
18
IN THIS CHAPTER

• Mozilla Firefox Trunk

• Mozilla Code
Development Cycle

• Coding Practices

• Setting Up and Building
Firefox

• Check-in Requirements

• Working with the
Mozilla Source Code

Browsing the Code
or those of us who are programmers, there is nothing
like having the source code at hand. Having buildable
source lets us fix a nagging bug, add that feature we

really want, and generally modify the product.

In this chapter we take the source code and go through the
problems you might have building it. When we’re done, you
should be able to create a version of Firefox (or Thunderbird)
that works.

Mozilla Firefox Trunk
You can access several versions of Firefox at any time. One
source set is the downloadable source files, which is not the
most current source—it might be as much as a month out of
date). However, you can get the most current source from
Concurrent Versions System (CVS).

Tip
This chapter talks about building Firefox. To build
Thunderbird, the same process is used but you
simply rename as necessary so that CVS retrieves
the Thunderbird source instead of Firefox. Plus,
you must modify your .mozconfig file.

Mozilla Code Development Cycle
To be a successful Mozilla programmer, you have to be a team
player. That includes following the established rules, even if
you don’t agree with them.

The Mozilla code development cycle is, generally, rather sim-
ple. Overall, there are only a few steps:

1. Find a bug you want to fix and that you think you can fix.
As a suggestion, fix the bug unofficially before asking for
the formal approval to work on the bug.

F

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 19

20

2. Make your fix to the relevant module. Test your fixes—do not just assume that they
will work. If at all possible, test it under all platforms, including Windows, Mac, and
Linux.

3. Create a patch file using the DIFF command (part of Cygwin).

4. Find the bug and ensure that it is currently unassigned (see Figure 18.1).

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Bugs with this do not have anyone working on them.

Figure 18.1

This bug is new and is currently unassigned.

5. Request the bug be assigned to you. This is done at the bottom of the Bugzilla bug
form, as shown in Figure 18.2.

6. Fix the bug. Generate a patch file, and attach the patch file to the bug in Bugzilla.
Request a review for the attachment’s patch.

The review process is necessary before your bug will be added to the product. The
reviewer (usually the module owner or his peer) checks to ensure that the fix is accept-
able and tests the fix. Do not take this as saying that Mozilla doesn’t trust you—this
benefits you in that there is an extra set of eyes looking for unintended side effects.

Without careful review, there is a tendency for a bug fix to simply cause another bug in
the program. Always be careful not to break something else when fixing your bug.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 20

C h a p t e r 1 8

21

Figure 18.2

A bug’s status and resolution can be altered if you have the authority to do so.

Coding Practices
There are standards for programming in C/C++ that you must follow when fixing or
enhancing the Mozilla products. A number of things that are important include

• Use the correct coding style—There is a code style book for programmers who are
working on the Mozilla products. Many of these styles are based on the established
C (and C++) styles. Go to http://www.mozilla.org/hacking/mozilla-style-guide.html
and read this document about style. Better yet, print it for handy reference.

Coding Practices

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 21

22

• Use the reviewer’s guide—This guide sets the groundwork for code reviewing. Visit
http://www.mozilla.org/projects/seamonkey/rules/code_review.html and read this
document, even if you are not planning to be a code reviewer.

• Follow the rules and tips for coding—Again, visit the web page at http://www.
mozilla.org/hacking/reviewers.html#rules-and-tips, which spells out exactly what is
good practice and what is bad practice.

• Make your coding portable—This means you should not include platform-specific
code unless it is absolutely unavoidable. (And it is very rare that it is unavoidable.)
Visit http://www.mozilla.org/hacking/portable-cpp.html to read more about making
your code portable.

A good starting point for coding is http://www.mozilla.org/hacking/
coding-introduction.html. This page is a FAQ containing a lot of useful information.
Read this document.

Setting Up and Building Firefox
Building Firefox (or Thunderbird) takes preparation. There are a number of pieces of the
build environment that you must have. Everything necessary to build Firefox is avail-
able free; however, if you have the full Visual C++ (Visual Studio), you have some addi-
tional tools, such as the IDE/editor environment.

Several sites on the Internet deal with setting up the environment and building Mozilla
products. One excellent site is http://gemal.dk/mozilla/build.html. A recommendation
is to print these pages and use them as a checklist in your quest to build Firefox or
Thunderbird.

Necessary Software
The first thing to do is to create a working folder. Eventually, you might need as much
as 3.5GB of space, so ensure that the drive you use has the room. Next, in the root of
the drive, create a folder named Mozilla. This folder will hold some of your tools and
the files used to build Firefox.

To do a successful build, you will need a C/C++ compiler, such as Visual C++ or MinGW.
The preferred compiler is Visual C++, and because it can be downloaded free from
Microsoft, there is no reason to not use it. If you want to use MinGW, you can download
it from the MinGW website at http://www.mingw.org/download/. The information at
http://gemal.dk/mozilla/build.html describes which of the MinGW components are
necessary and how to install them.

Now, let’s get started!

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 22

C h a p t e r 1 8

23

You must first download and install the software for the build environment:

1. Go to http://msdn.microsoft.com/visualc/vctoolkit2003/ and download the Visual
C++ 7.1 compiler package.

2. Install the Visual C++ package using the default options. The compiler will be
installed in %programfiles%\microsoft Visual C++ Toolkit 2003.

3. Download and install the Microsoft Platform SDK (also called the Windows SDK).
The SDK will be installed in %programfiles%\microsoft Platform SDK\. Again,
accept any default option values.

4. Download and install the Microsoft .NET SDK from
http://www.microsoft.com/downloads/
details.aspx?familyid=262d25e3-f589-4842-8157-
034d1e7cf3a3&displaylang=en. This is a large down-
load, however, and it is not clear whether it is actually
needed to build Firefox. As with the two previous exam-
ples, accept the default installation values.

5. Download compiler-specific versions of glib and libIDL
from ftp://ftp.mozilla.org/pub/mozilla.org/mozilla/libraries/win32. If you have
installed the visual C++ from step 2, get the VC71 versions of these files
(ftp://ftp.mozilla.org/pub/mozilla.org/mozilla/libraries/win32/vc71-glib-1.2.
10-bin.zip and ftp://ftp.mozilla.org/pub/mozilla.org/mozilla/libraries/win32/
vc71-libIDL-0.6.8-bin.zip). If you have previously installed Visual C++ 7.0, use the
VC7 versions. We will install these files next.

6. Download and install the I386 macro assembler MASM from http://www.
masm32.com/masmdl.htm. MASM is used to build the crypto components of
Firefox. If you install MASM32, you will be installing other utilities, which can cause
conflicts between MASM32’s linker (LINK.EXE) and lib (LIB.EXE) programs and those
supplied with your compiler. Therefore, use the linker and lib programs that come
with your compiler; simply rename or delete the MSAM32 versions to resolve this
problem.

You now need to install Cygwin from http://www.cygwin.com/setup.exe. Cygwin is a
network-based installation, so only those components that you choose to install are
downloaded to your computer.

In the Cygwin install, select the following options:

• All Users—The installation will be available to all users.

• UNIX—Cygwin will use Unix-compatible end-of-line characters.

Setting Up and Building Firefox

Firefox and Thunderbird: Beyond Browsing and Email

You might be able to save some
disk space by just installing the
needed core, IE, and the
Microsoft Data Access
Components (MDAC) SDKs.

N
ot

e

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 23

24

In the next step of Cygwin’s installation, you must select which packages are to be
installed:

• ash*—A Unix-like command-line interpreter shell.

• bzip2*—An Open Source data compressor.

• coreutils—GNU core utilities. These utilities include fileutils, sh-utils, and textutils.

• cvs—A client used to download Mozilla source code.

• cygutils—A set of general-purpose utilities.

• diffutils*—A set of file comparison utilities.

• fileutils*—File and directory management utilities.

• findutils—A set of search utilities.

• gawk*—A pattern matching language.

• grep*—A text search in files tool.

• gzip*—A powerful archive builder with a Windows interface.

• make—The system that controls building from a make file.

• patch—A tool used to modify a source file from a patch file.

• Perl—Support for the Perl language.

• sed*—The search and replace program.

• sh-utils*—Miscellaneous shell utilities.

• textutils*—Additional text utilities.

• unzip—A command-line compressed archive file extractor, similar to PKZIP.

• zip—A command-line compressed archive file creator, similar to PKZIP.

Those packages marked with an asterisk (*) should already be selected, but confirm
this.

The next part of the build environment is ActivePerl. ActivePerl is a download found at
http://activestate.com/Products/Download/Register.plex?id=ActivePerl. Download the
Zip file or the MSI file—both achieve the same results and are almost the same size.
Unzip it to a temporary folder. After it’s unzipped, the folder will contain a subfolder
(ActivePerl) and Installer.bat, the ActivePerl installation program. Run Installer.bat,
answering the prompts (the default values should be fine).

Finally, as you reach the end of the gathering of software, you have one more package
that must be installed. These are the Netscape Wintools. Download them

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 24

C h a p t e r 1 8

25

(http://ftp.Mozilla.org/pub/mozilla.org/mozilla/source/
wintools.zip) and extract the buildtools folder from
Wintools.zip. (As always, retain the folder structure.) You
can place the buildtools folder in any convenient location,
such as your c:\mozilla folder. This location will be refer-
enced by your buildsetup.bat file, as described in Listing
18.1, later in this chapter.

Next in your c:\mozilla folder, create a subfolder named
moztools (c:\mozilla\moztools). Then in the buildtools
folder that you extracted from Netscape Wintools, enter the
following commands:
set MOZ_TOOLS=c:\mozilla\moztools
cd c:\mozilla\buildtools\windows
install.bat

Now your c:\mozilla\moztools folder should have three
subfolders (bin, include, and lib).

glib was downloaded from ftp://ftp.Mozilla.org/pub/
mozilla.org/mozilla/libraries/win32/. Again, you must extract the contents (a folder
named VC71) from this Zip file, preserving the folder structure. In C:\, create a subfold-
er named glib, and in that folder copy the VC71 folder you extracted.

LibIDL was downloaded from ftp://ftp.Mozilla.org/pub/mozilla.org/mozilla/libraries/
win32/. Again, you have to extract the contents (a folder named VC71) from this Zip file,
preserving the folder structure. In C:\, create a subfolder named LibLDL, and in that
folder copy the VC71 folder you extracted.

At this point, your Mozilla folder should look like the one shown in Figure 18.3.

In your %programfiles%\microsoft Visual C++ Toolkit 2003\ folder is a batch
file: vcvars32.bat. Copy this file to your C:\mozilla folder for easier access, if you
want.

Next, you must create several new files. The first file is a batch command file you
should name buildsetup.bat. This file can be created from Listing 18.1, but I strongly
recommend you download it from the book’s website because it is relatively complex.

If you must type in this file, pay particular attention to the line continuation characters
and spaces. Be very careful to not insert spaces where there is a line continuation char-
acter; just append the line’s text to the previous line’s contents with no spaces or other
characters. (The best way to get the book’s files is to download them from the book’s
web page at http://www.quepublishing.com/title/0789734583.)

Setting Up and Building Firefox

Firefox and Thunderbird: Beyond Browsing and Email

N
ot

e The compiler-specific items (such
as glib and libIDL) are dependent
on the version of C++ being used.
If you are using Microsoft .NET
2003/2005 or C++ 6.0, you need
to get the proper versions. Visit
ftp://ftp.mozilla.org/pub/
mozilla.org/mozilla/libraries/
win32/ to retrieve the Visual C++
7.0, Visual C++ 7.1, and other ver-
sions of the supporting files.
More help can be found on the
Net, though, especially from
some of the other third-party
builders at http://forums.
mozillazine.org.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 25

26

Figure 18.3

Right now your Mozilla folder has three subfolders.

Listing 18.1 buildsetup.bat
@ECHO OFF
REM we only want to process these settings one time.
➥Otherwise the path, lib, and include grow out of control

if .%BuildEnvironmentSet% == .YES goto runmake

set BuildEnvironmentSet=YES

REM SET BuildTools_=c:\mozilla\buildtools

REM SET BuildTools=c:\buildtools\buildtools

SET MozTools=c:\mozilla\moztools

REM if you copied this file to your c:\mozilla folder then you need to
REM change the path to c:\mozilla.
call “C:\Program Files\microsoft Visual C++ Toolkit 2003\vcvars32.bat”

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 26

C h a p t e r 1 8

27

set path=c:\mozilla\cygwin\bin;%moztools%\bin;
➥%BuildTools%\;c:\glib;c:\libild;c:\masm32\bin;%path%

SET LIB=C:\Program Files\microsoft Platform SDK\Lib;
➥C:\Program Files\microsoft.NET\SDK\v1.1\Lib;
➥C:\Program Files\Microsoft Visual C++ Toolkit 2003\lib;
➥C:\Program Files\microsoft Visual Studio .NET 2003\vc7\lib;
➥C:\masm32\LIB;C:\Program Files\microsoft Platform SDK\Lib\IA64;
➥C:\Program Files\microsoft Platform SDK\Lib\IA64\mfc

SET INCLUDE=C:\Program Files\Microsoft Visual C++ Toolkit 2003\include;
➥C:\Program Files\microsoft platform SDK\include;
➥C:\Program Files\microsoft.NET\SDK\v1.1\include;
➥C:\Program Files\microsoft Visual Studio .NET 2003\Vc7\include;
➥C:\Program Files\microsoft Platform SDK\include\Win64\crt;
➥C:\Program Files\microsoft Platform SDK\include\Win64\mfc;C:\masm32\
➥INCLUDE

REM SET GLIB_PREFIX=c:/mozilla/cygdrive/C/mozilla/glib/vc71
REM SET GLIB_PREFIX=c:/glib/vc71

REM SET LIBIDL_PREFIX=c:/mozilla/cygdrive/c/mozilla/libidl/vc71
REM SET LIBIDL_PREFIX=c:/libidl/vc71

rem SET MOZ_TOOLS=/cygdrive/c/mozilla/buildtools
SET MOZ_TOOLS=c:/mozilla/moztools

SET CVSROOT=:pserver:anonymous@cvs-mirror.Mozilla.org:/cvsroot

SET HOME=c:\mozilla\mozilla

SET CVS_RSH=ssh

SET MOZILLA_OFFICIAL=1

SET BUILD_OFFICIAL=1

ECHO Installation environment variables set!
goto endofbatch

:runmake
ECHO Installation environment variables were already set!
@ECHO ON

:endofbatch
@ECHO ON

Setting Up and Building Firefox

Firefox and Thunderbird: Beyond Browsing and Email

Listing 18.1 Continued

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 27

28

Several lines in this file need special attention:

call “C:\Program Files\microsoft Visual C++ Toolkit 2003\vcvars32.bat”

This line calls the batch command file that sets the Microsoft Visual C++ environment
variables. Using a call enables you to later add lines in your batch file after this line.
Without using a call, vcvars32.bat would never return to your main buildsetup.bat
command file. An explicit path is used to ensure that Windows will find the file.

SET GLIB_PREFIX=/cygdrive/C/mozilla/glib/vc71

This tells the build environment where the glib files are located. Notice that it uses for-
ward slashes (/) instead of Windows’s backslashes (\). Backslashes will cause the
build to fail. This line is optional and can be remarked out if desired.

SET LIBIDL_PREFIX=/cygdrive/c/mozilla/libidl/vc71

This tells the build environment where the libIDL files are located. As noted previously,
it uses forward slashes instead of Windows’s backslashes. As with glib, this line is
optional.

SET MOZ_TOOLS=/cygdrive/c/mozilla/buildtools

This tells the build environment where the Netscape Wintools are located. As with the
two previous examples, it uses forward slashes instead of Windows’s backslashes.

SET CVSROOT=:pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot

This line tells CVS from where to obtain the source. Notice that it does not specify
either Firefox or Thunderbird; it only gives the URL and the logon information (anony-
mous) for CVS.

SET HOME=c:\mozilla\mozilla

The home variable tells CVS where the downloaded source CVS retrieves will be
located.

SET CVS_RSH=ssh

This specifies which external program will be used to access CVS when using the
access method :ext:.

SET MOZILLA_OFFICIAL=1

This environment variable is used to allow you to run two or more builds using the
same profile, which requires a build ID. The build ID is created when this variable is set
to 1.

SET BUILD_OFFICIAL=1

The BUILD_OFFICIAL environment variable turns on the build number in the title bar.

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 28

C h a p t e r 1 8

29

The next file you need is your .mozconfig file (see Listing
18.2). Notice the leading period—technically, this file has
no name, only an extension. If you create this file without
the period, it will not work. The .mozconfig file must show
the build environment which project is being built. For our
purposes, we might be building either Firefox or
Thunderbird. The MOZ_CO_PROJECT will either be set to
browser for Firefox or to mail for Thunderbird.

Listing 18.2 .mozconfig
#######################################
#Firefox is browser, Thunderbird is mail

. $topsrcdir/browser/config/mozconfig

export BUILD_OFFICIAL=1
export MOZILLA_OFFICIAL=1
mk_add_options BUILD_OFFICIAL=1
mk_add_options MOZILLA_OFFICIAL=1
mk_add_options MOZ_CO_PROJECT=browser

If you want to create a non-static build, comment out the following
#lines
The installer scripts can only create installers from static builds
ac_add_options —disable-shared
ac_add_options —enable-static

ac_add_options —enable-application=browser
ac_add_options —disable-activex
ac_add_options —disable-activex-scripting
#######################################

This file tells the make process to add BUILD_OFFICIAL and MOZILLA_OFFICIAL to the
build. It also tells the generation process to create a static build.

You now have your build environment complete. Next, you need to obtain the Firefox
source code using CVS. The process is as follows:

1. Open a command prompt by selecting Start, All Programs, Accessories, Command
Prompt.

2. Change into your C:\mozilla folder and type buildsetup.bat to configure the envi-
ronment.

3. Enter the command cvs login. At the password prompt, enter anonymous. You
might receive an error message telling you that the .cvspass file does not exist; you
can ignore this.

Setting Up and Building Firefox

Firefox and Thunderbird: Beyond Browsing and Email

C
au

ti
o

n Cygwin fixes the path environ-
ment variable, ensuring that the
file and folder locations are com-
pliant with the environment.
However, Cygwin does not
update any other environment
variables.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 29

30

4. Enter the command cvs co mozilla/browser/config mozilla/client.mk and
press Enter. This command retrieves one file—client.mk—and places this file in the
subfolder mozilla inside your mozilla folder. If this subfolder does not exist, it is cre-
ated. This new folder will be the home for your Firefox project.

5. Change into the new Mozilla folder created in step 4.

6. Enter the command make -f client checkout. This command tells make (a sys-
tem that interprets a command file and calls other programs, something like batch
or scripting) and uses CVS to fetch the entire source for Firefox. If you are on a slow
connection, this command might take a while to finish; really fast connections usual-
ly take only about 5–10 minutes.

At this point, you have now installed the necessary software to build Firefox, installed
all the required utilities, and retrieved the very latest (and perhaps, greatest) version of
Firefox. The only thing left to do is to build it.

Performing a Build
There are several ways to build the project. One way is to run the makefile program
from a command prompt. Type

make -f client.mk build

Of course, this command could be placed in a batch file along with a test to ensure that
the buildsetup.bat file has also executed (see Listing 18.3).

Listing 18.3 BuildFireFox.bat
if .%BuildEnvironmentSet% == . goto runmake

echo doing build!
make -f client.mk build_all

goto endofall

:runmake
echo No build environment configured.

:endofall

This batch file checks to see whether the buildsetup.bat file has executed—if the
BuildEnvironmentSet environment variable is set, buildsetup.bat has already exe-
cuted. When it’s sure that the build environment is set up, it calls the make utility to do
the actual build of Firefox.

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 30

C h a p t e r 1 8

31

If you are more familiar with a Linux/Unix environment, you
can use Cygwin, which you installed earlier in this chapter.
That is one program we’ve not mentioned yet, and for a rea-
son. You can, in a regular Windows command prompt, get
the Firefox source. However, to build Firefox, you must use
the Cygwin tools. One tool is a Unix shell emulator—just
the thing for those of us who work with Windows but wish
we were using Unix.

If you have not already done so, you must also configure
the build environment using your buildsetup.bat file.
Simply go to your c:\mozilla folder, enter the command
buildsetup.bat, and press Enter.

Now, go to the Cygwin folder. It would be C:\Cygwin if you installed Cygwin using the
defaults, although I installed Cygwin in a subfolder under c:\mozilla. In that folder is
a single batch file: cygwin.bat. This is the command to start the Cygwin shell.
Type Cygwin.bat and press Enter. You will get a prompt consisting of your Windows
username@computer name and a folder specification (usually either a ~ for the root
folder or the current folder). This prompt should look like that shown in Figure 18.4.
(For the curious, Gay Deceiver is the name of the computerized car in Robert Heinlein’s
novel Number of the Beast and several other related stories.)

Setting Up and Building Firefox

Firefox and Thunderbird: Beyond Browsing and Email

Ti
p If you want to try Cygwin and are

not familiar with Unix (or Linux),
you might initially have some
problems with the concepts
behind how Cygwin works. First,
whereas Windows (and MS-DOS)
uses a backslash to separate
folders and filenames, Unix has
always used the forward slash to
do folder and file delimiting.

User input follows the $ prompt.

Figure 18.4

Everything typed after the $ prompt was entered by the user.

Also notice in Figure 18.4 that I entered the command ls and the command dir. Both
commands do the same thing; ls is simply the Unix command for listing a directory’s
contents. I typed these commands prior to retrieving the Firefox source; otherwise, the
results of listing the directory would fill the screen.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 31

32

We are finally ready to build Firefox. The client.mk file is the
make command script file that both fetches the Firefox source
code and builds Firefox. (Somewhat universal, isn’t it?) What
client.mk does depends on the options passed with the make
command. If the checkout option is used, make fetches (or
checks out) the source code. If the build option is used, make
builds Firefox.

All you have to do now is type the following at Cygwin’s $ prompt:

make -f client.mk build_all

Whichever way you choose to build—from either a DOS com-
mand prompt window or a Cygwin window—your reward, if
you’ve made no mistakes, will be a lengthy build process as the
compiler is called to compile each source file, the linker is used
to build the libraries and the executable, and other tasks are per-
formed. Keep in mind that Firefox is a large program and this
build process can therefore take considerable time on a slower
computer. An example of build performance is a 2.2GHz Athlon64
with 2GB of memory, on which it takes approximately 28 minutes
to build. A slower notebook with a 1.5GHz processor with 512MB
of RAM took several hours to build Firefox. The first build takes
the longest because subsequent builds usually have to rebuild
only those parts of Firefox that have changed since the previous
build.

Packaging Firefox for Distribution
The results of building the product are placed in the \mozilla\
mozilla\dist folder. A second copy can be located elsewhere—
for example, for Firefox a copy will also be in \mozilla\

mozilla\browser\app.

The final step you must take to enable you to easily distribute the product is to create
the installer (the same program you downloaded when you fetched Firefox or
Thunderbird from Mozilla). This enables you to have a single file that can be shared
among several users.

After your build has completed successfully, you can create the installer. The steps to
do this are relatively straightforward:

1. First, if you have not already done so, run your buildsetup.bat file to initialize the
Mozilla build environment.

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Mozilla recommends a Pentium
500MHz processor and 256MB of
RAM to build Firefox. A faster
processor and more RAM will sig-
nificantly improve the build
times, though. I personally do
not recommend building Firefox
on a notebook computer because
the build process is very proces-
sor intensive and generates sub-
stantial heat.

N
ot

e
Ti

p Do not expect your first try at
building Firefox to be successful.
If it is, that’s great, but if not, do
not be discouraged. Most of us
spend several days getting every-
thing working together before we
get a successful build of Firefox.
I’ve seen cases where it is best to
simply start from scratch—that
is, delete the source folder (the
mozilla folder that is inside
c:\mozilla) and refetch the
source files.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 32

C h a p t e r 1 8

33

2. Move to the folder c:\mozilla\mozilla\browser\
installer.

3. Enter the following command, which creates the installa-
tion package:

make installer

4. Your final installation executable will be located in the
folder c:\mozilla\mozilla\browser\installer. (The
filename can vary depending on which version or prod-
uct you are creating, but it should be obvious based on
the file’s timestamp.)

You can now distribute your version of Firefox (or
Thunderbird) by download or by other means, such as CD-R
or network share.

Check-in Requirements
The check-in process is basically a series of established steps that must be followed in
order. Don’t skip a step for any reason. From the beginning, the check-in process is as
follows:

1. Write code, whether it is a patch for a bug or new code for additional (new) function-
ality. After your code is complete, you need to check out the latest version of Firefox
from the CVS system. Without the latest version, the changes might break another
patch or new component. If what you are doing is going to take a longer time (say, a
week or more), you should check out the latest version from CVS from time to time.

2. Update your local tree (the source). Before checking out the source tree, first make
sure that Tinderbox says the code is green—that is, it builds and tests okay. It is
worthless to check out code while the tree is not green because your builds will not
be reliable. Red means stop and green means go.

3. Have your work reviewed. It must be reviewed before it can be added to the tree.
This review serves as a check to ensure that whatever was done is acceptable (for
instance, that the coding style and syntax are correct). No code is ever added to the
project without review. Reviews are done by the module owner or someone who is
designated by the module owner.

4. Run prechecking tests. Established tests are already defined to test your code. Do
not assume that your code will not have an adverse effect on other parts of the
project. For information on precheck tests, visit http://www.Mozilla.org/quality/
precheckin-tests.html.

Check-in Requirements

Firefox and Thunderbird: Beyond Browsing and Email

N
ot

e

Mozilla suggests that you
uncheck the Quality Feedback
Agent check box. N

ot
e

To use the installer, you need to
build a static build of Firefox or
Thunderbird. This is controlled in
the .mozconfig file’s options
ac_add_options --disable-

shared and ac_add_options
--enable-static. Refer to
Listing 18.2 for an example of
these two options.

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 33

34

5. Check in your work. Tinderbox must indicate that the tree is open (allows check-in)
and not closed (no check-ins are allowed). No check-in is allowed when the tree is
red—that is, when the project will not properly build.

6. Be responsible for your code. After your work has been checked in, you are respon-
sible if it causes a problem! That is why you must do your precheck-in testing, and
why the code must be reviewed.

It is important that, until the version that has your changes has properly built (the
Tinderbox tree is green), you remain available. If something goes wrong, it is your
responsibility to make it right.

Mozilla Source Code Secrets for Power Users
Here are a few ideas from the experts:

• The Mozilla Firefox and Thunderbird source and project can be visualized as a tree.
From the trunk (the main project, such as Firefox) different versions of the product
branch off. Usually, the tree has at least two branches: the currently released branch
and the development branch.

• As time passes, new branches are added to the tree. Old, unnecessary branches are
cut off.

• Code development at Mozilla follows a set process. All work is initiated as a bug
using Bugzilla. Developers both at Mozilla and externally then undertake to resolve
these bugs, either fixing the problems or adding functionality.

• To accommodate a large group of developers—many of whom are not under the
direct control of Mozilla—a set of coding practices has been established. These
practices must be followed for work to be accepted.

• Setting up a Firefox development environment takes some time and effort. Even
experienced programmers take a few days to get to the point where they can build
one of the Mozilla products.

• Several necessary products or tools must be used when building Firefox and other
Mozilla products. These products or tools are all available freely on the Internet.

• Performing a build involves retrieving the latest source using CVS and then building
the product. Changes need to be managed with patch files so they can be applied to
new versions of the source.

• The check-in requirements help ensure that work on Firefox and other Mozilla prod-
ucts meets the necessary standards for programming style and syntax and that it
does not break the product.

C h a p t e r 1 8 B r o w s i n g t h e C o d e

Firefox and Thunderbird: Beyond Browsing and Email

Web24_0789734583 CH18.qxd 11/4/05 12:54 PM Page 34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0052005200200044006f006e006e0065006c006c00650079>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

