185</td>
</tr>
<tr>
<td>dial-in access (via L2TP VPDN), 14</td>
</tr>
<tr>
<td>PE-PSTN router failure, 271</td>
</tr>
<tr>
<td>recovery, 258</td>
</tr>
<tr>
<td>TE LSPs bandwidth, 246</td>
</tr>
<tr>
<td>trunking, 191</td>
</tr>
<tr>
<td>PVCs (private virtual circuits) ATM QoS, 352–356</td>
</tr>
<tr>
<td>Frame Relay, 428</td>
</tr>
<tr>
<td>PWid (pseudowire identifier), 42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QoS (quality of service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS (quality of service) application requirements, 49–51</td>
</tr>
<tr>
<td>AsiaPac, 340–349, 351–356</td>
</tr>
<tr>
<td>EMEA, 340–349, 351–356</td>
</tr>
<tr>
<td>Globalnet service provider design study, 333–343, 368–372</td>
</tr>
<tr>
<td>IETF DiffServ models, 55–64</td>
</tr>
<tr>
<td>IPv6, 34, 369</td>
</tr>
<tr>
<td>large enterprise design study, 462–470, 474–475</td>
</tr>
<tr>
<td>mapping, 334 mechanisms, 53</td>
</tr>
<tr>
<td>MQC, 346</td>
</tr>
<tr>
<td>multicast traffic, 368–369</td>
</tr>
<tr>
<td>national telco design study, 221–244</td>
</tr>
<tr>
<td>network edge, 359–365</td>
</tr>
<tr>
<td>network recovery, 95</td>
</tr>
<tr>
<td>North America, 356</td>
</tr>
<tr>
<td>pseudowires, 370–371</td>
</tr>
<tr>
<td>regions, 340–349, 351–358</td>
</tr>
<tr>
<td>SLAs, 335–338, 371–372</td>
</tr>
<tr>
<td>South America, 340–349, 351–356</td>
</tr>
<tr>
<td>Telecom Kingland, 365–367</td>
</tr>
<tr>
<td>USCom, 162 utilizations curve comparisons, 53–55</td>
</tr>
<tr>
<td>VPOP, 417, 419</td>
</tr>
<tr>
<td>quality of service. See QoS queues CBWFQ, 60 delay, 438 delay at each hop, 50 EF, 334 mapping, 334 PQ, 60 six-queue policy, 467</td>
</tr>
</tbody>
</table>
Rainbow VPN design, 460
Random Early Detection (RED), 61, 228, 348
RD (route distinguisher)
 allocation, 132, 201
 formats, 9, 133
 regions, 300
RDM (Russian Doll Model), 86, 343
real-time traffic policing, 241
receivers, multicast VPNs, 22
records, CDR, 244
recovery, 95–115, 393–400
 cycles, 438
 inter-AS TE LSPs, 419–421
 national telco design study, 255–272
 traffic engineering, 104–115
 USCom, 163–181
RED (Random Early Detection), 61, 228, 348
reflectors, routes, 21
refresh reduction, 254, 389
regional customer attachments, 318
Regional Internet Registry (RIR), 33
regional service connectivity, 301–303
regions
 allocation between, 300
 architecture, 286–292
 Asian-Pacific, 288
 EMEA, 287
 North America, 289
 South America, 290
 automesh group number allocation per, 376
 connectivity, 296
 interregion connectivity, 292
IPv6 VPN design, 327–331
mVPN MDT between, 312
network recovery, 394
QoS, 340–349, 351–358
TE, 383, 385
remote access
 national telco design study, 212–215
 VPN, 14–15, 200
remote routing information, 10
rendezvous point (RP), 24, 217
reoptimization
 inter-AS TE LSPs, 415
 of TE-LSPs, 387
 TE LSP, 79–81, 92, 252
reporting
 SLA, 242–243, 371–372
 SLS, 52
requirements
 applications (QoS), 49–51
 bandwidth, 70
 control planes, 205–207
 PE-router control-planes, 135–136
rerouting
 recovery, 95–115
 TE LSPs, 249
 traffic engineering, 105
resizing parameters, 381
resolution, addresses (IPv6), 33
Resource Reservation Protocol Traffic Engineering (RSVP-TE), 12, 194
restoration, comparison to protection, 96
restored link reuse, 175–176
restrictions
 Multicast routing state (mPE routers), 220
 prefixes, 142
 reusability, restored links, 175–176
 reuse limits, 142
Reverse Path Forwarding (RPF), 25, 310
revertive links, 114
RIB (Routing Information Base), 258
RIP (Routing Information Protocol), 445
RIR (Regional Internet Registry), 33
round-trip delays, 50
round-trip time (RTT), 350
route distinguisher (RD)
 allocation, 132, 201
 formats, 9, 133
 regions, 300
route reflection (RR), 128, 136–140, 205
route targets (RTs)
 allocation, 201, 441
 filtering, 320
 regions, 300
RouterDead timer, 256, 438
routers
 6PE, 274
 ASBRs, 292
 automesh configuration, 377
 BSR, 217
 CE-routers
 egress QoS policies, 233
 IP address allocation, 146
 routing protocol design, 140–145
data centers, 433–434
edge, 324–325
Layer 3 MPLS VPN architecture
 components, 5
LER, 63
maintenance, 177
mPE
 control planes, 205–207
 egress QoS policies, 240
 ingress QoS policies, 239
multiarea/multi-AS, 91
PE-PSTN1, 247
PE-routers
 ATM pseudowires, 400
 configuration, 134
 control-plane requirements, 135–136
data center Layer 3 MPLS VPN, 442
egress policy, 363
engineering guidelines, 131
filtering, 146
IP address allocation, 146
multiservice, 200
network management VPNs, 202
routing protocol design, 140–145
worldwide network architecture, 286–292
routes
 allocation between, 300
 ARF, 297
dampening, 142
default, 305
distribution, 146
IGP, 292
refectors, 21
targets, 10
 formats (PE-routers), 10
 selection of, 134
VPNv4, 297–299
routing
 architecture, 293–294
 convergence, 320–324
 core routing, 437–438
 DiffServ-aware TE LSPs, 89
 exchanges, 7
 host, 438
 IGP extensions, 74, 88
inter-AS TE LSPs, 415
IP, 98, 103
IPv6, 34
label forwarding, 125, 194–198
multi-VRF VRF, 449
protocols
design, 140–145
Multicast, 217
states, 6–7
static design, 141
tables
 computation, 180
 Internet via, 305
TE LSPs, 76
Routing Information Base (RIB), 258
Routing Information Protocol (RIP), 445
8
RP (rendezvous point), 24, 217
RPF (Reverse Path Forwarding), 25, 310
route reflection (RR), 128, 136–140, 205
RSVP-TE (Resource Reservation Protocol
 Traffic Engineering), 12, 194
RTCP (RTP Control Protocol), 244
RTP Control Protocol (RTCP), 244
RTs (route targets), 300
 allocation, 201, 441
 filtering, 320
 regions, 300
RTT (round-trip time), 350
Russian Dolls Model (RDM), 86, 343

S
SAA (Service Assurance Agent), 242, 371
SAFI (subaddress family), 311
scalability
 evaluation of technologies, 4
 IETF DiffServ models (QoS), 55–64
 MP-BGP, 318
 MPLS VPN, 313–318, 320–325
 recovery, 106
 TE, 253, 388
SCCP (Skinny Client Control Protocol), 456
scheduling, CE-router egress QoS policies, 237
SDH (Synchronous Digital Hierarchy), 186
security
 BGP IPv4 removal, 195
 IPv6, 34
 Layer 3 MPLS VPN service, 147–148
 MPLS VPN, 313–318, 320–325
selection
 of CBTS, 89, 385
 of route targets, 134
 of VPN solutions, 4
Selective Packet Discard (SPD) tuning, 205
separation
 of routing states (PE routers), 6–7
 of services, 126
serialization
 delay, 50, 438
 edge QoS engineering, 67
 low-speed links, 238
servers
 BASs, 191
 LNS, 14
 NASs, 191
Service Assurance Agent (SAA), 242, 371
service level agreements. See SLAs
service level specification (SLS), 52
services
Carrier’s Carrier, 207–212
classes
large enterprise design study, 463
mapping, 467
disabling, 314
DS fields, 56
firewalls, 309
Internet, 303–309
RR deployment, 128, 198
SLAs, 149
Internet + Internet, 200
IPv6, 326–332
mVPN, 310–312
NAT, 309
portfolios, 279
provisioning, 195
pseudowire, 42
regional connectivity, 301
security, 315
separation of service, 126
shared-edge Internet, 295
VPN, 3–5
autonomous system boundaries, 19–22
Carrier’s Carrier architecture, 16–18
CE routers, 7
components, 5
IPv6, 30–41
label allocation (PE routers), 8–9
Layer 2, 41–45
multicast, 22–30
packet delivery, 12–13
PE routers, 6–7
remote access, 14–15
route target formats (PE routers), 10
VPNv4 prefix creation (PE routers), 9–10
Session Initiation Protocol (SIP), 456
Set of Ordered Path option (traffic engineering), 73
sham links, 143
Shared Risk Link Group (SRLG), 123
shared-edge Internet services, 197, 295
sharing load balancing (TE LSPs), 82
Shortest Path First. See SPF
Shortest Path Trees (SPTs), 23
show ip bgp neighbor command, 139
signaling
pseudowire, 44
TE LSPs, 75–76, 88
simulations (MPLS TE), 252
SIP (Session Initiation Protocol), 456
site of origin (SoO), 133, 143
six-queue policy, 467
sizing rules (PE-router), 132
Skinny Client Control Protocol (SCCP), 456
SLAs (service level agreements)
for Internet services, 149
for Layer MPLS VPN services, 149–153
QoS, 52–53, 335–338
tools, 65–68
SLS (service level specification), 52
SMBs (small and medium businesses), 199
SNA (Systems Network Architecture), 339
solutions to the fish problem, 77
SONET, 118
SoO (site of origin) attributes, 133, 143
source distribution multicast trees, 23–24
Source-Specific Multicast (SSM), 26
South America, 290
QoS, 340–349, 351–356
TE, 383–385
Sparse Mode (PIM-SM), 25
SPD (Selective Packet Discard) tuning, 205
SPF (Shortest Path First)
 dynamic timers, 102–104
 triggering, 257
SPTs (Shortest Path Trees), 23
SRLG (Shared Risk Link Group), 123
 constraints, 266
 memberships, 262
SSM (Source-Specific Multicast), 26
stacks, two-level label, 13
standardization of BGP, 142
static configuration of routing exchanges, 7
static default route template, 307
static routing design, 141
stitched TE LSPs, 404
sub-100-Mbps QoS policy, 467
subaddress family (SAFI), 311
summarization (automatic), 145
support
 Layer 3 MPLS VN, 26
 load balancing, 202
 SLAs, 65–68
suppress limits, 142
Synchronous Digital Hierarchy (SDH), 186
Systems Network Architecture (SNA), 339
telco national design study, 185–190
 Carrier’s Carrier service, 207–212
 IPv6, 272, 275
 label forwarding, 194–198
 Layer 3 MPLS VPN, 199–206
 mVPN service access, 216–220
 objectives, 194
 POP, 190–191
 QoS, 221–244
 recovery, 255–272
 remote access, 212–215
 TE, 245–255
Telecom Kingland. See telco national design study
Telecommunications Act of 1996, 117
TE-LSP (Traffic-Engineering LSP)
 automatic meshing, 85
 bandwidth, 246
 deployment scenarios, 77–79
 DiffServ-aware
 deployment, 89
 routing onto, 89
 dynamic bandwidth adjustments, 378–382
 fish problem, 77
 forwarding adjacency, 82–85
 full mesh, 376–377
 inter-AS, 404
 last-resort unconstrained option, 255, 390
 load balancing, 82
 monitoring, 389–390
 multiarea/multi-AS, 90–95
 path computation, 73–74, 382
 provisioning, 254
 reoptimization, 79–81, 92, 252, 387
 routing, 76
 signaling, 75–76
templates
 6PE router configuration, 274
 ARF, 297
 ATM pseudowires, 370
 automatic meshing (TE LSPs), 85
 Carrier’s Carrier service, 210
 CE-router egress QoS policies, 234
 core egress QoS service policy, 355
 data-MDTs, 220
 EIGRP SoO attribute configuration, 145
 Inter-AS mVPN SAFI, 312
 IPv6 service design, 328
 maximum routes configuration, 146
 mVPN, 218
 network management VPNs, 202
 OC-3 configuration, 375
 OSPF timer, 256
 PE-CE
 data plane protection, 317
 link filter, 148
 PE-routers
 configuration, 134
 PE-CE BGP links, 142
 PMTU configuration, 136
 VPNv4 MP-BGP configuration, 139
 static default route, 307
temporary loop avoidance, 171–175
time-division multiplexing (TDM), 186
timer-based reoptimization, 81
timers
 advertisement interval, 324
 dynamic, 102–104
 hello, 438
 hold-off, 270, 398
 OSPF, 256
 RouterDead, 438
 TLV (Type-Length-Value), 376
To-Fab QoS policy, 231
tools
 NetFlow, 70
 OAM, 41
 SLAs, 65–68
topologies
 cloud (for telephony transit), 190
 IGP, 143
 packet core, 187
 USCom, 119
 VPNv4 RRs, 139
traffic
classification stage, 57
classifiers, 58
conditioners, 58
engineering, 68–69
 automatic meshing, 85
 components, 69–72
 deployment scenarios, 77–79
 fish problem, 77
 forwarding adjacency, 82–85
 hierarchy of attributes, 73
 IGP routing extensions, 74
 load balancing, 82
 reoptimization, 79–81
 routing, 76
 signaling, 75–76
 TE LSP path computation, 73–74
flowing (branch offices), 472–475
mapping, 221
multicast, 368–369
office classification, 465
QoS
 application requirements, 49–51
 IETF DiffServ models, 55–64
 mechanisms, 53
 utilization curves, 53–55
 real-time policing, 241
 recovery, 95–115
 requirements, 52–53, 65–68
 Unicast, 194
Traffic Conditioning Specification (TCS), 52
traffic engineering (TE)
 AsiaPac, 383, 385
 ATM pseudowires, 391, 393
 DiffServ, 86–89
 deployment, 89
 routing, 89
 EMEA, 383, 385
 Fast Reroute, 394
 multiarea/multi-AS, 90–95
 national telco design study, 245–255
 North America, 382–383
 path protection, 106
 recovery, 95, 104–115
 regions, 383, 385
 scaling, 388
 South America, 383, 385
 USCom, 163
Traffic-Engineered Label-Switched Path. See TE-LSP
transactions, CITRIX ICA, 465
temporary routing loops, 104
Transmission Control Protocol (TCP), 61
transmit rings (Tx-rings), 239
trees
 MDT, 310
 source distribution multicast, 23–24
triggering SPF, 102–104, 257
troubleshooting
 availability, 164
 BGP IPv4 removal, 195
 IS-IS
troubleshooting

configuration, 180–181
convergence, 178–180
LDP, 197
link failures, 165–169, 176
multiple failures, 176
node failures, 177–178
prefix prioritization, 170–171
recovery, 95–115
restored link reuse, 175–176
temporary loop avoidance, 171–175
tunneled
ATM, 370–371
PSTN, 191
tuning BGP, 324
tunneling
backup, 112, 165
cellular networks, 375–380
design (level POPs), 262
level 1/level 2 POPs, 267
NHOP/NNHOP, 264
period of time in use, 268
backups, 259
CBTS, 89, 385
EF, 343
IP, 26
MTI, 28
non-EF tunnels, 392
pseudowires, 392
path computation, 113
traffic engineering optimization, 72
two-level label stacks, 13
Tx-rings (transmit rings), 239
Type 1 POPs, 280
Type 2 POPs, 284
Type 3 POPs, 285
Type-Length-Value (TLV), 376
types
of links, 293
POP network structure, 280, 284–285
of recovery, 97

U

Unicast connectivity, 216
Unicast traffic, label forwarding, 194
unique local IPv6 unicast addresses, 33
unique RDs (route distinguishers), 133
unreachability of IPv6, 33
unused services and protocols, disabling, 314
updates
FIB, 258
Flash, 141
groups, 138
RIB, 258
URD (URL Rendezvous Directory), 26
USCom (interexchange carrier design study)
environment, 117–124
label forwarding, 125–129
Layer 3 MPLS VPN service design, 129–148
objectives, 124
QoS design, 162
recovery, 163–181
traffic engineering, 163
utilization curves (QoS), 53–55
values (TLV), 376
variable bit rate-real time (VBR-rt), 278
variation of QoS metrics, 50
VBR-rt (variable bit rate-real time), 278
VHG (Virtual Home Gateway), 14, 213
virtual circuit labels, 42
Virtual IP Leased Line (VLL), 417
virtual POPs (VPOPs), 401–410, 413–421
Virtual Private Dialup Network. See VPDN
Virtual Private LAN Service (VPLS), 194
Virtual Private Network. See VPN
Virtual Private Network version 4. See VPNv4
Virtual Routing/Forwarding. See VRF
VLANs (virtual LANs), 443
VLL (Virtual IP Leased Line), 417
VoIP (voice over IP), 452
Layer 3 MPLS, 452–461
media gateways, 188
VPDN (Virtual Private Dialup Network)
dial-in access, 14, 213
DSL access, 15
VPLS (Virtual Private LAN Service), 194
VPN (Virtual Private Network), 3–5
autonomous system boundaries, 19–22
Business Latency CoS, 339
Business Throughput CoS, 340
Carrier’s Carrier architecture, 16–18
CE routers, 7
components, 5
data plane protection, 316
extranets, 130, 200
hierarchical, 17, 208
interprovider QoS, 365–367
intranets, 130, 200
IPv6, 30–41
management, 201–202
multicast, 22–30
mVPN design, 310–312
network edge, 359–365
operational security, 314–315
PE routers, 6–7
label allocation, 8–9
packet delivery, 12–13
route target formats, 10
VPNv4 prefix creation, 9–10
rainbow VPN design, 460
routes, 297–299
RRs
deployment, 136–140
placement, 205
VPOPs (virtual POPs) design, 401–410, 413–421
network recovery, 400
QoS, 369
Layer 2, 194, 41–45
Layer 3, 439, 443–450
national telco design study, 199–206
Globalnet service, 295–303
separation of services, 126
multicast, 22–30
mVPN design, 310–312
network edge, 359–365
operational security, 314–315
PE routers, 6–7
label allocation, 8–9
packet delivery, 12–13
route target formats, 10
VPNv4 prefix creation, 9–10
rainbow VPN design, 460
routes, 297–299
RRs
deployment, 136–140
placement, 205
VPOPs (virtual POPs) design, 401–410, 413–421
VRFs (Virtual Routing/Forwarding), 6–7
customer naming conventions, 201
multi-VRF VRF routing, 449
naming conventions, 132
remote routing information, 10
route targets, 10
routing tables, 305
vrf upgrade-cli command, 330
VRF-to-VRF connections, 19

W–Z

worldwide architecture, 286–292
WRED (Weighted Random Early Detection), 61, 230
drop profiles, 238
profiles, 350

X.25 over TCP (XOT), 466