Index

Numerics

802.1q headers, 44

A

AAA attribute
 control planes, 308-309
 MPLS-based wholesale services, 312
 per-VRF AAA, 234–240
 accounting, 246–247
 templates, 241–246
 VRFs, 218–225
 VHGs, 225–227
access cards, 18
access networks, DSL networks, 7–8
access requirements, VPNs, 74–75
accounting
 bridged access networks, 53
 MPLS-VPNs, 214
 per-VRF AAA, 246–247
 PPP, 64–65
address alignment, VPNs, 23
address allocation
 IPv6, 326
 MPLS-based wholesale services, 311
address assignments
 DOCSIS networks, 40–41
 ETTX, 47–49
 PPPoA, 60–63
 RBE networks, 35–37
address management, MPLS-VPNs, 215
address routing, MPLS-based wholesale services, 311
address space size, IPv6, 325–326
address spoofing, bridged access networks, 49–50
addresses
 IPv6, 323, 326–328
on-demand address pools, 249–251
address assignments, 252–254
host-route solution, 251–252
overlapping, assigning and managing, 248–254
single address, downloading with PPPoA, 60
“Advanced Topics in MPLS-TE Deployment”, 139
aggregation routers, cost considerations, 72
AH header (IPSec), 93
Alverstand, Harald, 334
Any Transport over MPLS (AToM), 335–336
Anycast addresses (IPv6), 328
architectures
 broadband access, bridged access networks, 28–53
 centralized architectures, VPNs, 71–74
 PPP networks, 54
 accounting, 64–65
 authentication, 64–65
 PPPoA, 59–63
 PPPoE, 54–58
 QoS (quality of service), 63
 security, 65
assigning overlapping addresses, 248–254
ATM (Asynchronous Transfer Mode)
 MPLS, compared, 140
 PPPoA, 59
 address assignments, 60–63
 configuration, 59
atm pppatm passive command, 59
AToM (Any Transport over MPLS), 335–336
attributes
 AAA attribute
 control planes, 308-309, 312
 per-VRF AAA, 234–240
 VRFs, 218–225
 BPG, 156–157
 iBGP, 156
 MPLS-VPN reference architecture, 156–158
authentication
 bridged access networks, 53
 IPSec, 93
 IPv6, 324
 MPLS-VPNs, 214
 PPP, 64–65
 VPNs, 21–22
authorizations
 MPLS-VPNs, 214
 remote-access networks, 53
autoconfiguration, IPv6, 329–330
availability, MPLS-VPNs, 212–213
bba-group commands, 58
BGP (Border Gateway Protocol), 153
attributes, 156–157
VRF-Lite PEs, routing between, 290–298
billing mechanisms, DSL services, 5
bindings, dynamic bindings
DHCP servers, 227–230
PBR, 231–232
SSG, 232–233
VHG, 225, 227
VRF Select, 233
VRFs, 217–221, 223–225
BISDN (Broadband Integrated Services Digital Network), 4
Border Gateway Protocol (BGP). See BGP (Border Gateway Protocol)
BRAS (Broadband Remote Access Server), 332
bridged access networks, 28–29
accounting, 53
address spoofing, 49
advantages of, 28
authentication, 53
cabling, DOCSIS, 37–41
DSL, RFC 2684, 29–37
Ethernet, ETTX, 42–49
RBE, 29–30, 32
address assignments, 35–37
configuration, 32
downstream traffic, 30
neighbor-to-neighbor traffic, 31
packet flow, 30, 34
QoS, 33
routing, 33–35
security, 49–53
broadband access, 4
DSL networks, 6–8
popularity of, 3
providers, 5–6
service models, 8–9
VPNs, 27
bridged access networks, 28–53
PPP, 54–65
PPP networks, 54
BISDN (Broadband Integrated Services Digital Network)

Broadband Remote Access Server (BRAS), 332
broadcast traffic weaknesses, bridged access networks, 50
business subscribers, broadband, 9

cabling
bridged access networks, 37–41
DOCSIS standard, 37–41
security, 51
cable dhcp-giaddr command, 41
cable helper-address command, 41
cable source-verify command, 51
cable subscribers, VRFs, mapping to, 172–176
campus hop-to-hop topology, VRF-Lite PEs, routing between, 272–281
CAs (certificate authorities), 96
case studies
D/V/V over Ethernet, 313–321
network design, 314–316
open access, 317–321
service definitions, 313–314
managed LNS, 302–312
MPLS-based wholesale services, 309–312
service definitions, 304–305
wholesale services, 305–309
CE routers, MPLS-VPN architecture, 171
centralized architectures, VPNs, 71–74
certificate authorities (CAs), 96
CIDR (classless interdomain routing), 326
circuit aggregation, LACs, 306
circuit-id field (Option 82), 229
circuits, Layer 2 circuits, dynamically provisioning, 177
Cisco IOS (Internetwork Operating System)
DOCSIS configuration, 39–40
MPLS-VPN configuration, 158–162
VRs, implementing, 262–263
classless interdomain routing (CIDR), 326
client-based service selection, 22
clients
D/V/V over Ethernet, 314–315
managed LNS, 306
MPLS-based wholesale services, 310
commands
 atm pppatm passive, 59
 bba-group, 58
 cable dhcp-giaddr, 41
 cable helper-address, 41
 cable source-verify, 51
 crypto isakmp policy, 96
 debug, 285
 debug ip packet, 259
 debug pppoe, 191
 ip helper-address, 36
 ip rsvp, 151
 ipx routing, 85
 keyring, 268
 l2tp tunnel no-session-limit, 129
 load-ppols, 61
 match identity group, 270
 option vpn, 229
 ping, 161
 pppoe enable, 186
 qos-preclassify, 114
 rbe nasip, 36
 redistribute connected, 187
 redistribute static BGP, 187
 router rip, 286
 service-policy, 63
 show crypto ipsec, 101
 show crypto ipsec sa, 100
 show ip interface brief, 83
 show ip route, 83, 154
 show ip vrf, 191
 show ipx interface, 85
 show route, 37
 show vpdn, 191
 test, 186
 test pppoe, 191
 traceroute, 161
 tunnel designation, 287
 tunnel destination, 80
 tunnel mode gre multipoint, 111
 tunnel protect, 111
 tunnel source, 80
 tunnel vrf, 289
 vpdn-group, 58, 199

configuration
 cleaning up, VRs, 261
 DOCSIS, IOS configuration, 39–40
 ETTX, 46
 GRE, 78–87
 IPSec, 95–97
 checking, 104
 encrypted GRE, 101–104, 106
 site-to-site IPSec, 98–100
 IPv6, autoconfiguration, 329–330
 L2TP, 120–121, 124–125, 127
 MPLS-TE tunnels, 151–152
 MPLS-VPNs
 IOS configuration, 158–159, 161–162
 multi-VRF CE, 206–209
 PPP Termination configuration, 183–189
 PPPOA, 59
 PPPOE, 56–58
 RBE networks, 32
 two-box VHGs, 196–199, 201
 connections, VRs (virtual routers), 260
 conservative retention mode, LSRs, 146
 control plane, AAA attribute, 308–309
 CPE-based VPNs, 11, 257
 access requirements, 75
 network-based VPNs, compared, 264–265
 crypto isakmp policy command, 96

D

data confidentiality, VPNs, 16, 210
Data Over Cable Service Interface Specification
(DOCSIS). See DOCSIS (Data Over Cable Service Interface Specification)
DBS (Dynamic Bandwidth Selection), 63
default debug commands, 285
default debug ip packet command, 259
default debug pppoe command, 191
“Deploying MPLS for Traffic Engineering”, 139
360 deployment scenarios

- Dynamic Bandwidth Selection (DBS), 63
- Dynamic bindings
 - DHCP servers, 227–230
 - PBR, 231–232
 - SSG, 232–233
 - VHGs, 225, 227
 - VRF Select, 233
 - VRFs, 217–225
- Dynamic multicast VPNs, IPsec, 108
- dynamically provisioning Layer 2 circuits, 177

E

- Edge LSR, 141
- EIGRP (Enhanced Interior Gateway Routing Protocol), 72, 111
- EMF (Ethernet in the First Mile), 7
- encapsulation
 - GRE, 76, 267
 - IPsec, 94–95, 268
 - MPLS, 143–144
 - RBE, 176
- encrypted GRE, configuration, 101–106
- encryption
 - encrypted GRE, configuration, 101–106
 - IPsec, 93
- Enhanced Interior Gateway Routing Protocol (EIGRP), 72, 111
- Enterprise, IPv6, deployment, 330
- ESP header (IPsec), 93
- Ethernet, 28
 - bridged access networks, ETTX, 42–49
 - D/V/V over Ethernet, case study, 313–321
- DOCSIS, 28
 - laptops, 28
 - LRE, 42, 45
 - PPPoE, 54–56
 - configuration, 56–58
 - service selection and discovery, 58
 - security, 51, 53
- Ethernet in the First Mile (EFM), 7
- Ethernet subscribers, VRFs, mapping to, 174–175
- Ethernet switches, 8
ETTX, 42–49
 address assignment, 47–49
 configuration, 46
 QoS (quality of service), 46–47
 residential ETTX, 43
 extensions, IPv6, 324, 328–329

F
 fields, IPv6 headers, 325
 fish problems, TE (Traffic Engineering), 147
 Flow Label field (IPv6 headers), 324
 flow labeling, IPv6, 324
 follows, 240
 fragmentation
 GRE, 91
 IPSec, 114
 MPLS-VPNs, 214
 VPNS, 20
 Frame Relay networks, unnumbered interfaces, 31
 frames, 63
 framework (VPNs), 16
 address alignment, 23
 authentication, 21–22
 availability, 18–19
 data confidentiality, 16
 efficient operation, 17
 efficient routing, 17
 fragmentation, 20
 IP addressing, 22
 Layer 3 services, 23
 multicast, 19
 QoS, 19–20
 resiliency, 18–19
 service selection, 22–23

G
 Global addresses (IPv6), 328
 GRE (generic routing encapsulation), 76
 availability, 88
 confidentiality, 88
 configuration, 78–87
 design, 87–91
 efficient operation, 88
 encapsulation, 76, 267
 fragmentation, 91
 headers, 77
 IPSec configuration, 101–106
 network-based IP VPNS, building, 266–267
 QoS, 90
 resiliency, 88
 routing, 88
 site VPNS, 76–91

H
 headers
 802.1q, 44
 GRE, 77
 IPv4, 323
 IPv6, 323
 fields, 325
 PPPoE, 55
 Hop Limit field (IPv6 headers), 325
 Hop-by-Hop options (IPv6), 329
 host-route solution, overlapping on-demand address
 pools, 251–252
 HSRP, 18
 hub-and-spoke systems, VPNS, 70
 hub-and-spoke topology, 162

I
 iBGP (internal Border Gateway Protocol), 72, 156
 attribute exchange, 156
 identifications, remote-access networks, 53
 IGP (Interior Gateway Protocol), 72
 IKE (Internet Key Exchange), IPSec, 94
 implementation, VRs (virtual routers), Cisco IOS,
 262–263
 independent delivery, label distribution, 145
 infrastructure VPNS, 69
 ink protection problems, 148
 inter-exchange carriers (IXCs), 326
 interfaces, routed interfaces, VRF mapping, 175
 Interior Gateway Protocol (IGP), 72
 internal Border Gateway Protocol (iBGP). See iBGP
 (internal Border Gateway Protocol)
Internet Key Exchange (IKE). See IKE (Internet Key Exchange)
Internet Protocol (IP). See IP (Internet Protocol)
Internet Service Providers (ISPs). See ISPs (Internet Service Providers)
IOS (Internetwork Operating System)
DOCSIS configuration, 39–40
MPLS-VPN configuration, 158–162
VR implementation, 262–263
IP (Internet Protocol)
See also IPv6 (Internet Protocol version 6)
addressing
MPLS-VPNs, 215
VPNs, 22
aggregation, LNS, 307–308
packet forwarding, 141–143
routing, network-level redundancies, 18
TE, 146–148
fish problems, 147
link congestion, 146–151
link congestion problems, 150
link protection, 146
link protection problems, 150
load balancing, 146
load-balancing problems, 147, 150
ip helper-address command, 36
ip rsvp command, 151
IP Switching, 140
IP VPNs, 257
building
GRE, 266–267
IPSec, 267–271
tunnels, 263–266
VRs, 257
IP-based VPNs, 10–15
IPSec
availability, 114
confidentiality, 113
configuration
checking, 104
encrypted GRE, 101–104, 106
site-to-site IPSec, 98–100
design, 113–115
DMVPNs, 107–111
dynamic multicast VPNs, 108
efficient operation, 114
capsulation, 268
fragmentation, 114
multicasting, 114
network-based IP VPNs, building, 267–271
QoS, 114
remote access, 112–113
resiliency, 114
routing, 114
service selection, 115
VPNs, 91–93
authentication, 93
configuration, 95–97
encryption, 93
IKE, 94
tunnel mode encapsulation, 94–95
IPv6 (Internet Protocol version 6), 323–325
See also IP (Internet Protocol)
address allocation, 326
address space size, 325–326
address types, 328
addressing, 323, 326–328
authentication, 324
autoconfiguration, 329–330
deployment scenarios, 330
Enterprise, 330
retail ISPs, 331–332
wholesale ISPs, 333
extensions, 324, 328–329
flow labeling, 324
headers, fields, 325
privacy capabilities, 324
security, 324
ipx routing command, 85
ISPs (Internet Service Providers)
broadband access, 5–6
MPLS-based wholesale services, 311
retail ISPs, IPv6, 331–332
wholesale ISPs, IPv6, 333
IXCs (inter-exchange carriers), 326

K-L
keyring command, 268
Kumaraswamy, Jay, 139
L2 services, 338
L2TP, 336-337
configuration, 120–121, 124–127
design, 133–135
scaling, 127–133
VPNs, 115–120
 session setup, 119–120
tunnel setup, 117–118
L2TP Access Concentrator (LACs). See LACs
 (L2TP Access Concentrators)
L2TP Network Server (LNS). See LNS (L2TP
 Network Server)
l2tp tunnel nosession-limit command, 129
L2VPNs (Layer 2 VPNs), 323, 334, 337-338
 pseudo-wires, 334–337
L3 services, MPLS-VPNs, 215
label distribution
 MPLS, LDP, 144–146
timing of, 145–146
Label Distribution Protocol (LDP). See LDP (Label
 Distribution Protocol)
label switch router (LSR). See LSR (label switch
 router)
labels
 distribution, MPLS, 144
 switching, 140
label-switched paths (LSPs), 142
LACs (L2TP Access Concentrators), 116
circuit aggregation, 306
laptops, Ethernet, 28
Layer 2 and 3 core networks, VPNs, building over,
 12–13
Layer 2 circuits, dynamically provisioning, 177
LDP (Label Distribution Protocol), 142
 MPLS, 144–146
liberal retention mode, LSRs, 146
link congestion, TE (traffic engineering), 146, 150
Link local addresses (IPv6), 328
Link Local Use Addresses allocation (IPv6
 addresses), 327
link protection
 MPLS, 151
 TE, 146-150
LNS (L2TP Network Server), 116, 302
 IP aggregation, 307–308
 managed LNS, case study, 302–312
load balancing, 19
 TE, 146-150
load-pools command, 61
M
managed LNS
 case study, 302–312
 MPLS-based wholesale services, 309–312
 service definitions, 304–305
 wholesale services, 305–309
IP aggregation, 307–308
 service availability, 309
mapping
 cable subscribers to VRFs, 172–176
 DSL subscribers to VRFs, 175–176
 Ethernet subscribers to VRFs, 174–175
match identity group command, 270
maximum transmission units (MTUs). See MTUs
 (maximum transmission units)
metropolitan-area networks (MANs). See MANs
 (metropolitan-area networks)
monitoring
 direct PPP termination, 190–196
two-box VHG, 202–206
MPLS (Multiprotocol Label Switching), 139
 accounting, 214
 address management, 215
 ATM, compared, 140
 authentication, 214
 authorization, 214
 availability, 212–213
 CE, 171
 configuration, PPP Termination, 183–189
data confidentiality, 210
DHCP servers, 227–231
DiffServ, 164
direct PPP termination, monitoring, 190–196
efficient operation, 210
efficient routing, 211
encapsulation, 143–144
fragmentation, 214
IP addressing, 215
L3 services, 215
label distribution, LDP, 144–146
link protection, 151
multicasting, 212
multi-VRF CE configuration, 206–209
network taxonomy, 142
overlapping addresses, assigning and managing, 248–254
packet forwarding, 141–143
PE, 169–172
popularity of, 140
proxy RADIUS, 234–240
QoS, 163, 213
packet headers, 163–164
pipes, 164–166
tunnels, 164–166
requirements, 210
resiliency, 212–213
service selection, 214
shim header, 143
TE, 146
DS-TE, 167
fish problems, 147
link congestion, 146–151
link congestion problems, 150
link protection, 146
link protection problems, 148, 150
load balancing, 146
load-balancing problems, 147, 150
tunnel-load balancing, 150
two-box VHG, monitoring, 202–206
VHG, 177–182
VRFs, 172–176, 217–227
wholesale VPNs, 217

“MPLS Architecture Overview”, 139
MPLS VPNs
peer model, 14–15
IOS configuration, 158–162
MPLS-VPN reference architecture, 152–158
VRs (virtual routers), 260

MPLS-based wholesale services, 309–310
AAA control plane, 312
address allocation, 311
address routing, 311
clients, 310
ISP PE, 311
multicasting, 312
PTA PE, 310–311
QoS, 312
MPLS-TE tunnels, configuring, 151–152
MTU (maximum transmission unit), debugging, 20
multicast VPNs, 19
Multicast addresses (IPv6), 327–328
multicasting
MPLS-based wholesale services, 312
MPLS-VPNs, 212
multipoint tunnels, 111
Multiprotocol Label Switching (MPLS). See MPLS (Multiprotocol Label Switching)
multi-VRF CE, configuration, 206–209

neighbor-to-neighbor traffic, RBE networks, 31
network address translation, VPNs, 135–136
network availability, managed LNS, 309
network design
D/V/V over Ethernet, 314–316
design checks, 301
network VPNs, tunnels, 264
network-based IP VPNs, 11
access requirements, 75
building
GRE, 266–267
IPSec, 267–271
tunnels, 263–266
CPE-based VPNs, compared, 264–265
network-level redundancies, VPNs, 18–19
Next Header field (IPv6 headers), 325
Next Hop Server (NHS), 111
NHRP, 111
NHS (Next Hop Server), 111
nodes, tunnels, 70
non-IP traffic site VPNs, GRE
(generic routing encapsulation), 76–91
configuration, 78–87
design, 87–91
encapsulation, 76
headers, 77
N-squared problem, tunnels, 70

O

ODAP (On Demand Address Pools), 62, 249–251, 309
 address assignments, 252–254
 host-route solution, 251–252
 on-demand delivery, label distribution, 145
Open Access
 D/V/V over Ethernet, adding, 317–321
 VPNs, 135
 Network Address Translation, 135–136
 policy-based routing, 136
Open Shortest Path First (OSPF), 72
operators, broadband access, 4–8
option vpn command, 229
ordered delivery, label distribution, 145
Osborne, Eric, 139
OSPF (Open Shortest Path First), 72
overlapping addresses, assigning and managing, 248–254
overlay VPNs, 13–14

P

packet flow, RBE networks, 30, 34
packet forwarding, 141–143
packet headers, QoS (quality of service), 163–164
Payload Length field (IPv6 headers), 325
PBR (policy-based routing), dynamic bindings, 231–232
peer model, MPLS VPNs, 14–15
penultimate hop popping (PHP), 142, 164
per-VRF AAA, 234–240
 accounting, 246–247
 templates, 241–246
PEs
 pseudo-wires, 334–337
 MPLS-VPN architecture, 169–172
 VRF-Lite PEs, routing between, 271–281, 284–298
PHP (penultimate hop popping), 142, 164
ping command, 161
pipes, QoS (quality of service), 164–166
point of presence (POP). See POP (point of presence)
Point-to-Point Protocol (PPP). See PPP (Point-to-Point Protocol)
Point-to-Point Protocol over ATM (PPPoA).
 See PPPoA (Point-to-Point Protocol over ATM)
point-to-point tunnels, 257
VPNs, 69
policy-based routing, VPNs, 136
pools
 downloading at startup, PPPoA, 60–61
 ODAP, 62
POP (point of presence), 72
 broadband POP, 73
port-based authentication, PPP (Point-to-Point Protocol), 65
PPP (Point-to-Protocol) networks, 54
 accounting, 64–65
 authentication, 64–65
 PPPoA (PPP over ATM), 59–63
 PPPoE (PPP over Ethernet), 54–58
 QoS, 63
 security, 65
 termination, monitoring, 190–196
 VRF mapping, 176
PPP Termination configuration, MPLS-VPN architecture, 183–189
PPPoA (PPP over ATM), 59
 address assignments, 60–63
 configuration, 59
PPPoE (PPP over Ethernet), 54–56
 configuration, 56–58, 183–189
 service selection and discovery, 58
pppoe enable command, 186
Priority field (IPv6 headers), 324
private VLANs, 52
processor cards, 18
protocol stacks
 DOCSIS, 38
 VHG, 196
Provider-Based Unicast Address allocation
 (IPv6 addresses), 327
providers, broadband access, 5–6
provisioning, Layer 2 circuits, dynamically provisioning, 177
proxy RADIUS, VPNs, 234–240
pseudo-wires, PEs, 334–337
PTA PE, MPLS-based wholesale services, 310–311

Q-R

QoS (quality of service)
ETTX, 46–47
GRE, 90
MPLS, 163
 packet headers, 163–164
 pipes, 164–166
 tunnels, 164–166
MPLS-based wholesale services, 312
MPLS-VPNs, 213
PPP, 63
RBE networks, 33
VPNs, 19–20
qos-preclassify command, 114
RBE (routed bridge encapsulation), 169, 176
 bridged access networks, 29–30, 32
 address assignments, 35–37
 configuration, 32
 downstream traffic, 30
 neighbor-to-neighbor traffic, 31
 packet flow, 30, 34
 QoS, 33
 routing, 33–35
VRF mapping, 176
rbe nasip command, 36
redistribute connected command, 187
redistribute static BGP command, 187
remote access, IPSec, 112–113
remote-access networks, 53
remote-id field (Option 82), 229
Reserved allocation (IPv6 addresses), 326
Reserved for IPX allocation (IPv6 addresses), 327
Reserved for Neutral-Interconnect-Based Unicast Addresses allocation (IPv6 addresses), 327
Reserved for NSAP allocation (IPv6 addresses), 326
residential subscribers, broadband, 9
resiliency, MPLS-VPNs, 212–213
retail ISPs, IPv6, 331–332
retail providers, broadband access, 5

retrofitting tunnels, 77
RFC 2547, MPLS-VPN reference architecture, 152–158
RIP, VRF-Lite PEs, routing between, 281, 284–289
RIP to BGP topology, 290, 293–297
Routed Bridge Encapsulation (RBE). See RBE (Routed Bridge Encapsulation)
routed interfaces, DSL subscribers, VRF mapping, 175
route-distinguisher attribute (BGP), 157
router rip command, 286
routers
cost considerations, 72
VRs (virtual routers), 257–262
configuration cleanup, 261
connecting, 260
implementation, 262–263
IP VPNs, 257
logical router process, 258
multiple VRs on single device, 258
operational neatness, 262
services, 258, 261
VRF-Lite, 257
route-target attribute (BGP), 157
routing
addresses, MPLS_based wholesale services, 311
RBE networks, 33–35
VPNs, 17, 211
VRF-Lite PEs, routing between, 271–298

S

SAs (security associations), 92
scaling networks, L2TP, 127–133
SCCRQs (Start-Control-Connection-Requests), 117
security
 bridged access networks, 49–53
 address spoofing, 49
 authentication, 53
 cable broadband networks, 51
 DSL broadband networks, 50–51
 Ethernet networks, 51, 53
 IPv6, 324
 PPP, 65
security associations (SAs), 92
Security Parameters Index (SPI) field, ESP header, 92
server selection override field (Option 82), 230
service availability, managed LNS, 309
service definitions, D/V/V over Ethernet, 313–314
service flow IDs (SFIDs). See SFIDs (service flow IDs)
service models, broadband access, 8–9
service selection
 MPLS-VPNs, 214
 VPNs, 22–23
service selection and discovery, PPPoE (Point-to-Point Protocol over Ethernet), 58
service-policy command, 63
SFIDs (service flow IDs), 173
 DOCSIS 1.1 specifications, 172
shim headers (MPLS), 143
show crypto ipsec command, 101
show crypto ipsec sa command, 100
show ip interface brief command, 83
show ip route command, 83, 154
show ip vrf command, 191
show vpdn command, 191
Site local addresses (IPv6), 328
Site Local Use Addresses allocation (IPv6 addresses), 327
tunneling
 GRE, 76–91
 configuration, 78–87
design, 87–91
 encapsulation, 76
 headers, 77
IPSec, requirements, 113
 requirements, 210
tunnels, 263
site-to-site IPSec, configuration, 98–100
site-to-site VPNs, 10–11, 69
 access requirements, 74
 CPE-based, 70
Source Address field (IPv6 headers), 325
SSG (Service Selection Gateway), dynamic bindings, 232–233
Start-Control-Connection-Requests (SCCRQs), 117
stateful autoconfiguration, IPv6, 329–330
stateless autoconfiguration, IPv6, 329–330
subnet selection option field (Option 82), 230
Tag Switching, 140
tag switching, 140
TE (Traffic Engineering), 140
 DS-TE (DiffServ-aware TE), 167
 fish problems, 147
 link congestion, 146–151
 link congestion problems, 150
 link protection, 146
 link protection problems, 148, 150
 load balancing, 146
 load-balancing problems, 147, 150
 MPLS, 146
telecommuter VPNs, 10, 69
 access requirements, 75
 IPSec, design requirements, 113
 requirements, 210
telnet commands, 161
templates, per-VRF AAA, 241–246
termination, 183
 PPP, monitoring, 190–196
test command, 186
test pppoe command, 191
timing, label distribution, 145–146
topologies, VHG, 197
traceroute command, 161
Traffic Engineering (TE). See TE (Traffic Engineering)
transport mode encapsulation, IPSec, 94–95
trunk cards, 18
tunnel destination command, 80, 287
Tunnel Endpoint Discovery (TED), 108
tunnel mode encapsulation, IPSec, 94–95
tunnel mode gre multipoint command, 111
tunnel protect command, 111
tunnel source command, 80
tunnel vrf command, 289
tunnel-load balancing, MPLS, 150
tunnels
 MPLS, QoS, 164–166
 MPLS-TE tunnels, configuring, 151–152
 multipoint tunnels, 111
 network VPNs, 264
 network-based IP VPNs, building, 263–266
 nodes, 70
 N-squared problem, 70
<table>
<thead>
<tr>
<th>368 tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>point-to-point tunnels, 257</td>
</tr>
<tr>
<td>retrofitting, 77</td>
</tr>
<tr>
<td>site VPNs, 263</td>
</tr>
<tr>
<td>TED, 108</td>
</tr>
<tr>
<td>tunnel protection, 111</td>
</tr>
<tr>
<td>VPNS, 69–70</td>
</tr>
<tr>
<td>two-box VHGs, 196–201</td>
</tr>
<tr>
<td>monitoring, 202–206</td>
</tr>
<tr>
<td>two-box VHGs (virtual home gateway), 180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unassigned allocation (IPv6 addresses), 326–327</td>
</tr>
<tr>
<td>Unicast addresses (IPv6), 328</td>
</tr>
<tr>
<td>unnumbered interfaces, Frame Relay networks, 31</td>
</tr>
<tr>
<td>unsolicited delivery, label distribution, 145</td>
</tr>
<tr>
<td>Version field (IPv6 headers), 324</td>
</tr>
<tr>
<td>VHGs (Virtual Home Gateways), 170</td>
</tr>
<tr>
<td>AAA attribute (VRF), 225–227</td>
</tr>
<tr>
<td>dynamic bindings, 225–227</td>
</tr>
<tr>
<td>protocol stack, 196</td>
</tr>
<tr>
<td>topology, 197</td>
</tr>
<tr>
<td>two-box VHG, 180, 196–199, 201</td>
</tr>
<tr>
<td>Video On Demand (VOD) infrastructure, 314</td>
</tr>
<tr>
<td>virtual private networks (VPNs). See VPNs (virtual private networks)</td>
</tr>
<tr>
<td>VLANs (Virtual LANs), 51</td>
</tr>
<tr>
<td>private VLANs, 52</td>
</tr>
<tr>
<td>vpdn-group command, 199</td>
</tr>
<tr>
<td>vpdn-group commands, 58</td>
</tr>
<tr>
<td>vpn-id field (Option 82), 230</td>
</tr>
<tr>
<td>VPNs (virtual private networks), 10, 27, 69, 140</td>
</tr>
<tr>
<td>access requirements, 74–75</td>
</tr>
<tr>
<td>accounting, 214</td>
</tr>
<tr>
<td>address management, 215</td>
</tr>
<tr>
<td>authentication, 214</td>
</tr>
<tr>
<td>authorization, 214</td>
</tr>
<tr>
<td>availability, 212–213</td>
</tr>
<tr>
<td>bridged access networks</td>
</tr>
<tr>
<td>accounting, 53</td>
</tr>
<tr>
<td>authentication, 53</td>
</tr>
<tr>
<td>cable, 37–41</td>
</tr>
<tr>
<td>Ethernet, 42–49</td>
</tr>
<tr>
<td>security, 49–53</td>
</tr>
<tr>
<td>bridges access networks, 28–29</td>
</tr>
<tr>
<td>DSL, 29–37</td>
</tr>
<tr>
<td>centralized architecture, 71–74</td>
</tr>
<tr>
<td>CPE VPNs, 257</td>
</tr>
<tr>
<td>CPE-based VPNs, 11</td>
</tr>
<tr>
<td>access requirements, 75</td>
</tr>
<tr>
<td>data confidentiality, 210</td>
</tr>
<tr>
<td>deployment, 10</td>
</tr>
<tr>
<td>DHCP servers, 227–231</td>
</tr>
<tr>
<td>distributed architecture, 71–74</td>
</tr>
<tr>
<td>efficient operation, 210</td>
</tr>
<tr>
<td>efficient routing, 211</td>
</tr>
<tr>
<td>fragmentation, 214</td>
</tr>
<tr>
<td>framework, 16</td>
</tr>
<tr>
<td>address alignment, 23</td>
</tr>
<tr>
<td>authentication, 21–22</td>
</tr>
<tr>
<td>availability, 18–19</td>
</tr>
<tr>
<td>data confidentiality, 16</td>
</tr>
<tr>
<td>efficient operation, 17</td>
</tr>
<tr>
<td>efficient routing, 17</td>
</tr>
<tr>
<td>fragmentation, 20</td>
</tr>
<tr>
<td>IP addressing, 22</td>
</tr>
<tr>
<td>Layer 3 services, 23</td>
</tr>
<tr>
<td>multicast, 19</td>
</tr>
<tr>
<td>QoS, 19–20</td>
</tr>
<tr>
<td>resiliency, 18–19</td>
</tr>
<tr>
<td>service selection, 22–23</td>
</tr>
<tr>
<td>hub-and-spoke systems, 70</td>
</tr>
<tr>
<td>infrastructure VPNs, 69</td>
</tr>
<tr>
<td>Internet access, 11</td>
</tr>
<tr>
<td>IP addressing, 215</td>
</tr>
<tr>
<td>IP VPNs, 257</td>
</tr>
<tr>
<td>IP-based VPNs, 10–15</td>
</tr>
<tr>
<td>IPSec, 91–93</td>
</tr>
<tr>
<td>authentication, 93</td>
</tr>
<tr>
<td>configuration, 95–104, 106</td>
</tr>
<tr>
<td>design, 113–115</td>
</tr>
<tr>
<td>DMVPN, 107–111</td>
</tr>
<tr>
<td>dynamic multicast VPNs, 108</td>
</tr>
<tr>
<td>encryption, 93</td>
</tr>
<tr>
<td>IKE, 94</td>
</tr>
<tr>
<td>remote access, 112–113</td>
</tr>
<tr>
<td>transport mode encapsulation, 94–95</td>
</tr>
<tr>
<td>tunnel mode encapsulation, 94–95</td>
</tr>
<tr>
<td>IPv6, 323–325</td>
</tr>
<tr>
<td>address space size, 325–326</td>
</tr>
<tr>
<td>addressing, 326–328</td>
</tr>
</tbody>
</table>
autoconfiguration, 329–330
deployment scenarios, 330–333
extensions, 328–329
L2TP, 115–120
configuration, 120–127
design, 133–135
scaling, 127–133
session setup, 119–120
tunnel setup, 117–118
L2VPNs (Layer 2 VPNs), 323, 334, 337–338
pseudo wires, 334–337
L3 services, 215
Layer 2 and 3 core networks, building over, 12–13
MPLS-VPN architecture, 169
CE, 171
IOS configuration, 158–162
PE, 169–172
peer model, 14–15
VHG, 177–182
VRFs, 172–176
MPLS-VPN reference architecture, 152–156
attributes, 156–158
multicasting, 212
network VPNs, tunnels, 264
network-based IP VPNs, building, 263–271
network-based VPNs, 11
access requirements, 75
Open Access, 135
Network Address Translation, 135–136
policy-based routing, 136
overlapping addresses, assigning and managing, 248–254
overlay VPNs, 13–14
PPP (Point-to-Point Protocol) networks, 54
accounting, 64–65
authentication, 64–65
PPPoA, 59–63
PPPoE, 54–58
QoS, 63
security, 65
proxy RADIUS, 234–240
QoS (quality of service), 213
resiliency, 212–213
service selection, 214
site VPNs
GRE, 76–91
requirements, 210
tunnels, 263
site-to-site VPNs, 10–11, 69
access requirements, 74
CPE-based, 70
telecommuter VPNs, 10, 69
access requirements, 75
requirements, 210
tunnels, 69–70
two-box VHG, monitoring, 202–206
VRFs
AAA attribute, 218–221, 223–227
dynamic VRF allocation, 217–218
VRs, 258–262
implementing, 262–263
wholesale VPNs, 11, 217
access requirements, 75
requirements, 210
VRF Select, dynamic bindings, 233
VRF-Lite, 257, 262
PEs, routing between, 271–281, 284–298
VRF (VPN Routing and Forwarding), 158–159
AAA attribute, 218–225
VHG, 225–227
binding, 218
cable subscribers, mapping to, 172–176
DSL subscribers, mapping to, 175–176
dynamic allocation, 217–218
Ethernet subscribers, mapping to, 174–175
MPLS-VPN architecture, 172–176
multi-VRF CE, 206–209
names, 218–221, 223–225
options, 161
per-VRF AAA, 234–240
accounting, 246–247
templates, 241–246
VRs (virtual routers), 257–262
configurations, cleaning up, 261
connecting, 260
implementation, Cisco IOS, 262–263
IP VPNs, 257
logical router process, 258
MPLS VPNs, 260
370 VRs (virtual routers)

multiple VRs, single device, 258
operational neatness, 262
services, 258, 261
VRF-Lite, 257

W

web-based service selection, 22
wholesale ISPs, IPv6, 333
wholesale providers, broadband access, 5
wholesale services
 managed LNS case study, 305–309
 MPLS-based wholesale services, 309–310
 AAA control plane, 312
 address allocation, 311
 address routing, 311
 clients, 310
 ISP PE, 311
 multicasting, 312
 PTA PE, 310–311
 QoS, 312
wholesale VPNs, 11, 217
 access requirements, 75
 IPSec, design requirements, 113
 requirements, 210