Numerics

0.0.0.0/8 addressing, 230
16-8-8 data structure, 40
256-way mtrie, 40
8-8-8-8 mtrie structure, 40

A

access routers
as starting router for network migration, 311
migration concerns, 318
moving to new peer groups, 319
ACLs, filtering classless routing updates, 115
address families (AFs), 28
address space, provider-based summarization, 237
addressing
anycast, 564
IPv6
address format, 564–565
aggregatable global unicast addresses, 566
local addressing, 566
special addresses, 567
ISP networks, 397
adjacency tables, 40
administrative policies, 8
ADMs (add/drop multiplexers), 583
advertisements suppression communities, 405
advertisements
AFs, 28
aggregates, 230
conditional, 123
examples, 124, 127–129
forms, 124
SAFIs, 28

AFs (address families), 28
aggregatable global unicast addresses, 566
aggregation, 230
aggregate prefix, default attributes, 130
BGP policy control, 130–133
remote site (BGP enterprise core), 192
aggregation layer (ISP networks), 390
aggregation routers, 391
Allow-AS, 460
American Registry for Internet Numbers (ARIN), 226
anycast, 564
Anycast RP, 548
APNIC (Asia Pacific Network Information Centre), 226
architectures
DCNs, 584
enterprise network core design, 160
eBGP, 168–178
iBGP, 161–167
internal/external BGP, 178–189, 192
migration. See migration
MPLS VPNs, 449
are, 599
ARIN (American Registry for Internet Numbers), 226
ARP table (Address Resolution Protocol), 33
AS (autonomous systems), 294
AS Override, 457–458
AS path lists, 117
ASBRs (AS border routers), 461, 476
AS_PATH attribute, 18, 21
disabling, 460
iBGP confederation, 296
looping, 458
manipulation to provide full connectivity among VPN sites, 457
Allowed-AS, 460
AS Override, 458
updates with Local AS feature, 135
Asia Pacific Network Information Centre (APNIC), 226
ASN
generic customer ASN, 398
private, 399
assigning IGP labels, 452
atom characters, 110
automatic route filtering, 456
autosummarization feature (BGP), 396

backbone carriers, 461
back-to-back VRF, 462–463
bandwidth, load balancing, 231–232
baseline convergence, 97
BGP, 396
administrative policies, 8
aggregation router configuration template, 392
capabilities, 27
characteristics, 5
CLNS, 595
configuring for MPLS VPNs, 452
core router configuration template, 390
DCN management networks, 583
edge router configuration template, 395
enterprise core. See enterprise core features, 599
flexibility, 8
GR feature, 88–89
internal. See iBGP
memory use, 16, 48–50
multicast NLRI in MP-BGP, 536
multiprotocols extensions, 435
extended community attribute, 436
reachability attributes, 437
network command, 31
NSAP address family configuration, 594
path attributes, 17
path selection, 24
performance. See also performance policies, control techniques, 109
processes, 14–15
redistributing information into IGPs, 23
related RFCs, 605
reliability, 6
routing exchange with an IGP, 31
routing policies, 8
scalability, 7
security, ISPs, 412. See also ISP networks
stability, 6
strengths in enterprise networks, 158
summary tables, 317
traffic, worst-case input queue values, 69
VPN label propagation, 453, 455
vs. IGP, 9
weaknesses, 159
bgp always-compare-med command, 19
BGP-based DCN network design
BGP next hop for CLNS prefixes, 587
BGP peering relationships, 585
IS-IS area layout, 585
bgp bestpath med-confed command, 26
bgp bestpath missing-as-worst command, 26
BGP community attribute
 dynamic customer policy, 404–405
 prefix origin tracking, 402
 QPPB feature, 407, 410
 static route redistribution, 411
BGP confederation ID, 326
BGP confederations, 489
BGP convergence, 62
defined, 62
examples, 62–63
 performance interdependencies, 82
queue optimization, 67–68
 hold queue, 68
 packet reception process, 67
 SPD (selective packet discard), 69–70
 system buffers, 72–73
TCP protocol concerns, 64
 max segment size, 65
 PMTUD (Path MTU Discovery), 65
 window size, 65
tuning (case study), 97–100, 103
update generation, 74
 BGP dynamic peer group feature, 77
 BGP read-only mode, 82
 peer groups, 75
 peer templates, 77–78
 update groups, 80–81
 update packing enhancement, 81
bgp deterministic-med command, 26
BGP dynamic peer group feature, 77
BGP I/O process, 14
BGP network core design, 160
 architectures, 160
 case study, 197
 core activation, 207
 design requirements, 195–196
 design scenario, 194
 final router configuration, 208–212
 migration plan, 199–201, 204–206
cache-based switching, 35
advantages over process switching, 35
forms of, 36
shortcomings, 37
caches
invalidation, 38
NetFlow, 37
shortcomings of cache-based switching, 38
capabilities (BGP), 27
advertising AFs and SAFIs, 28
exchanging between routers, 29
carrier supporting carrier VPN model.
See CSC VPN model
CE (Customer edge) routers, 449, 455
CEF (Cisco Express Forwarding), 38
advantages, 38
dCEF, 43
distributed CEF. See dCEF
FIB, 39
inconsistency checker, 42
load sharing, 44
per-packet, 45
per-session, 44
cell-based networks, 439
Cisco bug ID numbers, 599
Cisco Express Forwarding. See CEF
Cisco IOS
BGP processes, 14–15
default label exchange protocol, 443
regular expressions, 112
RIB lookup operations, 33
Site of Origin (SOO), 437
supported BGP path attributes, 17
switching paths, 33
switching, 35–37
CEF, 38–39, 42–45
comparison of, 46
process, 33
table of BGP features, 599
WEIGHT parameter, 19
Cisco Systems URLs, 606
Class D and E address space, 230
classfull lookup operation, 33
classless lookup operation, 33
CLNS
ISO-IGRP, 584
next-hop reachability, 587
originating a default from the core network, 586
cls enable command, 588
cls filter-set DEFAULT_OUT command, 595
CLUSTER_LIST attribute, 21, 262
clustering, 259, 288
commands
peer policy templates, 78
peer session templates, 77
communities, iBGP confederation, 297
community assignments (ISPs), 402
COMMUNITY attribute, 20
community lists, 118–119
conditional advertisement, 123
examples, 124, 127–129
forms, 124
conditional injection, 131
confederation
AS_PATH attribute, 296
communities, 297
design examples, 298
hub-and-spoke, 298
setting IGP metrics, 299–303
functionality, 294
vs. route reflection, 303–304
confederation-based architecture, 309
migrating to from iBGP full mesh (case study), 326
migrating to from RR-based (case study), 343
migration procedures, 366–377, 379–383
starting configurations, 362–365
configuring
aggregation routers, 392
BGP core routers, 390
conditional route injection, 131
default, 395
enterprise border routers, 227
graded route map dampening, 414
MP-BGP for IPv6, 569–570
MSDP, 536
network policy lists, 122
routers, 241
connectivity
customer (ISP networks), 398
customer BGP peering, 398
identifying customer prefixes, 399
static route redistribution, 399
transit (ISP networks), 400
consistency checkers (CEF), 43
core routers, 311, 389
control plane
RIB, 32
distributed CEF, 42
DCNs (Data Communications Network), 583
default, 584
architecture, 584
BGP-based design
BGP next hop for CLNS prefixes, 587
BGP peering relationships, 585
IS-IS area layout, 588
multiprotocol BGP for CLNS configuration
default, 590–592
router configuration, 592–594
scalability, 583
DDoS attacks, 419–421
deaggregation, 130–133
default routing, 416
default routing only, 221
defining multicast streams, 517
deploying
MP-BGP for IPv6, 569
MPLS VPNs, 490
convergence, 499–500
route target (RT) design, 497–498
scalability, 491–496
designing

iBGP confederation architecture, 298
hub-and-spoke, 298
setting IGP metrics, 299–303
ISP networks, 388
aggregation layer, 390
network core layer, 389
network edge layer, 393–395
network core design, 158–160
networks
BGP in the enterprise core, 157
determining solution, 158
RDs for MPLS VPNs, 495–496
route reflection systems, 266–276
clustering design, 288
enabling deterministic-MED, 278
enforcing IGP metric settings, 286
iBGP mesh, 277
resetting next hop, 290
RR with peer groups, 292
setting IGP metrics, 279–285
RR-based MPLS VPNs, 492

disabling AS_PATH, 460
discard adjacency, 41
distributed CEF, 42
distributed optimum switching, 36
downstream distribution method, 441
downstream on demand, 441
downtime, minimizing during migration, 318
drop adjacency, 41
dual stacks, 568
dynamic black hole routing, ISP security case study, 420

eBGP

EBGP

network core design, 160
multihop feature, 233
multipath feature, 235
multiprotocol, 465
paths, 26
routers, 232, 311
eBGP core architecture, 168
administration control, 178
failure and recovery, 174–177
path selection, 169–173
routing policy, 178
ebgp-multihop command, 235
eBGP-neighbor routes, 591
Edge Label Switch Router (LER), 438
downstream LSPs, 583
delay node autoconfiguration block, 229
delay systems (ESs), 583
End System-to-Intermediate System (ES-IS) adjacency, 587
delay-of-RIB marker, 88
delay-to-end LSPs
carrying VPN traffic, 471
full Internet routes, 482
enforcing policies, 8
enterprise core
BGP use, 157
designing, 160
architectures, 160
BGP core design (case study), 194
core design, 197
design requirements, 195–196
eBGP core architecture, 168–178
final router configuration (case study), 208–212
iBGP core architecture, 161–167
internal/external BGP core architecture, 178–183, 186–189, 192
migration plan, 199–201, 204–207
remote site aggregation, 192
Enterprise Networks
designing
BGP strengths, 158
BGP weaknesses, 159
Internet connectivity, 221
default plus partial routes, 222
default routing only, 221
full Internet tables, 222
load balancing, 231–235, 240
peering filters, 238
provider-based summarization, 237
route filtering, 230
entries, 40
ES-IS (End System-to-Intermediate System)
adjacency, 587, 590
ESs (end systems), 583
exception adjacencies, 41
Exp field (frame-based label header), 440
Explicit Null, 441
Explicit Null labels, 448
extended community attribute, 436–437
extensions (multiprotocol), 435
extended community attribute, 436
reachability attributes, 437
extranet VPNs, 497
F
failure mitigation, 83
BGP fast external fallover, 84
IGP/BGP convergence time deltas, 84–86
NSF feature, 87
fast switching, 35
FIBs (forwarding information bases), 14, 39–40
adjacency tables, 40
data structures, 39
dCEF, 42
policy parameters, 138
routes, 448
setting policy entries based on BGP tagging, 139
fields (frame-based label header), 439–440
filter lists
AS path, 117
community, 118–119
prefix lists, 114–115
filter processing order, 123
filtering
classless routing updates, 115
inbound, 229
Martian address space, 230
outbound, 230
peer filtering (ISP networks), 413
peering, 238
prefixes for IPv6, 570
route (automatic), 456
updates (route maps), 120
upstream prefix advertisements, 403
flexibility, 8
format, 435
forwarding
labeled packets, 446–448
packets, 479
forwarding information bases. See FIBs
forwarding loops, 334
forwarding paths, 450
forwarding plane
 RIB, 32
 vs. control plane, 13
frame-based networks, 439

G
 gateway network elements (GNEs), 584
generic customer ASN, 398
Gigabit RP (GRP), 42
glean adjacency, 41
GNEs (gateway network element), 584
GR (Graceful Restart) feature, 88–89
gold route map dampening, 416
GRE tunneling, 418
groups (multicast), 517
GRP (Gigabit RP), 42

H
 hierarchical route reflection, 264–265
 hierarchical VPNs, 485, 488
 hierarchy (ISP networks)
 aggregation layer, 390
 network core layer, 389
 network edge layer, 393–395
 hub-and-spoke topologies
 iBGP confederation system, 298
 VPNs, 497
import map command, 499
imposition (LSRs), 446
in labels, 444
inbound filtering, 229
inbound load balancing, 231
input hold queue, 67–69
integrating two AS systems (case study), 145–151
inter-AS VPNs, 461
back-to-back VRF, 462–464
multihop eBGP between RAs and IPv4 labels (casestudy), 501, 504
multihop multiprotocol eBGP, 470, 474
carrying remote addresses in iBGP,
label exchange, 472
next-hop-self command, 470
non-VPN transit providers, 476–478
option comparison, 480–481
single-hop multiprotocol eBGP, 465–469
interdomain multicast. See MSDP
Interior Gateway Protocol. See IGP
intermediate systems (ISs), 583
internal BGP (iBGP), 23
internal/external BGP core architecture, 178
administrative control, 189
failure and recovery, 187
path selection, 180–183, 186
routing policy, 189
INTERNET community, 20
Internet connectivity
accepting information, 221
default plus partial routes, 222
default route only, 221
full Internet tables, 222
load balancing, 231
case study, 240
inbound traffic, 231–232
multiple sessions to the same provider,
233–235
multihoming, 222
standard multihomed network design,
226–229
stub network design, 223–225
peering filters, 238
provider-based summarization, 237
route filtering, 230
stub network single-homed design, 223
Internet Service Providers. See ISP networks
interrupt contact switching, 35
intraconfederation eBGP sessions, 329
invalidation (cache), 38
ip bgp-community new-format command, 20
IP multicast. See multicast delivery model
ip policy-list command, 122
IP to IP path, 446
IP to label path, 446
ip vrf forwarding command, 451
IPv4
address family, 28
addressing capability, 562
deploying a dual stack IPv6 configuration (case study), 572–576
header format, 563
historical overview, 561
QoS, 563
reserved labels, 441
security, 563
IPv6
addressing capability, 562–564
address format, 564–565
aggregatable global unicast addresses, 566
local addressing, 566
special addresses, 567
autoconfiguration, 562
deploying dual-stack configuration (case study), 572–576
development goals, 561
enhancements over IPv4, 561
header format, 563
MP-BGP extensions, 568
configuring, 569–570
deployment considerations, 569
dual-stack deployment, 568
security, 563
ipv6 unicast-routing command, 569
IS-IS protocol
BGP-based DCN network design, 585
Overload bit (OL-bit), 85
ISO-IGRP, 584
ISP (Internet Service Providers) networks, 387
addressing methodology, 397
architecture, 387
IGP layout, 388
network design, 388–390, 393–395
BGP community attribute
dynamic customer policy, 404–405
prefix origin tracking, 402
QPPB feature, 407, 410
static route redistribution, 411
BGP peering with customers, 398
customer connectivity, 398
customer BGP peering, 398
identifying customer prefixes, 399
static route redistribution, 399
peering, 400
security, 412
DDoS defense (case study), 419–421
grounded route map dampening, 416
peer filtering, 413
public peering risks, 416–418
TCP MD5 signatures, 412
service levels, 407
tiers, 401
transit connectivity, 400
ISs (intermediate systems), 583

J–K

Keepalive messages, 27

L

label disposition, 446
Label Distribution Protocol (LDP), 440
Label Edge Router (LER), 438
label exchange protocols, 443
Label Forwarding Information Base (LFIB), 446
Label Switch Router (LSR), 438
label to IP path, 446
label to label path, 446
labels
binding information, 444
distribution, 486
Explicit Null, 448
FIB routes, 448
forwarding labeled packets, 446–448
Implicit Null, 448
installed in LFIBs, 447
label exchange, 440, 444–445
local/in, 444
MPLS, 439
propagation, 453–455
received, 444
reserved, 441
sending, neighbor send-label command, 471
shim headers, 440
Layer 3, 435
Layer 3 topology, 584
Layer 3 VPNs, 435
lc-detect, 43
LDP (Label Distribution Protocol), 440, 443
leaf, 40
LER (Label Edge Router), 438
LFIB (Label Forwarding Information Base), 446, 448
link addressing, 397
load balancing, 231
 inbound traffic, 231, 243
 multihomed networks, 240
 multiple sessions to the same provider
 eBGP multihop feature, 233
 eBGP multipath feature, 235
 outbound traffic, 232, 245
load sharing
 CEF, 44
 LFIB, 448
 per-packet, 45
local addressing (IPv6), 566
Local AS feature, 135–136
 AS_PATH updates, 135
 integration (case study), 145–151
local labels, 444
LOCAL_AS community, 20
LOCAL_PREF attribute, 19
loopback addressing, 397, 567
loop-free topology, 21
looping
 AS Override, 459
 AS_PATH, 458
 forwarding, 334
 loop-prevention mechanism (iBGP), 260
 CLUSTER_LIST attribute, 262–263
 ORIGINATOR_ID attribute, 261
looping traffic during migration, 311
loop-prevention mechanism (iBGP), 260
 CLUSTER_LIST attribute, 262–263
 ORIGINATOR_ID attribute, 261
LSPs, 450
LSRs (Label Switch Routers), 438
 exchanging label information, 442
 swap operation, 446
management VPNs, 498
Martian address space, 229
mBGP, interaction with MSDP, 537
MDTs (Multicast Distribution Trees), 517
 building, 519, 531
 components, 520
 shared trees, 518
member autonomous systems, 294
memory
 BGP, 16, 48–50
 BGP Router process, 16
 process switching, 34
 use estimation formulas, 51
mesh groups, 546
messages
 BGP supported (overview), 27
 SA (MSDP), 535
migration, 324
 confederation to route reflection (case study)
 migration procedures, 366–377, 379–383
 starting configuration, 362–365
 iBGP full mesh to confederating (case study),
 326–331, 334–343
iBGP full mesh to route reflection (case study), 312
 configurations and RIBs, 312–319
 final BGP configurations, 325
 migration procedures, 318–322
identifying starting and final network topologies, 308–309
identifying starting router, 311
preparatory steps, 307
route reflection to confederation (case study)
 migration procedures, 347–350, 353–361
starting configurations, 343–346
traffic loss concerns, 311
troubleshooting, 320
migration plan (BGP network core design), 199–201, 204–206
MIX (Multicast Internet Exchange), 534
MPLS (Multiprotocol Label Switching), 435
devices, 438
downstream distribution method, 441
forwarding labeled packets, 446–448
label exchange, 440, 444–445
labels, 439–441
LSP setup, 440, 444–445
overview, 438
shim headers, 440
terminology use in command outputs, 445
VPN services. See MPLS VPNs
mpls label protocol both command, 441
MPLS VPNs, 448
 AS_PATH manipulation, 457
 Allow-AS, 460
 AS Override, 458
 automatic route filtering, 456
 BGP confederations, 489
CSC VPN model, 481
 full Internet routes, 482–484
 hierarchical VPNs, 485, 488
deployment considerations, 490
 convergence, 499–500
 route target (RT) design, 497–498
 scalability, 491–496
devices, 449
forwarding path, 450
inter-AS VPNs, 461
 back-to-back VRF, 462–464
 multihop multiprotocol eBGP, 470–476
 non-VPN transit providers, 476–478
 option comparison, 480–481
 single-hop multiprotocol eBGP, 465–469
routing/forwarding instance, 451
VPNv4 and label propagation, 453–455
MSDP (Multicast Source Discovery Protocol), 515
 Anycast RP, 548
 case study, 548–554
 configuring, 536
 deployment, 536
 interaction with mBGP, 537
 peer-RPF, 535
 peer-RPF rules for incoming SA messages, 537
 e(m)BGP sessions, 540
 i(m)BGP sessions, 538
 purpose of, 534
 route reflection, 547
 SA, 535
mtrie data structure, 39
mtrie
 components, 40
 data structure, 39
MULTI_EXIT_DISC (MED) attribute, 19
multicast delivery model, 517
groups (notation), 517
MDTs, 519, 531
overview, 515
shared trees, 518
source trees, 519
Multicast Distribution Trees. See MDTs
Multicast Internet Exchange (MIX), 534
multicast NLRI in MP-BGP, 536
Multicast Source Discovery Protocol. See MSDP
multihoming, 222
multiple providers, 231
standard multihomed network design, 226
multiple border router, 229
single border router, 226–227
stub network design, 223
multiple border routers, 225
single border router, 224
multihop multiprotocol eBGP, 470, 474
carrying remote addresses in iBGP, 475–476
label exchange, 472
multiplier characters, 110–111
multiprotocol BGP, 590–594
multiprotocol eBGP, 466
multiprotocol extensions, 435
extended community attribute, 436
Route Origin extended community, 437
RT extended community, 436
reachability attributes, 437
Multiprotocol Label Switching. See MPLS

N

NDBs (Network Descriptor Blocks), 16, 32
neighbor advertisement-interval command, 500
neighbor CE4 allowas-in command, 460
neighbor next-hop unchanged command, 471
neighbor send-label command, 471
NEs (network elements), 583–584
NetFlow switching, 37
network command, 31
network core layer (ISP networks), 389
Network Descriptor Blocks (NDBs), 16
network edge layer (ISP networks), 393–395
network elements (NEs), 583–584
Network Layer Reachability Information (NLRI), 437
networks
designing
determining solution, 158
network core design. See BGP network
core design
problem definition, 158
ISPs, 387. See also ISP networks
migration
confederation to route reflection (case study), 362–371, 373–383
iBGP full mesh to confederation (case study), 326–331, 334–343
iBGP full mesh to route reflection (case study), 312–322, 325
identifying starting and final network topologies, 308–309
identifying starting router, 311
preparatory steps, 307
route reflection to confederation (case study), 343–355, 357–361
traffic loss concerns, 311
MPLS, 439
MPLS VPNs, 448
AS_PATH manipulation, 457–460
automatic route filtering, 456
BGP confederations, 489
CSC VPN model, 481–485, 488
deployment considerations, 490–492, 494–500
devices, 449
inter-AS VPNs, 461–467, 469–476, 478–481
routing/forwarding instance, 451
VPNv4 route and label propagation, 453–455
MSDP (case study), 548–554
PIM-SM, 531
NEXT_HOP attribute, 18
next-hop reachability, 591
next-hop-self command, 19, 329, 469
next hop unchanged, 468
NLRI (Network Layer Reachability Information), 437
NO_ADVERTISE community, 20
no bgp default route-target filter command, 465
NO_EXPORT community, 20
no ip cef table consistency-check command, 42
no ip prefix-list seq command, 114
non-packet-based networks, 439
non-VPN transit providers, 476–478
Notification messages, 27
NSAP address family configuration, 594
NSF (Non-Stop Forwarding) feature, 87
null adjacency, 41

ORIGINATOR_ID attribute, 20, 261
OSPF, max-metric feature, 86
outbound filtering, 230
outbound load balancing, 232
Outbound Route Filtering (ORF), 91, 96, 123
Overload bit (OL-bit), 85

P

P (Provider) routers, 449
packet forwarding, 479
packet-forwarding databases, 33
packets
 BGP reception process, 67
 forwarding labeled, 446–448
packet-switching, 446
partial routing, 222, 229
partitioning, 493–494
path attributes, 17
Path MTU Discovery (PMTUD), 65
paths, 446
 best-path selection, 25
 BGP, memory use, 53
eBGP vs. iBGP, 26
 forwarding, 450
 selection, 19, 24
 switching, 33
 cache-based, 35–37
 CEF, 38–39, 42–45
 comparison of, 46
 process, 33
PE (Provider edge) routers, 449
AS_PATH manipulation, 457
 Allow-AS, 460
 AS Override, 458
automatic route filtering, 456
 carrying loopback addresses in iBGP, 475
 layers, 450
 loopback addresses, 478
 VRF, 451
 peer filtering (ISP networks), 413
 peer groups, 7
 BGP dynamic peer group feature, 77
 in route reflection environment, 292
 peer templates, 77–78
 update groups, 80–81
 update replication, 75
 peer policy templates, 78
 peer session templates, 77
 peering, 400
 filters, 238
 private, 401
 peering point abuse
 default routing, 416
 GRE tunneling, 418
 third-party next-hop traffic manipulation, 417
 peer-RPF rules
 e(m)BGP sessions, 540–542
 i(m)BGP sessions, 538
 mesh groups, 546
 no (m)BGP session, 543
 penultimate-hop LSRs, 446
 performance
 BGP convergence, 62
 defined, 62
 examples, 62–63
 optimization interdependencies, 82
 queue optimization, 67–70, 72–73
 TCP protocol concerns, 64–65
 tuning (case study), 97–100, 103
 update generation, 74–82

BGP network features, 83
 failure mitigation, 83–87
 prefix update optimization, 91–96
 CEF, 38
 MPLS VPNs, 492
 process switching effects, 34
 per-packet load sharing, 44–45
 per-session, 44
 per-session load sharing, 44
 PIM (Protocol-Independent Multicast), 519, 531
 PIM-SM networks, 531
 PMTUD (Path MTU Discovery), 65
 policies
 aggregation and deaggregation, 130–133
 BPA (BGP policy accounting), 143–144
 conditional advertisement, 123
 examples, 124, 127–129
 forms, 124
 control techniques, 109
 filter lists, 114–119
 filter processing order, 123
 policy lists, 122
 regular expressions, 109–112
 route maps, 120–121
 customer (ISPs)
 advertisement suppression communities, 405
 local preference manipulation, 404
 enforcing, 8
 inbound traffic, 242
 Local AS feature, 135–136
 outbound traffic, 245
 QoS (ISPs), 407, 410
 QoS Policy Propagation, 138
 configuring traffic lookup, 140
 enforcing policing on an interface, 140
 example, 141–142
 setting FIB policy entries based on BGP tagging, 139
policy lists, 122
pop operation, 446
prefix lists, 114–115
prefixes
 advertising, 256–257
 communities, 20
 distribution (hierarchical VPNs), 486
 exception adjacencies, 41
 FIB entries, 40
 filtering for IPv6, 570
 injecting, 18, 200
 Martian address space, 229
 outbound filtering, 230
 standard peering filters, 239
 update optimization, 91
 BGP ORF feature, 96
 BGP soft reconfiguration, 94
 route flap dampening, 91–93
 route refresh, 95
 transmit (TX) side loop detection, 95
private ASN, 399
private communities, 20
private peering, 400–401
process switching, 33–34
processing VPN packets, 455
Protocol-Independent Multicast (PIM), 519
protocols
 label exchange, 443
 MSDP
 case study, 548–554
 configuring, 536
 SA, 535
 stability, 6
 provider backbone convergence, 500
Provider edge routers. See PE routers
Provider routers. See P routers
provider-based summarization, 237
public peering, 400
public peering security risks, 416
default routing, 416
GRE tunneling, 418
third-party next-hop traffic manipulation, 417
punt adjacency, 41
push operation, 446

Q
QoS
 IPv4 vs. IPv6, 563
 QoS Policy Propagation, 138–139
 configuring traffic lookup, 140
 enforcing policing on an interface, 140
 example, 141–142
QoS Policy Propagation via BGP (QPPB), 407
QPPB (QoS Policy Propagation via BGP), 138, 407
 configuring traffic lookup, 140
 enforcing policing on an interface, 140
 example, 141–142
 setting FIB policy entries based on BGP tagging, 139

R
range characters, 110–112
RDBs (Routing Descriptor Blocks), 16, 32
RDs (Route Distinguishers), 435
designing for MPLS VPNs, 495
VPN-v4, 435
reachability attributes, 437
reachability between RRs and PE routers, 502
read-only mode, 82
received labels, 444
redistribute command, 31
redistribution (ASBR receiving behavior), 467
redundancy
 affected by migration, 333
 clustering in RR environments, 259
regular expressions, 109
 AS_PATH pattern matching, 113
 components, 110–111
 use in Cisco IOS software, 112
reliability, 6, 222
remote site aggregation, 192
replication, 81
RFC 1918 addressing, 229
RIB (Routing Information Base), 9, 13, 32
 control plane, 13
 failures, 32
 forwarding information base (FIB), 14
 lookup operations supported by Cisco IOS, 33
RIPv2, configuration example, 452
RO_Limit, 82
route aggregation, 394
route dampening, 394
route flap dampening, 91–93
route flapping, 87
route maps, 120–122. See also policy lists
Route Origin extended community, 437
route processors. See RPs
route reflection, 254
 clustering, 259
 vs. confederation, 303–304
 design examples, 266–276
 clustering design, 288
 enabling deterministic-MED, 278
 enforcing IGP metric settings, 286
 iBGP mesh, 277
 resetting next hop, 290
 RR with peer groups, 292
 setting IGP metrics, 279–285
 functionality, 255
 hierarchical route reflection, 264–265
 loop-prevention mechanisms, 260–263
 MSDP, 547
 rules for prefix advertisement, 256–257
 route reflection-based network, 362
 route reflectors (RRs), 470
 BGP-based DCN network design, 585
 establishing eBGP connectivity, 473
 route refresh, 91, 95
 routers
 aggregation, 391
 ASBRs, 461
 BGP-IGP routing exchange, 31
 control plane, 13
 core, 389
 edge, 394
 exchanging BGP capabilities, 29
 forwarding plane, 13
 MPLS networks, 438
 MPLS VPNs, 449
routes
 aggregate, 455
 automatic filtering, 456
 ORIGIN attribute, 25
 untagged, 455
route-target import command, 499
routings
 default, 221, 416
 filtering, 230
 full Internet tables, 222
 partial routes, 222
 policies, 8
Routing Descriptor Blocks (RDBs)

- Routing Descriptor Blocks (RDBs), 16
- Routing Information Base. See RIB
- routing forwarding instance (VRF), 451
- RPs (route processors), 42
 - Anycast RP, 548
 - consistency checking, 43
- RR-based network, migrating to confederation-based networks (case study)
 - migration procedures, 347–350, 353–361
 - starting configurations, 343–346
- RRs (route reflectors), 470
 - carrying loopback addresses in iBGP, 475
 - designing RR-based MPLS VPNs, 492
 - establishing eBGP connectivity, 473
 - in MPLS VPNs, 494
 - partitioning, 493–494
 - tuning, 495
- RTs (route targets), 497
 - design examples for MPLS, 498
 - design examples for MPLS VPNs, 497
 - extended community, 436

MPLS VPNs

- RD design, 495–496
- resource consumption on PE devices, 491
- RR design, 492–494
- scan-lc, 43
- scan-rib, 43
- scan-rp, 43
- SDP, peer-RPF rules for incoming SA messages
 - e(m)BGP sessions, 542
 - mesh groups, 546
 - no (m)BGP session, 543
- security
 - IPv4 vs. IPv6, 563
 - ISP networks, 412
 - DDoS defense (case study), 419–421
 - graded route map dampening, 416
 - peer filtering, 413
 - public peering risks, 416–418
 - TCP MD5 signatures, 412
- selective packet discard (SPD), 69–70
- set metric-type internal command, 19
- shared trees, 518
- shim headers, 440
- show buffers command, 72
- show cef interface command, 47
- show interface statistics command, 47
- show ip bgp command, 25
- show ip bgp neighbor command, 28
- show ip bgp summary command, 16
- show ip cache verbose command, 35
- show ip cef command, 40
- show mpls forwarding command, 447
- show mpls ldp bindings command, 444
- show mpls ldp neighbor command, 443
- signatures (TCP MD5), 412
- single-hop multiprotocol eBGP, 465
 - next hop reset by next-hop set command, 469
 - redistribution, 467

S	field (frame-based label header), 440
	SA (Source Active) messages, 535–537
	SAFIs (subsequent address family identifiers), 28
	scalability, 7
	CEF, 38
	DCNs, 583
	iBGP, 253
	confederation, 294–303
	method comparison, 303–304
	route reflection. See route reflection
Site of Origin (SOO), 437
site-to-site convergence, 500
soft reconfiguration, 91, 94
SOO (Site of Origin), 437
source trees (SPTs), 519
sparse mode, 531
SPD (selective packet discard), 69–70
SPD headroom, 67
SPTs (source trees), 519
stability, 6
standard multihomed network, 226
multiple border router, 229
single border router, 226–227
static route redistribution, 399
streaming (multicast), 517
stub network multihomed design, 223
multiple border routers, 225
single border router, 224
stub network single-homed design, 223
subautonomous systems, 294
subsequent address family identifiers (SAFIs), 28
summarization (provider-based), 237
swap operation, 446
switching (MPLS networks), 438
switching paths, 33
cache-based, 35–37
CEF, 38–39, 42–45
comparison of, 46
process, 33–35
synchronization feature (BGP), 396
system buffers, 67
default values, 73
show buffers command, 72
system local addressing, 229

T
TCP, 65
TCP MD5 signatures, 412
TDP (Tag Distribution Protocol), 440
test network addressing, 230
third-party next hop, 18
third-party next-hop traffic manipulation, 417
tiers (ISPs), 401
topologies
back-to-back VRF, 463
IPv6 network, 574
loop-free, 21
PIM-SM networks, 527
VPNs, 497
traffic
BGP, worst-case input queue values, 69
inbound traffic policies, 242
load balancing, 231
inbound, 231
multiple sessions to the same provider, 233–235
outbound, 232
loss
avoiding during migration, 320
concerns during network migration, 311
multicast, 515
outbound traffic policies, 245
transit connectivity (ISP networks), 400
transmit (TX) side loop detection, 91, 95
troubleshooting
avoiding traffic loss during migration, 311
bug toolkit, 599
traffic loss during migration, 320
tuning RRs, 495
TTL field (frame-based label header), 440
unsolicited downstream, 441
unspecified addresses, 567
untagged routes, 455
update groups, 7, 80–81
Update messages, 27
update packing enhancement, 81

VCI (virtual circuit identifier), 440
verifying
 BGP reachability for all prefixes (network migration), 324
 ES-IS adjacency, 590
 routing information during migration, 360
verifying BGP reachability for all prefixes, 324
VIPS (Versatile Interface Processors), 36
VPI (virtual path identifier), 440
VPNs, 435
 extranet, 497
 hierarchical, 485, 488
 hub sites, 460
 management, 498
VPNv4, 435
 addresses, receiving, 436
 label distribution, 476
 multihop multiprotocol eBGP, 470
VRF (routing/forwarding instance), 451, 462–464

Web sites
 Cisco bug toolkit, 599
 Cisco Systems, 606
 regional registries, 226
WEIGHT parameter, 19, 25
well-known communities, 20

zeroing BGP MEDs, 394