
30CHAPTER

In this chapter

Understanding Universal Data
Access, OLE DB, and ADO

In this chapter

Gaining a Perspective on Microsoft Data Access Components 1258

Creating ADODB.Recordset Objects 1265

Using the Object Browser to Display ADO Properties, Methods, and Events 1271

Working with the ADODB.Connection Object 1273

Using the ADODB.Command Object 1286

Understanding the ADODB.Recordset Object 1296

Taking Advantage of Disconnected Recordsets 1312

Programming Stream Objects 1323

Exploring the AddOrder.adp Sample Project 1327

Troubleshooting 1330

In the Real World—Why Learn ADO Programming? 1330

38 0789729520 CH30 8/22/03 5:08 PM Page 1257

1258 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Gaining a Perspective on Microsoft Data Access
Components

Integrated data management is the key to Access’s success in the desktop RDBMS and
client/server front-end market. Access and its wizards let you create basic data-bound forms,
reports, and pages with minimal effort and little or no VBA programming. Linked tables
provide dynamic access to a wide range of data sources. As your Access applications grow
larger and more complex, automation with VBA code in class and public modules becomes
essential. When networked Access applications gain more users, performance may suffer as a
result of Jet record-locking issues or multiple connections to client/server back ends.
Decreasing performance with increasing user load is a symptom of lack of scalability.
Achieving scalability requires VBA code to manage your application’s database connections.
This advanced chapter shows you how to write the VBA code that’s required to improve the
scalability of Access front ends. You also learn how to use the Stream object to generate
XML data documents from SQL Server 2000’s FOR XML AUTO queries.

Access 2003 continues Microsoft’s emphasis on “Universal Data Access” for VBA and Visual
Basic 6.0 programmers. Microsoft wants Access developers to abandon Jet’s Data Access
Objects (DAO), Access 97’s ODBCDirect, and the venerable Open Database Connectivity
(ODBC) Application Programming Interface (API) in favor of a collection of Component
Object Model (COM) interfaces called OLE DB and ActiveX Data Objects (ADO). To
encourage Access power users and developers to adopt OLE DB and ADO, all traditional
Microsoft database technologies (referred to by Microsoft as downlevel or legacy, synonyms
for “obsolete”) are destined for maintenance mode. Maintenance mode is a technological
purgatory in which Microsoft fixes only the worst bugs and upgrades occur infrequently, if
ever. In 1999, OLE DB, ADO, and, for Jet programmers, ActiveX Data Object Extensions
(ADOX), became Microsoft’s mainstream data access technologies.

Microsoft’s primary goals for Universal Data Access were to

■ Provide the capability to accommodate less common data types unsuited to SQL
queries, such as directory services (specifically Active Directory), spreadsheets, email
messages, and file systems

■ Minimize the size and memory consumption of the dynamic link libraries (DLLs)
required to support data access on Internet and intranet clients

■ Reduce development and support costs for the multiplicity of Windows-based data
access architectures in common use today

■ Extend the influence of COM in competition with other object models, primarily
Common Object Request Broker Architecture (CORBA) and its derivatives

This chapter introduces you to the fundamentals of Universal Data Access and Microsoft
Data Access Components (MDAC). MDAC makes connecting to databases with OLE DB
practical for Access users and developers. MDAC includes ADO and ADOX for conven-
tional relational data, plus ADOMD for multidimensional expressions (MDX) to create and
manipulate data cubes.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1258

1259Gaining a Perspective on Microsoft Data Access Components

Redesigning from the Bottom Up with OLE DB
To accommodate the widest variety of data sources, as well as to spread the gospel of COM
and Windows XP/2000+’s COM+, Microsoft’s data architects came up with a new approach
to data connectivity—OLE DB. OLE DB consists of three basic elements:

■ Data providers that abstract information contained in data sources into a tabular (row-
column) format called a rowset. Microsoft currently offers native OLE DB data
providers for Jet, SQL Server, IBM DB2, IBM AS/400 and ISAM, and Oracle data-
bases, plus ODBC data sources. (Only Microsoft SNA Server installs the providers for
IBM data sources.) Other Microsoft OLE DB providers include an OLE DB Simple
Provider for delimited text files, the MSPersist provider for saving and opening
Recordsets to files (called persisted Recordsets), and the MSDataShape provider for creat-
ing hierarchical data sets. The MSDataShape provider also plays an important role in
ADP and when using VBA to manipulate the Recordset of Access forms and reports.

30

N O T E
Microsoft SQL Server Analysis Services (formerly OLAP Services) generates data cubes
from online sources, such as transactional databases. Office 2003 installs Msadomd.dll
and other supporting files for MDX and data cubes. Microsoft provides OLE DB for OLAP
and the PivotTable Service to enable Excel 2003 PivotTables to manipulate data cubes.
MDX and PivotTable services are beyond the scope of this book.

T I P
To see the list of OLE DB data sources installed on your computer, open the
NorthwindCS.adp project, and choose File, Get External Data, Link Tables to start the Link
Table Wizard. With the Linked Server option selected in the first dialog, click Next to
open the Select Data Source dialog, and double-click the +Connect to New Data
Source.odc file to open the second Wizard dialog. With the Other/Advanced item
selected in the data source list, click Next to open the Data Link Properties dialog. The
Providers page lists all currently installed OLE DB data providers. Click Cancel three times
to return to the Database window.

■ Data consumers that display and/or manipulate rowsets, such as Access application
objects or OLE DB service providers. Rowset is the OLE DB object that ADO converts
to a Recordset object.

■ Data services (usually called OLE DB service providers) that consume data from providers
and, in turn, provide data to consumers. Examples of data services are SQL query
processors and cursor engines, which can create scrollable rowsets from forward-only
rowsets. A scrollable cursor lets you move the record pointer forward and backward in
the Datasheet view of a Jet or SQL Server query.

38 0789729520 CH30 8/22/03 5:08 PM Page 1259

1260 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Figure 30.1 illustrates the relationship between OLE DB data providers, data consumers,
and data services within Microsoft’s Universal Data Access architecture. You should under-
stand the relationships between these objects, because Microsoft commonly refers to them
in ADO documentation, help files, and Knowledge Base articles. Database front ends writ-
ten in C++ can connect directly to the OLE DB interfaces. High-level languages, such as
VBA, use ADO as an intermediary to connect to OLE DB’s COM interfaces. Msado15.dll,
which implements ADO 2.x, has a memory footprint of about 327KB, about 60% of
Dao360.dll’s 547KB.

30

C++ Database
Front-End

Access 2000+
Application Objects

ActiveX Data Objects (ADO)
ADO Extensions (ADOX)

OLE DB

SQL Query
Processor

Distributed
Query
Engine

Cursor
Engine

OLE DB

SQL
RDBMS

File
System

Jet (ISAM)
Databases

Spread-
sheet

E-mail
System

Directory
Service

Data Providers

Data Consumers

Service
Providers

OLE DB
Automation

Wrapper

Figure 30.1
This diagram shows
the relationships
between front-end
applications, ADO and
ADOX, and OLE DB
service and data
providers.

ADO support files install in your \Program Files\System\Ado folder. If you’re running
Windows XP/2000+, the ADO support files are subject to Windows File Protection (WFP),
which places a copy of the file in the DLL cache and prevents you from permanently delet-
ing or moving the ADO support files. WFP also prevents unruly installation programs from
overwriting the ADO support files with an earlier or corrupt (hacked) version.

Some ADO 2.x support file names have a 1.5 version number, as in Msado15.dll; the
strange versioning of these files is required for backward compatibility with applications
that used very early versions of ADO.

38 0789729520 CH30 8/22/03 5:08 PM Page 1260

1261Gaining a Perspective on Microsoft Data Access Components

➔ For more information on the use of RDS with DAP, see “Enabling Private or Public Internet Access,”
p. 1058.

Mapping OLE DB Interfaces to ADO
You need to know the names and relationships of OLE DB interfaces to ADO objects,
because Microsoft includes references to these interfaces in its technical and white papers on
OLE DB and ADO. Figure 30.2 illustrates the correspondence between OLE DB interfaces
and the highest levels of the ADO hierarchy.

30

N O T E
MDAC 2.x also supports Remote Data Services (RDS, formerly Advanced Database
Connector, or ADC). RDS handles lightweight ADOR.Recordsets for browser-based
applications; RDS, which commonly is used for three-tier, Web-based applications, is
required to make Data Access Pages (DAP) accessible safely over the Internet.

DataSource

IDBCreateSession

Session

IDBCreateCommand

Command

ICommand

Rowset

IRowset

CreateSession()

CreateCommand()

Execute()

Open Rowset ()

IOpenRowset
Active

ADODB.Connection

New
ADODB.Command

ADODB.Recordset

New
ADODB.Connection

Open

Execute

Open

OLE DB (C++) ActiveX Data Objects (ADO)Figure 30.2
This diagram illus-
trates the correspon-
dence between OLE
DB interfaces and
ADO Automation
objects.

The OLE DB specification defines a set of interfaces to the following objects:

■ DataSource objects provide a set of functions to identify a particular OLE DB data
provider, such as the Jet or SQL Server provider, and determine whether the caller has
the required security permissions for the provider. If the provider is found and authen-
tication succeeds, a connection to the data source results.

■ Session objects provide an environment for creating rowsets and isolating transactions,
especially with Microsoft Transaction Server (MTS), which runs under Windows NT.
The COM+ components of Windows 2000+ provide MTS services.

■ Command objects include sets of functions to handle queries, usually (but not necessarily)
in the form of SQL statements or names of stored procedures.

38 0789729520 CH30 8/22/03 5:08 PM Page 1261

1262 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

■ Rowset objects can be created directly from Session objects or as the result of execution
of Command objects. Rowset objects deliver data to the consumer through the IRowset
interface.

ADO maps the four OLE DB objects to the following three top-level Automation objects
that are familiar to Access programmers who’ve used ODBCDirect:

■ Connection objects combine OLE DB’s DataSource and Session objects to specify the
OLE DB data provider, establish a connection to the data source, and isolate transac-
tions to a specific connection. The Execute method of the ADODB.Connection object can
return a forward-only ADODB.Recordset object.

■ Command objects are directly analogous to OLE DB’s Command object. ADODB.Command
objects accept an SQL statement, the name of a table, or the name of a stored proce-
dure. Command objects are used primarily for executing SQL UPDATE, INSERT, DELETE, and
SQL Data Definition Language (DDL) queries that don’t return records. You also can
return an ADODB.Recordset by executing an ADODB.Command object.

■ Recordset objects correspond to OLE DB’s Rowset objects and have properties and
methods similar to Access 97’s ODBCDirect Recordset. A Recordset is an in-memory
image of a table or a query result set.

The ADODB prefix, the short name of the ADO type library, explicitly identifies ADO objects
that share object names with DAO (Recordset) and DAO’s ODBCDirect (Connection and
Recordset). For clarity, all ADO code examples in this book use the ADODB prefix.

30

T I P
To make ADOX 2.7 accessible to VBA, you must add a reference to Microsoft ADO Ext.
2.7 for DDL and Security to your application. Access 2003 doesn’t add the ADOX refer-
ence automatically to new projects.

Comparing ADO and DAO Objects
Figure 30.3 is a diagram that compares the ADO and DAO object hierarchies. The ADO
object hierarchy, which can consist of nothing more than an ADODB.Connection object, is
much simpler than the collection-based object hierarchy of DAO. To obtain a scrollable,
updatable Recordset (dynaset), you must open an ADODB.Recordset object on an active
ADODB.Connection object.

Access VBA provides a DAO shortcut, Set dbName = CurrentDB(), to bypass the first two
collection layers and open the current database, but CurrentDB() isn’t available in VBA code
for other members of Office 2003 or Visual Basic 6.0.

38 0789729520 CH30 8/22/03 5:08 PM Page 1262

1263Gaining a Perspective on Microsoft Data Access Components

Unlike DAO objects, most of which are members of collections, you use the New reserved
word with the Set instruction to create and the Close method, the Set ObjectName =

Nothing, or both statements to remove instances of ADODB.Connection, ADODB.Command, and
ADODB.Recordset objects independently of one another. The Set ObjectName = Nothing

instruction releases memory consumed by the object.

DAO supports a variety of Jet collections, such as Users and Groups, and Jet SQL Data
Definition Language (DDL) operations that ADO 2.7 alone doesn’t handle. ADOX 2.7
defines Jet-specific collections and objects that aren’t included in ADO 2.x. The “Provider-
Specific Properties and Their Values” section later in the chapter describes how to roll your
own cross-reference table to aid in migrating your DAO code to ADO.

The most important functional difference between DAO and ADO is that ADO supports
Web-based applications and DAO doesn’t. Thus, DAP bind to ADODB.Recordset objects.
The continuing trend toward Internet-enabling everything means that Windows database

30

Active
ADODB.Connection

New
ADODB.Command

ADODB.Recordset

New
ADODB.Connection

Open

Execute

Open

ActiveX Data Objects (ADO)

DBEngine
(Jet 4.0)

Workspace Object
Workspaces(0)

Workspaces Collection

Database Object
Databases(0)
(CurrentDB)

Databases Collection

QueryDef Object
QueryDef(n)

QueryDefs Collection

DAO.Recordset
Open

Data Access Objects (DAO)

CurrentProject.
Connection

(Access Only)

Open

Figure 30.3
This diagram com-
pares the ADO and
DAO object hierar-
chies.

N O T E
Access VBA provides a similar ADO shortcut, CurrentProject.Connection, which
points to a default ADODB.Connection object with the Jet OLE DB Service Provider for
the current database. Unlike CurrentDB(), which is optional, you must use
CurrentProject.Connection as the ADODB.Connection to the currently open
database. If you try to open a new ADODB.Connection to the current database, you
receive a runtime error stating that the database is locked.

38 0789729520 CH30 8/22/03 5:08 PM Page 1263

1264 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

programmers must make the transition from ODBC, ODBCDirect, RDO, and DAO tech-
nologies to ADO and OLE DB, so this book covers VBA programming of ADO, not DAO,
objects. ADO supports ODBC connections to shared-file and client/server RDBMSs with
the Microsoft OLE DB Provider for ODBC (more commonly called by its beta code name,
Kagera). ODBC introduces another layer into the database connection, so it’s less efficient
than OLE DB. The examples of this chapter use only native OLE DB providers.

Upgrading from ADO 2.5 and Earlier to Version 2.6+
ADO 2.x in this chapter refers collectively to ADO 2.1, 2.5, 2.6, and 2.7. Windows XP and
Office 2003 install ADO 2.7, which includes type libraries for ADO 2.0, 2.1, 2.5, 2.6 for
backward compatibility. Windows 2000 Service Pack (SP) 1 or later installs ADO 2.5 SP1,
which includes type libraries for for prior versions. Installing the SQL Server 2000 Desktop
Engine (MSDE2000) from the Office 2003 distribution CD-ROM—or any other version of
SQL Server 2000—upgrades Windows 2000’s ADO 2.5 to 2.6. Version 2.7 is required only
to support Intel’s 64-bit Itanium processors. Upgrading from ADO 2.6 to 2.7 doesn’t add
new features or alter existing features.

30

N O T E
As mentioned in Chapter 27, “Learning Visual Basic for Applications,” the default VBA
reference for new ADP is ADO 2.1 for Access 2000 database format. If you change the
default database version to Access 2002 in the Options dialog, the reference changes to
ADO 2.5. Use of non-current references is required for backward compatibility with
Access 2000 and 2002 ADP.

➔ To review use of the VBA editor’s References dialog, see “References to VBA and Access Modules,”
p. 1157.

Following are the new or altered ADO objects, properties, and methods in ADO 2.6+:

■ Record objects can contain fields defined as Recordsets, Streams of binary or text data,
and child records of hierarchical Recordset objects. Use of Record objects is beyond the
scope of this book.

■ Stream objects can send T-SQL FOR XML queries to SQL Server 2000 and return result
sets as XML documents. Stream objects also are used with the Record object to return
binary data from URL queries executed on file systems, Exchange 2000 Web Folders,
and email messages. The “Programming Stream Objects” section, near the end of the
chapter, provides a simple example of the use of a Stream object to return XML data
from a FOR XML T-SQL query to a text box.

38 0789729520 CH30 8/22/03 5:08 PM Page 1264

1265Creating ADODB.Recordset Objects

■ Command objects gain new CommandStream and Dialect properties to support Stream
objects, and a NamedParameters property that applies to the Parameters collection.

■ Group and User ADOX objects add a Properties collection that contains Jet-specific
Property objects. This chapter doesn’t cover ADOX programming with VBA, because
ADOX applies only to Jet databases.

30

T I P
If you’re interested in learning more about ADOX, open the VBA Editor, type adox in the
Ask a Question text box, select the ADOX methods option, click See Also in the “ADOX
Methods” help page, and select ADOX API Reference in the list.

Creating ADODB.Recordset Objects
The concept of database object independence is new to Access. The best way of demon-
strating this feature is to compare DAO and ADO code to create a Recordset object from
an SQL statement. DAO syntax uses successive instantiation of each object in the DAO
hierarchy: DBEngine, Workspace, Database, and Recordset, as in the following example:

Dim wsName As DAO.Workspace
Dim dbName As DAO.Database
Dim rstName As DAO.Recordset

Set wsName = DBEngine.Workspaces(0)
Set dbName = wsName.OpenDatabase (“DatabaseName.mdb”)
Set rstName = dbName.OpenRecordset (“SQL Statement”)

As you descend through the hierarchy, you open new child objects with methods of the par-
ent object.

The most common approach with ADO is to create one or more independent, reusable
instances of each object in the Declarations section of a form or module:

Private cnnName As New ADODB.Connection
Private cmmName As New ADODB.Command
Private rstName As New ADODB.Recordset

N O T E
This book uses cnn as the object type prefix for Connection, cmm for Command, and
rst for Recordset. The cmm prefix is used because the cmd prefix traditionally identi-
fies a command button control and the com prefix identifies the MSComm ActiveX con-
trol (Microsoft Comm Control 6.0).

Although you’re likely to find references to DAO.Recordset dynasets and snapshots in
the Access documentation, these terms don’t apply to ADODB.Recordset objects. See
the CursorType property of the ADODB.Recordset object in the “Recordset
Properties” section later in this chapter for the CursorType equivalents of dynasets and
snapshots.

38 0789729520 CH30 8/22/03 5:08 PM Page 1265

1266 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

After the initial declarations, you set the properties of the new object instances and apply
methods—Open for Connections and Recordsets, or Execute for Commands—to activate the
object. Invoking the Open method of the ADODB.Recordset object, rather than the
OpenRecordset method of the DAO.Database object, makes ADO objects independent of one
another. Object independence and batch-optimistic locking, for instance, let you close the
ADODB.Recordset’s ADODB.Connection object, make changes to the Recordset, and then re-
open the Connection to send only the changes to the underlying tables. Minimizing the
number of open database connections conserves valuable server resources. The examples
that follow illustrate the independence of top-level ADO members.

Designing a Form Bound to an ADODB.Recordset Object
Access 2000+ forms have a property, Recordset, which lets you assign an ADODB.Recordset
object as the RecordSource for one or more forms. The Recordset property of a form is an
important addition, because you can assign the same Recordset to multiple forms. All forms
connected to the Recordset synchronize to the same current record. Access developers have
been requesting this feature since version 1.0. Access 2002 delivered updatable
ADODB.Recordsets for Jet, SQL Server, and Oracle data sources that you can assign to the
Recordset property value of forms and reports.

To create a simple form that uses VBA code to bind a form to a Jet ADODB.Recordset object,
follow these steps:

1. Open a new database in Access 2000 format named ADOTest.mdb or the like in your
…\Office11\Samples folder. Add a new form in design mode and save it as
frmADO_Jet.

2. Click the Code button on the toolbar to open the VBA editor, and choose Tools,
References to open the References dialog.

3. Clear the check box for the reference to the Microsoft ActiveX Data Objects 2.1
Library, scroll to the Microsoft ActiveX Data Objects 2.7 Library, and mark the check
box. Close and reopen the References dialog to verify that the new reference has perco-
lated to the select region of the list (see Figure 30.4). Close the References dialog.

30

Figure 30.4
If you don’t need
backward compatibil-
ity with Access 2000
and 2002 applica-
tions, specify the lat-
est version of ADO
(2.7 for this example)
as the reference.

38 0789729520 CH30 8/22/03 5:08 PM Page 1266

1267Creating ADODB.Recordset Objects

4. Add the following code to the Declarations section of the frmADO_Jet Class Module:
Private strSQL As String
Private cnnNwind As New ADODB.Connection
Private rstNwind As New ADODB.Recordset

5. Add the following code to create the Form_Load event handler:
Private Sub Form_Load()

‘Specify the OLE DB provider and open the connection
With cnnNwind

.Provider = “Microsoft.Jet.OLEDB.4.0”

.Open CurrentProject.Path & “\Northwind.mdb”, “Admin”
End With

strSQL = “SELECT * FROM Customers”
With rstNwind

Set .ActiveConnection = cnnNwind
.CursorType = adOpenKeyset
.CursorLocation = adUseClient
.LockType = adLockOptimistic
.Open strSQL

End With

‘Assign rstNwind as the Recordset for the form
Set Me.Recordset = rstNwind

End Sub

30

N O T E
The preceding code includes several properties that this chapter hasn’t discussed yet. The
objective of this and the following sections is to get you started with a quick demonstra-
tion of the Form.Recordset property. Properties and methods of the Connection
and Recordset objects are the subject of the “Exploring Top-Level ADO Properties,
Methods, and Events” section that follows shortly.

6. Return to Access and change to Form view to execute the preceding code. Then open
the Properties window and click the Data tab. Your form appears as shown in Figure
30.5, with the first of 91 records selected by the navigation buttons.

Figure 30.5
The frmADOTest form
has its Recordset
property set to an
ADODB.Recordset
object opened on the
Northwind.mdb
Customers table.

38 0789729520 CH30 8/22/03 5:08 PM Page 1267

1268 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Binding Controls to a Recordset Object with Code
Adding the equivalent of bound controls to a form whose Record Source is an
ADODB.Recordset object requires that you first add unbound controls and then bind the con-
trols to the form’s underlying Recordset with code. To create a simple data display form for
the Customers table, do the following:

1. Return to Design view, display the Toolbox, and add seven unbound text boxes to the
form. Name the text boxes txtCustomerID, txtCompanyName, txtAddress, txtCity,
txtRegion, txtPostalCode, and txtCountry. Change the width of the text boxes to
reflect approximately the number of characters in each of the Customer table’s fields.

2. Change the label captions to CustID:, Name:, Address:, City:, Region:, Postal
Code:, and Country:, respectively. Apply the Bold attribute to the labels for readability
(see Figure 30.6).

30

N O T E
The form’s Record Source property value is the SQL statement specified as the argument
of the Recordset object’s Open method. The Recordset Type property value appears as
Dynaset, which isn’t a valid ADODB.Recordset type. The enabled Add New Record nav-
igation button confirms that the form is updatable.

Figure 30.6
Add seven unbound
text boxes to the
frmADO_Jet form.

3. To bind the Control Source property of each text box to the appropriate field of the
Customers table, click the Code button and add the following lines of code immedi-
ately after the Set Me.Recordset = rstNwind line:
Me.txtCustomerID.ControlSource = “CustomerID”
Me.txtCompanyName.ControlSource = “CompanyName”
Me.txtAddress.ControlSource = “Address”
Me.txtCity.ControlSource = “City”
Me.txtRegion.ControlSource = “Region”
Me.txtPostalCode.ControlSource = “PostalCode”
Me.txtCountry.ControlSource = “Country”

38 0789729520 CH30 8/22/03 5:08 PM Page 1268

1269Creating ADODB.Recordset Objects

4. Choose Form view and navigate the Recordset (see Figure 30.7). The Control Source
property value of the text boxes displays the field name you specified in the preceding
code.

30

Figure 30.7
Form view displays
field values in the
unbound text boxes.
The Data page of the
Properties window of
the txtCustomerID
text box shows
CustomerID as the
Control Source prop-
erty value.

5. Choose Datasheet view. The seven fields of the text boxes provide data to the columns
of the datasheet, and the label captions serve as column headers.

6. Edit one of the CustID values; for example, change BLONP to BONX. If Cascade
Update Related Fields for the join between the Customers and Orders tables isn’t
enabled, a message box states that you can’t edit the field (see Figure 30.8).

Figure 30.8
Datasheet view of the
form displays only the
fields of the
Customers table that
have associated text
boxes. Changing the
value of the primary
key without cascading
updates displays the
error message shown
here.

T I P
To emulate a table Datasheet view with code, add to the form text boxes for every field
of the table. To open a table-type ADODB.Recordset object, substitute the table name
for the SQL statement as the argument of the rstName.Open statement. You also can
specify the name of an SQL Server view or Jet QueryDef object.

38 0789729520 CH30 8/22/03 5:08 PM Page 1269

1270 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Connecting to the NorthwindCS MSDE Database
Creating an ADODB.Recordset object with VBA code lets you connect to SQL Server and
other client/server RDBMSs in a Jet database or Access project. To substitute the MSDE
version of the Northwind sample database for Northwind.mdb, do the following:

1. Start your local MSDE2000 server if it isn’t already running.

2. Make a copy of frmADO_Jet as frmADO_MSDE, open frmADO_MSDE in Design
view, and open the VBA Editor for frmADO_MSDE.

3. Delete the .Provider = “Microsoft.Jet.OLEDB.4.0” line. For this example, the Open
method’s argument specifies the OLE DB data provider

4. MSDE uses integrated Windows security by default, so change the .Open
CurrentProject.Path & “\Northwind.mdb”, “Admin” line to
.Open “Provider=SQLOLEDB.1;Data Source=(local);” & _

“Integrated Security=SSPI;Initial Catalog=NorthwindCS”

(SSPI is an abbreviation for Security Support Provider, Integrated.)

5. Add the following statement after the Set Me.Recordset = rstNwind line:
Me.UniqueTable = “Customers”

30

T I P
Even if your query returns data from a single table only, you should specify the table as
unique. For updatable result sets from Transact-SQL (T-SQL) queries with joins, you must
set the UniqueTable property value to specify the “most-many” table. As an example,
if your query returns values from one-to-many joins between the Customers, Orders,
and Order Details table, Order Details is the “most-many” table. Fields of the Order
Details table contribute the uniqueness to the rows of the query result set.

6. Run frmADO_MSDE in Datasheet view and verify that the form is updatable by tem-
porarily editing any cell except primary-key values of the CustID field. You receive a
constraint conflict error if you attempt to change a CustomerID value (see
Figure 30.9).

Figure 30.9
When you attempt to
edit a primary-key
value on which other
records depend, you
receive the SQL
Server message
shown here.

38 0789729520 CH30 8/22/03 5:08 PM Page 1270

1271Using the Object Browser to Display ADO Properties, Methods, and Events

Using the Object Browser to Display ADO
Properties, Methods, and Events

At this point in your ADO learning curve, a detailed list of properties, enumerations of con-
stant values, methods, and events of ADO components might appear premature.
Understanding the capabilities and benefits of ADO, however, requires familiarity with
ADO’s repertoire of properties, methods, and events. To get the most out of ADP and to
program DAP you must have a working knowledge of ADO programming techniques.

DAO objects don’t fire events; ADO objects do. Access objects offer fine-grained events, but
don’t provide programmers with a lower-level event model for basic operations, such as con-
necting to a database and executing queries. Access 97’s ODBCDirect offered an event
model, but you couldn’t bind ODBCDirect Recordsets to forms. ADO offers a complete
and very fine-grained event model.

Object Browser is the most useful tool for becoming acquainted with the properties, meth-
ods, and events of ADODB objects. Object Browser also is the most convenient method for
obtaining help with the syntax and usage of ADO objects, methods, and events.

30

N O T E
The ADOTest.mdb database and ADOTest.adp project in the \SEUA11\Chaptr30 folder of
the accompanying CD-ROM contain the frmADO_Jet and frmADO_MSDE forms
described in the preceding two sections. This folder contains a copy of the tables of
Northwind.mdb.

N O T E
The examples and tabular list of properties, methods, and events of ADO objects in this
and other related chapters are for ADO 2.6. Objects, methods, and events that are added
by ADO 2.5+ are identified by the new in Access 2002 icon. (Access 2003’s ADO 2.7
doesn’t add any new elements.) If your .mdb or .adp file has a reference to ADO 2.1 or
2.5, your results for this chapter’s examples might differ or fail to execute.

To use Object Browser with ADO objects, follow these steps:

1. Open in design mode one of the forms of ADOTest.mdb that you created in the pre-
ceding sections, and then open the VBA Editor for its code. Alternatively, open the
sample ADOTest.mdb or ADOTest.adp file.

2. Press F2 to open Object Browser.

3. Select ADODB in the library (upper) list.

4. Select one of the top-level components, such as Connection, in the Classes (left) pane.

5. Select a property, event, or method, such as Open, in the Members of ‘ObjectName’
(right) pane. A short-form version of the syntax for the selected method or event
appears in Object Browser’s lower pane (see Figure 30.10).

38 0789729520 CH30 8/22/03 5:08 PM Page 1271

1272 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

6. Click the Help button to open the help topic for the selected object, property, method,
or event. Figure 30.11 shows the help topic for ADODB.Connection.Open.

30

Figure 30.10
Object Browser dis-
plays in the status
pane the syntax of the
object class member
you select in the
Members of
‘ObjectName’ pane.

Figure 30.11
The Object Browser’s
help button opens the
online VBA help topic
for the selected
ADODB object,
method, property, or
event. The See Also
link leads to related
help topics. If
enabled, the Example
link opens a sample
VBA subprocedure.
The Applies To link
opens a list of objects
that share the
method, property, or
event.

ADO type libraries also include enumerations (lists) of numeric (usually Long) constant val-
ues with an ad prefix. These constant enumerations are specific to one or more properties.
Figure 30.12 shows Object Browser displaying the members of the ConnectModeEnum enu-
meration for the Mode property of an ADODB.Connection object. The lower pane displays the
Long value of the constant.

T I P
You can substitute the numeric value of enumerated constants for the constant name in
VBA, but doing so isn’t considered a good programming practice. Numeric values of the
constants might change in subsequent ADO versions, causing unexpected results when
upgrading applications to a new ADO release.

38 0789729520 CH30 8/22/03 5:08 PM Page 1272

1273Working with the ADODB.Connection Object

Working with the ADODB.Connection Object
The Connection object is the primary top-level ADO component. You must successfully
open a Connection object to a data source before you can use associated Command or
Recordset objects.

Connection Properties
Table 30.1 lists the names and descriptions of the properties of the ADODB.Connection object.

Table 30.1 Properties of the ADODB.Connection Object

Property Name Data Type and Purpose

Attributes A Long read/write value that specifies use of retaining transactions by the
sum of two constant values. The adXactCommitRetaining constant starts
a new transaction when calling the CommitTrans method;
adXactAbortRetaining starts a new transaction when calling the
RollbackTrans method. The default value is 0, don’t use retaining trans
actions.

CommandTimeout A Long read/write value that determines the time in seconds before termi-
nating an Execute call against an associated Command object. The default
value is 30 seconds.

ConnectionString A String read/write variable that supplies specific information required
by a data or service provider to open a connection to the data source.

ConnectionTimeout A Long read/write value that determines the number of seconds before ter-
minating an unsuccessful Connection.Open method call. The default
value is 15 seconds.

30

Figure 30.12
Object Browser dis-
plays in the status
pane the numeric
value of members of
ADO enumerations,
which are a collection
of related ADO con-
stant values.

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1273

1274 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

CursorLocation A Long read/write value that determines whether the client-side
(adUseClient) or the server-side (adUseServer) cursor engine is used.
The default is adUseServer.

DefaultDatabase A String read/write variable that specifies the name of the database to use
if not specified in the ConnectionString. For SQL Server examples, the
value is the default Initial Catalog.

Errors A pointer to the Errors collection for the connection that contains one or
more Error objects if an error is encountered when attempting the con-
nection. The later “Errors Collection and Error Objects” section
describes this property.

IsolationLevel A Long read/write value that determines the behavior or transactions that
interact with other simultaneous transactions (see Table 30.2).

Mode A Long value that determines read and write permissions for Connection
objects (see Table 30.3).

Properties A pointer to the OLE DB provider-specific (also called dynamic)
Properties collection of the Connection object. Jet 4.0 databases have
94 Property objects and SQL Server databases have 93. The next section
shows you how to enumerate provider-specific properties.

Provider A String read/write value that specifies the name of the OLE DB data or
service provider if not specified in the ConnectionString value. The
default value is MSDASQL, the Microsoft OLE DB Provider for ODBC.
The most common providers used in the programming chapters of this
book are Microsoft.Jet.OLEDB.4.0, more commonly known by its code
name, “Jolt 4,” and SQLOLEDB, the OLE DB provider for SQL Server.

State A Long read-only value that specifies whether the connection to the data-
base is open, closed, or in an intermediate state (see Table 30.4).

Version A String read-only value that returns the ADO version number.

30

Table 30.1 Continued

Property Name Data Type and Purpose

N O T E
Most property values identified in Table 30.1 as being read/write are writable only when
the connection is in the closed state. Some provider-specific properties are read/write,
but most are read-only.

Provider-Specific Properties and Their Values

When you’re tracking down problems with Connection, Command, Recordset, or Record
objects, you might need to provide the values of some provider-specific properties to a
Microsoft or another database vendor’s technical service representative. To display the

38 0789729520 CH30 8/22/03 5:08 PM Page 1274

1275Working with the ADODB.Connection Object

names and values of provider-specific ADODB.Property objects for an ADODB.Connection to a
Jet database in the Immediate window, do the following:

1. In the declarations section of the VBA code for the frmADO_Jet or frmADO_MSDE
form, add the following object variable declaration:
Private prpProp As ADODB.Property

Property objects exist in the Properties collection, so you don’t add the New keyword in
this case.

2. After the End With statement for cnnNwind, add the following instructions to print the
property names and values:
Debug.Print cnnNwind.Properties.Count & _

“ {SQL Server|Jet} Connection Properties”
For Each prpProp In cnnNwind.Properties

Debug.Print prpProp.Name & “ = “ & prpProp.Value
Next prpProp

3. Press Ctrl+G to open the Immediate window and delete its contents.

4. Reopen the form in Datasheet view to execute the Form_Load event handler, and return
to the VBA editor to view the result in the Immediate window (see Figure 30.13).

30

Figure 30.13
The Immediate win-
dow displays the first
19 of the 93 provider-
specific properties for
a connection to SQL
Server 2000.

5. To find a definition of a provider-specific property of Jet or SQL Server data sources,
connect to the Microsoft Web site, copy or type the name of the property in the Search
For text box, add double quotes (“) to the beginning and end of the term, and click
Search. Click the appropriate link (usually the first) to display the definition of the
property (see Figure 30.14).

6. After you’ve satisfied your curiosity about provider-specific properties and their values,
comment out or delete the added code. Sending a significant amount of data to the
Immediate window delays opening the form.

38 0789729520 CH30 8/22/03 5:08 PM Page 1275

1276 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Some of the SQL Server provider-specific properties appear in a list on the All page of the
Data Link Properties dialog for a project’s connection. To view these properties and their
values, when set, open the NorthwindCS project, choose File, Connection to open the Data
Link Properties dialog, and click the All tab (see Figure 30.15).

30

Figure 30.14
Most Jet and SQL
Server provider-spe-
cific properties have
pages in the Microsoft
Developer Network
(MSDN) library for
the Platform SDK
(psdk). Click Show
TOC to find your rela-
tive location within
the library.

N O T E
Pages that define SQL Server-specific properties specify values by reference to DBPROP-
VAL_... constants whose values aren’t included in the table. Many searches for Jet-spe-
cific Property object definitions lead to the “Appendix C: Microsoft Jet 4.0 OLE DB
Provider-Defined Property Values” page (http://msdn.microsoft.com/
library/techart/daotoadoupdate_topic15.htm), which provides a set of con-
stant values that you can add to an Access module.

T I P
The “Appendix A: DAO to ADO Quick Reference” page (http://msdn.microsoft.
com/library/techart/daotoadoupdate_topic13.htm) of the “Migrating from
DAO to ADO” white paper contains a table that translates DAO objects and properties to
ADO objects, properties, and provider-specific Jet properties. To create an easily search-
able version, copy the table to the clipboard, paste it into a Word document and save the
file in both .doc and .htm formats. Importing the .htm table to a Jet or SQL Server table
lets you view the contents in a searchable datasheet (see Figure 30.16). Contents of the
Microsoft Web site are copyrighted, so the table isn’t included in this chapter’s example
databases.

38 0789729520 CH30 8/22/03 5:08 PM Page 1276

1277Working with the ADODB.Connection Object

Transaction Isolation Levels

The ability to specify the transaction isolation level applies only when you use the
BeginTrans, CommitTrans, and RollbackTrans methods (see Table 30.6 later in this chapter)
to perform a transaction on a Connection object. If multiple database users simultaneously
execute transactions, your application should specify how it responds to other transactions
in-process. Table 30.2 lists the options for the degree of your application’s isolation from
other simultaneous transactions.

30

Figure 30.15
The All page of the
Data Link Properties
dialog for the
NorthwindCS connec-
tion to MSDE displays
a few of the 93
provider-specific
properties of the OLE
DB Provider for SQL
Server (SQLOLEDB).

Figure 30.16
This Jet table was cre-
ated by importing a
copy of the HTML
table of the “DAO to
ADO Cross
Reference” page from
the Microsoft Web
site. Property or
method names with
number suffixes, such
as DefaultType1, refer
to footnotes in the
source Web page.

38 0789729520 CH30 8/22/03 5:08 PM Page 1277

1278 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Table 30.2 Constant Enumeration for the IsolationLevel Property

IsolationLevelEnum Description

adXactCursorStability Allows reading only committed changes in other transactions
(default value).

adXactBrowse Allows reading uncommitted changes in other transactions.

adXactChaos The transaction won’t overwrite changes made to transaction(s) at a
higher isolation level.

adXactIsolated All transactions are independent of (isolated from) other transac-
tions.

adXactReadCommitted Same as adXactCursorStability.

adXactReadUncommitted Same as adXactBrowse.

adXactRepeatableRead Prohibits reading changes in other transactions.

adXactSerializable Same as adXactIsolated.

adXactUnspecified The transaction level of the provider can’t be determined.

30

N O T E
Enumeration tables in this book list the default value first, followed by the remaining
constants in alphabetical order. Where two members of Table 30.2 represent the same
isolation level, one of the members is included for backward compatibility.

The Connection.Mode Property

Unless you have a specific reason to specify a particular ADODB.Connection.Mode value, the
default adModeUnknown is adequate. The Jet OLE DB provider defaults to
adModeShareDenyNone. The Access Permissions list on the Advanced page of the Data Link
properties page for SQLOLEDB is disabled, but you can set the Mode property with code.
Table 30.3 lists all the constants for the Mode property.

Table 30.3 Constant Enumeration for the Mode Property

ConnectModeEnum Description

adModeUnknown No connection permissions have been set on the data source
(default value).

adModeRead Connect with read-only permission.

adModeReadWrite Connect with read/write permissions.

adModeRecursive If an adModeShareDeny... flag is specified, applies the mode to
child records of a chaptered (hierarchical) Recordset object.

38 0789729520 CH30 8/22/03 5:08 PM Page 1278

1279Working with the ADODB.Connection Object

adoModeRecursive Used in conjunction with the Record objects, which this chapter
doesn’t cover.

adModeShareDenyNone Don’t deny other users read or write access.

adModeShareDenyRead Deny others permission to open a read connection to the data
source.

adModeShareDenyWrite Deny others permission to open a write connection to the data
source.

adModeShareExclusive Open the data source for exclusive use.

adModeWrite Connect with write-only permission.

30

Table 30.3 Continued

ConnectModeEnum Description

T I P
You often can improve performance of client/server decision-support applications by
opening the connection as read only (adModeRead). Modifying the structure of a data-
base with SQL’s DDL usually requires exclusive access to the database
(adModeShareExclusive).

The Connection.State Property

Table 30.4 lists the constants that return the state of the Connection object. These constants
also are applicable to the State property of the Command and Recordset objects.

It’s common to open and close connections as needed to reduce the connection load on the
database. (Each open connection to a client/server database consumes a block of memory.)
In many cases, you must test whether the Connection object is open or closed before apply-
ing the Close or Open method, or changing Connection property values, which are read-only
when the connection is open.

Table 30.4 Constant Enumeration for the State Property

ObjectStateEnum Description

adStateClosed The Connection (or other object) is closed (default value).

adStateConnecting A connection to the data source is in progress.

adStateExecuting The Execute method of a Connection or Command object has been
called.

adStateFetching Rows are returning to a Recordset object.

adStateOpen The Connection (or other object) is open (active).

38 0789729520 CH30 8/22/03 5:08 PM Page 1279

1280 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Errors Collection and Error Objects
Figure 30.17 illustrates the relationship between top-level ADO components and their col-
lections. The dependent Errors collection is a property of the Connection object, and if
errors are encountered with any operation on the connection, contains one or more Error
objects. The Errors collection has one property, Count, which you test to determine whether
an error has occurred after executing a method call on Connection and Recordset objects. A
collection is required, because it’s possible for an object to generate several errors.

30

ADODB.Connection
Object

Property Object

Properties Collection

Error Object

Errors Collection

ADODB.Command
Object

Property Object

Parameter Object

Parameters Collection

ADODB.Recordset
Object

Property Object

Field Object

Fields Collection

Property Object

Properties Collection

Properties Collection

Properties Collection

Figure 30.17
The Connection,
Command, and
Recordset objects
have Properties
and Errors collec-
tions. The Command
object also has a
Parameters collec-
tion and the
Recordset object
has a Fields
Collection. The new
Record object isn’t
included in this dia-
gram.

The Errors collection has two methods, Clear and Item. The Clear method deletes all cur-
rent Error objects in the collection, resetting the value of Count to 0. The Item method,

38 0789729520 CH30 8/22/03 5:08 PM Page 1280

1281Working with the ADODB.Connection Object

which is the default method of the Errors and other collections, returns an object reference
(pointer) to an Error object. The syntax for explicit and default use of the Item method is

Set errName = cnnName.Errors.Index({strName|intIndex})
Set errName = cnnName.Errors({strName|intIndex})

The Error object has the seven read-only properties listed in Table 30.5. Error objects have
no methods or events. The InfoMessage event of the Connection object, described in the
“Connection Events” section later in this chapter, fires when an Error object is added to the
Errors collection and supplies a pointer to the newly added Error object.

Table 30.5 Property Names and Descriptions of the Error Object

Property Name Description

Description A String value containing a brief text description of the error

HelpContext A Long value specifying the error’s context ID in a Windows Help file

HelpFile A String value specifying the full path to and name of the Windows Help
file, usually for the data provider

NativeError A Long value specifying a provider-specific error code

Number A Long value specifying the number assigned to the error by the provider
or data source

Source A String value containing the name of the object that generated the error,
ADODB.ObjectName for ADO errors

SQLState A String value (SQLSTATE) containing a five-letter code specified by the
ANSI/ISO SQL-92 standard, consisting of two characters specifying
Condition, followed by three characters for Subcondition

➔ For the basics of error handling in VBA, see “Handling Runtime Errors,” p. 1176.

30

N O T E
Unfortunately, not all RDBMS vendors implement SQLSTATE in the same way. If you test
the SQLState property value, make sure to follow the vendor-specific specifications for
Condition and Subcondition values.

Listing 30.1 is an example of code to open a Connection (cnnNwind) and a Recordset
(rstCusts) with conventional error handling; rstCusts supplies the Recordset property of
the form. The “Non-existent” table name generates a “Syntax error in FROM clause” error
in the Immediate window. The Set ObjectName = Nothing statements in the error handler
recover the memory consumed by the objects.

38 0789729520 CH30 8/22/03 5:08 PM Page 1281

1282 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Listing 30.1 VBA Code That Writes Error Properties to the Immediate Window

Private Sub Form_Load
Dim cnnNwind As New ADODB.Connection
Dim rstCusts As New ADODB.Recordset

On Error GoTo CatchErrors
cnnNwind.Provider = “Microsoft.Jet.OLEDB.4.0”
cnnNwind.Open CurrentProject.Path & “\Northwind.mdb”, “Admin”
With rstCusts

Set .ActiveConnection = cnnNwind
.CursorType = adOpenKeyset
.LockType = adLockBatchOptimistic
.Open “SELECT * FROM Non-existent”

End With
Set Me.Recordset = rstCusts
Exit Sub

CatchErrors:
Dim colErrors As Errors
Dim errNwind As Error
Set colErrors = cnnNwind.Errors
For Each errNwind In colErrors

Debug.Print “Description: “ & errNwind.Description
Debug.Print “Native Error: “ & errNwind.NativeError; “”
Debug.Print “SQL State: “ & errNwind.SQLState
Debug.Print vbCrLf

Next errNwind
Set colErrors = Nothing
Set errNwind = Nothing
Set rstCusts = Nothing
Set cnnNwind = Nothing
Exit Sub

End Sub

30

N O T E
The frmErrors form of ADOTest.mdb and ADOTest.adp incorporates the preceding code.
Open the form to execute the code, change to Design view, open the VBA editor, and
press Ctrl+G to read the error message in the Immediate window.

Connection Methods
Table 30.6 lists the methods of the ADODB.Connection object. Only the Execute, Open, and
OpenSchema methods accept argument values. The OpenSchema method is of interest primar-
ily for creating database diagrams, data transformation for data warehouses and marts, and
online analytical processing (OLAP) applications.

38 0789729520 CH30 8/22/03 5:08 PM Page 1282

1283Working with the ADODB.Connection Object

Table 30.6 Methods of the ADODB.Connection Object

Method Description

BeginTrans Initiates a transaction; must be followed by CommitTrans and/or
RollbackTrans.

Close Closes the connection.

CommitTrans Commits a transaction, making changes to the data source permanent.
(Requires a prior call to the BeginTrans method.)

Execute Returns a forward-only Recordset object from a SELECT SQL statement. Also
used to execute statements that don’t return Recordset objects, such as
INSERT, UPDATE, and DELETE queries or DDL statements. You use this method
to execute T-SQL stored procedures, regardless of whether they return a
Recordset.

Open Opens a connection based on a connection string.

OpenSchema Returns a Recordset object that provides information on the structure of the
data source, called metadata.

RollbackTrans Cancels a transaction, reversing any temporary changes made to the data
source. (Requires a prior call to the BeginTrans method.)

The Connection.Open and Connection.OpenSchema Methods

You must open a connection before you can execute a statement on it. The syntax of the
Open method is

cnnName.Open [strConnect[, strUID[, strPwd, lngOptions]]]]

Alternatively, you can assign the connection string values to the Connection object’s
Provider and ConnectionString properties. The following example, similar to that for the
Recordset object examples early in the chapter, is for a connection to Northwind.mdb in the
same folder as the application .mdb:

With cnnNwind
.Provider = “Microsoft.Jet.OLEDB.4.0”
.ConnectionString = CurrentProject.Path & “\Northwind.mdb”
.Open

End With

In this case, all the information required to open a connection to Northwind.mdb is pro-
vided as property values, so the Open method needs no argument values.

If you’re creating a data dictionary or designing a generic query processor for a client/server
RDBMS, the OpenSchema method is likely to be of interest to you. Otherwise, you might
want to skip the details of the OpenSchema method, which is included here for completeness.
Schema information is called metadata, data that describes the structure of data.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1283

1284 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

The Connection.Execute Method

The syntax of the Connection.Execute method to return a reference to a forward-only
ADODB.Recordset object is

Set rstName = cnnName.Execute (strCommand, [lngRowsAffected[, lngOptions]])

Alternatively, you can use named arguments for all ADO methods. Named arguments, how-
ever, require considerably more typing than conventional comma-separated argument syn-
tax. The named argument equivalent of the preceding Set statement is

Set rstName = cnnName.Execute (Command:=strCommand, _
RowsAffected:=lngRowsAffected, Options:=lngOptions)

If strCommand doesn’t return a Recordset, the syntax is

cnnName.Execute strCommand, [lngRowsAffected[, lngOptions]]

The value of strCommand can be an SQL statement, a table name, the name of a stored pro-
cedure, or an arbitrary text string acceptable to the data provider.

30

T I P
ADOX 2.7 defines a Catalog object for Jet 4.0 databases that’s more useful for Jet data-
bases than the generic OpenSchema method, which is intended primarily for use with
client/server RDBMs. The Catalog object includes Groups, Users, Tables, Views,
and Procedures collections.

T I P
For best performance, specify a value for the lngOptions argument (see Table 30.7) so
the provider doesn’t need to interpret the statement to determine its type. The optional
lngRowsAffected argument returns the number of rows affected by an INSERT,
UPDATE, or DELETE query; these types of queries return a closed Recordset object. A
SELECT query returns 0 to lngRowsAffected and an open, forward-only Recordset
with 0 or more rows. The value of lngRowsAffected is 0 for T-SQL updates queries
and stored procedures that include the SET NOCOUNT ON statement.

Table 30.7 Constant Enumeration for the lngOptions Argument of the Execute
Method for Connection and Command Objects

CommandTypeEnum Description

adCmdUnknown The type of command isn’t specified (default). The data provider
determines the syntax of the command.

adCmdFile The command is the name of a file in a format appropriate to the object
type.

adCmdStoredProc The command is the name of a stored procedure.

adCmdTable The command is a table name, which generates an internal SELECT *
FROM TableName query.

38 0789729520 CH30 8/22/03 5:08 PM Page 1284

1285Working with the ADODB.Connection Object

adCmdTableDirect The command is a table name, which retrieves rows directly from the
table

adCmdText The command is an SQL statement.

Forward-only Recordset objects, created by what’s called a firehose cursor, provide the best
performance and minimum network traffic in a client/server environment. However, for-
ward-only Recordsets are limited to manipulation by VBA code. If you set the RecordSource
property of a form to a forward-only Recordset, controls on the form don’t display field
values.

Connection Events
Events are useful for trapping errors, eliminating the need to poll the values of properties,
such as State, and performing asynchronous database operations. To expose the
ADODB.Connection events to your application, you must use the WithEvents reserved word
(without New) to declare the ADODB.Connection object in the Declarations section of a class or
form module and then use a Set statement with New to create an instance of the object, as
shown in the following example:

Private WithEvents cnnName As ADODB.Connection

Private Sub Form_Load
Set cnnName = New ADODB.Connection
...
Code using the Connection object
...
cnnName.Close

End Sub

The preceding syntax is required for most Automation objects that source (expose) events.
Event-handling subprocedures for Automation events often are called event sinks. Source
and sink terminology derives from the early days of transistors; the source (emitter) supplies
electrons and the sink (collector) accumulates electrons.

Table 30.8 lists the events that appear in the Procedures list of the code-editing window for
the cnnName Connection object and gives a description of when the events fire.

Table 30.8 Events Fired by the ADODB.Connection Object

Event Name When Fired

BeginTransComplete After the BeginTrans method executes

CommitTransComplete After the CommitTrans method executes

ConnectComplete After a Connection to the data source succeeds

Disconnect After a Connection is closed

30

CommandTypeEnum Description

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1285

1286 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

ExecuteComplete On completion of the Connection.Execute or Command.Execute
method call

InfoMessage When an Error object is added to the ADODB.Connection.Errors
collection

RollbackTransComplete After the RollbackTrans method executes

WillConnect On calling the Connection.Open method but before the connection
is made

WillExecute On calling the Connection.Execute or Command.Execute method,
just before the command executes a connection

30

Table 30.8 Continued

Event Name When Fired

T I P
Take full advantage of ADO events in your VBA data-handling code. Relatively few devel-
opers currently use event-handling code in ordinary database front ends. ADO’s event
model will be of primary interest to developers migrating from Access 97’s RDO to ADO.
Developers of data warehousing and OLAP applications, which often involve very long-
running queries, are most likely to use events in conjunction with asynchronous query
operations.

Using the ADODB.Command Object
The primary purpose of the Command object is to execute parameterized stored procedures,
either in the form of the default temporary prepared statements or persistent, precompiled
T-SQL statements in SQL Server databases. MSDE and SQL Server create temporary pre-
pared statements that exist only for the lifetime of the current client connection.
Precompiled SQL statements are procedures stored in the database file; their more com-
mon name is stored procedure. When creating Recordset objects from ad hoc SQL state-
ments, the more efficient approach is to bypass the Command object and use the
Recordset.Open method.

Command Properties
The Command object has relatively few properties, many of which duplicate those of the
Connection object. Table 30.9 lists the names and descriptions of the Command object’s prop-
erties. Like the Connection object, the Command object has its own provider-specific
Properties collection, which you can print to the Immediate window using statements simi-
lar to those for Command objects described in the earlier “Provider-Specific Properties and
Their Values” section.

38 0789729520 CH30 8/22/03 5:08 PM Page 1286

1287Using the ADODB.Command Object

Table 30.9 Properties of the Command Object

Property Name Description

ActiveConnection A pointer to the Connection object associated with the
Command. Use Set cmmName.ActiveConnection = cnnName

for an existing open Connection. Alternatively, you can use a
valid connection string to create a new connection without
associating a named Connection object. The default value is
Null.

CommandStream A Variant read/write value that contains the input stream used
to specify the output stream.

CommandText A String read/write value that specifies an SQL statement,
table name, stored procedure name, or an arbitrary string
acceptable to the provider of the ActiveConnection. The value
of the CommandType property determines the format of the
CommandText value. The default value is an empty string, “”.
CommandText and CommandStream are mutually exclusive. You
can’t specify a CommandStream and a CommandText value for the
same Command object.

CommandTimeout A Long read/write value that determines the time in seconds
before terminating a Command.Execute call. This value over-
rides the Connection.CommandTimeout setting. The default
value is 30 seconds.

CommandType A Long read/write value that specifies how the data provider
interprets the value of the CommandText property.
(CommandType is the equivalent of the optional
lngCommandType argument of the Connection.Execute
method, described earlier in the chapter (refer to Table 30.7).
The default value is adCmdUnknown.

30

T I P
The Command object is required to take advantage of ADO 2.6+’s Stream object, which
contains data in the form of a continuous stream of binary data or text. Text streams
often contain XML documents or document fragments returned from SQL Server 2000
XML AUTO queries. The Microsoft OLE DB Provider for Internet Publishing (MSDAIPP)
enables Connection, Recordset, Record, and Stream objects to bind to a URL and
retrieve data into a Stream object. Windows XP/2000+’s Internet Information Server
(IIS) 5.0+ adds the MSDAIPP provider.

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1287

1288 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Dialect A String read/write value that accepts one of four globally
unique ID (GUID) values specifying the type of
CommandStream object. Valid settings are DBGUID_DEFAULT (the
provider decides how to handle the CommandStream value),
DBGUID_SQL (an SQL statement), DBGUID_MSSQLXML (an SQL
Server XML AUTO query), and DBGUID_XPATH (an SQL
Server XPath query). The values of these constants are defined
in the “Programming Stream Objects” section near the end of
this chapter.

Name A String read/write value specifying the name of the
command, such as cmmNwind.

NamedParameters A Boolean read/write value that, when set to True, specifies
that the names of members of the Parameters collection be
used, rather than their sequence, when passing parameter values
to and from SQL Server functions and stored procedures, or
accepting return or output values from stored procedures.

Prepared A Boolean read/write value that determines whether the data
source compiles the CommandText SQL statement as a prepared
statement (a temporary stored procedure). The prepared state-
ment exists only for the lifetime of the Command object’s
ActiveConnection. Many client/server RDBMSs, including
Microsoft SQL Server, support prepared statements. If the data
source doesn’t support prepared statements, setting Prepared to
True results in a trappable error.

Properties Same as the Properties collection of the Connection object.

State A Long read/write value specifying the status of the Command.
Refer to Table 30.4 for ObjectStateEnum constant values.

30

Table 30.9 Continued

Property Name Description

T I P
Always set the CommandType property to the appropriate adCmd... constant value. If
you accept the default adCmdUnknown value, the data provider must test the value of
CommandText to determine whether it is the name of a stored procedure, a table, or an
SQL statement before executing the query. If the targeted database contains a large num-
ber of objects, testing the CommandText value for each Command object you execute
can significantly reduce performance.

The initial execution of a prepared statement often is slower than for a conventional SQL
query because some data sources must compile, rather than interpret, the statement.
Thus, you should limit use of prepared statements to parameterized queries in which the
query is executed multiple times with differing parameter values.

38 0789729520 CH30 8/22/03 5:08 PM Page 1288

1289Using the ADODB.Command Object

Parameters Collection

To supply and accept parameter values, the Command object uses the Parameters collection,
which is similar to the DAO and ODBCDirect Parameters collections. ADODB.Parameters is
independent of its parent, ADODB.Command, but you must associate the Parameters collection
with a Command object before defining or using Parameter objects.

The Parameters collection has a read-only Long property, Count, an Item property that
returns a Parameter object, and the methods listed in Table 30.10. The syntax for the Count
and Item properties property is

lngNumParms = cmmName.Parameters.Count
prmParamName = cmmName.Parameters.Item(lngIndex)

Table 30.10 Method Names, Descriptions, and Calling Syntax for the
Parameters Collection

Method Name Description and VBA Calling Syntax

Append Appends a Parameter object created by the cmmName.CreateParameter
method, described in the “Command Methods” section, to the collection.
The calling syntax is Parameters.Append prmName.

Delete Deletes a Parameter object from the collection. The calling syntax is
cmmName.Parameters.Delete {strName|intIndex}, where strName is
the name of the Parameter or intIndex is the 0-based ordinal position
(index) of the Parameter in the collection.

Refresh Retrieves the properties of the current set of parameters for the stored proce
dure or query specified as the value of the CommandText property. The call-
ing syntax is cmmName.Parameters.Refresh. If you don’t specify your own
members of the Parameters collection with the CreateParameter method,
accessing any member of the Parameters collection automatically calls the
Refresh method. If you apply the Refresh method to a data source that
doesn’t support stored procedures, prepared statements, or parameterized
queries, the Parameters collection is empty (cmmName.Parameters.
Count = 0).

You gain a performance improvement for the initial execution of your stored procedure or
query if you use the cmmName.CreateParameter method to predefine the required Parameter
objects. The Refresh method makes a round-trip to the server to retrieve the properties of
each Parameter.

Parameter Object

One Parameter object must exist in the Parameters collection for each parameter of the
stored procedure, prepared statement, or parameterized query. Table 30.11 lists the property
names and descriptions of the Parameter object. The syntax for getting and setting
Parameter property values is

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1289

1290 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

typPropValue = cmmName.Parameters({strName|lngIndex}).PropertyName
cmmName.Parameters({strName|lngIndex}).PropertyName = typPropValue

You don’t need to use the Index property of the Parameters collection; Index is the default
property of Parameters.

Table 30.11 Property Names and Descriptions for Parameter Objects

Property Name Description

Attributes A Long read/write value representing the sum of the adParam... constants listed
in Table 30.12.

Direction A Long read/write value representing one of the adParam... constants listed in
Table 30.13.

Name A String read/write value containing the name of the Parameter object, such as
prmStartDate. The name of the Parameter object need not (and usually does
not) correspond to the name of the corresponding parameter variable of the
stored procedure. After the Parameter is appended to the Parameters collec-
tion, the Name property value is read-only.

NumericScale A Byte read/write value specifying the number of decimal places for numeric
values.

Precision A Byte read/write value specifying the total number of digits (including decimal
digits) for numeric values.

Size A Long read/write value specifying the maximum length of variable-length data
types supplied as the Value property. You must set the Size property value
before setting the Value property to variable-length data.

Type A Long read/write value representing a valid OLE DB 2+ data type, the most
common of which are listed in Table 30.14.

Value The value of the parameter having a data type corresponding to the value of the
Type property.

Table 30.12 Constant Values for the Attributes Property of the Parameter
Object

ParameterAttributesEnum Description

adParamSigned The Parameter accepts signed values (default).

adParamNullable The Parameter accepts Null values.

adParamLong The Parameter accepts long binary data.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1290

1291Using the ADODB.Command Object

Table 30.13 Constant Values for the Direction Property of the Parameter
Object

ParameterDirectionEnum Description

adParamInput Specifies an input parameter (default).

adParamOutput Specifies an output parameter.

adParamInputOutput Specifies an input/output parameter.

adParamReturnValue Specifies the return value of a stored procedure.

adParamUnknown The parameter direction is unknown.

The Type property has the largest collection of constants of any ADO enumeration; you can
review the entire list of data types by selecting the DataTypeEnum class in Object Browser.
Most of the data types aren’t available to VBA programmers, so Table 30.14 shows only the
most commonly used DataTypeEnum constants. In most cases, you only need to choose
among adChar (for String values), adInteger (for Long values), and adCurrency (for Currency
values). You use the adDate data type to pass Date/Time parameter values to Jet databases,
but not to most stored procedures. Stored procedures generally accept datetime parameter
values as the adChar data type, with a format, such as mm/dd/yyyy, acceptable to the
RDBMS.

Table 30.14 Common Constant Values for the Type Property of the Parameter
and Field Objects

DataTypeEnum Description of Data Type

adBinary Binary value.

adBoolean Boolean value.

adChar String value.

adCurrency Currency values are fixed-point numbers with four decimal digits stored
in an 8-byte, signed integer, which is scaled (divided) by 10,000.

adDate Date values are stored as a Double value, the integer part being the
number of days since December 30, 1899, and the decimal part being the
fraction of a day.

adDecimal Exact numeric value with a specified precision and scale.

adDouble Double-precision floating-point value.

adInteger 4-byte signed Long integer.

adLongVarBinary Long binary value (Parameter objects only).

adLongVarChar String value greater than 225 characters (Parameter objects only).

30

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1291

1292 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Table 30.14 Continued

DataTypeEnum Description of Data Type

adNumeric Exact numeric value with a specified precision and scale.

adSingle Single-precision floating-point value.

adSmallInt 2-byte signed Integer.

adTinyInt Byte (1-byte signed integer).

adVarBinary Binary value for Jet OLE Object and SQL Server image fields (Parameter
objects only).

adVarChar String value for Jet Memo and SQL Server text fields (Parameter
objects only).

30

N O T E
The values for the Type property in the preceding table are valid for the Type property
of the Field object, discussed later in the chapter, except for those data types in which
“Parameter objects only” appears in the Description of Data Type column. The members
of DataTypeEnum are designed to accommodate the widest possible range of desktop
and client/server RDBMSs, but the ad... constant names are closely related to those for
the field data types of Microsoft SQL Server 2000 and MSDE, which support Unicode
strings.

For a complete list with descriptions of DataTypeEnum constants, go to
http://msdn.microsoft.com/library/en-us/ado270/htm/
mdcstdatatypeenum.asp.

The Parameter object has a single method, AppendChunk, which you use to append long text
(adLongText) or long binary (adLongVarBinary) Variant data as a parameter value. The syn-
tax of the AppendChunk method call is

cmmName.Parameters({strName|lngIndex}).AppendChunk = varChunk

The adParamLong flag of the prmName.Attributes property must be set to apply the
AppendChunk method. If you call AppendChunk more than once on a single Parameter, the
second and later calls append the current value of varChunk to the parameter value.

Command Methods
Command objects have only three methods: Cancel, CreateParameter and Execute. Executing
Command.Cancel terminates an asynchronous command opened with the adAsyncConnect,
adAsyncExecute, or adAsyncFetch option.

You must declare an ADODB.Parameter object, prmName, prior to executing CreateParameter.
The syntax of the CreateParameter method call is

Set prmName = cmmName.CreateParameter [strName[, lngType[, _
lngDirection[, lngSize[, varValue]]]]]

cmmName.Parameters.Append prmName

38 0789729520 CH30 8/22/03 5:08 PM Page 1292

1293Using the ADODB.Command Object

The arguments of CreateParameter are optional only if you subsequently set the required
Parameter property values before executing the Command. For example, if you supply only the
strName argument, you must set the remaining properties, as in the following example:

Set prmName = cmmName.CreateParameter strName
cmmName.Parameters.Append prmName
With prmName

.Type = adChar

.Direction = adParamInput

.Size = Len(varValue)

.Value = varValue
End With

The syntax of the Command.Execute method is similar to that for the Connection.Execute
method except for the argument list. The following syntax is for Command objects that return
Recordset objects:

Set rstName = cmmName.Execute([lngRowsAffected[, _
avarParameters[, lngOptions]]])

For Command objects that don’t return rows, use this form:

cmmName.Execute [lngRowsAffected[, avarParameters[, lngOptions]]]

All the arguments of the Execute method are optional if you set the required Command prop-
erty values before applying the Execute method. Listing 30.2 later in this chapter gives an
example of the use of the Command.Execute method without arguments.

30

T I P
Presetting all property values of the Command object, rather than supplying argument
values to the Execute method, makes your VBA code easier for others to comprehend.

Like the Connection.Execute method, the returned value of lngRowsAffected is 0 for SELECT
and DDL queries and the number of rows modified by execution of INSERT, UPDATE, and
DELETE queries. (For SQL Server, lngRowsAffected is 0 if the SQL statement includes SET
NOCOUNT ON.) The avarParameters argument is an optional Variant array of parameter val-
ues. Using the Parameters collection is a better practice than using the avarParameters
argument because output parameters don’t return correct values to the array. For
lngOptions constant values, refer to Table 30.7.

Code to Pass Parameter Values to a Stored Procedure
Most stored procedures that return Recordset objects require input parameters to supply
values to WHERE clause criteria to limit the number of rows returned. The code of Listing
30.2 executes a simple SQL Server 2000 stored procedure with a Command object. The Sales
by Year stored procedure of the NorthwindCS project has two datetime input parameters,
@Beginning_Date and @Ending_Date, the values for which are supplied by strBegDate and
strEndDate, respectively. The stored procedure, whose SQL statement follows, returns the
ShippedDate and OrderID columns of the Orders table, the Subtotal column of the Order

38 0789729520 CH30 8/22/03 5:08 PM Page 1293

1294 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Subtotals view, and a calculated Year value. The stored procedure returns rows for values of
the OrderDate field between strBegDate and strEndDate.

ALTER PROCEDURE “Sales by Year”
@Beginning_Date datetime,
@Ending_Date datetime
AS SELECT Orders.ShippedDate, Orders.OrderID,

“Order Subtotals”.Subtotal,
DATENAME(yy,ShippedDate) AS Year

FROM Orders INNER JOIN “Order Subtotals”
ON Orders.OrderID = “Order Subtotals”.OrderID

WHERE Orders.ShippedDate Between @Beginning_Date And @Ending_Date

Listing 30.2 Code Using a Command Object to Execute a Parameterized Stored
Procedure

Option Explicit
Option Compare Database

Private cnnOrders As New ADODB.Connection
Private cmmOrders As New ADODB.Command
Private prmBegDate As New ADODB.Parameter
Private prmEndDate As New ADODB.Parameter
Private rstOrders As New ADODB.Recordset

Private Sub Form_Load()
Dim strBegDate As String
Dim strEndDate As String
Dim strFile As String

strBegDate = “1/1/1997”
strEndDate = “12/31/1997”
strFile = CurrentProject.Path & “Orders.rst”

‘Specify the OLE DB provider and open the connection
With cnnOrders

.Provider = “SQLOLEDB.1”
On Error Resume Next
.Open “Data Source=(local);” & _

“UID=sa;PWD=;Initial Catalog=NorthwindCS”
If Err.Number Then

.Open “Data Source=(local);” & _
“Integrated Security=SSPI;Initial Catalog=NorthwindCS”

End if
On Error GoTo 0

End With

With cmmOrders
‘Create and append the BeginningDate parameter
Set prmBegDate = .CreateParameter(“BegDate”, adChar, _

adParamInput, Len(strBegDate), strBegDate)
.Parameters.Append prmBegDate
‘Create and append the endingDate parameter
Set prmEndDate = .CreateParameter(“EndDate”, adChar, _

adParamInput, Len(strEndDate), strEndDate)
.Parameters.Append prmEndDate

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1294

1295Using the ADODB.Command Object

Set .ActiveConnection = cnnOrders
‘Specify a stored procedure
.CommandType = adCmdStoredProc
‘Brackets must surround stored procedure names with spaces
.CommandText = “[Sales By Year]”
‘Receive the Recordset
Set rstOrders = .Execute ‘returns a “firehose” Recordset

End With

With rstOrders
‘Save (persist) the forward-only Recordset to a file
On Error Resume Next
‘Delete the file, if it exists
Kill strFile
On Error GoTo 0
.Save strFile
.Close
.Open strFile, “Provider=MSPersist”, , , adCmdFile

End With

‘Assign rstOrders to the Recordset of the form
Set Me.Recordset = rstOrders

Me.txtShippedDate.ControlSource = “ShippedDate”
Me.txtOrderID.ControlSource = “OrderID”
Me.txtSubtotal.ControlSource = “Subtotal”
Me.txtYear.ControlSource = “Year”

End Sub

30

C A U T I O N
When used in ADO code, you must enclose names of stored procedures and views hav-
ing spaces with square brackets. Including spaces in database object names, especially in
client/server environments, isn’t a recommended practice. Microsoft developers insist on
adding spaces in names of views and stored procedures, perhaps because SQL Server
2000 supports this dubious feature. Use underscores to make object names more read-
able if necessary.

N O T E
The code of Listing 30.2 uses an ADO 2.5+ feature, persisted (saved) Recordset
objects. Stored procedures return forward-only (“firehose”) Recordset objects, which
you can’t assign to the Recordset property of a form. To create a Recordset with a
cursor acceptable to Access forms, you must persist the Recordset as a file and then
close and reopen the Recordset with the MSPersist OLE DB provider as the
ActiveConnection property value. The “Recordset Methods” section, later in the
chapter, provides the complete syntax for the Save and Open methods of the
Recordset object.

38 0789729520 CH30 8/22/03 5:08 PM Page 1295

1296 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Figure 30.18 shows the result of executing the code of Listing 30.2. The frmParams form
that contains the code is included in the ADOTest.mdb and ADOTest.adp files described
earlier in the chapter. The AddOrders.adp project, described in the “Exploring the
AddOrders.adp Sample Project” section near the end of the chapter, also includes code for
setting stored procedure parameter values.

30

Figure 30.18
This Datasheet view
of the read-only
Recordset returned by
the Sales By Year
stored procedure dis-
plays the value of
each order received
in 1997.

Understanding the ADODB.Recordset Object
Creating, viewing, and updating Recordset objects is the ultimate objective of most Access
database front ends. Opening an independent ADODB.Recordset object offers a myriad of
cursor, locking, and other options. You must explicitly open a Recordset with a scrollable
cursor if you want to use code to create the Recordset for assignment to the Form.Recordset
property. Unlike Jet and ODBCDirect Recordset objects, ADODB.Recordset objects expose a
number of events that are especially useful for validating Recordset updates.

Recordset Properties
Microsoft attempted to make ADODB.Recordset objects backward compatible with
DAO.Recordset objects to minimize the amount of code you must change to migrate existing
applications from DAO to ADO. Unfortunately, the attempt at backward compatibility for
code-intensive database applications didn’t fully succeed. You must make substantial changes
in DAO code to accommodate ADO’s updated Recordset object. Thus, most Access devel-
opers choose ADO for new Access front-end applications and stick with DAO when main-
taining existing Jet projects.

Table 30.15 lists the names and descriptions of the standard property set of
ADODB.Recordset objects. ADODB.Recordset objects have substantially fewer properties than
DAO.Recordset objects have. The standard properties of ADODB.Recordset objects are those
that are supported by the most common OLE DB data providers for relational databases.

38 0789729520 CH30 8/22/03 5:08 PM Page 1296

1297Understanding the ADODB.Recordset Object

Table 30.15 Property Names and Descriptions for ADODB.Recordset Objects

Property Name Description

AbsolutePage A Long read/write value that sets or returns the number of the page in
which the current record is located or one of the constant values of
PositionEnum (see Table 30.16). You must set the PageSize property
value before getting or setting the value of AbsolutePage.
AbsolutePage is 1 based; if the current record is in the first page,
AbsolutePage returns 1. Setting the value of AbsolutePage causes the
current record to be set to the first record of the specified page.

AbsolutePosition A Long read/write value (1 based) that sets or returns the position of
the current record. The maximum value of AbsolutePosition is the
value of the RecordCount property.

ActiveCommand A Variant read-only value specifying the name of a previously opened
Command object with which the Recordset is associated.

ActiveConnection A pointer to a previously opened Connection object with which the
Recordset is associated or a fully qualified ConnectionString value.

BOF A Boolean read-only value that, when True, indicates that the record
pointer is positioned before the first row of the Recordset and there is
no current record.

Bookmark A Variant read/write value that returns a reference to a specific record
or uses a Bookmark value to set the record pointer to a specific record.

CacheSize A Long read/write value that specifies the number of records stored in
local (cache) memory. The minimum (default) value is 1. Increasing the
value of CacheSize minimizes round trips to the server to obtain addi-
tional rows when scrolling through Recordset objects.

CursorLocation A Long read/write value that specifies the location of a scrollable cursor,
subject to the availability of the specified CursorType on the client or
server (see Table 30.17). The default is to use a cursor supplied by the
OLE DB data source (called a server-side cursor).

CursorType A Long read/write value that specifies the type of Recordset cursor
(see Table 30.18). The default is a forward-only (fire hose) cursor.

DataMember Returns a pointer to an associated Command object created by Visual
Basic’s Data Environment Designer.

DataSource Returns a pointer to an associated Connection object.

EditMode A Long read-only value that returns the status of editing of the cur-
rent record (see Table 30.19).

30

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1297

1298 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

EOF A Boolean read-only value that, when True, indicates that the record
pointer is beyond the last row of the Recordset and there is no current
record.

Fields A pointer to the Fields collection of Field objects of the Recordset.

Filter A Variant read/write value that can be a criteria string (a valid SQL
WHERE clause without the WHERE reserved word), an array of Bookmark
values specifying a particular set of records, or a constant value from
FilterGroupEnum (see Table 30.20).

Index A String read/write value that sets or returns the name of an existing
index on the base table of the Recordset. The Recordset must be
closed to set the Index value to the name of an index. The Index prop-
erty is used primarily in conjunction with the Recordset.Seek
method.

LockType A Long read/write value that specifies the record-locking method
employed when opening the Recordset (see Table 30.21). The default
is read-only, corresponding to the read-only characteristic of forward-
only cursors.

MarshalOptions A Long read/write value that specifies which set of records is returned
to the server after client-side modification. The MarshallOptions
property applies only to the lightweight ADOR.Recordset object, a
member of RDS.

MaxRecords A Long read/write value that specifies the maximum number of records
to be returned by a SELECT query or stored procedure. The default
value is 0, all records.

PageCount A Long read-only value that returns the number of pages in a
Recordset. You must set the PageSize value to cause PageCount to
return a meaningful value. If the Recordset doesn’t support the
PageCount property, the value is -1.

PageSize A Long read/write value that sets or returns the number of records in a
logical page. You use logical pages to break large Recordsets into
easily manageable chunks. PageSize isn’t related to the size of table
pages used for locking in Jet (2KB) or SQL Server (2KB in version 6.5
and earlier, 8KB in version 7+) databases.

30

Table 30.15 Continued

Property Name Description

38 0789729520 CH30 8/22/03 5:08 PM Page 1298

1299Understanding the ADODB.Recordset Object

PersistFormat A Long read/write value that sets or returns the format of Recordset
files created by calling the Save method. The two constant values of
PersistFormatEnum are adPersistADTG (the default format,
Advanced Data TableGram or ADTG) and adPersistXML, which saves
the Recordset as almost-readable XML. The XML schema, rowset, is
a variation of the XML Data Reduced (XDR) schema, a Microsoft-only
attribute-centric namespace that isn’t compatible with Access’s XSD
(XML Schema) format.

Properties A pointer to the Properties collection of provider-specific Property
values of the Recordset.

RecordCount A Long read-only value that returns the number of records in
Recordset objects with scrollable cursors if the Recordset supports
approximate positioning or Bookmarks. (See the Recordset.Supports
method later in this chapter.) If not, you must apply the MoveLast
method to obtain an accurate RecordCount value, which retrieves and
counts all records. If a forward-only Recordset has one or more
records, RecordCount returns -1 (True). An empty Recordset of any
type returns 0 (False).

Sort A String read/write value, consisting of a valid SQL ORDER BY clause
without the ORDER BY reserved words, which specifies the sort order of
the Recordset.

Source A String read/write value that can be an SQL statement, a table name,
a stored procedure name, or the name of an associated Command object.
If you supply the name of a Command object, the Source property
returns the value of the Command.CommandText property as text. Use
the lngOptions argument of the Open method to specify the type of
the value supplied to the Source property.

State A Long read/write value representing one of the constant values of
ObjectStateEnum (refer to Table 30.4).

Status A Long read-only value that indicates the status of batch operations or
other multiple-record (bulk) operations on the Recordset (see Table
30.22).

StayInSync A Boolean read/write value, which, if set to True, updates references to
child (chapter) rows when the parent row changes. StayInSync applies
only to hierarchical Recordset objects.

30

Property Name Description

38 0789729520 CH30 8/22/03 5:08 PM Page 1299

1300 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

The most obvious omission in the preceding table is the DAO.Recordset’s NoMatch property
value used to test whether applying one of the DAO.Recordset.Find... methods or the
DAO.Recordset.Seek method succeeds. The new ADODB.Recordset.Find method, listed in the
“Recordset Methods” section later in this chapter, substitutes for DAO’s FindFirst,
FindNext, FindPrevious, and FindLast methods. The Find method uses the EOF property
value for testing the existence of one or more records matching the Find criteria.

Another omission in the ADODB.Recordset object’s preceding property list is the
PercentPosition property. The workaround, however, is easy:

rstName.AbsolutePostion = Int(intPercentPosition * rstName.RecordCount / 100)

Tables 30.16 through 30.22 enumerate the valid constant values for the AbsolutePage,
CursorLocation, CursorType, EditMode, Filter, LockType, and Status properties. Default
values appear first, if defined; the list of remaining enumeration members is ordered by fre-
quency of use in Access applications.

Table 30.16 Constant Values for the AbsolutePage Property

AbsolutePageEnum Description

adPosUnknown The data provider doesn’t support pages, the Recordset is empty, or
the data provider can’t determine the page number.

adPosBOF The record pointer is positioned at the beginning of the file. (The BOF
property is True.)

adPosEOF The record pointer is positioned at the end of the file. (The EOF prop-
erty is True.)

Table 30.17 Constant Values for the CursorLocation Property

CursorLocationEnum Description

adUseClient Use cursor(s) provided by a cursor library located on the client. The
ADOR.Recordset (RDS) requires a client-side cursor.

adUseServer Use cursor(s) supplied by the data source, usually (but not necessarily)
located on a server (default value).

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1300

1301Understanding the ADODB.Recordset Object

Table 30.18 Constant Values for the CursorType Property

CursorLocationEnum Description

adOpenForwardOnly Provides only unidirectional cursor movement and a read-only
Recordset (default value).

adOpenDynamic Provides a scrollable cursor that displays all changes, including new
records, which other users make to the Recordset.

adOpenKeyset Provides a scrollable cursor that hides only records added or deleted by
other users; similar to a DAO.Recordset of the dynaset type.

adOpenStatic Provides a scrollable cursor over a static copy of the Recordset.
Similar to a DAO.Recordset of the snapshot type, but the Recordset
is updatable.

Table 30.19 Constant Values for the EditMode Property

EditModeEnum Description

adEditNone No editing operation is in progress (default value).

adEditAdd A tentative append record has been added, but not saved to the data-
base table(s).

adEditDelete The current record has been deleted.

adEditInProgress Data in the current record has been modified, but not saved to the
database table(s).

Table 30.20 Constant Values for the Filter Property

FilterGroupEnum Description

adFilterNone Removes an existing filter and exposes all records of the
Recordset (equivalent to setting the Filter property to an
empty string, the default value).

adFilterAffectedRecords View only records affected by the last execution of the
CancelBatch, Delete, Resync, or UpdateBatch method.

adFilterFetchedRecords View only records in the current cache. The number of records
is set by the CacheSize property.

adFilterConflictingRecords View only records that failed to update during the last batch
update operation.

adFilterPendingRecords View only records that have been modified but not yet processed
by the data source (for Batch Update mode only).

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1301

1302 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Table 30.21 Constant Values for the LockType Property

LockTypeEnum Description

adLockReadOnly Specifies read-only access (default value).

adLockBatchOptimistic Use Batch Update mode instead of the default Immediate Update
mode.

adLockOptimistic Use optimistic locking (lock the record or page only during the
table update process).

adLockPessimistic Use pessimistic locking (lock the record or page during editing
and the updated process).

adLockUnspecified No lock type specified. (Use this constant only for Recordset
clones.)

Table 30.22 Constant Values for the Status Property (Applies to Batch or
Bulk Recordset Operations Only)

RecordStatusEnum Description of Record Status

adRecOK Updated successfully

adRecNew Added successfully

adRecModified Modified successfully

adRecDeleted Deleted successfully

adRecUnmodified Not modified

adRecInvalid Not saved; the Bookmark property is invalid

adRecMultipleChanges Not saved; saving would affect other records

adRecPendingChanges Not saved; the record refers to a pending insert operation)

adRecCanceled Not saved; the operation was canceled

adRecCantRelease Not saved; existing record locks prevented saving

adRecConcurrencyViolation Not saved; an optimistic concurrency locking problem occurred

adRecIntegrityViolation Not saved; the operation would violate integrity constraints

adRecMaxChangesExceeded Not saved; an excessive number of pending changes exist

adRecObjectOpen Not saved; a conflict with an open storage object occurred

adRecOutOfMemory Not saved; the machine is out of memory

adRecPermissionDenied Not saved; the user doesn’t have required permissions

adRecSchemaViolation Not saved; the record structure doesn’t match the database schema

adRecDBDeleted Not saved or deleted; the record was previously deleted

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1302

1303Understanding the ADODB.Recordset Object

Fields Collection and Field Objects
Like DAO’s Fields collection, ADO’s dependent Fields collection is a property of the
Recordset object, making the columns of the Recordset accessible to VBA code and bound
controls. The Fields collection has one property, Count, and only two methods, Item and
Refresh. You can’t append new Field objects to the Fields collection, unless you’re creating
a persisted Recordset from scratch or you use ADOX’s ALTER TABLE DDL command to add
a new field.

All but one (Value) of the property values of Field objects are read-only, because the values
of the Field properties are derived from the database schema. The Value property is read-
only in forward-only Recordsets and Recordsets opened with read-only locking. Table 30.23
gives the names and descriptions of the properties of the Field object.

Table 30.23 Property Names and Descriptions of the Field Object

Field Property Description

ActualSize A Long read-only value representing the length of the Field’s value by char
acter count.

Attributes A Long read-only value that represents the sum of the constants (flags)
included in FieldAttributeEnum (see Table 30.24).

DefinedSize A Long read-only value specifying the maximum length of the Field’s value
by character count.

Name A String read-only value that returns the field (column) name.

NumericScale A Byte read-only value specifying the number of decimal places for numeric
values.

OriginalValue A Variant read-only value that represents the Value property of the field
before applying the Update method to the Recordset. (The CancelUpdate
method uses OriginalValue to replace a changed Value property.)

Precision A Byte read-only value specifying the total number of digits (including deci-
mal digits) for numeric values.

Properties A collection of provider-specific Property objects. SQL Server 2000’s
extended properties are an example Properties collection members for the
SQL Server OLE DB provider.

Status An undocumented Long read-only value.
Type A Long read-only value specifying the data type of the field. Refer to Table

30.14 for Type constant values.

UnderlyingValue A Variant read-only value representing the current value of the field in the
database table(s). You can compare the values of OriginalValue and
UnderlyingValue to determine whether a persistent change has been made
to the database, perhaps by another user.

Value A Variant read/write value of a subtype appropriate to the value of the
Type property for the field. If the Recordset isn’t updatable, the Value
property is read-only.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1303

1304 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Value is the default property of the Field object, but it’s a good programming practice to set
and return field values by explicit use of the Value property name in VBA code. In most
cases, using varName = rstName.Fields(n).Value instead of varName = rstName.Fields(n)

results in a slight performance improvement.

Table 30.24 Constant Values and Descriptions for the Attributes Property of
the Field Object

FieldAttributeEnum Description

adFldCacheDeferred The provider caches field values. Multiple reads are made on the
cached value, not the database table.

adFieldDefaultStream The field contains a stream of bytes. For example, the field might con-
tain the HTML stream from a Web page specified by a field whose
adFldIsRowURL attribute is True.

adFldFixed The field contains fixed-length data with the length determined by the
data type or field specification.

adFldIsChapter The field is a member of a chaptered recordset and contains a child
recordset of this field.

adFldIsCollection The field contains a reference to a collection of resources, rather than
a single resource.

adFldIsNullable The field accepts Null values.

adFldIsRowURL The field contains a URL for a resource such as a Web page.

adFldKeyColumn The field is the primary key field of a table.

adFldLong The field has a long binary data type, which permits the use of the
AppendChunk and GetChunk methods.

adFldMayBeNull The field can return Null values.

adFldMayDefer The field is deferrable, meaning that Values are retrieved from the
data source only when explicitly requested.

adFldNegativeScale The field contains data from a column that supports negative Scale
values.

adFldRowID The field is a row identifier (typically an identity, AutoIncrement, or
GUID data type).

adFldRowVersion The field contains a timestamp or similar value for determining the
time of the last update.

adFldUpdatable The field is read/write (updatable).

adFldUnknownUpdatable The data provider can’t determine whether the field is updatable. Your
only recourse is to attempt an update and trap the error that occurs if
the field isn’t updatable.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1304

1305Understanding the ADODB.Recordset Object

The Field object has two methods, AppendChunk and GetChunk, which are applicable only to
fields of various long binary data types, indicated by an adFldLong flag in the Attributes
property of the field. The AppendChunk method is discussed in the “Parameter Object” sec-
tion earlier in this chapter. The syntax for the AppendChunk method call, which writes
Variant data to a long binary field (fldName), is

fldName.AppendChunk varData

30
N O T E

ADO 2.x doesn’t support the Access OLE Object field data type, which adds a proprietary
object wrapper around the data (such as a bitmap) to identify the OLE server that cre-
ated the object (for bitmaps, usually Windows Paint).

The GetChunk method enables you to read long binary data in blocks of the size you specify.
Following is the syntax for the GetChunk method:

varName = fldName.GetChunk(lngSize)

A common practice is to place AppendChunk and GetChunk method calls within Do
Until...Loop structures to break up the long binary value into chunks of manageable size.
In the case of the GetChunk method, if you set the value of lngSize to less than the value of
the field’s ActualSize property, the first GetChunk call retrieves lngSize bytes. Successive
GetChunk calls retrieve lngSize bytes beginning at the next byte after the end of the preced-
ing call. If the remaining number of bytes is less than lngSize, only the remaining bytes
appear in varName. After you retrieve the field’s bytes, or if the field is empty, GetChunk
returns Null.

N O T E
Changing the position of the record pointer of the field’s Recordset resets GetChunk’s
byte pointer. Accessing a different Recordset and moving its record pointer doesn’t
affect the other Recordset’s GetChunk record pointer.

Recordset Methods
ADODB.Recordset methods are an amalgam of the DAO.Recordset and rdoResultset methods.
Table 30.25 gives the names, descriptions, and calling syntax for Recordset methods. OLE
DB data providers aren’t required to support all the methods of the Recordset object. If you
don’t know which methods the data provider supports, you must use the Supports method
with the appropriate constant from CursorOptionEnum, listed in Table 30.28 later in this
chapter, to test for support of methods that are provider dependent. Provider-dependent
methods are indicated by an asterisk after the method name in Table 30.25.

38 0789729520 CH30 8/22/03 5:08 PM Page 1305

1306 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Table 30.25 Names and Descriptions of Methods of the Recordset Object

Method Name Description and Calling Syntax

AddNew Adds a new record to an updatable Recordset. The calling
syntax is rstName.AddNew [{varField|avarFields},
{varValue|avarValues}], where varField is a single field
name, avarFields is an array of field names, varValue is
single value, and avarValues is an array of values for the
columns defined by the members of avarFields. Calling the
Update method adds the new record to the database table(s). If
you add a new record to a Recordset having a primary-key
field that isn’t the first field of the Recordset, you must supply
the name and value of the primary-key field in the AddNew
statement.

Cancel Cancels execution of an asynchronous query and terminates
creation of multiple Recordsets from stored procedures or
compound SQL statements. The calling syntax is
rstName.Cancel.

CancelBatch Cancels a pending batch update operation on a Recordset
whose LockEdits property value is adBatchOptimistic. The
calling syntax is rstName.CancelBatch
[lngAffectRecords]. The optional lngAffectRecords argu-
ment is one of the constants of AffectEnum (see Table 30.26).

CancelUpdate Cancels a pending change to the table(s) underlying the
Recordset before applying the Update method. The calling
syntax is rstName.CancelUpdate.

Clone Creates a duplicate Recordset object with an independent
record pointer. The calling syntax is Set rstDupe =

rstName.Clone().

Close Closes a Recordset object, allowing reuse of the Recordset
variable by setting new Recordset property values and apply-
ing the Open method. The calling syntax is rstName.Close.

CompareBookmarks Returns the relative value of two bookmarks in the same
Recordset or a Recordset and its clone. The calling syntax is
lngResult = rstName.CompareBookmarks(varBookmark1,

varBookmark2).

Delete Deletes the current record immediately from the Recordset
and the underlying tables, unless the LockEdits property value
of the Recordset is set to adLockBatchOptimistic. The call-
ing syntax is rstName.Delete.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1306

1307Understanding the ADODB.Recordset Object

Find Searches for a record based on criteria you supply. The calling
syntax is rstName.Find strCriteria[, lngSkipRecords,
lngSearchDirection[, lngStart]], where strCriteria is
a valid SQL WHERE clause without the WHERE keyword, the
optional lngSkipRecords value is the number of records to
skip before applying Find, lngSearchDirection specifies the
search direction (adSearchForward, the default, or
adSearchBackward), and the optional varStart value speci-
fies the Bookmark value of the record at which to start the
search or one of the members of BookmarkEnum (see Table
30.27). If Find succeeds, the EOF property returns False;
otherwise, EOF returns True.

GetRows Returns a two-dimensional (row, column) Variant array of
records. The calling syntax is avarName =

rstName.GetRows(lngRows[, varStart[,

{strFieldName|lngFieldIndex|avarFieldNames|

avarFieldIndexes}]]), where lngRows is the number of
rows to return, varStart specifies a Bookmark value of the
record at which to start the search or one of the members of
BookmarkEnum (see Table 30.27), and the third optional argu-
ment is the name or index of a single column, or a Variant
array of column names or indexes. If you don’t specify a value
of the third argument, GetRows returns all columns of the
Recordset.

GetString By default, returns a tab-separated String value for a specified
number of records, with records separated by return codes.
The calling syntax is strClip = rstName.GetString

(lngRows[, strColumnDelimiter[, strRowDelimiter,

[strNullExpr]]]), where lngRows is the number of rows to
return, strColumnDelimiter is an optional column-separation
character (vbTab is the default), strRowDelimiter is an
optional row-separation character (vbCR is the default), and
strNullExpr is an optional value to substitute when enco
untering Null values (an empty string, “”, is the default value).

Move Moves the record pointer from the current record. The calling
syntax is rstName.Move lngNumRecords[, varStart],
where lngNumRecords is the number of records by which to
move the record pointer and the optional varStart value spec-
ifies the Bookmark of the record at which to start the search or
one of the members of BookmarkEnum (see Table 30.27).

30

continues

Method Name Description and Calling Syntax

38 0789729520 CH30 8/22/03 5:08 PM Page 1307

1308 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

MoveFirst Moves the record pointer to the first record. The calling syntax
is rstName.MoveFirst.

MoveLast Moves the record pointer to the last record. The calling syntax
is rstName.MoveLast.

MoveNext Moves the record pointer to the next record. The calling syntax
is rstName.MoveNext. The MoveNext method is the only
Move... method that you can apply to a forward-only
Recordset.

MovePrevious Moves the record pointer to the previous record. The calling
syntax is rstName.MovePrevious.

NextRecordset Returns additional Recordset objects generated by a com
pound Jet SQL statement, such as SELECT * FROM Orders;
SELECT * FROM Customers, or a T-SQL stored procedure
that returns multiple Recordsets. The calling syntax is
rstNext = rstName.NextRecordset

[(lngRecordsAffected)], where lngRecordsAffected is an
optional return value that specifies the number of records in
rstNext, if SET NOCOUNT ON isn’t included in the SQL
statement or stored procedure code. If no additional
Recordset exists, rstNext is set to Nothing.

Open Opens a Recordset on an active Command or Connection
object. The calling syntax is rstName.Open [varSource[,
varActiveConnection[, lngCursorType[,

lngLockType[, lngOptions]]]]]. The Open arguments are
optional if you set the equivalent Recordset property values,
which is the practice recommended in this book. For valid val-
ues, refer to the Source, ActiveConnection, CursorType, and
LockType properties in Table 30.15 earlier in this chapter and
to the CommandTypeEnum values listed in Table 30.7 earlier in
this chapter for the lngOptions property.

Requery Refreshes the content of the Recordset from the underlying
table(s), the equivalent of calling Close and then Open.
Requery is a very resource-intensive operation. The calling
syntax is rstName.Requery.

Resync Refreshes a specified subset of the Recordset from the under-
lying table(s). The calling syntax is rstName.Resync
[lngAffectRecords], where lngAffectRecords is one of the
members of AffectEnum (see Table 30.26). If you select
adAffectCurrent or adAffectGroup as the value of
lngAffectRecords, you reduce the required resources in com-
parison with adAffectAll (the default).

30

Table 30.25 Continued

Method Name Description and Calling Syntax

38 0789729520 CH30 8/22/03 5:08 PM Page 1308

1309Understanding the ADODB.Recordset Object

Save Creates a file containing a persistent copy of the Recordset.
The calling syntax is rstName.Save strFileName, where
strFileName is the path to and the name of the file. You open
a Recordset from a file with a rstName.Open strFileName,
Options:=adCmdFile statement. This book uses .rst as the
extension for persistent Recordsets in the ADTG format and
.xml for XML formats.

Seek Performs a high-speed search on the field whose index name is
specified as the value of the Recordset.Index property. The
calling syntax is rstName.Seek avarKeyValues[,
lngOption], where avarKeyValues is a Variant array of
search values for each field of the index. The optional
lngOption argument is one of the members of the SeekEnum
(see Table 30.29) constant enumeration; the default value is
adSeekFirstEQ (find the first equal value). You can’t specify
adUseClient as the CursorLocation property value when
applying the Seek method; Seek requires a server-side
(adUseServer) cursor.

Supports Returns True if the Recordset’s data provider supports a
specified cursor-dependent method; otherwise, Supports
returns False. The calling syntax is blnSupported =

rstName.Supports(lngCursorOptions). Table 30.28 lists
the names and descriptions of the CursorOptionEnum values.

Update Applies the result of modifications to the Recordset to the
underlying table(s) of the data source. For batch operations,
Update applies the modifications only to the local (cached)
Recordset. The calling syntax is rstName.Update.

UpdateBatch Applies the result of all modifications made to a batch-type
Recordset (LockType property set to adBatchOptimistic,
CursorType property set to adOpenKeyset or adOpenStatic,
and CursorLocation property set to adUseClient) to the
underlying table(s) of the data source. The calling syntax is
rstName.UpdateBatch [lngAffectRecords], where
lngAffectRecords is a member of AffectEnum (see
Table 30.26).

The “Code to Pass Parameter Values to a Stored Procedure” section, earlier in the chapter,
illustrates use of the Save and Open methods with persisted Recordsets of the ADTG type.

30

Method Name Description and Calling Syntax

38 0789729520 CH30 8/22/03 5:08 PM Page 1309

1310 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Table 30.26 Names and Descriptions of Constants for the CancelBatch
Method’s lngAffectRecords Argument

AffectEnum Description

adAffectAll Include all records in the Recordset object, including any records
hidden by the Filter property value (the default)

adAffectAllChapters Include all chapter fields in a chaptered recordset, including any
records hidden by the Filter property value.

adAffectCurrent Include only the current record

adAffectGroup Include only those records that meet the current Filter criteria

Table 30.27 Names and Descriptions of Bookmark Constants for the Find
Method’s varStart Argument

BookmarkEnum Description

adBookmarkCurrent Start at the current record (the default value)

adBookmarkFirst Start at the first record

adBookmarkLast Start at the last record

Table 30.28 Names and Descriptions of Constants for the Supports Method

CursorOptionEnum Permits

adAddNew Applying the AddNew method

adApproxPosition Setting and getting AbsolutePosition and AbsolutePage property
values

adBookmark Setting and getting the Bookmark property value

adDelete Applying the Delete method

30

T I P
The Edit method of DAO.Recordset objects is missing from Table 30.25. To change
the value of one or more fields of the current record of an ADODB.Recordset object,
execute rstName.Fields(n).Value = varValue for each field whose value you
want to change and then execute rstName.Update. ADODB.Recordset objects don’t
support the Edit method.

To improve the performance of Recordset objects opened on Connection objects, set
the required property values of the Recordset object and then use a named argument
to specify the intOptions value of the Open method, as in rstName.Open
Options:=adCmdText. This syntax is easier to read and less prone to error than the
alternative, rstName.Open , , , , adCmdText.

38 0789729520 CH30 8/22/03 5:08 PM Page 1310

1311Understanding the ADODB.Recordset Object

adFind Applying the Find method

adHoldRecords Retrieving additional records or changing the retrieval record pointer
position without committing pending changes

adIndex Use of the Index property

adMovePrevious Applying the GetRows, Move, MoveFirst, and MovePrevious methods
(indicates a bidirectional scrollable cursor)

adNotify Use of Recordset events

adResync Applying the Resync method

adSeek Applying the Seek method

adUpdate Applying the Update method

adUpdateBatch Applying the UpdateBatch and CancelBatch methods

Table 30.29 lists the SeekEnum constants for the optional lngSeekOptions argument of the
Seek method. Unfortunately, the syntax for the ADODB.Recordset.Seek method isn’t even
close to being backward-compatible with the DAO.Recordset.Seek method.

Table 30.29 Names and Descriptions of Constants for the Seek Method’s
lngSeekOptions Argument

SeekEnum Finds

adSeekFirstEQ The first equal value (the default value)

adSeekAfterEQ The first equal value or the next record after which a match would have
occurred (logical equivalent of >=)

adSeekAfter The first record after which an equal match would have occurred (logical
equivalent of >)

adSeekBeforeEQ The first equal value or the previous record before which a match would
have occurred (logical equivalent of <=)

adSeekBefore The first record previous to where an equal match would have occurred
(logical equivalent of <)

adSeekLastEQ The last record having an equal value

30

CursorOptionEnum Permits

T I P
Use the Find method for searches unless you are working with a table having an
extremely large number of records. Find takes advantage of index(es), if present, but
Find’s search algorithm isn’t quite as efficient as Seek’s. You’ll probably encounter the
threshold for considering substituting Seek for Find in the range of 500,000 to
1,000,000 records. Tests on a large version the Oakmont.mdb Jet and Oakmont SQL
Server Students table (50,000) rows show imperceptible performance differences
between Seek and Find operations.

38 0789729520 CH30 8/22/03 5:08 PM Page 1311

1312 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Recordset Events
Recordset events are new to users of DAO. Table 30.30 names the Recordset events and
gives the condition under which the event fires.

Table 30.30 Names and Occurrence of Recordset Events

Event Name When Fired

EndOfRecordset When the record pointer attempts to move beyond the last record

FetchComplete When all records have been retrieved asynchronously

FetchProgress During asynchronous retrieval, periodically reports the number of
records returned

FieldChangeComplete After a change to the value of a field

MoveComplete After execution of the Move or Move... methods

RecordChangeComplete After an edit to a single record

RecordsetChangeComplete After cached changes are applied to the underlying tables

WillChangeField Before a change to a field value

WillChangeRecord Before an edit to a single record

WillChangeRecordset Before cached changes are applied to the underlying tables

WillMove Before execution of the Move or Move... methods

Taking Advantage of Disconnected Recordsets
If you set the value of the Recordset’s LockEdits property to adBatchOptimistic and the
CursorType property to adKeyset or adStatic, you create a batch-type Recordset object that
you can disconnect from the data source. You can then edit the Recordset object offline with
a client-side cursor, reopen the Connection object, and send the updates to the data source
over the new connection. A Recordset without an active connection is called a disconnected
Recordset. The advantage of a disconnected Recordset is that you eliminate the need for an
active server connection during extended editing sessions. Batch updates solve the Access
front-end scalability issues mentioned at the beginning of the chapter.

30

N O T E
Unfortunately, you can’t assign a disconnected Recordset to the Recordset property of
a form or subform and take advantage of batch updates. Bound forms require an active
connection to the database. You must write VBA code to handle updating, adding, and
deleting records.

To learn more about updatability issues with disconnected Recordsets and the Client
Data Manager (CDM) added by Access 2002, open Microsoft Knowledge Base article
Q301987, “Using ADO in Microsoft Access 2002” and download the white paper.

38 0789729520 CH30 8/22/03 5:08 PM Page 1312

1313Taking Advantage of Disconnected Recordsets

Batch updates with disconnected Recordsets are stateless and resemble the interaction of
Web browsers and servers when displaying conventional Web pages. The term stateless
means that the current interaction between the client application and the server isn’t depen-
dent on the outcome of previous interactions. For example, you can make local updates to a
disconnected Recordset, go to lunch, make additional updates as needed, and then send the
entire batch to the server. A properly designed batch update application lets you close the
application or shut down the client computer, and then resume the updating process when
you restart the application.

30
T I P

Disconnected Recordsets minimize the effect of MSDE “five-user tuning” on the perfor-
mance of Access online transaction processing (OLTP) applications. Batch updates exe-
cute very quickly, so most user connections remain open for a second or less.

Transaction processing with stored procedures or T-SQL statements that incorporate
BEGIN TRANS...COMMIT TRANS...ROLLBACK TRANS statements are the better
choice for OLTP operations on multiple tables, such as order-entry systems. It’s possible
for batch updates to succeed partially, which might result in a missing line item. You can
use the Errors collection to analyze and potentially correct such problems, but doing
so requires high-level VBA coding skills.

The Basics of Disconnecting and Reconnecting Recordsets
Following is an example of VBA pseudocode that creates and operates on a disconnected
Recordset and then uses the UpdateBatch method to persist the changes in the data source:

Set rstName = New ADODB.Recordset
With rstName

.ActiveConnection = cnnName

.CursorType = adKeyset

.CursorLocation = adUseClient

.LockEdits = adBatchOptimistic

.Open “SELECT * FROM TableName WHERE Criteria”, Options:=adCmdText
Set .ActiveConnection = Nothing ‘Disconnect the Recordset
‘Close the connection to the server, if desired
‘Edit the field values of multiple records here
‘You also can append and delete records
‘Reopen the server connection, if closed
Set .ActiveConnection = cnnName
.UpdateBatch ‘Send all changes to the data source

End With
rstName.Close

If calling the UpdateBatch method causes conflicts with other users’ modifications to the
underlying table(s), you receive a trappable error and the Errors collection contains Error
object(s) that identify the conflict(s). Unlike transactions, which require all attempted modi-
fications to succeed or all to be rolled back, Recordset batch modifications that don’t cause
conflicts are made permanent in the data source.

38 0789729520 CH30 8/22/03 5:08 PM Page 1313

1314 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

An Example Batch Update Application
The frmBatchUpdate form of the ADOTest.mdb application and ADOTest.adp project
demonstrates the effectiveness of batch updates with MSDE. For example, you can edit data,
persist the edited disconnected Recordset as an ADTG or XML file, close the form (or
Access), and then reopen the form and submit the changes to the server. A subform,
sbfBatchUpdate, which is similar to the frmADO_Jet and frmADO_MSDE forms you cre-
ated early in the chapter, displays the original and updated data. The subform is read-only;
VBA code simulates user updates to the data. The example also demonstrates how to use
VBA code to display the XML representation of a Recordset object in Internet Explorer
(IE) 5+.

To give frmBatchUpdate a trial run, do this:

1. If you haven’t installed the entire set of sample applications, copy ADOTest.mdb,
ADOTest.adp, or both from the \Seua11\Chaptr30 folder of the accompanying CD-
ROM to a …\Program Files\Seua11\Chapter30 folder.

2. Verify that your local MSDE instance is running, and then open frmBatchUpdate,
which connects to the NorthwindCS database, opens a Recordset, saves it in a local file
named Batch.rst, and closes the connection. The subform displays the first 10 rows of
seven fields of the Customers table by opening a Recordset from the local Batch.rst file
(see Figure 30.19).

30

Figure 30.19
Opening
frmBatchUpdate dis-
plays a disconnected
Recordset opened on
the Customers table
for batch updates and
saves the initial
Recordset as
Batch.xml.

3. Click the Update Disconnected Recordset button to replace NULL values in the Region
cells with 123. The button caption changes to Restore Disconnected Recordset and the
Send Batch Updates to Server button is enabled. The new values don’t appear in the
datasheet because the UpdateBatch method hasn’t been applied at this point.

4. Click the Send Batch Updates to Server button to reopen the connection, execute the
UpdateBatch method, and close the connection. The datasheet displays the updated
Recordset returned by the server (see Figure 30.20).

38 0789729520 CH30 8/22/03 5:08 PM Page 1314

1315Taking Advantage of Disconnected Recordsets

5. Click Restore Disconnected Recordset and Send Batch Updates to Server to return the
Customers table to its original state. (Clicking Update and Restore Disconnected
Recordset toggles the Region values in the local Recordset.)

6. Click the Open Batch.xml in IE 5+ button to launch IE with file://path/Batch.xml as
the URL. IE 5+’s XML parser formats the attribute-centric document and color-codes
XML tags (see Figure 30.21).

30

Figure 30.20
Clicking Send Batch
Updates to Server
updates the server
table and then
retrieves the updated
Recordset by opening
and then closing
another connection.

Figure 30.21
IE 5+’s XML parser
formats the XML doc-
ument saved as
Batch.xml. This exam-
ple shows the
Schema elements col-
lapsed and the data
elements expanded.
(The Region
attribute of the row
element is in the
updated state.)

If you update the local copy of the Recordset and don’t send the changes to the server, you
receive a message reminding you that changes are pending when you close the form. If you
don’t save the changes to the server and reopen the form, a message asks if you want to
send the changes to the server before proceeding.

38 0789729520 CH30 8/22/03 5:08 PM Page 1315

1316 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

VBA Code in the frmBatchUpdate Class Module
The VBA code of the event-handling and supporting subprocedures of the frmBatchUpdate
Class Module illustrates how to program many of the ADO properties and methods
described in the preceding sections devoted to the Connection and Recordset objects. The
Command object isn’t used in this example, because the form opens Recordset objects on a
temporary Connection object or from a copy of a Recordset persisted to a local file in
ADTG format.

The Form_Load Event Handler

Listing 30.3 shows the VBA code for the Form_Load event handler. The first operation uses
the VBA Dir function to determine whether the Batch.rst file exists; if so, response to the
message specified by the MsgBox function determines whether existing updates are processed
by the cmdUpdate_Click subprocedure or discarded.

Listing 30.3 Code for Saving the Initial Recordset Object

Private Sub Form_Load()
‘Open the connection, and create and display the Recordset

blnUseJet = False ‘Set True to use the Jet provider

‘Test for presence of the saved Recordset
If Dir(CurrentProject.Path & “\Batch.rst”) <> “” Then

‘File is present so updates are pending
If MsgBox(“Do you want to send your changes to the server?”, vbQuestion +

vbYesNo, _
“Updates Are Pending for the Server”) = vbYes Then

Call cmdUpdate_Click
Exit Sub

Else
Kill CurrentProject.Path & “\Batch.rst”

End If
End If

‘Create a Form object variable for the subform
Set sbfBatch = Forms!frmBatchUpdate!sbfBatchUpdate.Form
Me.cmdBulkUpdate.SetFocus
Me.cmdUpdate.Enabled = False
Me.cmdOpenXML.Enabled = False

‘Open a connection to the server
Call OpenConnection

‘Create a Recordset for Batch Updates
strSQL = “SELECT CustomerID, CompanyName, Address, City, Region, PostalCode,

Country FROM Customers”
With rstBatch

Set .ActiveConnection = cnnBatch
.CursorType = adOpenStatic
.CursorLocation = adUseClient

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1316

1317Taking Advantage of Disconnected Recordsets

.LockType = adLockBatchOptimistic

.Open strSQL

‘Save the Recordset to a file
.Save CurrentProject.Path & “\Batch.rst”, adPersistADTG

‘Save an XML version
On Error Resume Next
Kill CurrentProject.Path & “\Batch.xml”
.Save CurrentProject.Path & “\Batch.xml”, adPersistXML
On Error GoTo 0
Me.cmdOpenXML.Enabled = True

‘Disconnect the Recordset
Set .ActiveConnection = Nothing

If .Fields(“Region”).Value = “123” Then
Me.cmdBulkUpdate.Caption = “Restore Disconnected Recordset”

Else
Me.cmdBulkUpdate.Caption = “Update Disconnected Recordset”

End If
End With

‘Destroy the connection
cnnBatch.Close
Set cnnBatch = Nothing

‘Open a local Recordset from the saved file
Call OpenRstFromFile

‘Delete the source of the file Recordset
Kill CurrentProject.Path & “\Batch.rst”
Me.Caption = “Datasheet Contains Values from Server (Disconnected Recordset)”

End Sub

30

N O T E
In a real-world application, you probably wouldn’t delete a saved Recordset that contains
updates. Instead of deleting the file with a Kill instruction, you would open the saved
Recordset to permit continued editing.

The Set sbfBatch = Forms!frmBatchUpdate!sbfBatchUpdate.Form statement creates a Form
object for the subform, so you can set property values for the sbfBatchUpdate subform by
code of the frmBatchUpdate form in the OpenRstFromFile subprocedure. Combining the
VBA code for forms and subforms in a single Class Module makes the code more readable.

➔ For more information on the strange syntax to point to another Form or Report object, see “Referring
to Access Objects with VBA,” p. 1218.

After disabling the Send Updates to Server and Open Batch.xml in IE 5+ buttons, the code
calls the OpenConnection subprocedure to create a temporary Connection object, creates a

38 0789729520 CH30 8/22/03 5:08 PM Page 1317

1318 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Recordset object with batch-optimistic locking, saves the Recordset to Batch.rst and
Batch.xml, and disconnects the Recordset from the connection with the Set
.ActiveConnection = Nothing statement. Finally the code closes the Connection, releases it
from memory, calls the OpenRstFromFile subprocedure, and deletes the Batch.rst file.

The OpenConnection Subprocedure

The OpenConnection subprocedure (see Listing 30.4) accommodates a Jet database by setting
the value of blnUseJet to True in the Form_Load event handler. By default, the code attempts
to open the connection with integrated Windows security. If this attempt fails, the code
attempts to use SQL Server security with the sa logon ID (UID=sa) and no password. (If
you’ve secured the sa account, add the password for the account to PWD=.)

Listing 30.4 Connecting to a Jet Database or Use SQL Server or Integrated
Windows Security to Connect to the Local MSDE Instance

Private Sub OpenConnection()
‘Specify the OLE DB provider and open the connection
With cnnBatch

If blnUseJet Then
.Provider = “Microsoft.Jet.OLEDB.4.0”
.Open CurrentProject.Path & “\Northwind.mdb”, “Admin”

Else
On Error Resume Next
‘Try integrated Windows security first
.Open “Provider=SQLOLEDB.1;Data Source=(local);” & _

“Integrated Security=SSPI;Initial Catalog=NorthwindCS”
If Err.Number Then

Err.Clear
On Error GoTo 0
‘Now try SQL Server security
.Open “Provider=SQLOLEDB.1;Data Source=(local);” & _

“UID=sa;PWD=;Initial Catalog=NorthwindCS”
End If

End If
End With

End Sub

The OpenRstFromFile Subprocedure

The code for the OpenRstFromFile Subprocedure derives from that behind the frmADO_Jet
and frmADO_MSDE forms. The primary difference in the code of Listing 30.5 is that the
Recordset.Open method specifies the temporary Batch.rst file as its data source.

Listing 30.5 Opening a Saved Recordset Object and Assigning It to the Recordset
Property of the Subform

Private Sub OpenRstFromFile()
If rstBatch.State = adStateOpen Then

rstBatch.Close
End If

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1318

1319Taking Advantage of Disconnected Recordsets

rstBatch.Open CurrentProject.Path & “\Batch.rst”, , adOpenStatic, _
adLockBatchOptimistic, adCmdFile

With sbfBatch
‘Assign rstBatch as the Recordset for the subform
Set .Recordset = rstBatch
.UniqueTable = “Customers”
.txtCustomerID.ControlSource = “CustomerID”
.txtCompanyName.ControlSource = “CompanyName”
.txtAddress.ControlSource = “Address”
.txtCity.ControlSource = “City”
.txtRegion.ControlSource = “Region”
.txtPostalCode.ControlSource = “PostalCode”
.txtCountry.ControlSource = “Country”

End With
End Sub

The cmdBulkUpdate Event Handler

Clicking the Update Disconnected Recordset/Restore Disconnected Recordset button exe-
cutes the cmdBulkUpdate event-handler (see Listing 30.6). The Set sbfBatch.Recordset =

Nothing statement prevents flashing of the subform during edits performed in the Do While
Not .EOF...Loop process. This loop traverses the Recordset and changes the values of
unused Region cells from NULL to 123 or vice-versa. After the loop completes, the form
hooks back up to the edited Recordset. The call to the Form_Load subprocedure displays the
updated Customers table fields in the subform.

30

N O T E
Real-world applications use an unbound form and unbound text boxes to edit the
Recordset. The form requires command buttons to navigate the Recordset by invoking
Move... methods. The event handler for an Update Record button makes the changes
to the field values of the local Recordset.

Listing 30.6 The cmdBulkUpdate Event Handler Uses a Loop to Emulate Multiple
Recordset Editing Operations

Private Sub cmdBulkUpdate_Click()
Dim blnUpdate As Boolean
Dim strCapSuffix As String

‘Housekeeping for form and button captions
strCapSuffix = “ While Disconnected (Updates Are Pending)”
If Me.cmdBulkUpdate.Caption = “Update Disconnected Recordset” Then

Me.Caption = “Changing Empty Region Values to 123” & strCapSuffix
blnUpdate = True
Me.cmdBulkUpdate.Caption = “Restore Disconnected Recordset”

Else
Me.Caption = “Returning Region Values from 123 to Null” & strCapSuffix
blnUpdate = False
Me.cmdBulkUpdate.Caption = “Update Disconnected Recordset”

End If

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1319

1320 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

‘If you don’t execute the following instruction, the subform
‘datasheet can cause flutter vertigo during updates
Set sbfBatch.Recordset = Nothing

‘Set the Field variable (improves performance)
Set fldRegion = rstBatch.Fields(“Region”)

‘Now update or restore Region values
With rstBatch

.MoveFirst
Do While Not .EOF

If blnUpdate Then
If IsNull(fldRegion.Value) Then

fldRegion.Value = “123”
End If

Else
‘Restore the original Null value
If fldRegion.Value = “123” Then

fldRegion.Value = Null
End If

End If
.MoveNext

Loop
On Error Resume Next
‘For safety
Kill CurrentProject.Path & “\Batch.rst”
On Error GoTo 0
.Save CurrentProject.Path & “\Batch.rst”, adPersistADTG

End With

‘Now restore the subform’s Recordset property
Set sbfBatch.Recordset = rstBatch
Me.cmdUpdate.Enabled = True

End Sub

30

T I P
Create a Field variable (fldRegion), instead of using a
Recordset.Fields(strFieldName).Value = varValue instruction. Specifying a
Field variable improves performance, especially if the Recordset has many fields.

The cmdUpdate Event Handler

Clicking the Send Updates to Server button executes the cmdUpdate event handler and the
UpdateBatch method to update the server tables (see Listing 30.7). Before executing the
update, Debug.Print statements record the OriginalValue and Value property values for the
first row in the Immediate window.

38 0789729520 CH30 8/22/03 5:08 PM Page 1320

1321Taking Advantage of Disconnected Recordsets

Listing 30.7 Updating the Server Tables Reconnects the Recordset to the Data
Source, Executes the UpdateBatch method, and Closes the Connection

Private Sub cmdUpdate_Click()
‘Recreate the connection
Call OpenConnection

‘Reopen the Recordset from the file
With rstBatch

If .State = adStateOpen Then
.Close

End If
Set rstBatch.ActiveConnection = cnnBatch
.Open CurrentProject.Path & “\Batch.rst”, , adOpenStatic, _
adLockBatchOptimistic, adCmdFile

‘To demonstrate these two properties
Debug.Print “Original Value: “ & .Fields(“Region”).OriginalValue
Debug.Print “Updated Value: “ & .Fields(“Region”).Value

‘Send the updates to the server
.UpdateBatch
.Close

End With

‘Clean up
Set rstBatch = Nothing
cnnBatch.Close
Set cnnBatch = Nothing
Kill CurrentProject.Path & “\Batch.rst”

‘Load the subform datasheet from the server
Call Form_Load
Me.Caption = “Updated Values Retrieved from Server”

End Sub

The cmdOpenXML Event Handler

The cmdOpenXML event handler for the Open Batch.rst in IE 5+ button demonstrates use of
the VBA Shell function to launch another application (see Listing 30.8). The argument of
the Shell function is identical to the instruction you type in the Run dialog’s Open text box
to launch an application manually. If successful, the Shell function returns the task ID value
of the running application; if not, the function returns an empty Variant value.

Listing 30.8 Opening a Persistent Recordset Object Saved as an XML File in IE 5+

Private Sub cmdOpenXML_Click()
‘Launch IE 5+ with Batch.xml as the source URL
Dim strURL As String
Dim strShell As String
Dim varShell As Variant

30

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1321

1322 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

strURL = “file://” & CurrentProject.Path & “\Batch.xml”
strShell = “\Program Files\Internet Explorer\Iexplore.exe “ & strURL
varShell = Shell(strShell, vbNormalFocus)
If IsEmpty(varShell) Then

MsgBox “Can’t open Internet Explorer”, vbOKOnly + vbExclamation, _
“Unable to Display Batch.xml”

End If
End Sub

The Form_Unload Event Handler

Variables in form Class Modules disappear (go out of scope) when the form closes.
However, it’s a good programming practice to “clean up” all object variables before closing a
form. In addition to cleanup operations, this event handler (see Listing 30.9) detects the
presence of unsent updates in Batch.rst. Setting the intCancel argument to True cancels the
unload operation.

Listing 30.9 The Form_Unload Event Handler Checks for Unsent Updates and, if
the User Clicks Yes in the Message Box, Closes Open Objects and Sets Them to
Nothing

Private Sub Form_Unload(intCancel As Integer)
‘Check for pending updates before unloading
If Dir(CurrentProject.Path & “\Batch.rst”) <> “” Then

If MsgBox(“Are you sure you want to quit now?”, vbQuestion + vbYesNo, _
“Updates Are Pending for the Server”) = vbNo Then

intCancel = True
Exit Sub

End If
End If
‘Clean up objects
If rstBatch.State = adStateOpen Then

rstBatch.Close
End If
Set rstBatch = Nothing
If cnnBatch.State = adStateOpen Then

cnnBatch.Close
End If
Set cnnBatch = Nothing
‘If you don’t execute the following instruction,
‘you receive an error when opening the form
Set sbfBatch.Recordset = Nothing

End Sub

30

Listing 30.8 Continued

38 0789729520 CH30 8/22/03 5:08 PM Page 1322

1323Programming Stream Objects

Programming Stream Objects
For Access programmers, Stream objects primarily are of interest for returning attribute-
centric XML data documents from SQL Server 2000. The T-SQL statement for the query
must terminate with the FOR XML AUTO or FOR XML RAW option. Both options return a well-
formed XML document using Microsoft’s xml-sql schema. Unlike the .xml files saved from
Recordset objects with the adPersistXML option, the stream doesn’t include the schema ele-
ments. Like the rowset schema, xml-sql isn’t compatible with Access 2003’s native XML
schema. SQL Server HTTP template queries, which can return HTML tables to Web
browsers from FOR XML AUTO queries, require the xml-sql schema.

➔ For an example of using the FOR XML AUTO option in SQL Server HTTP template queries, see “Using
SQL Server 2000’s HTTP Query Features,” p. 976.

Executing FOR XML AUTO Queries with the frmStream Form
The frmStream form has unbound text boxes to display a default T-SQL FOR XML AUTO
query, the modifications to the query syntax needed to return a well-formed XML docu-
ment, and the XML document resulting from execution of the Command object that specifies
MSSQLXML as the query dialect. To test the frmStream form, do this:

1. Open ADOTest.mdb’s or ADOTest.adp’s frmStream form. The default query is a simple
T-SQL query, similar to that used by the frmBatchUpdate form, with the FOR XML AUTO
modifier added. SQL Server’s default rowset document style is attribute-centric. Mark
the Element-Centric check box to add ELEMENTS to the modifier and return an element-
centric document.

2. Click the Execute FOR XML Query button to display the XML query wrapper
required by SQL Server 2000 to return a well-formed XML data document. A Command
object returns a Stream object that contains an XML data document, which opens in
the bottom text box. The Stream object is saved to Stream.xml in the folder that con-
tains ADOTest.mdb.

3. Click the Open Stream.xml in IE 5+ button to launch IE with file://path/Stream.xml
as the URL. IE’s XML parser makes it easier to read the XML document.

30

T I P
Unlike Visual Basic forms, values you assign with VBA code to Access Form, Report, and
Control objects persist after closing the object and exiting the Access application. In
some cases, reopening the object results in an error message. Executing the Set
sbfBatch.Recordset = Nothing instruction before closing the form and its sub-
form prevents the possibility of an error on reopening the form, because the source
value of the Recordset property isn’t present before the Form_Load event handler
executes.

38 0789729520 CH30 8/22/03 5:08 PM Page 1323

1324 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

4. Mark the Multi-Table Query check box to replace the simple query with a T-SQL
query against the Customers and Orders tables. Making a change to the T-SQL FOR
XML Query text box clears the other two text boxes.

5. Click Execute FOR XML Query again to display the resulting XML document (see
Figure 30.22).

30

Figure 30.22
The multi-table query
with the FOR XML
AUTO, ELEMENTS
option returns ele-
ments from the
Orders table nested
within Customers
table elements.

6. Click Open Stream.xml in IE 5+. The nesting of Orders elements within the
Customers is more evident in IE’s presentation (see Figure 30.23).

Figure 30.23
IE 5+’s XML parser
formats the document
to make nesting of
table elements readily
apparent.

38 0789729520 CH30 8/22/03 5:08 PM Page 1324

1325Programming Stream Objects

7. To see the effect of the FOR XML RAW modifier, replace AUTO with RAW in the T-SQL
query, execute the command, and open the query in IE 5+ (see Figure 30.24).

30

Figure 30.24
The FOR XML RAW
modifier combines all
attribute values for a
query row in a single,
generic row element.

Exploring the VBA Code to Create a Stream Object
Most of the event handlers and subprocedures used by the VBA code for the frmStream
form derive from those of the frmBatch form described earlier. The two important code
elements behind frmStream are the Declarations section, which declares the ADODB.Command
and ADODB.Stream object variables, and constants for the currently allowable GUID
values of the Command.Dialect property, and the cmdExecute_Click event handler (see
Listing 30.10).

Listing 30.10 Creating a Stream Object from an SQL Server FOR XML AUTO Query
and Displaying the Stream in a Text Box

Option Compare Database
Option Explicit

N O T E
Changing the ORDER BY clause from Customers.CustomerID to Orders.OrderID
generates a very different XML document strcture. In this case, most Customers elements
contain a single nested order; only consecutive orders for a particular customer appear
as multiple nested order elements. (See the entry for ROMEY as the first example.)

continues

38 0789729520 CH30 8/22/03 5:08 PM Page 1325

1326 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

Private cnnStream As New ADODB.Connection
Private cmmStream As New ADODB.Command
Private stmQuery As ADODB.Stream

‘GUID constants for Stream.Dialect
Private Const DBGUID_DEFAULT As String = _

“{C8B521FB-5CF3-11CE-ADE5-00AA0044773D}”
Private Const DBGUID_SQL As String = _

“{C8B522D7-5CF3-11CE-ADE5-00AA0044773D}”
Private Const DBGUID_MSSQLXML As String = _

“{5D531CB2-E6Ed-11D2-B252-00C04F681B71}”
Private Const DBGUID_XPATH As String = _

“{ec2a4293-e898-11d2-b1b7-00c04f680c56}”

‘Constants for XML query prefix and suffix
Private Const strXML_SQLPrefix As String = _

“<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & vbCrLf & “<sql:query>”
Private Const strXML_SQLSuffix As String = “</sql:query>” & vbCrLf & “</ROOT>”

Private Sub cmdExecute_Click()
‘Use Command and Stream objects to return XML as text
Dim strXMLQuery As String
Dim strXML As String
Dim lngCtr As Long

On Error GoTo errGetXMLStream
strXMLQuery = Me.txtQuery.Value

‘Add the XML namespace and <ROOT...> and </ROOT> tags to the query text
strXMLQuery = strXML_SQLPrefix & vbCrLf & strXMLQuery & vbCrLf &

strXML_SQLSuffix

‘Display the CommandText property value
Me.txtXMLQuery.Value = strXMLQuery
DoEvents

‘Create a new Stream for each execution
Set stmQuery = New ADODB.Stream
stmQuery.Open

‘Set and execute the command to return a stream
With cmmStream

Set .ActiveConnection = cnnStream
‘Query text is used here, not an input stream
.CommandText = strXMLQuery
‘Specify an SQL Server FOR XML query
.Dialect = DBGUID_MSSQLXML
‘Specify the stream to receive the output
.Properties(“Output Stream”) = stmQuery
.Execute , , adExecuteStream

End With

‘Reset the stream position
stmQuery.Position = 0

30

Listing 30.10 Continued

38 0789729520 CH30 8/22/03 5:08 PM Page 1326

1327Exploring the AddOrder.adp Sample Project

‘Save the stream to a local file
stmQuery.SaveToFile CurrentProject.Path & “\Stream.xml”, adSaveCreateOverWrite
cmdOpenXML.Enabled = True

‘Extract the text from the stream
strXML = stmQuery.ReadText

‘Make the XML more readable with line feeds, if it isn’t too long
If Len(strXML) < 15000 Then

Me.txtXML.Value = Replace(strXML, “><”, “>” & vbCrLf & “<”)
Else

If Len(strXML) > 32000 Then
‘Limit the display to capacity of text box
Me.txtXML.Value = Left$(strXML, 30000)

Else
Me.txtXML.Value = strXML

End If
End If
Exit Sub

errGetXMLStream:
MsgBox Err.Description, vbOKOnly + vbExclamation, “Error Returning XML Stream”
Exit Sub

End Sub

This form only uses the DBGUID_MSSQLXML constant; the other three GUID constants are for
reference only. ADO 2.6+’s type library doesn’t have a “DialectGUIDEnum” or similar enu-
meration, so you must declare at least the DBGUID_MSSQLXML constant to request SQL Server
to return XML data documents in the xml-sql dialect. Comments in the body of the code of
the cmdExecute_Click event handler describe the purpose of each Stream-related statement.

Exploring the AddOrder.adp Sample Project
The AddOrders.adp sample project in the \Seua11\Chaptr30 folder of the accompanying
CD-ROM demonstrates practical application for this chapter’s example of the programming
of ADO objects, methods, and properties. The primary purpose of the AddOrders project is
to add a large number of records to the Orders and Order Details tables of a copy of the
NorthwindCS SQL Server database. Working with test tables having a large number of
rows lets you debug online transaction processing (OLTP) applications with real-world data.
The code uses random record numbers to specify the CustomerID for each added order and
the ProductID for order line items.

The AddOrders project also lets you compare the performance difference between sending
SQL statements to the server and using stored procedures to add, edit, and delete Orders
and Order Details records. Code in the frmAddNorthwindOrders Class Module creates the
required stored procedures.

30

38 0789729520 CH30 8/22/03 5:08 PM Page 1327

1328 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

To give the AddOrders.adp project a test drive, do the following:

1. Open NorthwindCS.adp, choose Tools, Database Tools, Transfer Database and create a
copy of NorthwindCS as NorthwindSQL or any other name you prefer in your (local)
SQL Server instance.

2. Open AddOrders.adp, choose File, Connection, and specify the server, authentication
method, and name of the database copy. When you add a connection to
AddOrders.adp, you have the option of using the project’s connection or specifying a
connection to another server or database.

3. Click Connect and click Yes when the message box asks if you want to use the current
connection to the new database. If you specified SQL Server security, type your login
ID and password in the two text boxes. You receive the message about the OrderID
field’s Identity attribute shown in Figure 30.25.

30

Figure 30.25
Opening
NorthwindCS or a
copy of NorthwindCS
displays the warning
message shown here.

N O T E
The Identity attribute must be removed from the Orders table to permit deleting
added records and then adding new records with numbers that are consective with the
orginal OrderID numbers (10248–11077).

4. Acknowledge the message, open the Orders table in Design view, and select the
OrderID column. In the Columns property page, select Identity and change the value
from Yes to No (see Figure 30.26). Close the table and save the changes.

38 0789729520 CH30 8/22/03 5:08 PM Page 1328

1329Exploring the AddOrder.adp Sample Project

5. In the form, click the Clear Report Text button, click Connect to open the connection
to the database, and click the Create Stored Procs button to add three stored proce-
dures to the database. Adding the procedures enables the three Use Stored Procs check
boxes.

6. Change the Orders to Add, Items/Order, and Orders/Day values, if you want, and click
Add New Orders. The number of Orders and Order Details records added and the
time required for addition appears in the text box.

7. Mark the Use Stored Procs check box under the Add New Orders button to compare
the speed of order addition with a stored procedure. Depending on your hardware con-
figuration, you might gain about a 10% performance improvement by using a stored
procedure instead of sending INSERT statements to the database (see Figure 30.27).

30

Figure 30.26
Set the Identity
attribute of the
OrderID field of the
Orders table to No in
the daVinci table
designer.

T I P
You also can change the design in SQL Server Enterprise Manager, but using Access’s
Table Design view is easier.

Figure 30.27
Adding, editing, or
delecting records
adds the number of
records affected and
timing data to the
text box.

38 0789729520 CH30 8/22/03 5:08 PM Page 1329

1330 Chapter 30 Understanding Universal Data Access, OLE DB, and ADO

8. Repeat steps 6 and 7, but click the Edit Added Orders button to change the Quantity
values of all Order Details records you’ve added.

9. Click the Delete Added Orders button to restore the tables to their original number of
records. A message box lets you choose between bulk and individual order deletion.

N O T E
The code in the form’s Class Module originated in a Visual Basic 6.0 program for testing
SQL Server 7.0 and 2000 OLTP performance in a variety of server hardware configura-
tions. Only a few code changes were necessary to the Visual Basic 6.0 code that was
copied to the Access form.

Troubleshooting
Spaces in ADO Object Names

When I attempt to open a Command object on the views, functions, or stored procedures of
NorthwindCS, I receive a “Syntax error or access violation” message.

SQL Server 7.0+ (unfortunately) supports spaces in object names, such as views and stored
procedures. However, SQL Server wants these names enclosed within double quotes.
Sending double quotes in an object name string is a pain in VBA, but surrounding the
object name with square brackets also solves the problem. For example,
cnnName.CommandText = “Sales By Year” fails but cnnName.CommandText = “[Sales By

Year]” works. Using square brackets for otherwise-illegal object identifiers is the better
programming practice.

In the Real World—Why Learn ADO
Programming?

As observed in Chapter 4, “Exploring Relational Database Theory and Practice,”
“Everything has to be somewhere” is a popular corollary of the Law of Conservation of
Matter. So just about everything you need to know about ADO 2.x and OLE DB is concen-
trated in this chapter. The problem with this “laundry list” approach to describing a set of
data-related objects is that readers are likely to doze off in mid-chapter. If you’ve gotten this
far (and have at least scanned the intervening code and tables), you probably surmised that
ADO is more than just a replacement for DAO—it’s a relatively new and expansive
approach to database connectivity.

The most important reason to become an accomplished ADO programmer is to create
Web-based database applications. Microsoft designed OLE DB and ADO expressly for
HTML- and XML-based applications, such as DAP—the subject of the three chapters of
Part VI, “Publishing Data to Intranets and the Internet.” You can use VBScript or JScript
(Microsoft’s variant of ECMAScript) to open and manipulate ADO Connection, Command,

38 0789729520 CH30 8/22/03 5:08 PM Page 1330

1331In the Real World—Why Learn ADO Programming?

and Recordset objects on Web pages. With DAO, you’re stuck with conventional Access
applications that require users to have a copy of Office 2003 or you to supply runtime ver-
sions of your Access 2003 applications.

Another incentive for becoming ADO-proficient is migrating from Jet 4.0 to ADP and SQL
Server back ends. When SQL Server marketing honchos say that SQL Server is Microsoft’s
“strategic database direction,” believe them. Jet still isn’t dead, but the handwriting is on the
wall; ultimately SQL Server will replace Jet in all but the most trivial database applications.
The ADO 2.7 documentation on MSDN states that “Microsoft has deprecated the
Microsoft Jet Engine, and plans no new releases or service packs for this component.” SQL
Server 2000 Standard Edition and MSDE 2000 dominate the “sweet spot” of the
client/server RDBMS market—small- to mid-size firms—plus division-level intranets of the
Fortune 1000. SQL Server Enterprise and DataCenter editions are making inroads on
Oracle’s and IBM’s share of the enterprise RDBMS market.

N O T E
Microsoft’s intention might have been to release no new service packs (SPs) for Jet 4.0,
but Access 2003 required a new Jet 4.0 SP7 to support macro security and “sandbox”
mode.

Microsoft released .NET Framework 1.0 and Visual Studio .NET on February 13, 2002.
ADO.NET now is Microsoft’s strategic data access approach. Word and Excel are the only
members of Office 2003 to integrate Visual Basic .NET, C#, J#, and other .NET Common
Language Runtime-compliant programming languages as alternatives to VBA. As men-
tioned in earlier chapters, moving from VBA to object-oriented programming with Visual
Basic .NET is challenging for most Office developers and overwhelming for Access power
users. It’s a good bet that VBA will dominate Office-related programming for at least the
next five years.

.NET Framework 1.0 and 1.1 include managed (native) .NET data providers only for SQL
Server and Oracle 7.3x databases, and managed wrappers for OLE DB and ODBC. (The
Oracle provider offers “limited support for Oracle 8x.”) IBM offers a .NET managed
provider for DB2. Until other RDBMS vendors—such as MySQL AB and Sybase—write
native .NET providers for their databases, Visual Studio .NET programmers must rely on
OLE DB, ADO and .NET’s COM interoperability (COM interop) layer to connect to
other popular RDBMSs. Thus, OLE DB and ADO are likely to remain in widespread use
through at least the first decade of the twentieth century.

The ultimate answer to “Why learn ADO programming?”, however, is “Microsoft wants
YOU to use ADO until you move to .NET.” Like the proverbial one-ton gorilla, Microsoft
usually gets what it wants, but it will take more than chest-thumping and bellowing to con-
vince today’s VBA programmers to take on the challenge of Visual Basic .NET and
ADO.NET.

38 0789729520 CH30 8/22/03 5:08 PM Page 1331

