
9
DYNAMIC DNS

With the appearance of dynamically allocated addresses in DHCP and dial-
up protocols such as PPP, DNS has had some catching up to do. In April
1997 RFC 2136 was published, specifying a mechanism for dynamic updates
of DNS, known as DNS-UPDATE. However, before getting into that I need
to introduce some new terms.

Of RRsets
An RRset is the set of RRs associated with a name. In any zone there is at
least one name which has several records associated with it. This is an
extract from the penguin.bv zone as shown in Chapter 2, “DNS in Practice”:

@ 3600 SOA ns.penguin.bv. hostmaster.penguin.bv. (
2000042924 ; serial
86400 ; refresh, 24h
7200 ; retry, 2h
3600000 ; expire, 1000h
172800 ; minimum, 2 days
)
NS ns
NS ns.herring.bv.
MX 10 mail
MX 20 mail.herring.bv.

...
@ A 192.168.55.3
@ A 192.168.55.10
...

12 0789722739 CH09 10/10/00 6:45 PM Page 163

Chapter 9 Dynamic DNS

Associated with the name penguin.bv are one SOA record, two NS records, two MX records,
and two A records. This makes one RRset. In RFC 2181, which updates RFC 1035, it is speci-
fied that all records in an RRset must have the same TTL. This RFC is listed as elective and
this restriction is, in fact, not currently implemented in BIND 8. But acting like it is imple-
mented in the case of dynamic zones might be a good idea, because in a dynamic zone the TTL
of the records becomes very important. There is no mechanism to update cached RRs. They
must be expired from the cache before any new value is requested from the zone servers.

Of Masters and Slaves
In the context of updates, what server to update becomes important, because there will be a
need to know what server is the primary master. The primary master is named in the SOA
record’s first field. This field must not be used for the zone name. It must name the zone mas-
ter server. Even if the server is otherwise unlisted, it must be named in the SOA record.

A slave server is a server that has a master. A master server is a server that acts as a master
for a slave. The primary master is the zone origin server—it has no masters.

RFC 2136 specifies that, if a slave server receives an update request, the request shall be
accepted and forwarded toward the primary master server. A slave server will not know who is
authorized to update zones and so cannot check the authorization. It must store the update
request and forward it. If the primary master is unavailable, it should forward it to any other
master it knows. This allows the request to percolate through layers of protection that might
be present between the zone updater and the primary master. That’s the theory anyway. As of
this writing (May 2000), BIND 8 does not implement this and the primary master must be
present for an update to take hold. Even if you configure a slave to accept update requests and
update the zone, the update will not find its way back to the primary master. Then, the next
time a zone transfer from the primary master takes place, the update will be overwritten. So,
the primary master must be available to the zone updater. This will be fixed in a future ver-
sion of BIND.

Accepting and Doing Updates
The DNS Server
By default BIND DNS servers do not accept update requests. You must configure each zone on
the server to accept updates from the appropriate clients. Those who are allowed to update
zones can be defined in two ways. The easiest is to accept all update requests from a given
host. This is not very secure and should only be contemplated within a firewall-protected net-
work. Consider that it is relatively easy to spoof IP source addresses, and that anyone able to
present the correct source address will be able to demolish the whole dynamic zone. Do not
underestimate how simple this is; variations of spoofing have been used in a variety of attacks
all over the Internet. So beware.

164

12 0789722739 CH09 10/10/00 6:45 PM Page 164

165Accepting and Doing Updates

TSIG
Using TSIG updates is just a little bit harder than IP authentication and it is a lot more
secure. TSIG is short for transaction signature and is a cryptographical signature that the
server can check. If the signature is correct, the server knows that the update either came
from the authorized client or from someone who has stolen the secret signing key. TSIG uses a
mechanism called HMAC-MD5 to authenticate the sender and message content of the updates.
HMAC is a mechanism for message authentication to be used in combination with a crypto-
graphic hash routine, MD5 in this case. HMAC is described in RFC 2104; MD5 is described in
RFC 1321. HMAC-MD5 is also specified for use in IP-SEC, and in RFC 2403 (a IP-SEC RFC)
we find this nice summation:

“HMAC is a secret key authentication algorithm. Data integrity and data origin authentication as provided by HMAC are dependent
upon the scope of the distribution of the secret key. If only the source and destination know the HMAC key, this provides both
data origin authentication and data integrity for packets sent between the two parties; if the HMAC is correct, this proves that it
must have been added by the source.”

HMAC-MD5, then, is a secret key, shared secret, or symmetric cryptography. This is different
from public key cryptography, which is the kind of cryptography used for email. It is vital that
the shared secret remains secret. If anyone manages to steal the key, they can trivially mas-
querade as you; then they don’t even have to spoof their IP address. I’m not a cryptography
expert and will not go farther into how this works, but see Handbook of Applied Cryptography
or Applied Cryptography for more information on the subject of cryptography. TSIG is cur-
rently described in an Internet draft only; it is available at http://www.ietf.org/
internet-drafts/draft-ietf-dnsext-tsig-00.txt. TSIG is based on HMAC-MD5.

These are also the properties we want for use with dynamic DNS.

The Dynamic Zone
An important thing to note is that a zone maintained dynamically cannot be maintained any
other way. The primary master will maintain the zonefile automatically and BIND expects to
be the sole updater of the file. Any effort to edit it manually will result in mayhem and confu-
sion. Although, this does not stop you from maintaining the zone wholly with the dynamic
DNS tools, and indeed you can do that.

But, due to this restriction and because they want to keep using the tools they know to main-
tain their normal zones, many sites set up separate zones for dynamic DNS.

The Penguin company has hired 16 new employees and wants to maintain their workstations
in a dynamic zone. The company adds dyn.penguin.bv. This must be a separate zone, dele-
gated in the normal way with NS records in the parent zone. In the penguin.bv zone, this is
added to delegate the zone to the named servers:

dyn NS ns
dyn NS ns.herring.bv.

12 0789722739 CH09 10/10/00 6:45 PM Page 165

Chapter 9 Dynamic DNS

In named.conf dyn.penguin.bv is added in the normal way, less one detail—the allow-
update ACL:

zone “dyn.penguin.bv” {
type master;
file “pz/dyn.penguin.bv”;
allow-update {

192.168.55.2;
};

};

This zone specifies which hosts are allowed to update the zone. In this case it is the name-
server’s own IP address. It will also act as a DHCP server so all updates will come from itself.
To use TSIG authentication of updates, a key pair must first be generated:

dnskeygen -H 512 -h -n ns.penguin.bv.
Generating 512 bit HMAC-MD5 Key for ns.penguin.bv.

Generated 512 bit Key for ns.penguin.bv. id=0 alg=157 flags=513

Two files were created: Kns.penguin.bv.+157+00000.key and Kns.penguin.bv.+157+00000.private.
They both contain the same secret key, but in different formats. The .key file is in DNS zone
file format. The key must be stolen for the thief to be able to sign as you would and thus be
indistinguishable from you for the DNS server. Keep your key on a secure machine, and as
with sensitive passwords, change it now and then—especially when key staff leaves you or
whenever you have security incidents. Keeping your keys secure is not a matter to be taken
lightly.

The public key must be entered in the named.conf file, or in a file it includes, and the file con-
taining it must of course be read restricted. The audience able to read it should be miniscule.

key ns.penguin.bv. {
algorithm hmac-md5;
secret “XBzxlscP7rw3vfqF/yONoGNDQKMKgAcndBhKednuwlgqMc2rTVO

jdGv4VqGyhj5uqW/uJlciyn/M045VFonxtQ==”;
}

The key has been broken to fit in the book. In the file there should be no line break. The zone
must be configured to allow for the holder of the key to change it:

zone “dyn.penguin.bv” {
type master;
file “pz/dyn.penguin.bv”;
allow-update {

key ns.penguin.bv.;
};

};

You can, of course, list several authorized keys and IP-numbers. I will get back to how the
client uses the key in a second.

166

12 0789722739 CH09 10/10/00 6:45 PM Page 166

167Accepting and Doing Updates

The next task is to seed the dynamic zone—to provide an initial zone file. It should include all
the usual records for a zone, perhaps excepting any actual host records. You can add those
later. Here then, is a seed file:

$TTL 1m
;
@ 1m SOA ns.penguin.bv. hostmaster.penguin.bv. (

1 ; serial
5m ; refresh
2m ; retry
6h ; expire
1m ; minimum
)

1m NS ns.penguin.bv.
1m NS ns.herring.bv.

Which values to use in the SOA record is an interesting question. The answer depends on how
often your zone will actually change and how important it is for the change to be known imme-
diately. In some settings the zone might be managed as a dynamic zone, but, in fact, the con-
tents will be highly static. Hosts will keep their IP addresses for a long time, and if it does
change it is no catastrophe if the change is not known at once. This is true for many office set-
tings. In other settings hosts will change IP numbers fairly often, perhaps disappear, and
when they reappear the new IP number should be known ASAP. This could be the case for a
dial-up setting. Of course, whether a host changes an IP number often in a dial-up setting
might be an administrative decision as well, and it might prove better not to change IP num-
bers often.

The SOA shown previously is suited for a highly dynamic zone, where hosts change IP num-
bers often—potentially several times a day. In the opposite case, the SOA values used for the
main penguin zone in Chapter 2 are more appropriate. The thinking behind these values is
that the serial number will be automatically maintained by the nameserver. It does not keep it
in the yyyymmddnn format and giving the impression that it does by seeding the zone with a
serial number in that format is liable to cause confusion.

The refresh interval is short. Normally the NOTIFY protocol discussed in Chapter 2 ensures
that the update propagates promptly to all slave servers, but the UDP packed bearing the
NOTIFY can get lost occasionally. In that case a five-minute refresh interval might not be too
onerous to wait out. If the refresh fails, the transfer will be repeated every retry interval—
every 2 minutes here. A shorter interval might be used if failures need to be corrected more
quickly. This depends on your environment and requirements.

An interesting problem arises if the zone transfer fails repeatedly. How long is it before the
zone expires? In a highly dynamic zone, the data will quickly become stale. Having the slave
servers fail rather than serve stale data might be preferable, and possibly set off more alarms
as well, which could help the situation to be resolved more quickly. Do not keep a zone

12 0789722739 CH09 10/10/00 6:45 PM Page 167

Chapter 9 Dynamic DNS

immediately under a TLD on such a short leash. The TLD administrators can suspend your
domain if it tends to be unavailable. For a highly dynamic zone, six hours might be too much.

The one minute TTL was chosen because that way caches will expire the cached data quickly
and rerequest the data, which might have changed, often. This helps ensure that new data
becomes known quickly. It is important that the minimum TTL be one minute as well because
it controls negative caching of the zone. Very few zones will be this dynamic. For most of them
much higher intervals are appropriate.

There is also a scaling problem here. BIND will only do whole zone transfers. If your zone is
big and changes often, the load on the DNS hosts and the network can grow into a nuisance or
even become intolerable. Incremental zone transfers will fix this, but this is not yet available
as of June 2000. The problem will be aggravated by having many slaves for the zone. But I do
mean big—say, in the order of several thousand hosts.

Note that BIND does some sanity checks on the SOA values: It wants the refresh interval to
be at least two times longer than the retry interval, and the expire interval to be at least one
week. If these checks are violated, warning messages will be printed in the logs. The messages
can be irritating, but if you choose to set the values contrary to the sanity checks it’s okay,
because you know what you’re doing, right? The expire value shown earlier provokes this
warning:

pz/dyn.penguin.bv: WARNING SOA expire value is less than 7 days (21600)

Having edited named.conf and seeded the zone, the nameserver can be “ndc restart”ed, and
the zone populated with data. Remember to look in the logs for error and warning messages.

The Client
The DNS update client can either be a DHCP server or a machine that gets a dynamic address
assigned to it by some mechanism, such as PPP or DHCP. Which model to use is an adminis-
trative policy decision, to which I will return later.

The nsupdate command-line tool is for making updates to dynamic zones. It can be used by
hand or scripted. As a standard UNIX tool, it will read commands from stdin, print messages
to stdout, and send errors to stderr.

With this tool you can edit zones, unconditionally or conditionally. The point of conditional
edits is to enforce administrative policies. If a DHCP server knows that it should never enter
new names into the zone, it might supply the condition that the name already exists before
doing any updates. On the other hand, if the DHCP server knows that it should never over-
write a name that is already present in the zone, it might submit that as a condition for the
update. All updates are atomic: The conditions and updates are submitted as one request,
which is either acted upon or rejected because of failed prerequisites.

168

12 0789722739 CH09 10/10/00 6:45 PM Page 168

169Accepting and Doing Updates

Update Prerequisites
There might be no prerequisites, but if there are, these are available:

� The name does not exist within the zone; no record of any type matches the name.
Syntax: prereq nxdomain domain-name

� The RRset exists; at least one record exists for the name. Syntax: prereq yxdomain
domain-name

� Specified RR exists for the name, no matter what value. Syntax: prereq nxrset
domain-name [class] RR-type

� The specified RR exists with the specified value. Syntax: prereq yxrrset domain-name
[class] RR-type RR-data

Update Actions
The only possible actions are deleting and adding records:

update delete domain-name [class] [RR-type [RR-data...]]

The delete operation may remove all records in an RRset, all records of the specified type, or
all records with the specified type and value:

update add domain-name ttl# [class] RR-type RR-data

The add operation requires a nonzero TTL value. The syntax beyond the operation keywords is
identical to what you find in a zone file. As in zone files the class is optional, and the class IN
is the default.

The specified updates are aggregated into one DNS update request, and it is only performed if
all the given prerequisites are met. The update is atomic with regard to other possible update
requesters as well, so the operation should always work as expected. One request might only
test prerequisites and perform edits of one and the same zone. When performing updates in
dyn.penguin.bv, only names within that zone can be tested by the prerequisites.

Some checks are performed on the update data. For example you are not allowed to add a
CNAME record to a name that already has records, and likewise, you’re not allowed to add
anything to a domain name that already has a CNAME record.

Using nsupdate
Knowing all this should allow us to operate nsupdate safely. I’m going to sign the update
requests using the key generated earlier in this chapter. This command assumes I left the

12 0789722739 CH09 10/10/00 6:45 PM Page 169

Chapter 9 Dynamic DNS

keys in /etc. The part after the colon (:) specifies the name of the key, not the name of the key
file:

nsupdate -k /etc:ns.penguin.bv.
> update add magellan.dyn.penguin.bv 1h A 192.168.55.200
> (blank line)

Upon getting the empty line, nsupdate sends an update request to the primary master server.
The primary master server will check whether the client is allowed to perform the specified
edits and, if so, check the prerequisites. Then, if they are met, it performs the updates all at
once. You can now exit nsupdate, press Ctrl+D. Note that pressing Ctrl+D without entering
the empty line first will abort the operation. It will not be submitted to the server. You can
now test whether the update had any effect:

dig @ns.penguin.bv. magellan.dyn.penguin.bv. ANY +pfmin
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62041
;; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUERY SECTION:
;; magellan.dyn.penguin.bv, type = ANY, class = IN

;; ANSWER SECTION:
magellan.dyn.penguin.bv. 1H IN A 192.168.55.200

The A record I submitted with nsupdate is in place, so it worked. If you’re not using TSIG, but
rather IP number authentication, the –k option should not be used. Now the next job is getting
the change to the slave servers.

nsupdate is not very good about displaying errors unless you specify the -d (debug) switch. But
keeping an eye on the standard messages log file on the server will let you know whether the
update was rejected due to authentication problems:

unapproved update from [192.168.55.2].2391 for dyn.penguin.bv

The contents in the zone log and ixfr files will tell you what updates arrive and are approved.
This is the content of the dyn.penguin.bv.ixfr file after adding the record shown previously:

;BIND LOG V8
[DYNAMIC_UPDATE] id 27514 from [192.168.55.2].2390 at 958316354

(named pid 3814):
zone: origin dyn.penguin.bv class IN serial 9
update: {add} magellan.dyn.penguin.bv. 60 IN A 192.168.55.200

Similar information can be found in the zone log file. If you look at the zone file right after the
update, it will (probably) not have been updated with the new information. Rewriting large
zone files whenever they are updated is resource consuming. Instead the ixfr and log files are
appended with the changes done, and upon occasion BIND will roll all the changes into the

170

12 0789722739 CH09 10/10/00 6:45 PM Page 170

171A One Host Zone

zone file and rewrite it. The log and ixfr files are transaction logs as used in databases and
modern file systems. When an update is applied to the zone, BIND writes the updates to the
logs at once. That way, if the server or BIND crashes, BIND can do a roll forward of the trans-
action log when BIND restarts and no changes will be lost.

The SOA serial number is updated automatically when an update is received. You do not need
to update the SOA record.

Slave Server Issues
In the setting where the dynamic zone does not really change that often and immediate propa-
gation of changes is not critical, there is nothing to add to what has already been said about
slave servers in Chapter 2.

In the case where the dynamic zone changes often and immediate updates of slave servers is
important, I would like to remind you of, and reinforce, some things said in Chapter 2. When
an update is received, the server will follow the usual procedure when a zone is updated: After
a random waiting period (in the order of tens of seconds), a NOTIFY request is sent out to all
the listed nameservers and any additional servers listed in named.conf. In this setting keeping
the list of nameservers up to date and ensuring that they really receive NOTIFY requests
becomes important. Combining NOTIFY requests with appropriate intervals in the SOA
record will ensure that your slave servers are current and up-to-date;.

There is one more thing. As long as your dynamic zone is not right under a TLD (as is the case
for dyn.penguin.bv) and is almost exclusively used internally, which will also often be the case,
the need for a slave server might not be that great—especially in small places. One server can
handle large amounts of requests for the zone, so load will not be an issue. It is more an issue
of reliability and redundancy, which might be less important in the dynamic zone, but more
important in larger organizations.

Reverse Zones
I have not mentioned reverse zones at all thus far into the chapter. Of course you will need
reverse zones as well as forward zones, and they are maintained exactly the same way. In the
case of classlessly delegated reverse zones, you should send update requests for the real record
name, not the correct name. In the case of the classless emperor.penguin.bv network in
Chapter 2, the update request would be for names such as 129.128-255.56.168.192.in-
addr.arpa, not 129.56.168.192.in-addr.arpa.

A One Host Zone
In some settings not having to set up a separate dynamic zone for dynamic updates would be
the best scenario; or to enable a specific host, or key, to modify only the records of one specific

12 0789722739 CH09 10/10/00 6:45 PM Page 171

Chapter 9 Dynamic DNS

domain name, a more fine-grained access control of who may change what. In the setting
shown previously, anyone with the correct key or access to the right host is able to perform
any updates on the whole zone. This might not be desirable, and if you find yourself in such a
situation, you should consider not implementing dynamic DNS at all. If you can’t trust your
users at this level, they should perhaps not be able to alter DNS at all.

But there is a “hackish” way to work around it: It is possible to make a “one host” zone. The
zone can have its own update ACL and thus the holder of the associated key or IP number can
only update the zone, not anything outside it, and no one else can alter the zone either. The
way to do this is to delegate the zone bearing the hostname to the nameservers you want, as
shown previously, and then seed the zone. If the zone is for magellan.penguin.bv,

$TTL 1m
;
@ 1m SOA ns.penguin.bv. hostmaster.penguin.bv. (

1 ; serial
5m ; refresh
2m ; retry
6h ; expire
1m ; minimum
)

1m NS ns.penguin.bv.
1m NS ns.herring.bv.
1m A 10.10.10.10

it gives magellan.penguin.bv an A record with the value 10.10.10.10. This can be deleted and
re-added just as described previously for magellan.dyn.penguin.bv. This gives finer update
access control and the capability to have dynamic hosts directly under the main domain, but
at the cost of configuration overhead and increased key/ACL maintenance. Of course, anyone
able to update this zone can add subdomains of magellan.penguin.bv if he wants to, so it can’t
really be called secure or considered very restricted.

DHCP
DDNS and DHCP are complementary services. DHCP doles out the addresses and DNS helps
you find the address.

The ISC is also implementing a DHCP server for UNIX systems. As I write this, DHCP 2.0 is
the production version and in common use. DHCP 3.0 is in beta. The 2.0 distribution does not
support dynamic DNS updates. The 3.0 beta does support dynamic updates but the documen-
tation carries big warnings about not being final, so use it at your own peril and only if you
need the features. But a production release might be available by the time you read this. As
with BIND, you can get DHCP from the ISC ftp site: ftp://ftp.isc.org/isc/dhcp/. See its Web
site at http://www.isc.org/products/DHCP/ for more information about the available releases,
their status, and features. I will not even try to describe the design, implementation, and
usage issues connected with DHCP; I will simply discuss some DHCP/DNS integration issues.

172

12 0789722739 CH09 10/10/00 6:45 PM Page 172

173DHCP

Please see The DHCP Handbook for more complete information about DHCP, both the stan-
dard and the implementation.

Mixing DNS and DHCP Implementations
Some people want to use Windows DHCP with BIND DNS, or vice versa. I have not had the
opportunity to try either combination, but the general advice available on the Net about this is
“don’t.” It apparently works better if you keep Windows DHCP paired with Windows DNS and
ISC DHCP paired with ISC DNS.

DHCP and Static DNS Entries
Due to the lack of support for dynamic DNS support in DHCP 2 and, more significantly per-
haps, the potential management overhead if everyone could grab any name and get an IP
address to go, a lot of sites use fixed names for their DHCP range. In BIND 8 it’s quite easy to
enter such ranges in zone files too, using $GENERATE which was introduced in Chapter 2. In
such a case, the 16 new penguin employee computers would be assigned an IP range, such as
192.168.55.220 to 229, and the names would be entered thus:

$GENERATE 220-229 dhcp$ A 192.168.55.$

The names would be dhcp220.penguin.bv and so forth. This is a good way to do it; it is simple
and low maintenance. For hosts that you want to have fixed IP numbers or fixed hostname,
ISC DHCP 2 provides a way for you to assign them. In the dhcpd.conf file, insert something
like this:

host gentoo {
hardware ethernet 00:60:1d:1f:1e:f7;
fixed-address 192.168.55.55;

}

This assigns the given IP address to the host bearing the given Ethernet address. Just enter
the name in DNS in the usual manner. The “gentoo” part of the host statement is arbitrary,
but it would be good policy to assign 192.168.55.55 the name gentoo.penguin.bv.

DHCP and Dynamic DNS Entries
As I mentioned earlier, version 3 of the ISC DHCP distribution can do dynamic updates of
DNS based on the hostname the client wants. However, the how of this integration has not
been entirely worked out at this time so I’ll refrain from teasing you with what you can’t do.
The DHCP Handbook has more information about how it is supposed to work.

The DNS update conditionals allow the DHCP server to specify update conditions to the DNS
server such as “if the name already is in use” to forbid users from using new names or “if the
name is not present” to forbid users from using names already in use. Whichever way you
want it is a pure administrative decision and what you can allow depends on how much you
trust your users. If you don’t trust your users, I recommend that you give them static names.

12 0789722739 CH09 10/10/00 6:45 PM Page 173

Chapter 9 Dynamic DNS

Dynamic Updates by the Client
I have assumed that the DHCP server would do the DNS updates. Of course it does not have
to, and indeed, on a limited scale it might be easier to do on the client’s server. Doing it from
the DHCP server gives low ACL/key maintenance overhead and, if need be, full control of what
gets added. But there is nothing stopping you from giving the DHCP (or PPP) client access to
update DNS. By running a simple script after the interface has been assigned, an address
DNS can be updated:

#!/bin/sh

PATH=/sbin:/usr/sbin:/bin:/usr/bin
export PATH

IF=hme0
NAME=gentoo.dyn.penguin.bv
TTL=60

IP=`ifconfig $IF | awk ‘/inet/ { print $2; }’`

nsupdate <<EOC
update delete $NAME
update add $NAME $TTL A $IP

EOC

The script shown here works on Solaris. It needs to be adapted to other OSes; the interface
names and the output of ifconfig vary wildly between OSes. Also add the -k option if you want
to use TSIG signing.

174

12 0789722739 CH09 10/10/00 6:45 PM Page 174

