e-commerce, 11
World Wide Web service components, 12–13
e-learning, 15–17
case study, Genuity, 17–18
e-publishing, 20–21
supply chain management, 14
workforce optimization, 19–20
business synchronization, 222
reporting, 224
SLA expectations, setting, 223

CAs (certification authorities), 119
caching, transparent, 154
CANI (Constant and Neverending Improvement), 98
capacity, 28, 62
CCS (Cisco Content Smart Switches), 36
CDM (Content Distribution Manager), 53, 151–152
CDNs (Content Delivery Networks), 51, 53–54, 143
components, 144–145
CDM, 151–152
Content Edge Delivery, 150
Content Routing, 151
Content Switching, 145–149
Intelligent Network Services, 145
E-CDN, 155
e-learning solutions, 17
transparent caching, 154
central storage growth (Internet), 141
CERT (Computer Emergency Response Team), 105
CIS (Customer Interaction Suite), Lands’ End
customer care solution, 8
Cisco AVVID (Architecture for Voice, Video and Integrated Data)
customer care service integration, 10
QoS, 160
Cisco CSS 11000 series content service switches, 147
Cisco e-CDNs (enterprise CDNs), e-learning solutions, 17
Cisco host-based IDSs, features of, 126
Cisco Internet Reference Architecture
content engines, 46, 49–54
Content Routers, 55, 60
content switches, 34–37, 40
firewalls, 41–43
IDS, 44–45
Layer 3 switches, 28–29
redundancy, 32–34
sizing, 30–32
perimeter routers, 26–27
Cisco Internet System Architecture
connectivity, types of, 29
Cisco Internet Systems Architecture
benefits of using, 61
availability, 63
capacity, 62
connectivity, 62
manageability, 64
QoS, 63–64
security, 63
server placement, 60
Cisco IOS
QoS tools, 170–172
SAA (Service Assurance Agent), 232
Cisco IPM (Internetwork Performance Monitor), 234–235
Cisco network management solutions, 209
CiscoWorks2000 bundles, 210–216
CNR (Cisco Network Registrar), 216
QPM, 216
Cisco network-based IDS, features, 125
Cisco PIX firewall, exclusive features, 112–117
application awareness, 113
DoS Guards, 113
FragGuard, 114
intrusion detection, 114
NAT options, 115
redundancy, 116
site-to-site VPNs, 115–116
standards-based IPSec, 115
stateful inspection, 113
TCP intercept, 114
Virtual Reassembly, 114
VPN acceleration, 116
Cisco QPM (QoS Policy Manager), 235–236
Cisco SAFE architecture, 95, 129
Corporate Internet module, 134–135
E-Commerce module, 137–138
Enterprise module, 130–131
Management module, 131–133
Remote Access VPN module, 136–137
Server module, 133–134
Cisco Secure Policy Manager, 123
CiscoWorks 2000 SMS, 231–232
classification tools (QoS), 170–171
CLTs (Control List Technicians), 156
Comer, Gary C., 8
commands (SNMP), 196
cOMParing redundant and non-redundant topologies, 81–83
components
 of Cisco Internet Reference Architecture
 content engines, 46–54
 Content Routers, 55, 60
 content switches, 34–40
 firewalls, 41–43
 IDS, 44–45
 Layer 3 switches, 28–34
 perimeter routers, 26–27
 of Internet system architecture, 25
confidentiality, 96
congestion avoidance
 buffering traffic, 30
 Cisco IOS QoS tools, 171
connectivity
 types of, 29
 with Cisco Internet Systems Architecture, 62
Content Edge Delivery, 150
content engines, 46, 49, 51, 53–54
CDM, 53
CDNs, 51
content routers, 55, 60, 151
content switches, 34–40, 145–146
 CSM, 147–149
 maintaining session state, 40
control plane, 36
Corporate Internet module, Cisco SAFE
 architecture, 134–135
 corporate training, e-learning solutions, 15–17
 Genuity case study, 17–18
correlation rules, 199
cost-benefit analysis, total cost of ownership model, 72–74
creating SLAs, 225
crossbar switch fabric, 32
cryptography, defending against packet sniffer, 103
CSM (Cisco Content Switch Module), 147–149
customer care solutions, 7
 Land’s End, 8–9
 service integration, 8–10
D
data encryption, 118–121
data traffic, QoS requirements, 161
DDoS (distributed denial-of-service) attacks, 105
decision-making process, Layer 3 switching, 31
decryption, 118–119, 121
defending against IP spoofing attacks, 104
defining
 objectives for high availability systems, 76–77
 security policies, 98–99
 service levels (QoS), 164–165
delay, 162
Deming, Edward, 7
deploying large-scale QoS implementation, 166
 with Modular QoS CLI, 167–168
 with QoS Device Manager, 170
 with QPM, 166–167
DES (Data Encryption Standard), 118
designing
 highly available systems
 defining objectives, 76–77
 development road map, 78
 EtherChannel, 86
 failover mechanisms, 87–88
 HSRP, 86–87
 load balancers, 84
 recovery procedures, 89–91
 Spanning Tree, 85–86
 top-down approach, 77
 verifying design, 79
 VRRP, 86–87
Internet system architecture, guidelines, 28
SLM solutions, integrating components from various vendors, 230
detecting
 attacks with IDS, 44–45
 failed components, 91
development road map, achieving high availability objectives, 78
devices

availability, 27
CDN components, 144–145
 CDM (Content Distribution Manager), 151–152
 Content Edge Delivery, 150
 Content Routing, 151
 Content Switching, 145–149
 Intelligent Network Services, 145
Cisco Internet Reference Architecture components
 content engines, 46–54
 Content Routers, 55, 60
 content switches, 34–37, 40
 firewalls, 41–43
 IDS, 44–45
 Layer 3 switches, 28–34
 perimeter routers, 26–27
fault tolerant, building highly available systems, 80
hitless upgrades, 26
shadow routers, 234
VPN access support, 122
Digital IDs, 119
digital signatures, 121
director console (IDS), 45
disclosure (SNMP), 196
distributed switching, 31
DMZ (demilitarized zone), 43
DNS Guard feature (Cisco PIX firewall), 113
DNS mode (Content Routers), 56
request processing, 57, 60
documentation
 network policies, 76
 security policies, 98
 defining, 98–99
 implementing, 100
 improving, 101
 monitoring, 100
 testing, 100
DoS attacks, 104–106
downtime, 75
MTBF, 80
outages, tracking causes of, 78
dumbbell architecture, 143
bottleneck points, 143
ISPs, 143
Dynamic NAT translation, 115

e-business solutions
customer care, 7
 IPCC, 9–10
 Land’s End, 8–9
 service integration, 8
e-commerce, 11
 World Wide Web service components, 12–13
e-learning, 15–17
 Genuity case study, 17–18
e-publishing, 20–21
 supply chain management, 14
 workforce optimization, 19–20
E-CDN (Enterprise CDN), 155
E-Commerce architecture
 non-redundant design, 83
 redundant design, 83
E-Commerce module, Cisco SAFE architecture, 137–138
e-commerce solutions, 11
 World Wide Web service components, 12–13
ECS (event correlation system), 199
e-learning solutions, 15, 17
 Genuity case study, 17–18
employee training, e-learning solutions, 15–17
cryptography, 118–119, 121
 public keys, 120
 VPN access, Cisco device support, 122
Enterprise module (Cisco SAFE architecture), 130–131
entitlement engines, 13
e-publishing solutions, 20–21
EtherChannel, 86
 impact on bandwidth, 33
 event correlation engine, 199
 events
 handling, 186–187
 SNMP, 197–199
examples of external SLAs, 227–228
exclusive Cisco PIX features
 application awareness, 113
 DoS Guards, 113
 FragGuard, 114
 intrusion detection, 114
 NAT options, 115
 redundancy, 116
 site-to-site VPNs, 115–116
 standards-based IPSec, 115
 TCP intercept, 114
 Virtual Reassembly, 114
 VPN acceleration, 116
external connections of World Wide Web, 13
external SLAs, 226
event, 227–228
extranet VPNs, 118

F
failover mechanisms, 87–88
failover mode (Cisco PIX firewall), 116–117
failure analysis, 89
failure detection, 91
fault management
 event handling, 186–187
 necessity of, 188
 placing systems, 188
 status polling, 185
 troubleshooting, 189
fault tolerance
 designing highly available systems, 80
 in highly available systems, 89
FCAPS (Fault, Configuration, Accounting,
 Performance, and Security) model, 177
 accounting management, 182
 configuration management, 178–181
 description, 180
 process, 181
 results, 181
 tools, 181
fault management, 178
 performance management, 183
 security management, 183
 feasibility of five nines availability, 75
features of Cisco IDSS
 host-based, 126
 network-based, 125
FIB (forwarding information base), 31
FIFO queuing, 159
filtering URLs, content filtering, 155–156
financial considerations of redundant systems,
 72–74
firewalls, 41–43, 111
 Cisco PIX, 112
 exclusive features, 112–117
 DMZ, 43
 packet filtering, 111
 stateful, 42, 112
five nines availability, 75
fixed-size buffers, 30
Flood Defender feature (Cisco PIX firewall), 113
flow-based switching, 31
FragGuard (Cisco PIX), 114
fragmentation of customer care services, 7
front end World Wide Web applications, 12
functional dependencies of SLAs, 229
functionality of perimeter routers, 27

G
general-purpose application servers, 13
Genuity, e-learning case study, 17–18
Get requests (SNMP), 194
GetBulk operation (SNMP), 196
GetNext requests (SNMP), 194
goals
 of Internet system architecture, 5
 service level definitions, 224
growth of Internet technologies, 3
Guard features of Cisco PIX, 113
guidelines of network management, 203–207

H
hash algorithms, 118
head of line blocking, 30
Hewlett Packard Openview, 208
HIDS (Host-based IDS), 108
high availability systems, 72
E-Commerce architecture
 non-redundant design, 83
 redundant design, 83
EtherChannel, 86
designing
 defining objectives, 76–77
 design verification, 79
 development road map, 78
 top-down approach, 77
failover mechanisms, 87–88
five nines, 76
HSRP, 86–87
implementing
 with fault tolerant devices, 80
 with redundant topologies, 80–83
load balancers, 84
MTBF, 80
non-network considerations
 operational best practices, 88
 power consumption, 89
 server fault tolerance, 89
Spanning Tree, 85–86
VRRP, 86–87
hitless upgrades, 26
Host Sensor 2.0, 126
host-based IDS features, 126
HSRP (Hot-Standby Routing Protocol), 86–87
HTTP requests, load balancing, 37

IBM Tivoli, 208
IDEA (International Data Encryption Algorithm), 119
IDSs (Intrusion Detection Systems), 44–45, 122–123
director console, 45
features
 host-based, 126
 network-based, 125
 sensors, 123–124
 placement, 125
implementing
 high availability systems
 with fault tolerant devices, 80
 with redundant topologies, 80–83
 large-scale QoS deployment, 166
 business synchronization, 222–224
 service level definitions, 224
 with Modular QoS CLI, 167–168
 with QoS Device Manager, 170
 with QPM, 166–167
 security policies, 100–101
 improving security policies, 101
 infrastructure of ISP networks, 143
 input queuing, 30
integrating
 customer care services
 benefits of, 8
 IPCC, 9–10
 SLM components from various vendors, 230
 integrity, 96
 Intelligent Network Services, 145
 interaction enablers, 13
 internal SLAs, 226
 Internet, central storage growth, 141
 Internet Systems Architecture, 3–5, 25
 benefits of using, 61
 availability, 63
 capacity, 62
 connectivity, 62
 manageability, 64
 QoS, 63–64
 security, 63
 goal of, 5
 server placement, 60
 intranet VPNs, 118
 intrusion detection (Cisco PIX), 114
 IP spoofing, 103
defense mechanisms, 104
 IPCC (Cisco IP Contact Center), 9–10
 IPM (Internetwork Performance Monitor), 234–235
 ISO (International Standards Organization), FCAPS model, 177
 ISP’s, network infrastructure, 143
J

jitter, 162
job training, e-learning solutions, 15–17

K

KAIZEN, 19
Kiwi Syslog Deamon, 197
Knowledge Bases, 80

L

Land’s End, customer care services, 8–9
large-scale QoS deployment, 166
with Modular QoS CLI, 167–168
with QoS Device Manager, 170
with QPM, 166–167
latency, load balancing induced, 36
Layer 3 switches, 28–29
redundancy, 32, 34
sizing, 30, 32
queuing model, 30
switch fabric, 32
switching implementation, 31
life cycle model of security, 99
link efficiency mechanisms, 172
LMS (LAN Management Solution), 210–213
load balancers
load balancing, 84
content switches, 34, 36–37, 40
HTTP requests, 37
latency, 36
logical network maps, 180

M

maintaining
high availability, operational best practices, 88
session state, 40
SLAs, 225
manageability, Cisco Internet Systems Architecture, 64
managed devices, 194
Management module (Cisco SAFE architecture), 131–133
management protocols
RMON, 201–202
SNMP, 192–193
Get requests, 194
GetNext requests, 194
Set operations, 194
traps, 194
versions, 195
syslog, 202
Telnet, 192
manager/agent model, 192
man-in-the-middle attacks, 107
marking tools (QoS), 170–171
masquerading, 196
measuring
high availability, MTBF, 80
service level performance, 232–233
media streams, link efficiency mechanisms, 172
message digest algorithms, 119
MIBs (Management Information Bases), 201
mission-critical data, QoS requirements, 161
mitigating security threats
application layer attacks, 108
DoS attacks, 106
IP spoofing, 104
network reconnaissance, 109
packet sniffers, 103
password attacks, 107
unauthorized access, 110
modification of information, 196
Modular QoS CLI, large-scale QoS deployment, 167–168
monitoring
security policies, 100
SLAs, 191
monitoring tools, failure detection, 91
MTBF (meantime between failure), 80
MTTR (meantime to repair), 80
multi-switch deployment with EtherChannel, 34
N

NAT options (Cisco PIX), 115
network analysis tools, 164
network availability metrics (SLAs), 229
network characterization, performing, 163
network management
FCAPS model, 177
accounting management, 182
correlation management, 178–181
fault management, 178
performance management, 183
security management, 183
guidelines, 203–204, 206–207
policy documentation, 76
RMON, 201–202
network performance metrics (SLAs), 229
network reconnaissance, 109
network response time thresholds, troubleshooting, 235
network-based IDS
features, 125
sensors, 123–124
NIDS (Network-based IDS), 108
NMSs (Network Management Systems)
Cisco solutions, 209
CiscoWorks 2000 bundles, 210–216
CNR, 216
QPM, 216
fault management
event handling, 186–187
necessity of, 188
placing systems, 188
status polling, 185
troubleshooting, 189
performance management, 190–191
RMON, 201–202
SNMP, 192–193
commands, 196
disclosure, 196
events, 197, 199
Get requests, 194
GetNext requests, 194
MIBs, 201
modification of information, 196
Set operations, 194
syslog messages, 197
traps, 194
versions, 195
Telnet, 192
non-redundant design (E-Commerce architecture), 83
n-tier model, 25

O

Object Identifiers, 201
objectives for high availability systems, defining, 76–77
Old World system architecture, 3
online services
customer care, 7–8
IPCC, 9–10
Land’s End, 8–9
e-commerce, 11
World Wide Web service components, 12–13
e-learning solutions, 15, 17
Genuity case study, 17–18
e-publishing solutions, 20–21
supply chain management solutions, 14
workforce optimization solutions, 19–20
Openview (Hewlett Packard), 208
operation level metrics (SLAs), 229
operational best practices, maintaining high availability, 88
OTPs (one-time passwords), 103
authentication, 128
outages, tracking causes of, 78
output queuing, 30

P

packet filtering, 111
packet sniffers, 102
defense mechanisms, 103
password attacks, 106–107
PAT (Port Address Translation), 115
peering points, 143
performance
capacity, 28, 62
of service levels, measuring, 232–233
SLA metrics, 229
troubleshooting with IPM, 234
performance management, 183, 190–191
performing
application characterization, 164
network characterization, 163
QoS policy needs assessment, 162–163
perimeter routers, 26–27
physical network maps, 180
placement
of fault management systems, 188
of IDS sensors, 125
of servers, Cisco Internet Systems Architecture, 60
policies
documenting, 76
QoS
defining service level, 164–165
performing application characterization, 164
performing needs assessment, 162–163
performing network characterization, 163
testing, 165
SLAs, 77
port redirection, 110
power consumption in highly available systems, 89
proactive management, 190
probes (RMON), 202
productivity, KAIZEN, 19
programs, 123
promiscuous mode (packet sniffers), 102
public key encryption, 118
CAs, 119
certificates, 120
publishing, e-publishing solutions, 20–21

Cisco IOS tools, 170–172
large-scale deployment procedures, 166–168, 170
link efficiency mechanisms, 172
necessity of, 159–160
network characterization, performing, 163
policies
needs assessment, 163
testing, 165
requirements for traffic types, 161
service levels, defining, 164–165
SLAs
administrative requirements, 228
cost, 229
creating, 225
external, 226–228
functional dependencies, 229
internal, 226
network availability metrics, 229
network performance metrics, 229
operation level metrics, 229
technical dependencies, 228
traffic conditioning, 172
with Cisco Internet Systems Architecture, 63–64
QoS Device Manager, large-scale QoS deployment, 170
QPM (QoS Policy Manager), 166, 216, 235–236
large-scale QoS deployment, 166–167
Q-Tip architecture, 143
bottleneck points, 143
ISPs, 143
quality assurance, Edward Deming, 7
queuing, 30, 159

redundancy
See also high availability systems
E-Commerce architecture, designing, 83
highly available systems, designing, 80, 83
impact on total cost of ownership, 72–74

R
reactive performance management, 190
read command (SNMP), 196
recovery procedures, implementing, 89–91
redundancy. See also high availability systems
E-Commerce architecture, designing, 83
highly available systems, designing, 80, 83
impact on total cost of ownership, 72–74

Q
QoS (quality of service), 160
application characterization, performing, 164
business synchronization, 222
reporting, 224
setting SLA expectations, 223

QoS (quality of service), 160
application characterization, performing, 164
business synchronization, 222
reporting, 224
setting SLA expectations, 223
Layer 3 switches, 29–34
single point of failure, 83
VRRP, 86–87
Remote Access VPN module (Cisco SAFE architecture), 136–137
request/response model, 192
requirements of service level objectives, 221
retail services
 Land’s End customer care solution, 8
 supply chain management solutions, 14
retrieving static Web server content, content engines, 49–54
revenue loss from security downtime, 97
RFC 2196, security policies, 97
RMON (Remote Monitor), 201–202
RSA Data Security, Inc, 119
RWAN (Routed WAN Management) solution, 213–214

S

SAA (Cisco IOS Service Assurance Agent), 232–233
SAFE architecture. See Cisco SAFE architecture scalability, 28
security
 access control, 127
attacks
 application layer, 108
 DoS, 104–106
 IP spoofing, 103–104
 man-in-the-middle, 107
 network reconnaissance, 109
 packet sniffers, 102–103
 password, 106–107
 port redirection, 110
 Trojan horse, 110
 trust exploitation, 109
 unauthorized access, 110
 viruses, 110
Cisco SAFE architecture, building, 129–138
Cisco Internet Systems Architecture, 63
confidentiality, 96
effect on revenue, 97
firewalls, 41–43, 111
 Cisco PIX, 112–117
 DMZ, 43
 packet filtering, 111
 stateful, 42
 stateful inspection, 112
IDSs, 44–45, 122–123
 director console, 45
 host-based, 126
 network-based, 125
 sensors, 123–124
integrity, 96
life cycle model, 99
perimeter router functionality, 27
policies, 97–98
 defining, 98–99
 implementing, 100
 improving, 101
 monitoring, 100
 testing, 100
update notification system, 45
VPNs, 117
 Cisco device support, 122
 data encryption, 118–119, 121
security management, 183
selecting QoS policies
 defining service level, 164–165
 performing application characterization, 164
 performing needs assessment, 162–163
 performing network characterization, 163
 validation, 165
sensors
 host-based, attack recognition database, 126–127
 IDS, 45, 123–125
Server module (Cisco SAFE architecture), 133–134
servers
 fault tolerance, 89
 placement using Cisco Internet Systems Architecture, 60
service level definitions, 164–165, 224
service level objectives, 221
session state, maintaining, 40
Set operation (SNMP), 192–194
shadow routers, 234
shared-memory fabric, 32
shared-memory queues, 31
shunting, 45
single point of failure, 83
eliminating, 91
site-to-site VPNs, 115–116
sizing Layer 3 switches
queuing model, 30
switch fabric, 32
switching implementation, 31
SLAs (service-level agreements), 77
administrative requirements, 228
business synchronization, 222
reporting, 224
setting expectations, 223
cost, 229
creating, 225
external, 226
example, 227–228
functional dependencies, 229
internal, 226
network availability metrics, 229
network performance metrics, 229
operation level metrics, 229
service level objectives, 221
service levels
defining, 164–165
technical dependencies, 228
SLM (service-levelmanagement)
design integration, 230
tools, 231
CiscoWorks 2000 SMS, 231–232
IPM, 234–235
QPM, 235–236
SmartFilter, 156
SMS (Service Management Solution), 215
SNMP (Simple Network Management Protocol), 187, 192–193
commands, 196
disclosure, 196
events, 197, 199
Get requests, 194
GetNext requests, 194
masquerading, 196
MIBs, 201
modification of information, 196
Set operations, 194
syslog messages, 197
traps, 194
versions, 195
SODA (Self Organizing Distributed
Architecture), 155
Spanning Tree, 85–86
splintered customer care services, 7
standards-based IPSec (Cisco PIX), 115
stateful failover, 116
stateful firewalls, 42
stateful inspection, 112–113
stateless failover, 116
static NAT translation, 115
status polling, 185
stickiness, maintaining session state, 38–40
supply chain management solutions, 14
switch fabric, 32
switching implementation, 31
symmetric-key encryption, 118
SYN attacks, 39
syslog, 202
syslog messages, 187, 197

TCP intercept (Cisco PIX), 114
technical dependencies of SLAs, 228
Telnet, 192
testing
QoS policies, 165
security policies, 100
third-party network management tools, 207
Openview (Hewlett Packard), 208
Tivoli (IBM), 208
Unicenter TNG (Computer Associates), 209
thresholds, troubleshooting network response time, 235
throughput, 42
Tivoli (IBM), 208
TLI (Transport Layer Interface), 191
TMN (Telecommunications Management Network)
Architecture, FCAPS model, 178–178
accounting management, 182
configuration management, 178–181
fault management, 178
performance management, 183
security management, 183

tools
Cisco IOS QoS, 170–172
configuration management, 181
network analysis, 164
SLM, 231
CiscoWorks 2000 SMS, 231–232
IPM, 234–235
QPM, 235–236
third-party network management, 207
Openview (Hewlett Packard), 208
Tivoli (IBM), 208
Unicenter TNG (Computer Associates), 209
top-down approach, high availability system
design, 77
topologies, redundant versus non-redundant, 81–83
total cost of ownership, 72, 74
traffic
load balancing, 84
content switches, 34–40
QoS, 160–161
traffic conditioning, Cisco IOS QoS tools, 172
training employees, e-learning solutions, 15–18
transparent caching, 150, 154
trap command (SNMP), 194–196
traversal command (SNMP), 196
Trojan horse attacks, 110
troubleshooting
fault management systems, 189
with IPM, 234
trust exploitation, 109
tunneling, 117
Cisco device support, 122
data encryption, 118–121
two-factor authentication, 103

U
unauthorized access, 110
unavailability. See downtime
Unicenter TNG (Computer Associates), 209
Unified Internet system architecture, 5
update notification systems, 45

upgrades, hitless, 26
URLs, filtering, 155–156
user management, 13
username/password authentication, 128
utilization, 28

V
validating QoS policies, 165
variable-size buffers, 30
verifying high availability design, 79
Vesperman, Ann, 8
video traffic
link efficiency mechanisms, 172
QoS requirements, 161
Virtual Reassembly (Cisco PIX), 114
viruses, 110
VMS (VPN/Security Management Solution), 215
voice traffic
link efficiency mechanisms, 172
QoS requirements, 161
VPNs, 117
acceleration, 116
Cisco device support, 122
data encryption, 118–121
VRRP (Virtual Router Redundancy Protocol), 86–87
vulnerable network locations, IDS sensor
placement, 125

W-Z
WCCP (Web Cache Communication Protocol), 154
Web servers
content engines, 46–54
Content Routers, 55, 60
placement, 60
workforce optimization solutions, 19–20
World Wide Web
central storage growth, 141
services, 12
WRED (Weighted Random Early Detection), 162, 171
write command (SNMP), 196