
30CHAPTER

In this chapter

COM Reporting Components

In this chapter

Understanding the Report Designer Component 696

Building Reports with the Visual Basic Report Designer 696

Programming with the Report Engine Object Model 700

Delivering Reports Using the Report Viewer 708

Using the Object Model to Build Batch Reporting Applications 709

Troubleshooting 710

37 0789731134 Ch30 6/23/04 4:15 PM Page 695

696 Chapter 30 COM Reporting Components

Understanding the Report Designer Component
Crystal Decisions has long viewed the Component Object Model (COM) development plat-
form as one of the key areas it needed to embrace to become successful. Although there
were other popular developer platforms in the market, the trend for development projects
concerning information delivery was to use Visual Basic. This was because of its good mix of
power and simplicity. Now part of the Business Objects product line, Crystal Reports 10
mirrors these attributes and delivers a powerful yet productive reporting solution. This
chapter covers Crystal Decisions reporting solutions for the COM platform, specifically, the
Crystal Report Designer Component.

Although the chapters covering the Java and .NET components focused primarily on Web-
based applications, this chapter concentrates on desktop applications because that is the
focus of the Crystal Decisions COM Components. Desktop applications, although still pop-
ular today, were what started it all. These are standalone applications that run on a single
tier and are installed locally on a user’s machine. These applications are most commonly
built using Visual Basic, but are also sometimes built using Visual C++ or Delphi.

➔ For more information on Java, see “Overview of the Crystal Reports Java Reporting Component,” p. 654

30

N O T E
All sample code in this chapter uses Visual Basic 6 syntax, but can easily be adapted to
other languages that support COM. For sample code in other languages, visit the
Business Objects support site at http://support.businessobjects.com.

Many development environments support Microsoft’s COM technology. COM (Component
Object Model) is a standard technology used for exposing Software Development Kits
(SDKs) in the Windows world. It implies a set of objects with properties and methods.
Much of Microsoft’s own SDKs are based on COM. It follows that the recommended
Crystal Reports SDK for desktop applications would also be based on COM. Its name is
the Report Designer Component, and it consists of the following pieces:

■ A report designer integrated into the Visual Basic environment

■ An object model built around the report engine used for manipulation of the report

■ A report viewer control used for displaying reports inside an application

The following sections describe each of these components in more detail.

Building Reports with the Visual
Basic Report Designer

The Visual Basic report designer enables developers to create and edit reports from within
the comfort of the Visual Basic environment. Figure 30.1 shows the report designer active
inside Visual Basic.

37 0789731134 Ch30 6/23/04 4:15 PM Page 696

697Building Reports with the Visual Basic Report Designer

To add a new report to a project, select Add Crystal Reports 10 from the Project menu
inside Visual Basic.

30

Figure 30.1
Here a report is
shown being editing
in the Visual Basic
report designer.

N O T E
If Add Crystal Reports 10 is not showing on the Project menu, go to the Project,
Components menu, and on the Dialog tab, make sure Crystal Reports 10 has a check
beside it. If you turn this on, it permanently appears on the Project menu.

From the dialog that opens, select Using the Report Wizard or As a Blank Report to create
a new report from scratch. The From an Existing Report option provides you with the
capability to import any existing Crystal Report file (.rpt) and use the Visual Basic report
designer to make further modifications, a great way to leverage any existing work an organi-
zation has put into Crystal Reports. A report that is added to a Visual Basic project is saved
as a .dsr file, which is a container for the actual .rpt file along with some other information.
At any point, you can click the Save to Crystal Report File button on the designer’s toolbar
and save the report out to a standard RPT file, so in effect reports can easily go both ways:
in and out of Visual Basic. Because the Visual Basic report designer is based primarily on
the same code-base as the standalone Crystal Reports designer, the RPT file format is the
same. You can also import existing reports from past versions into the Visual Basic report
designer.

The Visual Basic report designer supports almost all the features of the Crystal Reports
designer and can be used to create everything from simple tabular reports to highly format-
ted, professional reports. However, even though the capabilities of these two editions are

37 0789731134 Ch30 6/23/04 4:15 PM Page 697

698 Chapter 30 COM Reporting Components

similar, there are some differences in the way the designer works. This is not meant to be
inconsistent, but rather to adapt some of the Crystal Reports tasks to tasks with which
Visual Basic developers are familiar. Ideally, the experience of designing a report with the
Visual Basic report designer should be like designing a Visual Basic form. The following
sections cover these differences.

Understanding the User Interface Conventions
Several user interface components work differently in the Visual Basic report designer. One
of the first things you might notice is that the section names are shown above each section
on a section band as opposed to being on the left side of the window. However, the same
options are available when right-clicking on the section band. This tends to be more conve-
nient anyway.

The Field Explorer resides to the left of the report page. Although it cannot be docked, it
can be shown or hidden by clicking the Toggle Field View button on the designer toolbar.
Other Explorer windows found in the standalone designer such as the Report Explorer and
Repository Explorer are not available in the Visual Basic report designer.

30

N O T E
Reports that contain objects linked to the Crystal Repository are fully supported; how-
ever, no new repository objects can be added to the report without using the standalone
designer.

The menus that you would normally find in the standalone Crystal Reports designer can be
found by right-clicking on an empty spot on the designer surface. The pop-up menu pro-
vides the same functionality.

Modifying the Report Using the Property Browser
To change the formatting and settings for report objects in the standalone designer, users
are familiar with right-clicking on a report object and selecting Format Field from the pop-
up menu. This opens the Format Editor, which gives access to changing the font, color,
style, and other formatting options. In the Visual Basic report designer this scenario is still
available; however, there is an additional way to apply most of these formatting options: the
Property Browser.

The Property Browser is a window that lives inside of the Visual Basic development envi-
ronment. It should be very familiar to Visual Basic developers as a way to change the
appearance and behavior of a selected object on a form or design surface. In the context of
the report designer, the Property Browser is another way to change the settings (properties)
for report objects. In general, any setting that is available in the Format Editor dialog is
available from the property browser when that object is selected. To see which properties
are available for a given object, click on it, and check out the Property Browser window
shown in Figure 30.2.

37 0789731134 Ch30 6/23/04 4:15 PM Page 698

699Building Reports with the Visual Basic Report Designer

The property names are listed on the left and the current values are listed on the right. To
choose a value, simply click on the current value and either type or select from the drop-
down list.

One property to pay attention to is the Name property. This becomes relevant in the next
section when you learn how to use the Report Engine Object Model to manipulate the
report on the fly at runtime. This is the way to reference that object in code. Also of note is
that the properties shown in the Property Browser map to the same properties that are
available programmatically via the object model. If you see a property there, this means it is
also available to be changed dynamically at runtime.

Unbound Fields
The Field Explorer in the Visual Basic report designer has an extra type field not found in
the standalone report designer. These are called unbound fields. There is one type of
unbound field for each data type. These fields are used to build dynamic reports. Because
they do not have a predefined database field mapped to them, they provide a way to change
the locations of fields on the report by using some application logic. The reason they each
have their own data type is so that type-specific formatting can be applied such as the year
format for a date object, or the thousands separator for a numeric object. Unbound fields
are revisited later in this chapter.

30

Figure 30.2
Changing a report
object’s settings via
the Property Browser
is shown here.

N O T E
When you create an unbound field, it also shows up as a formula in the Formula Fields
list. This is because a formula is used behind the scenes of an unbound field. The best
practice is not to edit this as a formula field.

37 0789731134 Ch30 6/23/04 4:15 PM Page 699

700 Chapter 30 COM Reporting Components

Programming with the Report Engine Object
Model

The object model is the main entry point to the Crystal Reports engine for desktop applica-
tions. As mentioned earlier, it is based on COM and can be used from any COM-compliant
development environment. Although the main library’s filename is craxdrt.dll, the more
important thing to know is that it shows up in the Project References dialog as Crystal
Reports ActiveX Designer Runtime Library 10.0, as shown in Figure 30.3. After a reference
is added to this library, a new set of objects will be available to you. These objects are con-
tained in a library called CRAXDRT. To avoid name collisions, it’s probably a good idea to fully
qualify all object declarations with the CRAXDRT name, for example, Dim Param As
CRAXDRT.ParameterField.

30

Figure 30.3
Reference the Report
Designer
Component’s Object
Model in the
References dialog.

In addition to many other features, the object model provides the capability to open, create,
modify, save, print, and export reports. This section covers some of the more common sce-
narios a developer might encounter.

The main entry point to the object model is the Report object. This object is the program-
matic representation of the report template and provides access to all the functions of the
SDK. There are three ways to obtain a Report object:

■ Load an existing RPT file from disk

■ Create a new report from scratch

■ Load an existing strongly typed report that is part of the Visual Basic project

The first two methods involve the Application object. Its two key methods are NewReport
and OpenReport. As the name implies, the NewReport method is used to create a blank report

N O T E
When adding a Crystal Report to your project, a reference is automatically added to this
library for you. You can use the CRAXDRT library right away.

37 0789731134 Ch30 6/23/04 4:15 PM Page 700

701Programming with the Report Engine Object Model

and the OpenReport method is used to open an existing report. Creating a new report is use-
ful if the application needs to make a lot of dynamic changes to the report’s layout on the
fly. This way all report objects can be added dynamically.

30

N O T E
Although many purist developers are tempted to not use any predefined report tem-
plates (RPT files) and create all reports on the fly, this tends to be overkill for most pro-
jects. There is a lot of work in having to programmatically make every single addition to
a report. It’s usually a better plan to have some RPT files as part of the application and
then make some small modifications at runtime.

The other option is to use the OpenReport method, which takes a filename to an RPT file as
a parameter. This opens an existing report. When using this method, the RPT files must be
distributed along with the application. The advantage of having these externals files is that
you can update the reports without updating the application.

The last method is to use a strongly typed report. A strongly typed report is one that is
added to the Visual Basic project and turned into a DSR file. Whichever name you give that
report, a corresponding programmatic object exists with the same name. For example, if
you save a report as BudgetReport.DSR, you can create that report programmatically with
the following code:

Dim Report As New BudgetReport

There are several advantages to using strongly typed reports. First, all report files are bound
into the project’s resulting executable so no external files are available for users to modify
and mess up. Second, not only is the name of the report strongly typed (BudgetReport in
the previous example), but also the section and report objects. For example, if you have a
text object acting as a column header and you want to modify this at runtime, it’s very easy
to access the object by name like this:

Report.ColumnHeader1.SetText “Some text”

The long-handed way of doing this would look something like this:

Dim field as CRAXDRT.FieldObject
Set field = Report.Sections(“PH”).ReportObjects(3)
Field.SetText “Some text”

Not only is this last method longer, you’d also have to refer to the report object by index
instead of name, which can become problematic. The following sections discuss some of the
common tasks that are performed after a Report object is obtained.

Exporting Reports to Other File Formats
A very common requirement for application developers is to be able to export a report
through their application. Not only do developers want a variety of formats, they want the
export to happen in a variety of ways, for example, having the user select where to save the
report, saving to a temp file and then opening it, e-mailing it to somebody else, and so on.

37 0789731134 Ch30 6/23/04 4:15 PM Page 701

702 Chapter 30 COM Reporting Components

By being creative with exporting, you can create some very powerful applications. The
Report Designer Component object model provides a very flexible API to meet these broad
needs. This section covers the basics of exporting.

There are two components to exports: the format and the destination. The developer speci-
fies both of these through the ExportOptions property of the Report object.

Setting the format options involves two steps. The first step is to choose which format you
want to export to. Sometimes an application provides the user a list of export formats and
lets him choose, other times the export type will be hardcoded. In any case, simply setting
the FormatType property of the ExportOptions object specifies this. This property accepts a
number. For example, to export to PDF, pass in 31. Remembering which number represents
which format is tough so there are some enumerations with descriptive names that make this
easier.

30

N O T E
For a full list of enumerations, consult the Crystal Reports Developers Help file and look
at the CRExportFormatType enumeration in the Visual Basic object browser.

To help you get started, here are some of the more popular export format enumeration
values:

■ PDF: crEFTPortableDocFormat

■ Word: crEFTWordForWindows

■ Excel: crEFTExcel97

■ HTML: crEFTHTML40

■ XML: crEFTXML

Generally, all you need to do to set the format options is set the FormatType property.
However, many of the format types have some additional options. For example, when
exporting to Excel there is an option to indicate whether you want the grid lines shown. To
handle these extra settings, there are some other properties off the ExportOptions object
whose names begin with the format type. In the Excel grid lines example, the property is
called ExcelShowGridLines. For PDF, there are PDFFirstPageNumber and PDFLastPageNumber
properties that indicate which pages of the report you want exported to PDF. You can
determine what options are available by checking out the Crystal Reports Developer Help
file and looking at the ExportOptions object.

After the format is set up, you need to tell Crystal Reports where you want this report to be
exported. This is called the export destination. The most common destination is simply a file
on disk but there are destinations such as e-mail or Microsoft Exchange folders where
reports can be automatically sent. The export destination is set via the DestinationType
property of the ExportOptions object. Some example values are listed here:

37 0789731134 Ch30 6/23/04 4:15 PM Page 702

703Programming with the Report Engine Object Model

■ File: crEDTDiskFile

■ E-mail: crEDTMailMAPI

■ Exchange: crEDTMicrosoftExchange

Check out the CRExportDestinationType enumeration to see the other available options.
Like the format, the destination has a set of additional options. The most obvious one is
when setting the destination to a file (crEDTDiskFile), you would need to specify where you
want this file and what its name should be. This is accomplished by setting the DiskFileName
property. Other properties on the ExportOptions object are available such as the MailToList
property, which is used to indicate who the report should be mailed to if the e-mail option is
selected as the destination.

The final step in exporting is to call the Report object’s Export method. It takes a single
parameter: promptUser. If this is set to true, any options previously set on the ExportOptions
object are ignored and a dialog appears asking the user to select the format and destination.
This can be useful if you want the user to have the capability to use any export format and
any destination. If you would like a more controlled environment, you can set promptUser to
false. When this is done the previously selected values from the ExportOptions object are
respected and the export is done without any user interaction besides a progress dialog pop-
ping up while the export is happening. This progress dialog can also be suppressed by set-
ting the Report object’s DisplayProgressDialog property to false. Listing 30.1 provides an
example of a report being exported to a PDF file without any user interaction.

Listing 30.1 Exporting to PDF

Dim Report As New CrystalReport1

‘ Set export format
Report.ExportOptions.FormatType = crEFTPortableDocFormat

‘ Set any applicable options for that format
‘ In this case, set to only export pages 1-2
Report.ExportOptions.PDFFirstPageNumber = 1
Report.ExportOptions.PDFLastPageNumber = 2

‘ Set export destination
Report.ExportOptions.DestinationType = crEDTDiskFile

‘ Set any applicable options for the destination
‘ In this case, the filename to be exported to
Report.ExportOptions.DiskFileName = “C:\MyReport.pdf”

‘ Turn all user interface dialogs off and perform the export
Report.DisplayProgressDialog = False
Report.Export False

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 703

704 Chapter 30 COM Reporting Components

Printing Reports to a Printer Device
Although it’s helpful to view reports onscreen and save some paper, many times reports still
need to be printed. To accomplish this, there is a collection of methods for printing reports
available from the Report object. The simplest way to print a report is to call the PrintOut
method passing in true for the promptUser parameter as shown here:

Report.PrintOut True

This opens the standard Print dialog that enables the user to select the page range and then
click OK to confirm the print. The limitation to this is that the pop-up dialog does not
enable the user to change the destination printer. Because this is a common scenario, this
method isn’t used very often. Instead, the PrinterSetup method is called. This method pops
up a standard printer selection dialog that enables the user to change the paper orientation
or printer.

Keep in mind that calling the PrinterSetup method does not actually initiate the print; it
only collects the settings to be used for the print later on. Luckily it does indicate via a
return value whether the user clicked the OK or Cancel button. Listing 30.2 shows an
example of how to use the PrinterSetup method to set printer options.

Listing 30.2 Printing a Report Interactively

‘ Call PrinterSetup to set printer, paper orientation, and so on
If Report.PrinterSetupEx(Me.hWnd) = 0 Then

‘ If the return value is 0, the user did not click Cancel
‘ so go ahead with the print
Report.PrintOut False

End If

To print a report without any user interaction, call the PrintOut method passing in false for
the promptUser parameter. Options such as pages and collation can be set with the additional
argument to the PrintOut method. To change the printer, call the SelectPrinter method.
This accepts the printer driver, name, and port as parameters and performs the printer
change without any user interaction. Listing 30.3 illustrates a silent print.

Listing 30.3 Printing a Report Silently

‘ Call PrinterSetup to set printer, paper orientation, and so on

‘ Set paper orientation
Report.PaperOrientation = crLandscape

‘ Set printer to print to
‘ pDriver -- for example: winspool
‘ pName -- for example: \\PRINTSERVER\PRINTER4
‘ pPort -- for example: Ne00:
Report.SelectPrinter pDriver, pName, pPort

‘ Initiate the print
Report.PrintOut False

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 704

705Programming with the Report Engine Object Model

Setting Report Parameters
Often reports delivered through an application need to be dynamically generated based on a
parameter value. If a report with parameters is viewed, exported, or printed, a Crystal para-
meter prompting dialog pops up and asks the user to enter the parameter values before the
report is processed. This parameter prompting dialog requires no code. The use of the
object model comes into play when a developer wants to set parameters without user inter-
action. This is done via the ParameterFieldDefinitions collection accessed via the Report
object’s ParameterFields property. If all parameter values are provided before the report is
processed, the parameter dialog is suppressed.

Parameters can be referenced by name or by number. To reference by name, call the
ParameterFields object’s GetItemByName method passing in the name of the parameter
you want to access. This returns a ParameterField object. Alternatively, use the indexer
on the ParameterFields object; for example, ParameterFields(1). When referencing by
index, the parameters will be stored in the same order they appear in the Field Explorer
window in the report designer. After a ParameterField object is obtained, simply call the
AddCurrentValue method to set the parameter’s value as shown in Listing 30.4.

Listing 30.4 Setting Parameters

Dim Application As New CRAXDRT.Application
Dim Report As CRAXDRT.Report

‘ Open the report from a file
Set Report = Application.OpenReport(“C:\MyReport.rpt”)

Dim p1 as ParameterField
Set p1 = Report.ParameterFields.GetItemByName(“Geography”)
p1.AddCurrentValue(“Europe”)

Dim p2 as ParameterField
Set p2 = Report.ParameterFields(2)
p2.AddCurrentValue(1234)

If the parameter accepts multiple values, simply call the AddCurrentValue method multiple
times. For range parameters where there is a start and an end value, use the AddRangeValue
method.

Sometimes a developer wants to prompt the user to enter some or all of the parameters but
they want to control the user interface. Much information about the parameter can be
obtained by reading its properties:

■ ParameterFieldName: Name of the parameter

■ ValueType: The data type of the parameter (string, number, and so on)

■ Prompt: The text to use to prompt for this parameter

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 705

706 Chapter 30 COM Reporting Components

Also, by using the NumberOfDefaultValues property and GetNthDefaultValue method, a
developer can construct her own pick-list of default parameter values that is stored in the
report.

30

N O T E
For more information on the other properties and methods available on the
ParameterField object, consult the Crystal Reports Developer Help file and look for
the ParameterFieldDefinition object.

Setting Data Source Credentials
Although the sample reports that come with Crystal Reports 10 use an unsecured Microsoft
Access database as their data source, most real-world reports are based on a data source that
require credentials (username, password) to be passed. Also, it’s very common to want to
change data source information such as the server name or database instance name via code.
This section covers these scenarios.

Unlike parameters, there is no default-prompting dialog for data source credentials. They
must be passed via code. The server name, location, database name, and username are all
stored in the report. However, the password is never saved. A report will fail to run if a
password is not provided.

Most reports only have a single data source but because it is possible for reports to have
multiple data sources that in turn would require multiple sets of credentials, setting creden-
tials isn’t something that’s done on a global level. Credentials are set for each table in the
report. Tables are represented by an object called a DatabaseTable inside the object model.
The following code snippet illustrates the hierarchy required to get at the DatabaseTable
object.

Report
Database

DatabaseTables
DatabaseTable

Tables are accessed by their index, not their name. The indexes in the object model are all
1-based and are in the order you see them in the Field Explorer in the report designer. To
access the first table in the report, you could do this:

Dim tbl as DatabaseTable
Set tbl = Report.Database.Tables(1)

After the correct DatabaseTable object is obtained, use the ConnectionInfo property bag to
fill in valid credentials. If you do only have one data source in the report, but multiple
tables from that data source, you need not set credentials for each one. The information is
propagated across all tables. Listing 30.5 illustrates setting the server name, database name,
username, and password for a report based off an OLEDB data source.

37 0789731134 Ch30 6/23/04 4:15 PM Page 706

707Programming with the Report Engine Object Model

Listing 30.5 Setting Data Source Credentials

‘ Provide database logon credentials (in this case
‘ for an OLEDB connection to a SQL Server database)
Dim tbl as CRAXDRT.DatabaseTable
Set tbl = Report.Database.Tables(1)
tbl.ConnectionInfo(“Data Source”) = “MyServer”
tbl.ConnectionInfo(“Initial Catalog”) = “MyDB”
tbl.ConnectionInfo(“User ID”) = “User1”
tbl.ConnectionInfo(“Password”) = “abc”

Each type of data source has its own set of properties. OLEDB has a Data Source, which is
the server name whereas the Microsoft Access driver has a Database Name, which is a file-
name to the MDB file. The ConnectionInfo property bag is introspective so you can loop
through and determine what properties are available.

Mapping Unbound Fields at Runtime
Earlier in this chapter you saw that a new type of field called an unbound field can be added
to the report with the Visual Basic report designer. Using the object model, these unbound
fields can be mapped to database fields in the report at runtime. This is done two different
ways: manually or automatically.

The manual method is to use the SetUnboundFieldSource method of the FieldObject. This
method takes a single parameter, which is the name of the database field to be mapped in
the Crystal field syntax, such as {Table.Field}. If a strongly typed report is being used, that
is, a report added to the Visual Basic project, the UnboundField objects can be referenced as
properties of the Report object. For example, an unbound field object given the default
name of UnboundString1 can be referenced like this:

Report.UnboundString1.SetUnboundFieldSource “{Customer.Customer Name}”

If a report is loaded at runtime, there are no strongly typed properties so the FieldObject
needs to be found under the Section and ReportObjects hierarchy. The following example
gets a reference to the first unbound field in the details section:

Dim fld As FieldObject
Set fld = Report.Sections(“D”).ReportObjects(1)
fld.SetUnboundFieldSource “{Customer.Customer ID}”

The automatic method is to simply call the Report object’s AutoSetUnboundFieldSource
method. This assumes that any unbound fields to be mapped are named to match a database
field. Initially this might seem strange because the whole point of an unbound field is that
the developer doesn’t know which database field it will be mapped to at design time.
However, this automatic method is valuable when the database table doesn’t exist at design
time, and instead is added at runtime based on some dynamic data.

Using the Code-Behind Events
One of the reasons that the report is saved as a DSR file instead of just an RPT file is that
the DSR file contains some code that is attached to the report file. This code, often called

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 707

708 Chapter 30 COM Reporting Components

code-behind, is event-handing code for several events that the report engine fires. The follow-
ing list describes events that are fired and their corresponding uses:

■ Initialize (Report): Fired when the report object is first created. This event can be
useful for performing initialization-related tasks.

■ BeforeFormatPage/AfterFormatPage (Report): Fired before and after a page is
processed; can be useful for indicating progress.

■ NoData (Report): Fired when a report is processed but no records were returned from
the data source. Sometimes a report with no records is meaningless and thus should be
skipped or the user should be warned; this event is a great way to handle that.

■ FieldMapping (Report): Fired when the database is verified and there has been a
schema change; this event enables you to remap fields without user interaction.

■ Format (Section): Fired for the rendering of each section. This is useful for handling
the detail section’s event and performing conditional logic.

Delivering Reports Using the Report Viewer
In the previous section, only printing and exporting were mentioned as options for deliver-
ing reports. You might have been wondering how to view reports onscreen. This section will
cover using the report viewer to view reports. This report viewer control is usually referred
to as the ActiveX viewer, or the Crystal Reports Viewer Control. It is an ActiveX control,
which means that in addition to being able to be dropped on to any Visual Basic form—like
the other components of the Report Designer Component—it can be used in any COM-
compliant development environment. Its filename is CRViewer.dll. Figure 30.4 depicts the
ActiveX viewer displaying a report from a Visual Basic application.

30

Figure 30.4
A Crystal Report is
shown here being dis-
played in the ActiveX
viewer.

37 0789731134 Ch30 6/23/04 4:15 PM Page 708

709Using the Object Model to Build Batch Reporting Applications

The ActiveX viewer works in conjunction with the object model and report engine to render
the report to the screen. The object model talks to the report engine to process the report,
and then the ActiveX viewer asks the object model for the data for an individual page. After
this data is received by the viewer, it displays the report page onscreen. The following code
snippet illustrates how to view a report with the report viewer control:

Dim Application As New CRAXDRT.Application
Dim Report As CRAXDRT.Report

Set Report = Application.OpenReport(“C:\MyReport.rpt”)
CRViewer.ReportSource = Report
CRViewer.ViewReport

The ActiveX control has many properties and methods that enable you to customize its look
and feel. To turn off the toolbar at the top of the viewer control, simply set the
DisplayToolbar property to false. To turn off the group tree, set the DisplayGroupTree
property to false. This can result in a very minimalist viewer. In addition, the control has a
full event model that notifies you when certain actions are performed, such as a drill-down
or page navigation. For more information on the ActiveX viewer control, consult the
Crystal Reports 10 developer help file.

Using the Object Model to Build Batch
Reporting Applications

So far this chapter has focused on on-demand reporting, meaning that reports are processed
as they are requested and they generally go away when the viewing or printing is completed.
One of the biggest uses of the Report Designer Component today is for batch reporting;
that is, running a large number of reports at once. This section covers some features and
best practices relevant to batch reporting.

Working with Reports with Saved Data
When using the standalone report designer, you might have noticed an option on the File
menu called Save Data with Report. This enables a report to be saved with the last returned
dataset so that it can be viewed again without connecting to the database. Reports with
saved data are in effect an offline report.

Applications using the Report Designer Component can both create and view reports with
saved data. This enables you to run a batch of reports and then be able to view them at any
point later. This can be useful for reports based on queries that take a long time to run, or
also for achieving an archiving process for reports.

Creating a report with saved data is very simple. You just export to the Crystal Reports for-
mat by using the crEFTCrystalReport identifier. All exported reports have saved data. You
can control where this report is saved and archive it for later.

Viewing a report with saved data doesn’t actually require any code at all. The logic of the
report engine is: If the report has saved data, use it and only hit the database again if the

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 709

710 Chapter 30 COM Reporting Components

user clicks the Refresh button or the developer forces a refresh by calling the
DiscardSavedData method off the Report object. You can always tell which copy of the data
is being used from examining the DataDate property of the Report object.

Hopefully you can imagine how applying this principle to batch reporting would be power-
ful. A set of reports could be run overnight, producing another set of reports with saved data
that can be viewed offline.

Looping Through Reports
Another scenario that is relevant to batch reporting is looping through a set of reports. A
common example is running either one report many times with different parameters (such
as a bank statement) or running a large collection of reports all at once (such as financial
statements).

These scenarios can be accomplished by using external report files and writing a loop that
opens a report, prints or exports it, and then closes it. The best way to close a report is to
set the Report object to Nothing:

Set Report = Nothing

This releases the COM object and releases the report job from memory.

Also, the CRAXDRT library is thread safe, which means that multiple threads can be calling
into it at the same time. If a large number of reports need to be processing in a very small
amount of time, you can spawn as many as five simultaneous threads that are all running
reports at the same time.

Troubleshooting
Add Crystal Reports 10

“Add Crystal Reports 10” is not showing on my Project menu.

If you don’t see “Add Crystal Reports 10” on the Project menu, go to the Project,
Components menu, and on the Dialog tab make sure Crystal Reports 10 has a check beside
it. If you turn this on, it permanently appears on the Project menu.

30

37 0789731134 Ch30 6/23/04 4:15 PM Page 710

VIIPART

Customized Report Distribution—
Using Crystal Enterprise
Embedded Edition

31 Introduction to Crystal Enterprise Embedded

32 Crystal Enterprise—Viewing Reports

33 Crystal Enterprise Embedded—Report Modification and Creation

38 0789731134 Part 07 6/23/04 4:10 PM Page 711

38 0789731134 Part 07 6/23/04 4:10 PM Page 712

31CHAPTER

In this chapter

Introduction to Crystal
Enterprise Embedded Edition

In this chapter

Introduction to Crystal Enterprise Embedded Edition 714

Understanding Crystal Enterprise Embedded Edition 714

Crystal Enterprise Embedded Edition Samples 717

DHTML Report Design Wizard 719

Leveraging the Open Source Nature of the Sample Applications 723

Troubleshooting 724

39 0789731134 CH31 6/23/04 4:11 PM Page 713

714 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

Introduction to Crystal
Enterprise Embedded Edition

The Report Application Server (RAS) is a set of components that enable developers to take
advantage of the report-design capabilities of the Crystal Reports engine. These compo-
nents enable developers to build applications that include report design, modification, and
viewing functionality and can be accessed through a Web browser. RAS is the replacement
and evolution of previous single threaded object models and Crystal Products such as the
Report Designer Component (RDC) and the Crystal Reports Print Engine (CRPE).

In version 10 of the Crystal Suite of Business Objects products, the standalone RAS is called
the Crystal Enterprise Embedded edition. RAS is built using client/server technology. The
server components consist of the application logic that interfaces with the reporting print
engine. The client components consist of the RAS Software Developer’s Kit (SDK) that
communicates with the RAS via TCP/IP and the Viewers SDK that exposes a number of
report viewers each suiting particular application needs. The RAS is a multithreaded server
with both .NET/COM and Java object models.

The RAS and Viewers SDKs are discussed in greater detail in Chapter 32, “Crystal
Enterprise—Viewing Reports,” and Chapter 33, “Crystal Enterprise Embedded—Report
Modification and Creation.” This chapter introduces the sample applications provided
around Crystal Enterprise Embedded and provides some configuration information.

Understanding Crystal
Enterprise Embedded Edition

Crystal Enterprise Embedded edition (the RAS by itself) is used in a standalone mode to
deliver Crystal Report’s creation, modification, and viewing functionality over the Web. In
its simplest description, it can be thought of as an open Report Engine with a published
object model and viewer controls. Crystal Enterprise Professional and Premium editions
were introduced in Part V, “Web Report Distribution—Using Crystal Enterprise.” Each of
these advanced editions of Crystal Enterprise can also leverage the powerful report explo-
ration (creation and modification) functionality of the RAS and object model. In these
advanced editions, the RAS is effectively plugged into the Crystal Enterprise infrastructure
or backbone and managed as any of its other services. Figure 31.1 displays the basic RAS
standalone architecture.

In this standalone case, the installation is limited to a single RAS for the custom applications
written to interact with. The RAS accesses reports on the server based on a central location
specified in the RAS Configuration tool (see the next section for more detail). You can how-
ever have multiple installations of standalone RAS that share a central network location
where the reports reside. Keep in mind that it is generally not a good idea to have the report
located somewhere other than the RAS server—applications opening reports on this server

31

39 0789731134 CH31 6/23/04 4:11 PM Page 714

715Understanding Crystal Enterprise Embedded Edition

require the server components to load the involved report and to create a local copy of it.
The network traffic associated with pulling the .rpt file from a location on a different server
results in application performance degradation.

31

Figure 31.1
The RAS architecture
provides program-
matic access to report
creation and modifi-
cation.

Web Server

RAS Server

RAS SDK

TCP/IP

Using the Crystal Configuration Manager
The Crystal Configuration Manager (CCM) provides a point of access for setting the dif-
ferent options around the Crystal Enterprise Embedded (or RAS) installation. It is accessed
through the Microsoft Start, Programs, Crystal Enterprise menu path and is highlighted in
Figure 31.2.

Figure 31.2
The CCM for the RAS
provides access to
key settings.

The default report location along with other RAS server settings can be accessed by stop-
ping the RAS service in the CCM and then selecting Properties through the Properties
button or the right-click menu on the service.

Setting Database Parameters

After having accessed the Crystal RAS Properties dialog box, click on the Parameters tab
and ensure the Option Type drop-down box has the Database option selected as shown in
Figure 31.3. In this dialog, you can set the number of records that are brought back in
reports by default or the number of records accessed in one batch. You can also set how
many records are accessed and brought back when you expose the Browse Field functional-
ity in your applicaton(s).

39 0789731134 CH31 6/23/04 4:11 PM Page 715

716 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

Setting Server Parameters

On the same Parameters dialog, after choosing Server for the option type you are shown the
dialog displayed in Figure 31.4. Here you can set the location of your reports, the number
of simultaneous jobs, and a number of minutes before an idle job is closed. Keep in mind as
you change these settings you need to restart the RAS service for them to take effect.

31

Figure 31.3
Setting the RAS
Database options.

Figure 31.4
The Parameters tab
of the RAS properties
dialog enables you to
set key RAS options
such as report loca-
tion, simultaneous
job maximums, and
user timeout.

39 0789731134 CH31 6/23/04 4:11 PM Page 716

717Crystal Enterprise Embedded Edition Samples

Crystal Enterprise Embedded Edition Samples
There are a number of sample applications that ship as part of Crystal Enterprise Embedded
(RAS standalone). This section describes these sample applications. It is important to note
that the purpose of these examples is to demonstrate the basic capabilities of RAS in action
and to provide sample starting points for further application development. In some cases
you will find these immediately useful for allowing your users to perform simple tasks like
viewing reports, setting report data sources at runtime, changing the selection formula at
runtime, or passing parameters to reports. In the majority of cases, it is expected you will be
able to leverage the concepts and sample code as starting points into developing your own
rich and more full-featured applications.

Report Preview Sample
The Report Preview Sample is an application that demonstrates report viewing using
Crystal Enterprise Embedded’s RAS (see Figure 31.5). The frame on the left represents the
directory structure as it appears starting at the root of the default RAS reports directory. By
default, this directory is c:\program files\crystal decisions\report application server10\
reports. After a report is selected to view, it appears inside the bottom-right frame. The top-
right frame lists report viewers that are available with RAS. You can toggle between the
viewers available by selecting the desired option in this frame.

31

N O T E
The RAS also exposes caching capabilities that enable multiple users to view the same
copy of a cached report. This ultimately increases the number jobs the RAS can handle at
any given point. Keep in mind however that if your reports contain subreports these are
not cached.

Figure 31.5
The Report Viewer
Sample provides a
good starting point for
a report viewing
application and also
provides sample code.

39 0789731134 CH31 6/23/04 4:11 PM Page 717

718 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

Additional information on the report viewers for RAS and their programmatic hooks and
controls is provided in the next chapter.

The Simple Discrete Parameter Sample
The Simple Discrete Parameter example shown in Figure 31.6 provides a demonstration of
a report running with parameters. As previously discussed in this book, there are often cases
where reports are required to run with parameters against the database. Some of these para-
meters might be passed in without the report consumer even being aware of them (for
example, global environment variables to set a user’s preferred language for report viewing).
Other types of parameters require user input where the user is presented with a list of values
to choose from and a report is run using those selected values and limits the resultset dis-
played in the report.

31
Figure 31.6
The Simple Discrete
Parameters example
provides a good start-
ing point for a report
viewing application
using parameters.

The Database Logon Sample
The Database Logon example illustrates the capability for the end user to supply his own
logon credentials to the report when it is retrieving data from the database. This scenario is
commonly found in implementations where users should only be able to see data that per-
tains to them and user-level database security has been set up. An example of this might
include a sales executive for the eastern region and his counterpart for the western region
viewing the same pipeline report—each executive only needs to view information for his
specific geographies. When either of them views the report, they are prompted to supply
logon information (see Figure 31.7) to continue and this information is passed to the data-
base and the appropriate user-level security is applied there.

The Data Source Location Sample
The Set Data Source Location sample demonstrates the task of setting the location of the
database to be used for the involved report at runtime. This example might be useful in sce-
narios where you need to run the same report against different environments (such as
Development, Testing and Quality Assurance [QA]). Another practical example would be in

39 0789731134 CH31 6/23/04 4:11 PM Page 718

719DHTML Report Design Wizard

the scenario where different versions of identical databases are kept across an organization.
You might want to enable the application users to decide what data source to dynamically
run the report against (for example, different regional databases). In this case, a custom Web
page could be developed to let the user make the desired choice and then use the RAS func-
tionality to connect the report to the selected database.

31

Figure 31.7
The Database Logon
example provides a
good starting point
for understanding
database logons and
Crystal Reports.

Examples discussed in this section are included with the out-of-the box installation of the
RAS (Crystal Enterprise Embedded in version 10) and can be leveraged by reusing the
source code distributed as part of the installation.

DHTML Report Design Wizard
When RAS is installed and licensed as part of Crystal Enterprise Professional or Premium
editions, it presents a DHTML wizard application through Crystal Enterprise that enables
end users to create new or modify existing reports that are published in Crystal Enterprise.
This integrated Crystal Enterprise action provides the end user with a series of dialogs that
step through common report creation/modification tasks like adding fields, groups, filters,
sorts, charts, and the application of report templates to existing reports stored in the
Crystal Enterprise system.

Take a closer look at the wizard user interface. When you select the modify action on a
given report, a dialog is displayed (see Figure 31.8) that enables you to select fields to be
included in the newly modified report.

After you have selected the fields you want, click the Next button to open a Grouping dia-
log (see Figure 31.9) that enables the end user to specify groupings to be included in the
report.

If at least one group has been selected for the newly modified report, a Summaries dialog is
presented next (see Figure 31.10). This enables the addition of summaries to the new

39 0789731134 CH31 6/23/04 4:11 PM Page 719

720 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

report. To accomplish this, an end user defines the type of summary field (such as Sum,
Average, Count, Max, or Min), the field to perform the summary on, and the group to cal-
culate the involved summary on. Clearly, multiple summaries can be added to the newly cre-
ated report in this dialog. Note that different types of summaries are presented based on the
type of field selected (for example, Sum does not appear if a string field is selected).

31

Figure 31.8
The Field Selection
dialog of the Modify
Report Wizard
enables user selection
of fields from an
existing Business View
or Crystal Report.

Figure 31.9
The Group Selection
dialog of the Modify
Report Wizard
enables end users to
add or change report
groupings.

After you click the Next button, you are presented with a choice to override the default
group sorting that is added when grouping the data in the report. Group sorting can be
based on the actual Group names or the Summary fields that are calculated for that group.

39 0789731134 CH31 6/23/04 4:11 PM Page 720

721DHTML Report Design Wizard

When performing the sort on the latter, you can specify Top and Bottom N sorts or an All
Records sort through the drop-down boxes in the dialog. Also in this dialog, you can specify
the sort order for the detail level fields included in the detail section of the report (see
Figure 31.11).

31

Figure 31.10
The Summary
Selection dialog of
the Modify Report
Wizard enables the
end user to add or
change field sum-
maries to reports.

Figure 31.11
The Sorting Selection
dialog of the Modify
Report Wizard
enables end users to
add or change field
sorting on the report.

The next step is the option to apply record filters. Filters are used to limit the data that the
report displays. This dialog enables you to see any filters that are already defined and
append new filters through the provided text box or the provided drop-down boxes.

39 0789731134 CH31 6/23/04 4:11 PM Page 721

722 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

The RAS-based DHTML wizard also enables the end user to place a chart in the report
header or footer section. The Chart Type is selected in the dialog presented in Figure 31.12
and the end user can customize the chart by adding a title to the chart and specifying the
summary data that is actually charted (see Figure 31.13).

31

N O T E
It is important to note that although the default wizard uses the AND operator to join
multiple filters, a small customization to this wizard would enable the end user to specify
the operator on multiple joins. As you move through the following two chapters, it
should become more clear how this type of customization would take place.

Figure 31.12
The Filter Selection
dialog of the Modify
Report Wizard
enables the end user
to select filters for the
modified report.

One last screen that is presented for optional use is the report template specification screen.
In this dialog, you can apply an existing report template to the newly created report. Report
templates were covered in Chapter 14, “Designing Effective Report Templates.”

After the report is defined to fit your needs, you can preview it immediately using the
Preview Report link on any of the DHTML wizard screens. If the newly modified report is
of sufficient value to keep as a new report, you can save the report in any Crystal Enterprise
folder that you have been granted access to within the Crystal Enterprise
Professional/Premium security model.

39 0789731134 CH31 6/23/04 4:11 PM Page 722

723Leveraging the Open Source Nature of the Sample Applications

Leveraging the Open Source Nature of the
Sample Applications

It is worth pointing out as a reminder that all the functionality that is provided through the
step-wise DHTML Report Design Wizard just described is provided through a single appli-
cation called the Crystal Reports Explorer in version 10. (In previous versions it was called
the Crystal Ad-Hoc Application and is often still referenced as such.) This application is
provided with Crystal Enterprise Premium or Crystal Enterprise Professional with the
Report Explorer Add-in.

For more information, see Chapter 21, “Ad-Hoc Application and Excel Plug-in for Ad-Hoc
and Analytic Reporting.”

It is also instructive to understand that both the DHTML Report Design Wizard and the
Crystal Reports Explorer introduced in Chapter 21 are simply working examples of the
Crystal Enterprise Embedded (or RAS) functionality in action. These applications are pro-
vided open-source and provide great starting points for rapid application development and
customization. The next two chapters introduce the RAS object models and their capability
to integrate report creation and modify functionality into either Java or .NET/COM-based
applications.

31

Figure 31.13
The Charting
Selection dialog of
the Modify Report
Wizard.

39 0789731134 CH31 6/23/04 4:11 PM Page 723

724 Chapter 31 Introduction to Crystal Enterprise Embedded Edition

Troubleshooting
Distributing Through the Web

I want to distribute Crystal Reports through the Web but I need to scale beyond the built-in simulta-
neous request limit of 3 provided with Crystal Reports Advanced.

Install Crystal Enterprise Embedded and either use one of the sample Web reporting appli-
cations or include programmatic access to the object model in your applications.

In cases where there have been legacy applications written in previous versions of the
Crystal product set that make use of the Report Designer Component (RDC) or the Crystal
Print engine (CRPE), Crystal Enterprise Embedded edition should be considered the logi-
cal migration path. This is particularly true when you’re developing applications that require
Web access. This version of the product leverages the advantages of the client/server archi-
tected components in RAS that are specifically written for the Web. In the following two
chapters the common Crystal Viewers SDK and the functionality in the RAS SDK are pre-
sented in increasing detail.

39 0789731134 CH31 6/23/04 4:11 PM Page 724

32CHAPTER

In this chapter

Crystal Enterprise—
Viewing Reports

In this chapter

Viewing Reports over the Web 726

Introduction to the Crystal Report Viewers 726

Understanding the Report Source 727

Implementing the Page Viewer 729

Implementing the Part Viewer 731

Implementing the Interactive Viewer 732

Implementing the Grid Viewer 734

Using the Export Control to Deliver Reports in Other Formats 737

Troubleshooting 739

40 0789731134 CH32 6/23/04 4:10 PM Page 725

726 Chapter 32 Crystal Enterprise—Viewing Reports

Viewing Reports over the Web
This chapter introduces programmatic access to viewing reports over the Web through the
Crystal Enterprise SDKs. It is important to note that these viewers and the means to pro-
grammatically access them have been made consistent across the Business Objects Crystal
product line—including Crystal Reports, Crystal Enterprise Embedded, and Crystal
Enterprise Professional and Premium editions. This consistency across products enables a
seamless and rapid migration through the different versions of the Crystal product suite as
developer’s application requirements grow. These SDKs are provided in Java, .NET, and
COM flavors and provide rich functionality that can be integrated into both intranet and
extranet targeted applications.

This chapter introduces the different Crystal Report viewer components and explains how
to set them up for inclusion in your custom applications. The following topics are covered:

■ Introduction to the Crystal Report viewers

■ Understanding the report source

■ Implementing the Page viewer and toolbar buttons

■ Implementing the Part viewer

■ Implementing the Interactive viewer and toolbar buttons

■ Implementing the Grid viewer and toolbar buttons

■ Using the Export Control

Introduction to the Crystal Report Viewers
The Crystal Report viewers that ship with Report Application Server break into four differ-
ent categories to suit the need of a variety of applications: the Page viewer, Part viewer,
Interactive viewer, and Grid viewer. Although all four viewers offer unique capabilities, they
share a common API and set of basic features. Each viewer allows the developer to indicate
which report to display, supply database logon credentials, apply report parameters, and
export the report. All four viewers are exposed as server-side controls and as a result, output
dynamic HTML that is rendered in any Web browser. No special software is required on
the client’s machines to view reports using any of the viewers.

Listed below is a short description about each report viewer:

■ Page viewer: The standard report viewer component. It displays reports in a paginated
fashion. A toolbar along the top allows access functions like page navigation, printing,
exporting, zooming, and text searching.

■ Part viewer: A report viewer component that renders just individual elements of a
report. This is useful for portal-style applications where only a small portion of the
screen is reserved for report viewing.

32

40 0789731134 CH32 6/23/04 4:10 PM Page 726

727Understanding the Report Source

■ Interactive viewer: Looks and acts identical to the Page viewer but exposes an extra
toolbar button that provides an additional user interface for doing data-level searching
within the report.

■ Grid viewer: A viewer component that just displays the data from the report in a grid
without any layout or formatting applied.

The means with which all of these viewers interact with the reports themselves is a mecha-
nism called the report source. The following section describes the report source in detail.

Understanding the Report Source
Because the Crystal Report viewer components are shared across both the Crystal
Enterprise Embedded Edition and the Crystal Enterprise Professional/Premium editions,
there must be a common interface defined so the viewer can display reports generated using
both types of report processing engines. This interface is called the report source. The report
source is an object that both the Embedded edition and Professional/Premium editions sup-
ply that the viewer in turn communicates with to render the reports to the various forms of
HTML.

There are three types of report sources:

■ Standalone Report Application Server: This is packaged as the Crystal Enterprise
Embedded Edition.

■ Clustered Report Application Server: This is packaged as part of Crystal Enterprise
Professional/Premium edition. This is the Report Application Server running as a ser-
vice on the Crystal Enterprise framework.

■ Page Server: This is the primary report processing service as part of the Crystal
Enterprise framework.

32

The Java code in Listing 32.1 illustrates the first scenario where a report source object is
obtained from the standalone Report Application Server.

Listing 32.1 Obtaining a Report Source from a Report File

//First you must create a new ReportClientDocument object
ReportClientDocument reportClientDoc = new ReportClientDocument();

//After the ReportClientDocument is created, you then need to
//specify the report file that is to be used as the report

N O T E
Because of the special functionality of the Interactive and Grid viewers, they do not work
with a Page Server–based report source.

continues

40 0789731134 CH32 6/23/04 4:10 PM Page 727

728 Chapter 32 Crystal Enterprise—Viewing Reports

//source:
String path = “C:\\Program Files\\Crystal Decisions\\Report Application Server” +

” 10\\Reports\\Sample.rpt”;
reportClientDoc.open(path, openReportOptions._openAsReadOnly);

//Finally use the openReportSource method to return the report source object
IReportSource reportSource = reportClientDoc.getReportSource();

32

Listing 32.1 Continued

Listing 32.2 illustrates obtaining a report source when using the Report Application Server
as part of Crystal Enterprise. Notice that the same ReportClientDocument object is used.
The difference is in how the ReportClientDocument object is obtained.

➔ For more information on using the IEnterpriseSession as associated Crystal Enterprise objects, see
“Establishing a Crystal Enterprise Session,” p. 767

Listing 32.2 Obtaining an EnterpriseSession Object

//Retrieve the IEnterpriseSession object previously stored in the user’s session.
IEnterpriseSession enterpriseSession =

(IEnterpriseSession) session.getAttribute(“EnterpriseSession”);

//Use enterpriseSession object to retrieve the reportAppFactory object
IReportAppFactory reportAppFactory =

(IReportAppFactory) enterpriseSession.getService(“”, “RASReportFactory”);

//Open the report document by specifying the report ID
ReportClientDocument reportClientDoc = reportAppFactory.openDocument(reportID,

0, Locale.ENGLISH);

//Finally use the openReportSource method to return the report source object
IReportSource reportSource = reportClientDoc.getReportSource();

An alternative way to do this is shown in Listing 32.3.

Listing 32.3 Alternative Method to Obtain an EnterpriseSession Object

//Retrieve the IEnterpriseSession object.
IEnterpriseSession enterpriseSession =

(IEnterpriseSession) session.getAttribute(“EnterpriseSession”);

//Use the IEnterpriseSession object’s getService method to get

N O T E
All the code listings provided in this chapter are provided in JSP/Java. Although the
.NET/COM and the Java flavors of the RAS SDK share identical functionality, there are
obviously language nuances associated with each of them. Code samples for additional
language flavors are available for download from the www.usingcrystal.com Web
site.

40 0789731134 CH32 6/23/04 4:10 PM Page 728

729Implementing the Page Viewer

//an IReportAppFactory object.
IReportSourceFactory reportFactory =

(IReportSourceFactory) enterpriseSession.getService(“”,
“RASReportFactory”);

//Use IReportAppFactory object’s openReportSource method, passing it
//the report ID to return the reportSource object
IReportSource reportSource = reportFactory.openReportSource(reportID,

Locale.ENGLISH);

Listing 32.4 illustrates obtaining a report source object from the Page Server service from
Crystal Enterprise Professional/Premium.

Listing 32.4 Utilizing the Page Server to Open a Report

//Retrieve the IEnterpriseSession object previously stored in the user’s session.
IEnterpriseSession enterpriseSession =

(IEnterpriseSession) session.getAttribute(“EnterpriseSession”);

//Use the getService method of the EnterpriseSession object to obtain an
//IReportAppFactory object:
IReportSourceFactory reportFactory =

(IReportSourceFactory) enterpriseSession.getService (“”,
“PSReportFactory”);

//Finally use the openReportSource method to return the report source object
IReportSource reportSource = reportFactory.openReportSource(reportID,

Locale.ENGLISH) ;

Implementing the Page Viewer
The first viewer component to be covered is the Page viewer, as illustrated in Listing 32.5.
To use this viewer, you will create its CrystalReportViewer object. It, along with all the
other viewers, exposes a method called setReportSource that accepts a valid report source
object as obtained from the description in the previous section. Finally, again like the other
viewers, it has a processHttpRequest method that accepts references to the current servlet
context. This method does the actual rendering to HTML.

Listing 32.5 Viewing a Report over the Web

//To create a Java report viewer you need to instantiate a CrystalReportViewer
//object. To create a CrystalReportViewer object:
CrystalReportPartsViewer viewer = new CrystalReportViewer();

//Obtain a ReportSource object. Set the viewer’s report source by calling its
//setReportSource method.
viewer.setReportSource(reportSource);

//When you have created and initialized a Java report page viewer, you call
//its processHttpRequest method to launch it in a Web //browser.
viewer.processHttpRequest(request, response, getServletContext(), null);

32

40 0789731134 CH32 6/23/04 4:10 PM Page 729

730 Chapter 32 Crystal Enterprise—Viewing Reports

Figure 32.1 shows the output of this code.

32

Figure 32.1
A report being dis-
played in an HTML
page viewer.

All viewers including the Page viewer share a number of toolbar elements. These properties
can be programmatically toggled and are displayed in Table 32.1. All the viewer properties
must be set before calling the ProcessHTTPRequest method that displays the selected report.
For example, to ensure the Crystal logo is displayed when the involved report is viewed, the
code line

Viewer.HasLogo(true);

needs to be included in the code before the processHTTPRequest method is called.

As the different viewers are introduced and discussed later in this chapter, some additional
elements pertinent to the viewer being discussed will be displayed in that section’s table.

Table 32.1 Toolbar Elements (Page Viewer)

Property Property Description

HasLogo Includes or excludes the “Powered by Crystal” logo when
rendering the report.

HasExportButton Includes or excludes the export button when rendering the
report.

HasGotoPageButton Includes or excludes the Go to Page button when rendering the
report.

HasPageNavigationButtons Includes or excludes the page navigation buttons when rendering
the report.

40 0789731134 CH32 6/23/04 4:10 PM Page 730

731Implementing the Part Viewer

HasPrintButton Includes or excludes the Print button when rendering the report.

HasRefreshButton Includes or excludes the Refresh button when rendering the
report.

HasSearchButton Includes or excludes the Search button when rendering the report.

HasToggleGroupTreeButton Includes or excludes the Group Tree toggle button when render-
ing the report.

HasViewList Specifies whether the viewer should display a list of previous views
of the report.

SetPrintMode Set printing to use PDF or Active X printing (0=pdf, 1=actx).

HasZoomFactorList Specifies zoom factor for displayed report.

Implementing the Part Viewer
The Part viewer works much the same way as the Page viewer—in fact, much of the code is
exactly the same, except for the type of viewer object that is created. Listing 32.6 assumes
that the report to be displayed has an initial report part defined in the report itself.

Listing 32.6 Viewing a Report Using the Report Part Viewer

//To create a Java report part viewer you need to instantiate a
//CrystalReportPartsViewer object:
CrystalReportPartsViewer viewer = new CrystalReportPartsViewer();

//Obtain a ReportSource object. Set the viewer’s report source by calling its
//setReportSource method
viewer.setReportSource(reportSource);

//After you have created and initialized a Java report part viewer, you
//call its processHttpRequest method to launch it in a Web browser.
viewer.processHttpRequest(request, response, getServletContext(), null);

If a report part is not defined for a report, or if the default part needs to be overridden,
Listing 32.7 provides code that can be used to manipulate the ReportParts collection.
Figure 32.2 shows the output of this page being displayed in a Web browser.

Listing 32.7 Specifying Report Part Nodes

//To create a Java report part viewer you need to instantiate a
//CrystalReportPartsViewer object:
CrystalReportPartsViewer viewer = new CrystalReportPartsViewer();

//After you have created the CrystalReportPartsViewer object,
//you must specify the report parts that you want to display when the

32

Property Property Description

continues

40 0789731134 CH32 6/23/04 4:10 PM Page 731

732 Chapter 32 Crystal Enterprise—Viewing Reports

//viewer is launched. To specify the report parts that you want the
//viewer to display Create a ReportPartsDefinition object.
ReportPartsDefinition partsDefinition = new ReportPartsDefinition();

//Get the collection of ReportPartNodes that belong to the
//ReportPartsDefinition.
ReportPartNodes reportPartNodes = partsDefinition.getReportPartNodes();

//Create a corresponding ReportPartNode object for each report part that
//you would like the viewer to display. Add these objects to the
//ReportPartNodes collection. Part1 is being used here as the default
//Report Part to display
ReportPartNode node0 = new ReportPartNode();
node0.setName(“Part1”);
partsDefinition.getReportPartNodes().add(node0);

//Obtain a ReportSource object. Set the viewer’s report source by calling
//its setReportSource method
viewer.setReportSource(reportSource);

//Call the viewer’s setReportParts method, passing it the ReportPartsDefinition.
viewer.setReportParts(partsDefinition);

//After you have created and initialized a Java report part viewer,
//you call its processHttpRequest method to launch it in a Web browser.
viewer.processHttpRequest(request, response, getServletContext(), null) ;32

Listing 32.7 Continued

Figure 32.2
The Report Part
viewer displaying a
report part.

Implementing the Interactive Viewer
The Interactive viewer works almost exactly like the Page viewer. In fact, the Interactive
viewer component derives from the Page viewer component, so it inherits all the base func-
tionality. What it adds is a new toolbar button that enables an advanced searching User
Interface inside the viewer. This is useful for larger reports and for end users requiring
advanced searches where simple text string searching is not suitable. The Interactive viewer
allows the report to be filtered using a specified record selection criteria.

40 0789731134 CH32 6/23/04 4:10 PM Page 732

733Implementing the Interactive Viewer

Listing 32.8 shows a report being viewed by the Interactive viewer. Note that the
setOwnPage method is called to indicate that the viewer owns the entire page, which is gen-
erally a good thing to do when using this viewer.

Listing 32.8 Using the Report Part Viewer in Code

//To create a Java interactive viewer you instantiate a
//CrystalReportInteractiveViewer object:
CrystalReportInteractiveViewer viewer = new CrystalReportInteractiveViewer();

//Set the viewer’s report source by calling its setReportSource method
viewer.setReportSource(reportSource);

//Enable the Advanced Search Wizard.
viewer.setEnableBooleanSearch(true);

//Set the setOwnPage property to true. The setOwnPage property should always
//be set to true for the interactive viewer.
viewer.setOwnPage(true);

//After you have created and initialized a Java interactive viewer,
//you call its processHttpRequest method to launch it in a Web browser.

viewer.processHttpRequest(request, response, getServletContext(), null);

Figure 32.3 shows a report being displayed in the Interactive viewer and the advanced
searching UI being used.

32

Figure 32.3
The Interactive
viewer in action.

All viewers including the Interactive viewer share a number of toolbar elements. These
properties can be programmatically toggled and are displayed in Table 32.2. All the viewer

40 0789731134 CH32 6/23/04 4:10 PM Page 733

734 Chapter 32 Crystal Enterprise—Viewing Reports

properties must be set before calling the ProcessHTTPRequest method that will display the
selected report. For example, to ensure the Crystal logo is displayed when the involved
report is viewed, the code line

Viewer.HasLogo(true);

needs to be included in the code before the processHTTPRequest method is called.

Table 32.2 Toolbar Elements (Interactive Viewer)

Property Property Description

HasLogo Includes or excludes the “Powered by Crystal” logo when
rendering the report.

HasExportButton Includes or excludes the Export button when rendering the report.

HasGotoPageButton Includes or excludes the Go to Page button when rendering the
report.

HasPageNavigationButtons Includes or excludes the page navigation buttons when rendering
the report.

HasPrintButton Includes or excludes the Print button when rendering the report.

HasRefreshButton Includes or excludes the Refresh button when rendering the
report.

HasSearchButton Includes or excludes the Search button when rendering the report.

HasToggleGroupTreeButton Includes or excludes the Group Tree toggle button when render-
ing the report.

HasViewList Specifies whether the viewer should display a list of previous views
of the report.

SetPrintMode Set printing to use PDF or Active S printing (0=pdf, 1=actx).

HasZoomFactorList Specifies zoom factor for displayed report.

HasBooleanSearchButton Includes or excludes the toggle Boolean search button when
rendering the report.
Unique to Interactive viewer.

HasHeaderArea Includes or excludes the header area when rendering the report.
Unique to Interactive viewer.

HasPageBottomToolbar Includes or excludes the page bottom toolbar.
Unique to Interactive viewer.

Implementing the Grid Viewer
The final viewer to be covered in this chapter is the Grid viewer. The Grid viewer (shown
in Figure 32.4) differs more from the other viewers in that it does not render the

32

40 0789731134 CH32 6/23/04 4:10 PM Page 734

735Implementing the Grid Viewer

report’s presentation onscreen. Instead it looks at the dataset associated with the report (that
is, the query result after the report engine has done its magic) and displays that data in a
tabular fashion. This opens up some very interesting scenarios if you use your imagination.

32

Listing 32.9 shows a report being displayed using the Grid viewer.

Listing 32.9 Displaying a Report in the Grid Viewer

//To create a Java grid viewer you need to instantiate a GridViewer object.
//To create a GridViewer object:
GridViewer viewer = new GridViewer();

//Set the viewer’s report source by calling its setReportSource method
viewer.setReportSource(reportSource);

//After you have created and initialized a Java grid viewer object, you call
//its processHttpRequest method to display the results in the Web page
viewer.processHttpRequest(request, response, getServletContext(), null);

N O T E
You can override the style of the grid table by defining a stylesheet that maps to the
styles used by the grid object. Consult the documentation for more information on this.

Figure 32.4
The Grid viewer in
action.

All viewers including the Grid viewer share a number of toolbar elements. These properties
can be programmatically toggled and are displayed in Table 32.3. All the viewer properties
must be set before calling the ProcessHTTPRequest method that will display the selected

40 0789731134 CH32 6/23/04 4:10 PM Page 735

736 Chapter 32 Crystal Enterprise—Viewing Reports

report. For example, to ensure the Crystal logo is displayed when the involved report is
viewed, the code line

Viewer.HasLogo(true);

needs to be included in the code before the processHTTPRequest method is called.

Table 32.3 Toolbar Elements (Grid Viewer)

Property Property Description

HasLogo Includes or excludes the “Powered by Crystal” logo when
rendering the report.

HasExportButton Includes or excludes the Export button when rendering the
report.

HasGotoPageButton Includes or excludes the Go to Page button when rendering
the report.

HasPageNavigationButtons Includes or excludes the page navigation buttons when ren-
dering the report.

HasPrintButton Includes or excludes the Print button when rendering the
report.

HasRefreshButton Includes or excludes the Refresh button when rendering the
report.

HasSearchButton Includes or excludes the Search button when rendering the
report.

HasToggleGroupTreeButton Includes or excludes the Group Tree toggle button when
rendering the report.

HasViewList Specifies whether the viewer should display a list of
previous views of the report.

SetPrintMode Set printing to use PDF or Active X printing (0=pdf,
1=actx).

HasZoomFactorList Specifies zoom factor for the displayed report.

DisplayNavigationBar Specifies whether the viewer should display the navigation
bar at the bottom of the grid.
Unique to Grid viewer.

DisplayRowNumberColumn Specifies whether to display the row number column.
Unique to Grid viewer.

32

40 0789731134 CH32 6/23/04 4:10 PM Page 736

737Using the Export Control to Deliver Reports in Other Formats

DisplayToolbarFindRowButton Includes or excludes the Find Row button when rendering
the toolbar.
Unique to Grid viewer.

DisplayToolbarGroupViewList Specifies whether the viewer should display the view list.
Unique to Grid viewer.

DisplayToolarSwitchViewButton Includes or excludes the Toggle Grid View button.
Unique to Grid viewer.

EnableGridToGrow Specifies whether the viewer should enable the Grid to
Grow.
Unique to Grid viewer.

GridViewMode Specifies the viewer View mode.
Unique to Grid viewer.

MatchGridandToolbarWidth Specifies whether the table should align with the toolbar.
Unique to Grid viewer.

TableStyle Specifies the style class of the table. You can apply a css
style class to the grid table that shows records. You do so by
stating: Gridviewer.TableStyle=”cssclass”;

Unique to Grid viewer.

ToolbarStyle Specifies the style class of the toolbar. You can apply a css
style class to the grid toolbar. You do so by stating:
Gridviewer.ToolbarStyle=”cssclass”;

Unique to Grid viewer.

Using the Export Control to Deliver Reports in
Other Formats

So far all the scenarios that have been discussed in this chapter have involved displaying
reports in dynamic HTML format. Although this is a great report delivery method for most
scenarios, there are times when reports need to be exported to various other file formats.
Although this can be accomplished by using the ReportClientDocument object model, there
is an easier way to do this: using the Export control.

Listing 32.10 shows how the Export control would be used to export a report to PDF.
Notice that the Export control has the concept of the report source of the
processHttpRequest method.

32

Property Property Description

40 0789731134 CH32 6/23/04 4:10 PM Page 737

738 Chapter 32 Crystal Enterprise—Viewing Reports

Listing 32.10 Exporting a Report via Code

//Instantiate a ReportExportControl object
ReportExportControl exportControl = new ReportExportControl();

//After you have created the ReportExportControl object, you must
//specify the export format that you want to export the report to. To
//specify the export format create an ExportOptions object:

ExportOptions exportOptions = new ExportOptions();

//Specify the export format by calling the ExportOptions object’s
//setExportFormatType method, passing it the integer constant that
//represents the chosen format:
exportOptions.setExportFormatType(ReportExportFormat.PDF);

//To initialize an Export control in a Crystal Enterprise environment set
//the control’s report source by calling its setReportSource
method.exportControl.setReportSource(reportSource);

//Call the control’s setExportOptions method, passing it an ExportOptions object
exportControl.setExportOptions(exportOptions);

//You may also want to call the setExportAsAttachment method, passing it the
//Boolean value true. The Export control will then display a dialog box
//that allows users of your Web application to save the exported report before
//they open it: exportControl.setExportAsAttachment(true);

//To initialize an Export control in an unmanaged RAS environment set the
//control’s report source by calling its setReportSource method and passing
//the method a reference to a report source object.
exportControl.setReportSource(reportSource);

//Call the control’s setExportOptions method, passing it an ExportOptions object
exportControl.setExportOptions(exportOptions);

//You may also want to call the setExportAsAttachment method, passing it the
//Boolean value true. The Export control will then display a dialog box
//that allows users of your Web application to save the exported report before
//they open it:
exportControl.setExportAsAttachment(true);

//After you have created an export control, you call its processHttpRequest
//method to complete the export.
exportControl.processHttpRequest(request, response, getServletContext(), null) ;

Figure 32.5 shows a report being exported to PDF.

32

40 0789731134 CH32 6/23/04 4:10 PM Page 738

739Troubleshooting

Troubleshooting
Report Viewing Performance Is Slow

What efficiencies can I add to increase the performance of my application?

Caching a report source in the session variable allows it to be used multiple times efficiently.
When a report source is not cached, the process of creating a new report source multiple
times becomes fairly expensive. Furthermore, caching a report source allows reports with or
without saved data to be refreshed.

Listing 32.11 shows how to store and retrieve the report source object from session state.

Listing 32.11 Caching a Report Source Object

//To store the report source in a session variable
request.getSession().settAttribute(“RptSrc”,reportSource);

//To retrieve the report source from a session variable
rptSrc = request.getSession().getAttribute(“RptSrc”);

The Viewer Needs to Work in a Page Without a Form Element

How can I control how the viewer interacts with a surrounding form?

If your Web page contains only the viewer and nothing else, several things can be done that
can simplify the report viewing implementation. The viewer is capable of generating

Figure 32.5
Using the Export con-
trol to export a report
to PDF.

40 0789731134 CH32 6/23/04 4:10 PM Page 739

740 Chapter 32 Crystal Enterprise—Viewing Reports

complete HTML pages and can set the appropriate page properties depending on the view-
ing context. Setting the setOwnPage property to true provides several benefits. Allowing the
viewer to handle the surrounding HTML content reduces the amount of code you need to
add to your Web page and allows the viewer to automatically determine certain settings. It
correctly sets the content-type and charset information for the page. This ensures that
pages containing international characters will be displayed correctly. When setOwnPage is set
to true, you must use the processHttpRequest method to display the report instead of
getHtmlContent. The processHttpRequest method must be used because using
getHtmlContent has the same effect as setting setOwnPage to false, negating any of the bene-
fits gained from setting setOwnPage to true. If your Web page does not contain any controls
that require post back, you should set the setOwnForm method to true. Doing so allows the
viewer to handle the view state information automatically. The view state is used to perform
client-side caching of information about the current state of the report. If you have other
controls on the page, you must set setOwnForm to false and handle the view state information
manually.

The Character Set Is Displaying Incorrectly

How can I indicate which unicode character to set should be used for the report viewing session?

To send characters from a Web page to a Web browser, you must use the correct encoding.
Always specify the correct content-type and character set for all your Web pages. If your
Web page returns content to a standard HTML browser, the following lines will ensure that
the correct character set is defined. The contentType and charset directives let the browser
know how the returned HTML page is encoded. UTF-8 is the recommended standard
character set if it is available for your target client browser. For more information, consult
the Release Notes or the vendor for your target client browser.

40 0789731134 CH32 6/23/04 4:10 PM Page 740

33CHAPTER

In this chapter

Crystal Enterprise Embedded—
Report Modification and Creation

In this chapter

Introduction 742

Deploying RAS Environments 742

Loading Report Files 742

Locating RAS Components in a Network Architecture 743

Installing the RAS SDK 744

Best Practices in RAS Exception Handling 744

The RAS SDK in Action 745

41 0789731134 CH33 6/23/04 2:16 PM Page 741

742 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

Introduction
This chapter covers the capability of the Report Application Server (RAS) SDK to create
and modify reports. Topics include

■ RAS environments

■ Loading report files

■ RAS component locations

■ Installing the RAS SDK

■ Exception handling

■ Programming with the RAS SDK

Deploying RAS Environments
The RAS functions in two different environments—either as a standalone report processing
and modification server or as a service of the Crystal Enterprise framework.

Using RAS in a Crystal Enterprise Environment
Crystal Enterprise provides a framework for delivering enterprise reporting. RAS adds the
capability for users to modify reports stored in Crystal Enterprise. In this scenario, the
Crystal Enterprise framework manages the RAS. Multiple instances of the RAS can be
added and Crystal Enterprise will load balance between them.

➔ For additional information on the Crystal Enterprise Framework, see “The Server Tier: Introduction to the
Crystal Enterprise Framework,” p. 510

Using RAS in a Standalone Environment
Even without Crystal Enterprise, the capabilities of RAS can be leveraged. In this scenario
the RAS SDK modifies unmanaged reports (reports stored on the file system rather than in
Crystal Enterprise) so you refer to the RAS as an unmanaged server.

33

N O T E
The core functionality of the RAS is the same regardless of the environment it is running
in. The rest of this chapter assumes the RAS is running in unmanaged mode as a stand-
alone server.

Loading Report Files
Crystal Report (.rpt) files must first be placed in a folder designated as the Report Directory
for the RAS. The RAS interacts only with reports in this folder and its subfolders. An
“access denied” error results from attempting to access reports outside of this folder.

41 0789731134 CH33 6/23/04 2:16 PM Page 742

743Locating RAS Components in a Network Architecture

The RAS Configuration Manager sets the Report Directory. In a default installation, the
Report Directory points to the location of the sample reports folder.

After setting the report directory, there are several ways to designate a report file.

For example, the ras prefix can be used:

ras://D:\directory\reportname.rpt

The location on the RAS machine of reportname.rpt is given by this string.

It is not necessary to always key in the ras prefix because it is assumed by default; for exam-
ple, c:\reportname.rpt is assumed to be a path on the RAS machine.

The rassdk prefix also can be used like this:

rassdk://c:\directory\reportname.rpt

Where RAS SDK is running on the machine, generally the Web application server, this
string gives the location of reportname.rpt.

Because reports must be serialized and sent to the RAS for processing each time they are
accessed, reports stored outside the RAS slow down performance. Therefore, to improve
performance it is highly recommended that a local folder is used on the RAS machine for
the Report Directory.

Locating RAS Components in a
Network Architecture

Though the default installation places both the RAS SDK and RAS on the local machine,
they can be installed on separate computers.

Specifying Separate RASs
The server attribute of the clientSDKOptions.xml file defines the location of the RAS. This
file is created in the jar folder under Program Files\Common Files\Crystal Decisions dur-
ing the RAS installation. This file can be modified to indicate the location of the RAS when
installed separately. This can also be done programmatically using the RAS SDK, which will
be illustrated by examples later in the chapter.

The location of the clientSDKOptions.xml file can be specified either statically, by setting a
classpath that points to the file, or dynamically, by specifying the location of this file. Load
balancing can be enabled where there are multiple RASs by specifying the location of all the
RASs on the network in the clientSDKOptions.xml file.

Setting a Static Location
Adding the file path of the file clientSDKOptions.xml to the Web application server’s
CLASSPATH environment variable specifies the location of the file statically. The file path
might also need to be added to the CLASSPATH on the local system. More information

33

41 0789731134 CH33 6/23/04 2:16 PM Page 743

744 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

regarding adding classpaths might be found on the Web server’s documentation
information.

Deploying RAS in a Dynamic Location
The location of the clientSDKOptions.xml file can be specified at runtime. From the JSP or
Java files use the Java method setProperty from the System class. Set the system property
indicated by the ras.config key to the specified directory as follows:

system.setProperty(“ras.config”,”c:/temp”)

This specifies that to locate RAS servers, the clientSDKOptions.xml file in c:/temp will be
used. Using the web.xml file (located by default in the \WEB-INF\ directory of your Web
application) to specify the location of the clientSDKOptions.xml will avoid hard-coding the
location for the clientSDKOptions.xml file throughout your program.

Installing the RAS SDK
As mentioned previously, the RAS SDK JAR files can be found in the jar folder by default.
Copy the RAS and Crystal Enterprise .jar files to the appropriate folder on the application
server being used. If you are using Apache Tomcat, for example, move the .jar files to the
Web application’s WEB-INF\lib folder. Configuring a Web server to access the SDK JAR files
might take additional steps, detailed in the installation help files provided with the RAS.

Best Practices in RAS Exception Handling
Options for displaying and logging exception information can also be specified. These tasks
can be performed by modifying the web.xml file (located by default in the \WEB-INF\ direc-
tory of your Web application) as follows.

Displaying Exceptions
Three options exist for displaying exception information to the user. Setting the
crystal_exception_info parameter to one of the following values determines how excep-
tions are handled:

■ short—The exception information is displayed without the accompanying stack trace.

■ long—The exception information is displayed with the accompanying stack trace.

■ disable—The exception information is not displayed; the user must handle the
exception.

The following code shows an example of the exception display configuration:

<context-param>
<param-name>crystal_exception_info</param-name>

<param-value>long</param-value>
<description>

Options for displaying exception information.

33

41 0789731134 CH33 6/23/04 2:16 PM Page 744

745The RAS SDK in Action

If this parameter is not set, the default value is short.
It can be one of the following values: short, long, disable.

</description>
</context-param>

The crystal_exception_info parameter is short by default. Modifying exception.css speci-
fies the style and formatting of short messages.

Logging Exceptions
The option to turn exception logging either on or off can be set with the crystal_
exception_log_file parameter. The exception information output to the log file will be in
the long format regardless of the setting of the crystal_exception_info parameter. The fol-
lowing code shows an example of the exception logging configuration:

<context-param>
<param-name>crystal_exception_log_file</param-name>

<param-value>c:\temp\webreportingexception.log</param-value>
<description>

Set this parameter to log the exception in long form
to the file specified.
The value is the full path of the log file.

</description>
</context-param>

When setting the parameter to the desired path of the log file, by default, exceptions are not
logged.

The RAS SDK in Action
This section covers the common programming tasks associated with the RAS SDK.
Although the SDK provides many capabilities, some of the following tasks are common to
most programming exercises and are central to the SDK.

Initializing an RAS Session
Initiating a session with the RAS is the first step in programming with the RAS SDK. In this
step, a specific RAS can be specified for use; otherwise, the system selects one from the
RASs listed in the clientSDKOptions.xml file using a round-robin method. Initializing a
RAS session by specifying a machine name at runtime is shown in the following code:

//Create a new Report Application Session
ReportAppSession reportAppSession = new ReportAppSession();
//Create a Report Application Server Service
reportAppSession.createService(“com.crystaldecisions.sdk.occa.report.
➥application.ReportClientDocument”);
//Set the RAS server to be used for the service. You can also use “localhost”
➥if the RAS server is running on
your local machine.
reportAppSession.setReportAppServer(“MACHINE_NAME”);
//Initialize RAS
reportAppSession.initialize();
//Create the report client document object

33

41 0789731134 CH33 6/23/04 2:16 PM Page 745

746 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

ReportClientDocument clientDoc = new ReportClientDocument();
//Set the RAS Server to be used for the Client Document
clientDoc.setReportAppServer(reportAppSession.getReportAppServer());

All ReportClientDocument objects created from the same ReportAppSession communicate
with the same RAS.

Opening a Report
A report can be opened first by creating a new ReportClientDocument object and specifying
the ReportAppServer. Then the open method can be used to open a report. This method
takes two parameters:

■ The absolute path and filename of the report

■ A flag indicating how the file will be opened

See the OpenReportOptions class for valid report options.

33

N O T E
Reports are loaded from the report folder found at \Program Files\Crystal
Decisions\Report Application Server 10\Reports\ by default.

The following code opens a report:

try
{

reportClientDocument.open(“C:\MyReports\GlobalSales.rpt”, 0);
}
catch (ReportSDKException e)
{

// Handle the case where the report does not open properly.;
}

The previous chapter explained how to view reports using RAS. Creating and modifying
those reports using the RAS SDK will be the focus of the remainder of this chapter.

Adding Fields to the Report
A report can be modified after creating and opening a ReportClientDocument by using the
report’s controllers. The only way to modify reports and ensure that the changes are syn-
chronized with the server is to use controllers. Although the report’s fields can be accessed
directly through the DataDefinition property, any changes made will not be committed.
This section explains how to add a field to a report.

Identifying the Field to Add

A field is usually selected by name. The DatabaseController can be used to retrieve the
object that represents this field given a database field’s name or its table’s name. Another
method of accessing a table’s fields is using the ReportClientDocument’s Database property.
Here you use the DatabaseController.

41 0789731134 CH33 6/23/04 2:16 PM Page 746

747The RAS SDK in Action

The DatabaseController contains a collection of database tables that are available to the
report and might be accessed using the getDatabaseController method of
ReportClientDocument. Each table contains a collection of DBField objects.

33

A method called findFieldByName is shown in the following sample code snippet. This
method returns a field given its fully qualified field name in the form:
<TableAlias>.<FieldName>. The table alias is used as a qualifier and it is assumed that a
period is used to separate the table alias from the field name.

IField findFieldByName(String nameOfFieldToFind, ReportClientDocument
➥reportClientDocument)
{

//Extracts the field name and the table name.
int dotPosition = nameOfFieldToFind.indexOf(“.”);
String tablePartName = nameOfFieldToFind.substring(0, dotPosition);
String fieldPartName =

nameOfFieldToFind.substring(dotPosition + 1,
➥ nameOfFieldToFind.length());

ITable table = null;

// Uses the DatabaseController to search for the field.
try
{

Tables retreivedTables =
reportClientDocument.getDatabaseController().getDatabase().

➥getTables();
int tableIndex = retreivedTables.findByAlias(tablePartName);
table = retreivedTables.getTable(tableIndex);

}
catch (ReportSDKException e)
{

return null;
}

// Finds the field in the table.
int fieldIndex =

table.getDataFields().find(fieldPartName,
➥FieldDisplayNameType.fieldName, Locale.ENGLISH);

if (fieldIndex == -1)
{

return null;
}
IField field = table.getDataFields().getField(fieldIndex);

return field;
}

N O T E
All tables and fields that are listed by DatabaseController.getDatabase() are not
retrieved when the report is refreshed; that is, they are available for report design but
might not actually be part of the report’s data definition.

41 0789731134 CH33 6/23/04 2:16 PM Page 747

748 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

This method uses the following key methods:

■ Tables.findByAlias finds the index of a particular table when given its alias. Given the
index, the desired Table object can be retrieved from the collection.

■ Fields.find finds the index of a field in a table’s Fields collection when given the name
of the field.

Adding a Field to the Report Document

After you obtain the Field object that you want to add, the field can be added to the report
so that it is processed and displayed when the report is run. This is done via the
DataDefController, which is used to modify the report’s data definition and contains a sub-
controller called the ResultFieldController. This subcontroller is used for modifying fields
that have been placed on the report and that are processed at runtime. The fields that are
shown on the report belong to the ResultFields collection. A new database field will be
added to the ResultFields collection in this step.

33

N O T E
The ResultFields collection can contain other types of field objects such as parameter
fields, formula fields, and summary fields in addition to DBField objects. Like
DBFields, the ResultFieldController can add these fields to a report. Unlike
DBFields, only the DatabaseDefController’s DataDefinition property, and not
the DatabaseDefController’s Database property, can retrieve these fields.

A field being added to the ResultFields collection is shown by the following code:

/* * Because all modifications to a report must be made with a controller,
* the resulting field controller is used to add and remove each field.
*/

ResultFieldController resultFieldController =
reportClientDocument.getDataDefController().getResultFieldController();

// Adds fieldToAdd. -1 indicates the end of the collection.
resultFieldController.add(-1, fieldToAdd);

The parameter -1 indicates that the field is to be placed at the end of the collection. As a
result of this code, the new field displays on the report and is processed when the report is
refreshed.

Determining All Fields Used in the Report
The fields that have been added to a report are stored in the ResultFields collection and
can be retrieved using the following sample method:

Fields getUsedDatabaseFields(ReportClientDocument reportClientDocument)
{

Fields usedFields = new Fields();

/*

41 0789731134 CH33 6/23/04 2:16 PM Page 748

749The RAS SDK in Action

* The DataDefinition’s ResultFields collection
* contains all the fields that have been placed
* on the report and which will be processed
* when the report is refreshed.
*/
Fields resultFields = null;
try
{

resultFields = reportClientDocument.getDataDefinition().
➥getResultFields();

}
catch (ReportSDKException e)
{

return null;
}

/*
* Because the ResultFields collection contains
* many different kinds of fields, all fields except
* for database fields are filtered out.
*/
for (int i = 0; i < resultFields.size() - 1; i++)
{

if (resultFields.getField(i).getKind() == FieldKind.DBField)
{

// Adds the database field to the collection.
usedFields.addElement(resultFields.getField(i));

}
}

return usedFields;
}

With the full name of the field, you can use a DatabaseController to retrieve the DBField
object.

Removing a Field from the Report
When you’ve found the field you want to remove, use the ResultFieldController to remove
it as follows:

// Removes fieldToDelete.
resultFieldController.remove(fieldToDelete);

In this code, fieldToDelete is a DBField object. After the field is removed from the result
fields using this method, the report ceases to display the field.

Creating a New Report
A new report can be created by first creating an empty ReportClientDocument as shown:

ReportClientDocument reportClientDocument =
reportAppFactory.newDocument(Locale.ENGLISH);

33

41 0789731134 CH33 6/23/04 2:16 PM Page 749

750 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

Because the report is not actually created until tables are added, after creating an empty
ReportClientDocument, details such as the new report’s tables and the fields used to link
them should be added.

Retrieving a Report’s Tables
However, before adding the tables to the new report, the table objects must first be
retrieved from the source report. This can be accomplished in two ways: using the
DatabaseController object and using the Database object, both of which are available from
the ReportClientDocument object. The ensuing code iterates through all the tables in an
open report and prints the tables’ aliases:

Tables tables = reportClientDocument.getDatabase().getTables()
for (int i = 0; i < tables.size(); i++)
{

ITable table = tables.getTable(i);
out.println(table.getAlias());

}

Adding Tables to the Report
Because controllers are the only objects that can modify the report’s object model, a con-
troller must be used to add tables to a report. The following code retrieves the report’s
DatabaseController and adds a table.

DatabaseController databaseController;
try
{

databaseController = reportClientDocument.getDatabaseController();
databaseController.addTable(sourceTable, new TableLinks());
databaseController.addTable(targetTable, new TableLinks());

}
catch(ReportSDKException e)
{

throw new Exception(“Error while adding tables.”);
}

The addTable method of the DatabaseController adds a table to the report. The addTable
method takes two parameters:

■ The Table object you want to add

■ A TableLinks object that defines how the table being added is linked with other tables

33

N O T E
Because the newDocument method of ReportClientDocument is provided for
deployments that use an unmanaged RAS to access report (.rpt) files, it should not be
deployed when using a Crystal Enterprise RAS. Instead, when deploying with Crystal
Enterprise, the IReportAppFactory.newDocument method should be used as in the
previous code.

41 0789731134 CH33 6/23/04 2:16 PM Page 750

751The RAS SDK in Action

Linking Tables
Tables must be linked after they have been added to the report. To link two tables, first cre-
ate a new TableLink object, set the properties of the TableLink, and then add the TableLink
to the report definition.

Linking two tables using an equal join is illustrated by the following code:

// Create the new link that will connect the two tables.
TableLink tableLink = new TableLink();

/*
* Add the source field name and the target field name to the SourceFieldNames
* and TargetFieldNames collection of the TableLink object.
*/
tableLink.getSourceFieldNames().add(sourceFieldName);
tableLink.getTargetFieldNames().add(targetFieldName);

/*
* Specify which tables are to be linked by setting table aliases
* for the TableLink object.
*/
tableLink.setSourceTableAlias(sourceTable.getAlias());
tableLink.setTargetTableAlias(targetTable.getAlias());

// Add the link to the report. Doing so effectively links the two tables.
try
{

databaseController.addTableLink(tableLink);
}
catch(ReportSDKException e)
{

throw new TutorialException(“Error while linking tables.”);
}

These newly linked tables can be used as the report’s data source. However there have been
no visible objects added to the report, so when the report is refreshed, it will be blank.

Adding Groups
To add a group, you must know which field is being grouped on. For information on work-
ing with fields, see the “Adding a Field to the Report Document” section earlier in this
chapter. Because not all fields can be used to define a group, use the canGroupOn method of
GroupController to check whether a field can be used for grouping. If canGroupOn returns
true, the field is an acceptable field to use for grouping. The next example demonstrates a
function that adds a new group to a report:

// Uses the sort controller to remove all the report’s sorts.
Sorts sorts = dataDefController.getDataDefinition().getSorts();
SortController sortController = dataDefController.getSortController();
for (int i = 0; i < sorts.size(); i++)
{

sortController.remove(0);
}

33

41 0789731134 CH33 6/23/04 2:16 PM Page 751

752 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

Here the group was added to the end of the Groups collection by setting the index to -1,
which means that the new group becomes the innermost group. When a new group is
added, a new sorting definition is also added which will sort the records according to the
group’s condition field and group options. An additional reflection of adding the new group
is the group name field appearing on the group’s header. Fields added to the group header
are not added to the ResultFields collection. When the group is removed, the group name
field is also removed.

Adding Sorting to the Report
Using the SortController adds a new sorting definition to a report. The SortController
can add any kind of sorting definition, including a Top N sort. Adding a Top N sort
requires that a summary has first been added.

Next you demonstrate how to add a sort to the report by taking a Fields collection and
adding a sorting definition based on each field in the collection:

void addNewGroup(ReportClientDocument reportClientDocument,
➥ Fields newGroupFields)
throws ExampleException
{

try
{

// Create a new, empty group.
IGroup group = new Group();

// Iterate through every field in the given Fields collection.
for (int i = 0; i < newGroupFields.size(); i++)
{

IField field = newGroupFields.getField(i);

// Set the field that will define how data is grouped.
group.setConditionField(field);

GroupController groupController =
reportClientDocument.getDataDefController().

➥getGroupController();
groupController.add(-1, group);

}
}

// If any part of the above procedure failed, redirect the user
➥to an error page.

catch (ReportSDKException e)
{

throw new ExampleException(“Error while adding new groups.”);
}

}

When the new Sort object is added, it is added to the end of the collection, indicated by the
-1 argument, which designates that the records will be sorted on this field after all other

33

41 0789731134 CH33 6/23/04 2:16 PM Page 752

753The RAS SDK in Action

sorting definitions. The SortDirection class indicates the direction of the sort. The static
objects SortDirection.ascendingOrder and SortDirection.descendingOrder are the only
values that can be used for a normal sort. The other values are used for a Top N or Bottom
N sort. See Adding a Top N sorting definition in the SDK documentation for additional
details.

Adding Summaries to the Report
The SummaryFieldController adds a new summary field. To determine if a field can produce
a summary, the SummaryFieldControllers method canSummarizeOn is called. Here you add a
summary to a group:

void setSorting(ReportClientDocument reportClientDocument, Fields
➥fieldsToSortOn)
throws ExampleException
{

try
{

DataDefController dataDefController = reportClientDocument.
➥getDataDefController();

// Create a new Sort object
ISort sort = new Sort();

// Iterate through the fields
for (int i = 0; i < fieldsToSortOn.size(); i++)
{

IField field = fieldsToSortOn.getField(i);

// Add the current field to the result fields.
dataDefController.getResultFieldController().add(-1, field);

// Set the field to sort on.
sort.setSortField(field);

// Define the type of sorting. Ascending here.
sort.setDirection(SortDirection.ascendingOrder);

//Get Sort Controller.
SortController sortController =

dataDefController.getSortController();

sortController.add(-1, sort);
}

}

// If any part of the above procedure failed, redirect the user to
➥an error page.

catch (ReportSDKException e)
{

throw new TutorialException(“Error while setting sort.”);
}

}

33

41 0789731134 CH33 6/23/04 2:16 PM Page 753

754 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

After creating a summary field, set the following properties before adding it:

■ SummarizedField—The field used to calculate the summary.

■ Group—The group for which the summary will be calculated.

■ Operation—The operation used to calculate the summary. One of the static objects
defined in the SummaryOperation class.

Working with Filters
Filters are used in record selection and group selection. The filter is initially a string written
in Crystal formula syntax. The record selection formula is then parsed into an array of
FilterItems stored in the Filter object’s FilterItems property. The string is broken up into
data components and operator components that act on the data. These components are
stored as FieldRangeFilterItem and OperatorFilterItem objects respectively, which are
stored in the FilterItems collection in the same order that they appear in the formula
string. Re-ordering the objects in the array changes the functionality of the formula. In
summary, the FieldRangeFilterItem is an expression that is joined with other expressions
using an OperatorFilterItem.

For instance, consider a simple record selection formula such as

{Customer.Name} = “Bashka Futbol” and {Customer.Country} = “USA”.

This results in only the records that have a name equal to “Bashka Futbol” and a country of
the USA. The result is stored in the FreeEditingText property. After this string is parsed, the
FieldRangeItems collection contains two FieldRangeFilterItem objects because there are
two data items used to filter the records. The OperatorFilterItem is used to indicate how
two primitive expressions are combined, so it is now equal to and.

The FieldRangeFilterItem contains three properties:

■ Operation—This property indicates the operation performed in the primitive expres-
sion; in both cases, it is the equals operator.

■ RangeField—The RangeField property indicates the comparator field used in the
expression. Because not all fields are suitable to filter records and groups, use the
canFilterOn method in the RecordFilterController and the GroupFilterController to
determine whether a field can be used for a particular filter.

■ Values—The Values property indicates the comparison values in the expression. In this
example, it is the strings “USA” and “Bashka Futbol”. This property has one
ConstantValue object that stores “USA”.

After the file is opened, and the filters parsed, the FreeEditingText property that stores
these strings is cleared and the FilterItems populated. Conversely, if the formula is too
complex, the FilterItems collection property remains empty and the FreeEditingText
property populated. When altering a filter, you have two options: modify the
FreeEditingText property or the FilterItems property.

33

41 0789731134 CH33 6/23/04 2:16 PM Page 754

755The RAS SDK in Action

If you use only one property to modify the filter, the other will not be automatically
updated, however. For instance, you would modify the FreeEditingText property, but this
will not necessarily be parsed again to repopulate the FilterItems. You should use only one
of these properties per session.

Use a controller to ensure that modifications are saved. The GroupFilterController and the
RecordFilterController modify the group formula and record formula respectively.

Creating a FieldRangeFilterItem
A FieldRangeFilterItem contains a primitive comparison expression. Its most relevant prop-
erties are

■ Operation

■ RangeField

■ Values

The Operation and RangeField properties usually contain a constant. However, the Values
property stores either ConstantValue objects, which don’t need evaluation (such as 1, 5, or
“Stringiethingie”), and ExpressionValue objects, which do need evaluation (such as
“WeekToDateSinceSun,” 4/2, and so on).

The following section of code defines the expression {Customer.ID > 2}. Note how it cre-
ates a new ConstantValue object for the number 2 and adds it to the Values collection:

// Create a new range filter item.
FieldRangeFilterItem fieldRangeFilterItem = new FieldRangeFilterItem();

// Assume the customerDBField has been retrieved from a table
fieldRangeFilterItem.setRangeField(customerDBField);

// Set the operation to >
fieldRangeFilterItem.setOperation(SelectionOperation.greaterThan);
fieldRangeFilterItem.setInclusive(false);

// Create a constant value and add it to the range filter item
ConstantValue constantValue = new ConstantValue();
constantValue.setValue(2);
fieldRangeFilterItem.getValues().addElement(constantValue);

// Create a filter and add the field range filter item
IFilter filter = new Filter();
filter.getFilterItems().addElement(fieldRangeFilterItem);

All fields cannot be used in a filter formula (for example, you can’t use BLOB fields). Use
the canFilterOn method, which is located in either the RecordFilterController or the
GroupFilterController, to verify that a field can be filtered on. You must also verify that the
constant data type is the same as the field. In the previous example, constantValue must not
be a variant and corresponds to the data type used in the comparison.

33

41 0789731134 CH33 6/23/04 2:16 PM Page 755

756 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

Creating a OperatorFilterItem
The following example assumes the same expression as defined in the preceding example,
but concatenates to the filter using the OR operator. Assume the filter would look like this:
{Customer.ID} > 2 OR {Customer.name} = “Arsel”. To the code above you would add:

OperatorFilterItem operatorFilterItem = new OperatorFilterItem();
operatorFilterItem.setOperator(“OR”);

filter.getFilterItems().addElement(operatorFilterItem);
filter.getFilterItems().addElement(fieldRangeFilterItem);

The filterItems parameter is a FilterItems collection. It stores FilterItem objects. In the
two examples, both a FieldRangeFilterItem object and an OperatorFilterItem object were
added to this collection. Both of these objects inherit from FilterItem, making this possible.

Adding a Filter to the Report
After defining the filter, you add it to the report. Filters can be used in two places: group
selection and record selection. The GroupFilterController and RecordFilterController,
which can be accessed via the DataDefController object, modify their respective filters.

You can also obtain the filters from the GroupFilter and RecordFilter properties in the
DataDefinition, although they can only be modified with a controller.

FilterController provides these methods for modifying a filter:

■ addItem—This method adds an expression or an operator to the existing filter.

■ modify—This method replaces the current filter with a new or modified one.

■ modifyItem—This method modifies a filter element.

■ moveItem—This method moves the filter element around the filter array.

■ removeItem—This method deletes a filter element.

In the following code, the modify method is used because a new filter has already been
defined. Assume that there is a ReportClientDocument object and that you have opened a
report already:

FilterController groupFilterController =
reportClientDocument.getDataDefController.getGroupFilterController();
groupFilterController.modify(filter) ;

Working with Parameters
Parameters enable end users to enter information to define the report behavior. Parameters
have specific data types just like any other field: string, number, date, and so on. Parameters
also are divided into two basic types: discrete and ranged. A discrete parameter value is one
that represents a singular value such as 9, “Nur”, 1863, True, and so on. Ranged values rep-
resent a particular span of values from one point to another such as [9..95], [4..6],
[“Alpha”,”Omega”]. The lower bound value of the range must be smaller than the upper

33

41 0789731134 CH33 6/23/04 2:16 PM Page 756

757The RAS SDK in Action

bound. Some parameters support more than one value: They effectively contain an array
containing many values.

Parameters have default values and the user can be forced to select from them. You can also
provide default parameters but allow users to enter their own values. Default values are
stored in the ParameterField.DefaultValues property. Selected values are stored in the
ParameterField.CurrentValues property.

Parameters support many more features than those covered here. For a complete list of fea-
tures, see the ParameterField class in the SDK documentation.

Reading Parameters and Their Values
The parameters are exposed in the SDK by the DataDefinition’s ParameterFields class.
The ParameterFields class inherits from the Fields class. For example the name of a para-
meter is obtained using this method:

Fields parameterFields = reportClientDocument.getDataDefinition().
➥getParameterFields();
ParameterField parameterField = (ParameterField)parameterFields.getField(0);
parameterField.getDisplayName(FieldDisplayNameType.fieldName, Locale.ENGLISH);

The getDisplayName method is used for UI purposes and so is not a unique identifier. The
getFormulaForm method can be used to retrieve a unique identifier. getDisplayName and
getFormulaForm are not documented under the ParameterField class because they are inher-
ited from Field.

Because parameter values might be either discrete or ranged, and default values might only
be discrete, there are two different objects to represent these: ParameterFieldDiscreteValue
and ParameterFieldRangeValue. Both of these objects inherit from ParameterField. You
must understand the type of the parameter to know what kind of parameter values it con-
tains. For example, the following code determines if the parameter is of a ranged or discrete
type:

// Check to see if the value is range or discrete
IValue firstValue = parameterField.getCurrentValues().getValue(0);
if (firstValue instanceof IParameterFieldRangeValue)
{

IParameterFieldRangeValue rangeValue =
➥ (IParameterFieldRangeValue)firstValue;

toValueText = rangeValue.getEndValue().toString();
fromValueText = rangeValue.getEndValue().toString();

}
else
{

IParameterFieldDiscreteValue discreteValue =
➥ (IParameterFieldDiscreteValue)firstValue;

discreteValueText = discreteValue.getValue().toString();
}

Check the parameter’s type before you try to print the parameter’s values. You must deter-
mine the type so you can retrieve the correct field. Trying to access the EndValue of a
discrete value will cause a runtime error because no EndValue exists. The previous code

33

41 0789731134 CH33 6/23/04 2:16 PM Page 757

758 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

example determines whether the parameter value is an instance of
IParameterFieldRangeValue to determine what kind of values it will have. For parameters
that support both discrete and ranged values, however, you must verify the type of the para-
meter by using getValueRangeKind method. The following code checks the parameter type
and calls a secondary function to handle the correct type and build a table of parameters:

ParameterValueRangeKind kinda = parameterField.getValueRangeKind();
if (kinda == ParameterValueRangeKind.discrete)
{

table += createDiscreteParameterTableData(parameterField, key);
key += 1;

}
else if (kinda == ParameterValueRangeKind.range)
{

table += createRangeParameterTableData(parameterField, key);
key += 2;

}
else if (kinda == ParameterValueRangeKind.discreteAndRange)

{
table += createDiscreteRangeParameterTableData(parameterField, key);
key += 3;

}
else
{

table += “<td>Parameter kind not known</td>”;
}

Changing Parameter Values
The ParameterFieldController, which can be found in the DataDefController, enables you
to change parameters. To modify a parameter field in the report, you copy the field, modify
the copy, and then have the controller modify the original based on changes made to the
copy. For instance here you demonstrate this by changing a default discrete value:

ParameterField newParamField = new ParameterField();
parameterField.copyTo(newParamField, true);
newParamField.getCurrentValues().removeAllElements();

// Check the type of the parameter
ParameterValueRangeKind kinda = parameterField.getValueRangeKind();

// If it is discrete
if (kinda == ParameterValueRangeKind.discrete)
{

// Get the parameter’s value
String textFieldText = request.getParameter(“textField” + key);

// Convert this value to the right format
String discreteValueText =

(String)convertToValidValue(newParamField, textFieldText);

// Modify the copy of the parameter field with the value above.
ParameterFieldDiscreteValue discreteValue =

➥new ParameterFieldDiscreteValue();
discreteValue.setValue(discreteValueText);

33

41 0789731134 CH33 6/23/04 2:16 PM Page 758

759The RAS SDK in Action

newParamField.getCurrentValues().add(discreteValue);

key += 1;
}

Adding a Parameter
Use the ParameterFieldController to add new parameters. You do this the same way as
adding any other fields to the report: A new field is created, its fields are set, and it is added
using a controller. Here you define a new, discrete, string parameter and add it using the
controller:

IParameterField paramField = new ParameterField();

paramField.setAllowCustomCurrentValues(false);
paramField.setAllowMultiValue(false);
paramField.setAllowNullValue(false);
paramField.setDescription(“Here we go dude!”);
paramField.setParameterType(ParameterFieldType.queryParameter);
paramField.setValueRangeKind(ParameterValueRangeKind.discrete);
paramField.setType(FieldValueType.numberField);
paramField.setName(“YourNewParameter”);

reportClientDoc.getDataDefController().getParameterFieldController().

➥add(parameterField);

Adding a parameter using the Parameter field controller does not place the parameter on
the report, so the user is not prompted for the parameter when the report is refreshed. To
prompt the user, either use it in a filter, or add it by using the ResultFieldController.

Tips and Tricks for Parameter Handling
Handling parameters involves many important details. When using parameters keep the fol-
lowing points in mind:

■ Parameter values must match the type of the parameter.

■ Any values for the parameter should respect the parameter mask.

■ Ensure that you know what type of values you are reading: Are they discrete or ranged?

■ Set the bound type on a range value before adding it to the parameter.

■ Ensure that the upper bound of a range value is greater than the lower bound.

Failing these tests results in a runtime error.

Charting Overview
The ChartObject, which represents a chart in the RAS SDK, inherits variables and methods
from the ReportObject. Remember that the report that you open is represented by the
ReportClientDocument, not the ReportObject.

The ChartObject’s properties determine the chart’s appearance and where it shows on the
report.

33

41 0789731134 CH33 6/23/04 2:16 PM Page 759

760 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

Here you focus on three ChartObject properties:

■ ChartDefinition indicates the chart type and the fields charted. The chart type can be a
Group or Details type.

■ ChartStyle specifies the chart style type (such as a bar chart or a pie chart) and the text
that appears on the chart (such as the chart title).

■ ChartReportArea is where the chart is located (for example, the report footer).

The following two sections show how you can use these ChartObject properties to create a
chart. You must first specify the fields on which you want your chart to be based on. To do
this, create a ChartDefinition object, which will then be added to the ChartObject with the
ChartDefinition property.

Defining the Fields in a Chart
The ChartDefinition object determines the type of chart that appears in the report and sets
the fields to be displayed. A simple, two-dimensional chart displays two types of fields:

■ ConditionFields—The fields that determine where to plot a point on the x-axis.

■ DataFields—The fields that determine what to plot on the y-axis.

Below the chart added is a Group type (see the ChartType class), so the ConditionFields and
DataFields that are being charted on are group fields and summary fields respectively.

Adding ConditionFields
Add the first group field in the Groups collection to a Fields collection. This field is
retrieved with the ChartDefinition’s getConditionFields method.

ReportClientDocument’s DataDefinition:
// Create a new ChartDefinition and set its type to Group
ChartDefinition chartDef = new ChartDefinition();
chartDef.setChartType(ChartType.group);

Fields conditionFields = new Fields();
if (!dataDefinition.getGroups().isEmpty())
{

IField field = dataDefinition.getGroups().getGroup(0).getConditionField();
conditionFields.addElement(field);

}
chartDef.setConditionFields(conditionFields);

33

N O T E
Adding two groups as ConditionFields enables you to create a 3D chart. Because
one value is required for the x values, the next value drives the z-axis.

41 0789731134 CH33 6/23/04 2:16 PM Page 760

761The RAS SDK in Action

Adding DataFields
After you have added ConditionFields to the ChartDefinition, add the DataFields. In a
Group type chart, the DataFields are summaries for the group fields that you added as
ConditionFields.

Adding DataFields is similar to how you added ConditionFields. For example, you use
the name of the summary field that the user has selected to locate the desired field in the
SummaryFields collection and add this field to a Fields collection. You then accessed
the summary field with the ChartDefinition’s DataFields property:

Fields dataFields = new Fields();
for (int i = 0; i < dataDefinition.getSummaryFields().size(); i++)
{

IField summaryField = dataDefinition.getSummaryFields().getField(i);
if (summaryField.getLongName(Locale.ENGLISH).equals(summaryFieldName))
{

dataFields.addElement(summaryField);
}

}
chartDef.setDataFields(dataFields);

Here you use the LongName of the summary field. The LongName contains the type of sum-
mary, for example, a sum or a count, and the group field that it applies to. For example

Sum of (Customer.Last Year’s Sales, Customer.Country)

In general you will want to use a field’s LongName instead of its ShortName or Name to avoid
confusion as the ShortName or Name might be the same for several fields.

Creating a ChartObject
After the fields are defined, they are added to the ChartObject with the ChartDefinition
property. The following code uses the ChartObject’s ChartStyle property and
ChartReportArea to specify the chart style type, the chart title, and the location of the chart:

ChartObject chartObject = new ChartObject();
chartObject.setChartDefinition(chartDefinition);

String chartTypeString = request.getParameter(“type”);
String chartPlacementString = request.getParameter(“placement”);
String chartTitle = request.getParameter(“title”);
if (chartTitle.equals(“”))
{

chartTitle = “no title at all!”;
}

ChartStyleType chartStyleType = ChartStyleType.from_string(chartTypeString);
AreaSectionKind chartPlacement =
➥AreaSectionKind.from_string(chartPlacementString);

// Set the chart type, chart placement, and chart title
chartObject.getChartStyle().setType(chartStyleType);
chartObject.setChartReportArea(chartPlacement);
chartObject.getChartStyle().getTextOptions().setTitle(chartTitle);

33

41 0789731134 CH33 6/23/04 2:16 PM Page 761

762 Chapter 33 Crystal Enterprise Embedded—Report Modification and Creation

// Set the width, height, and top
chartObject.setHeight(5000);
chartObject.setWidth(5000);
chartObject.setTop(1000);

In this example, the first chart that you add will appear 50 points below the top of the report
area in which the chart is located. (These fields are measured in twips, and 20 twips = 1 font
point, so 1000/20 = 50 points.) Adding another chart to the same report area places it over
the first chart because the formatting for report objects is absolute. The first chart remains
hidden until the second chart is removed.

Adding a Chart to the Report
Now add the chart using the ReportObjectController’s add method. This method
takes three parameters: the ChartObject, the section to place it in, and the position in

the ReportObjectController collection where you want to add the chart. An option of 1
for the index adds the chart to the end of the array. Return the ReportObjectController
by the ReportDefController’s getReportObjectController method:

reportDefController.getReportObjectController().add(chartObject,
➥chartSection, 1);

33

N O T E
If you want to modify an existing chart, you can use the clone method to copy the chart,
make the desired changes, and then call the modifyObject method using the original
chart and the newly modified chart as parameters.

41 0789731134 CH33 6/23/04 2:16 PM Page 762

