Using GNU Autotools to
Manage a “Minimal Project”

This chapter describes how to manage a minimal project using the GNU
Autotools. For this discussion, a minimal project refers to the smallest possible
project that can still illustrate a sufficient number of principles related to using
the tools. Studying a smaller project makes it easier to understand the more
complex interactions between these tools when larger projects require advanced
features.

The example project used throughout this chapter is a fictitious command
interpreter called 'foonly'. 'foonly' is written in C, but like many interpreters,
uses a lexical analyzer and a parser expressed using the 1ex and yacc tools. The
package is developed to adhere to the GNU 'Makefile' standard, which is the
default behavior for Automake.

This project does not use many features of the GNU Autotools. The most note-
worthy one is libraries; this package does not produce any libraries of its own,
so Libtool does not feature them in this chapter. The more complex projects
presented in Chapter 7, “A Small GNU Autotools Project” and Chapter 11, “A
Large GNU Autotools Project” illustrate how Libtool participates in the build
system. The essence of this chapter is to provide a high-level overview of the
user-written files and how they interact.

4.1 User-Provided Input Files
The smallest project requires the user to provide only two files. The GNU
Autotools generate the remainder of the files needed to build the package are in
Section 4.2, “Generated Output Files.” The files are as follows:

'Makefile.am' An input to automake

‘configure.in’ An input to autoconf




22 Chapter 4: Using GNU Autotools to Manage a “Minimal Project”

I like to think of 'Makefile.am' as a high-level, bare-bones specification of the
project’s build requirements: what needs to be built, and where does it go when
it is installed? This is probably Automake’s greatest strength—the description is
about as simple as it could possibly be, yet the final product is a 'Makefile'
with an array of convenient make targets.

The 'configure.in' is a template of macro invocations and shell code
fragments used by autoconf to produce a 'configure' script (see Appendix C,
“Generated File Dependencies™). autoconf copies the contents of 'configure.in'
to 'configure', expanding macros as they occur in the input. Other text is
copied verbatim.

Let’s take a look at the contents of the user-provided input files relevant to this
minimal project. Here is the 'Makefile.am':
bin_PROGRAMS = foonly

foonly_SOURCES = main.c foo.c foo.h nly.c scanner.l parser.y
foonly LDADD = @LEXLIB@

This 'Makefile.am' specifies that we want a program called 'foonly' to be built
and installed in the 'bin' directory when make install is run. The source files
used to build 'foonly' are the C source files 'main.c', 'foo.c', and 'foo.h'; the
lex program 'scanner.l'; and a yacc grammar in 'parser.y'. This points out a
particularly nice aspect about Automake: Because lex and yacc both generate
intermediate C programs from their input files, Automake knows how to build
such intermediate files and link them into the final executable. Finally, we must
remember to link a suitable 1ex library, if 'configure' concludes that one is

needed.

And here is the 'configure.in':

dnl Process this file with autoconf to produce a configure script.
AC_INIT(main.c)

AM_INIT_AUTOMAKE (foonly, 1.0)

AC_PROG_CC

AM_PROG_LEX

AC_PROG_YACC

AC_OUTPUT (Makefile)

This 'configure.in' invokes some mandatory Autoconf and Automake initial-
ization macros, and then calls on some Autoconf macros from the AC_PR0G
family to find suitable C compiler, 1ex, and yacc programs. Finally, the
AC_OUTPUT macro is used to cause the generated 'configure' script to output a
'Makefile'—but from what? It is processed from 'Makefile.in', which
Automake produces for you based on your 'Makefile.am' (see Appendix C).



4.2 Generated Output Files 23

4.2 Generated Output Files

By studying the diagram in Appendix C, you can see which commands must be
run to generate the required output files from the input files shown in the
preceding section.

First, we generate 'configure':

$ aclocal
$ autoconf

Because 'configure.in' contains macro invocations that are not known to
Autoconf itself—AN_INIT_AUTOMAKE being a case in point—it is necessary to collect
all the macro definitions for Autoconf to use when generating 'configure'. This is
done using the aclocal program, so called because it generates 'aclocal.m4' (see
Appendix C). If you were to examine the contents of 'aclocal.m4', you would find
the definition of the AM_INIT AUTOMAKE macro contained within.

After running autoconf, you will find a 'configure' script in the current direc-
tory. It is important to run aclocal first, because automake relies on the contents
of 'configure.in' and 'aclocal.m4'. Now on to automake:

$ automake --add-missing

automake: configure.in: installing ./install-sh

automake: configure.in: installing ./mkinstalldirs
automake: configure.in: installing ./missing

automake: Makefile.am: installing ./INSTALL

automake: Makefile.am: required file ./NEWS not found
automake: Makefile.am: required file ./README not found
automake: Makefile.am: installing ./COPYING

automake: Makefile.am: required file ./AUTHORS not found
automake: Makefile.am: required file ./ChangeLog not found

The ' --add-missing' option copies some boilerplate files from your Automake
installation into the current directory. Files such as 'copYIinGg', which contain the
GNU General Public License, change infrequently, and so can be generated
without user intervention. A number of utility scripts are also installed—these
are used by the generated 'Makefile's, particularly by the install target. Notice
that some required files are still missing. These are as follows:

"NEWS' The 'NEWS' file is a record of user-visible changes to

a package. The format is not strict, but the changes

to the most recent version should appear at the top
of the file.

"README ' A 'README' file is the first place a user will look to
get an overview for the purpose of a package, and
perhaps special installation instructions.

'AUTHORS' The 'AUTHORS' file lists the names, and usually mail
addresses, of individuals who worked on the package.

continues »



24 Chapter 4: Using GNU Autotools to Manage a “Minimal Project”

» continued
'Changelog" The 'ChangelLog' is an important file—it records
the changes made to a package. The format of this
file is quite strict (see Section 4.5, “Documentation
and ChangeLogs”).

For now, we will do enough to placate Automake:

$ touch NEWS README AUTHORS Changelog
$ automake --add-missing

Automake has now produced a 'Makefile.in'. At this point, you may want to
take a snapshot of this directory before we really let loose with automatically
generated files.

By now, the contents of the directory are looking fairly complete and
reminiscent of the top-level directory of a GNU package you may have
installed in the past:

AUTHORS INSTALL NEWS install-sh mkinstalldirs
COPYING Makefile.am README configure missing
ChangeLog Makefile.in aclocal.m4 configure.in

It should now be possible to package up your tree in a tar file and give it to
other users for them to install on their own systems. One of the make targets
that Automake generates in 'Makefile.in' makes it easy to generate distribu-
tions (see Chapter 12, “Rolling Distribution Tarballs”). A user would merely
have to unpack the tar file, run configure (see Chapter 2, “How to Run
Configure, and The Most Useful Standard Makefile Targets”), and finally type

make all:

$ ./configure

creating cache ./config.cache

checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking whether make sets $@{MAKE@}... yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking for gcc... gcc

checking whether the C compiler (gcc ) works... yes
checking whether the C compiler (gcc ) is a cross-compiler... no
checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking how to run the C preprocessor... gcc -E

checking for flex... flex

checking for flex... (cached) flex

checking for yywrap in -1fl... yes



4.3 Maintaining Input Files 25

checking lex output file root... lex.yy
checking whether yytext is a pointer... yes
checking for bison... bison -y

updating cache ./config.cache

creating ./config.status

creating Makefile

$ make all

gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \
-g -02 -c main.c

gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.@\" -DYYTEXT_POINTER=1 -I. -I. \
-g -02 -c foo.c

flex scanner.l && mv lex.yy.c scanner.c

gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.@\" -DYYTEXT_POINTER=1 -I. -I. \
-g -02 -c scanner.c

bison -y parser.y & mv y.tab.c parser.c

if test -f y.tab.h; then \
if cmp -s y.tab.h parser.h; then rm -f y.tab.h; \
else mv y.tab.h parser.h; fi; \

else :; fi

gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \
-g -02 -c parser.c

gcc -g -02 -o foonly main.o foo.o scanner.o parser.o -1fl

4.3 Maintaining Input Files

If you edit any of the GNU Autotools input files in your package, you must
regenerate the machine-generated files for these changes to take effect. If you add
a new source file to the foonly SOURCES variable in 'Makefile.am', for instance,
you must regenerate the derived file 'Makefile.in'. If you are building your
package, you need to rerun configure to regenerate the site-specific 'Makefile',
and then rerun make to compile the new source file and link it into 'foonly'.

It is possible to regenerate these files by running the required tools, one at a
time. As you can see from the preceding discussion, it can be difficult to
compute the dependencies—does a particular change require aclocal to be run?
Does a particular change require autoconf to be run? There are two solutions to
this problem.

The first solution is to use the autoreconf command. This tool regenerates all
derived files by rerunning all the necessary tools in the correct order. It is some-
what of a brute-force solution, but it works very well, particularly if you are
not trying to accommodate other maintainers, or regular maintenance that
would render this command bothersome.

The alternative is Automake’s 'maintainer mode'. By invoking the
AM_MAINTAINER_MODE macro from 'configure.in', Automake activates an
'--enable-maintainer-mode' option in 'configure'. Chapter 8, “Bootstrapping,”
explains this at length.



26 Chapter 4: Using GNU Autotools to Manage a “Minimal Project”

4.4 Packaging Generated Files

What to do with generated files is keenly contested on the relevant Internet
mailing lists. There are two points of view, and this section presents both of
them so that you can try to determine the best policy for your project.

One argument is that generated files should not be included with a package,
but rather only the “preferred form” of the source code should be included. By
this definition, 'configure' is a derived file, just like an object file, and it should
not be included in the package. Therefore, the user should use the GNU
Autotools to bootstrap themselves prior to building the package. I believe there
is some merit to this purist approach, because it discourages the practice of
packaging derived files.

The other argument is that the advantages of providing these files can far
outweigh the violation of good software-engineering practice already
mentioned. By including the generated files, users have the convenience of

not needing to be concerned with keeping up-to-date with all the different
versions of the tools in active use. This is especially true for Autoconf, because
‘configure' scripts are often generated by maintainers using locally modified
versions of autoconf and locally installed macros. If the user were to regenerate
‘configure', the result could be different to that intended. Of course, this is
poor practice, but it does happen in real life.

I think the answer is to include generated files in the package when the package
is going to be distributed to a wide user community (that is, the general public).
For in-house packages, the former argument might make more sense, because
the tools may also be held under version control.

4.5 Documentation and ChangeLogs

As with any software project, it is important to maintain documentation as the
project evolves. The documentation must reflect the current state of the soft-
ware, but it must also accurately record the changes that have been made in the
past. The GNU coding standard rigorously enforces the maintenance of docu-
mentation. Automake, in fact, implements some of the standard by checking for
the presence of a 'ChangelLog' file when automake is run!

A number of files exist, with standardized filenames, for storing documentation
in GNU packages. The complete GNU coding standard, which offers some
useful insights, can be found at http://www.gnu.org/prep/standards.html.



4.5 Documentation and Changelogs 27

Other projects, including in-house projects, can use these same tried-and-true
techniques. The purpose of most of the standard documentation files was
outlined earlier (see Section 4.2, “Generated Output Files”), but the 'changeLog"
deserves additional treatment.

When recording changes in a 'ChangeLog', one entry is made per person, per
day. Logical changes are grouped together, whereas logically distinct changes
(that is, “change sets”) are separated by a single blank line. Here is an example
from Automake’s own 'Changelog':

1999-11-21 Tom Tromey <tromey@cygnus.com>

* automake.in (finish_languages): Only generate suffix rule
when not doing dependency tracking.

* m4/init.m4 (AM_INIT_AUTOMAKE): Use AM_MISSING_ INSTALL_SH.
* m4/missing.m4 (AM_MISSING_INSTALL_SH): New macro.

* depend2.am: Use @SOURCE@, @OBJ@, @LTOBJ@, @OBJOBJ@,
and @BASE@. Always use -o.

Another important point to make about 'changeLog' entries is that they should
be brief. It is not necessary for an entry to explain in detail why a change was
made but rather what the change was. If a change is not straightforward, the
explanation of why belongs in the source code itself. The GNU coding standard
offers the complete set of guidelines for keeping 'changeLog's. Although any
text editor can be used to create ChangelLog entries, Emacs provides a major
mode to help you write them.



