
XML Transference from Data
to Layout

The speed at which XML was adopted across the business sector was
stunning. My first indication of the XML phenomenon came when I was
teaching a seminar on maximizing the potential of Dreamweaver 3 at the
Seybold conference in Boston. Trying to gauge the audience’s level of exper-
tise, I asked how many people had used Dreamweaver before. All but two or
three raised their hands. When I asked how many people were familiar with
Cascading Style Sheets, only about 1/3 responded. “How many people here
use XML in their business?,” I asked next. Three-quarters of the audience—
an audience of Web developers, mind you—shot up their hands. Clearly,
XML was a technology about to explode.

Dreamweaver has long maintained—since version 3, in fact—a strong XML
connection. Importing and exporting of the well-formed XML file is only a
menu option away. Of course, Dreamweaver assumes you know how to
format the XML file properly for importing and how to make the most of
exported data. Don’t worry if you don’t know how to do these things; those
topics are part of what will be covered in this chapter.

The standard Dreamweaver XML features are powerful ones, but really only
serve as a foundation for what is possible. In this chapter, you’ll see how to
automate the production of Web pages from XML data. We’ll also explore
techniques for structuring XML data as content, ready for import into a

Chapter 4

06 2778_CH04 10/1/02 1:30 PM Page 79

Dreamweaver template. Finally, we’ll look at how to extract the content from
a document derived from a template and how to store the information in a
data source.

A Brief Introduction to XML
XML, short for Extensible Markup Language, has often been described as a
customizable version of HTML. Although this depiction is accurate to a
degree, it doesn’t really go far enough to distance it from HTML and charac-
terize the language’s strengths. To me, XML is pure structure. Each XML
tag is only present to contribute to the structure of a document. Better still,
the very name of each XML tag describes the content it contains, furthering
the structural integrity of the document.

XML files begin with a statement that declares the XML version used. By
default, Dreamweaver MX creates XML version 1.0 documents that specify
the encoding:

<?xml version=”1.0” encoding=”iso-8859-1”?>

Internally, XML syntax is similar to HTML with a few key differences:

• Empty XML elements or tags include a closing slash, like this:

<bookImage src=”jloweryImage.jpg” width=”150” height=”150” />

• The values of attributes must be quoted.

• Standalone attributes are not permitted. That is, checked as an
attribute is not permitted, but checked=”true” is.

• To avoid processing tags within text data, XML uses the CDATA
element. CDATA stands for character data, and it is designated by
surrounding the text with <![CDATA[and]]>. Here’s an example:

<![CDATA[To designate a table of contents item, enclose the entry

with a <toc>...</toc> tag pair.]]>

Part II Automations80

06 2778_CH04 10/1/02 1:30 PM Page 80

Chapter 4 XML Transference from Data to Layout 81

Structurally, XML documents tend to be made up of multiple sets of tags
following the same format. For example, if I were to describe a series of
books I’ve read, the basic form might look like this:

<?xml version=”1.0” encoding=”iso-8859-1”?>

<books>

<book>

<bookTitle name=””>

<authorName name=””>

<bookDescription>

<![CDATA[]]>

</bookDescription>

<book>

</books>

With a number of entries completed, the XML file would look like this:

<?xml version=”1.0” encoding=”iso-8859-1”?>

<books>

<book>

<bookTitle name=”Critical Space”>

<authorName name=”Greg Rucka”>

<bookDescription>

<![CDATA[Bodyguard Atticus Kodiak is hired by someone who

attempted to once kill him.]]>

</bookDescription>

<book>

<book>

<bookTitle name=”Blackwater Sound”>

<authorName name=”James W. Hall”>

<bookDescription>

<![CDATA[Thorn abandons his role as Florida fisherman to

stop the injustice brought by the rich and powerful

Brasswell family.]]>

</bookDescription>

<book>
continues

First of three children

06 2778_CH04 10/1/02 1:30 PM Page 81

<book>

<bookTitle name=”Pursuit”>

<authorName name=”Thomas Perry”>

<bookDescription>

<![CDATA[Who is the hunter and who is the hunted in

this book of criminologist vs. serial killer?]]>

</bookDescription>

<book>

</books>

In this example, the overall structural element is the <books> tag, which has
three nodes or children in the <book> tags. Within each <book> child, the
same descriptive tags are used with varying values. We’ll see this exact type
of format when we examine XML documents that are exported from
Dreamweaver.

Exporting Template Content to XML
Most of Dreamweaver’s XML focus is dedicated to working with templates
and template-derived documents. Dreamweaver regards the locked areas of a
template as the presentation layer of a document and the content within the
editable and repeating regions as well as some other template markup as the
data. Dreamweaver can only pull XML data from an instance of a template
and, similarly, import XML data into a template instance.

Exporting a Single Document
As noted earlier, Dreamweaver provides a direct menu command for extract-
ing the XML content from templates: File, Export, Template Data as XML.
When invoking this command—which becomes active only when the current
document is template derived—the Export Template Data as XML dialog
box is displayed (see Figure 4.1). For basic templates—ones that use only
editable regions—Dreamweaver can format the XML output in one of two
ways. The standard Dreamweaver XML approach lists every region as an
<item> tag, identified separately by the name attribute. For example, if a
template had three editable regions—such as bookTitle, authorName, and
bookDescription—then selecting the Use Standard Dreamweaver XML
Tags option would output the following:

Part II Automations82

NOTE: You might find it

helpful to examine output

from Dreamweaver’s Export

Template Data as XML

command; you’ll find

examples in Listing 4-1

(standard items sample)

and Listing 4-2 (editable

regions sample) at the end

of this section.

06 2778_CH04 10/1/02 1:30 PM Page 82

There are other differences as well. For instance, the syntax for the master
template under the standard Dreamweaver XML tags is this:

Chapter 4 XML Transference from Data to Layout 83

<item name=”bookTitle”><![CDATA[Critical Space]]></item>

<item name=”authorName”><![CDATA[Greg Rucka]]></item>

<item name=”bookDescription>><![CDATA[Bodyguard Atticus Kodiak is

hired by someone who attempted to once kill him.]]></item>

In contrast, the Use Editable Region Names as XML Tags option formats
the data like this:

<bookTitle>![CDATA[Critical Space]]></bookTitle>

<authorName><![CDATA[Greg Rucka]]></authorName>

<bookDescription><![CDATA[Bodyguard Atticus Kodiak is hired by

someone who attempted to once kill him.]]></bookDescription>

Note
constant
use of
CDATA

4.1

The Export Template Data

as XML dialog box offers

two export styles—as long

as the only template

markup tags in the

document are editable

regions.

<templateItems template=”/Templates/BasicBookList.dwt”

codeOutsideHTMLIsLocked=”false”>

...

</templateItems>

06 2778_CH04 10/1/02 1:30 PM Page 83

as opposed to this:

Part II Automations84

<BasicBookList template=”/Templates/BasicBookList.dwt”

codeOutsideHTMLIsLocked=”false”>

...

</BasicBookList>

As noted, complex template documents—those that have repeating regions
or template parameters as well as editable regions—can only be output in the
standard Dreamweaver format. Several additional tags are used to note the
enhanced template markup. A template parameter—the only evidence of a
conditional region—looks like this:

<parameter name=”dbOnSale” type=”boolean”

passthrough=”false”><![CDATA[true]]></parameter>

A repeating region is coded this way:

<repeat name=”RepeatRegion1”>

<repeatEntry>

<item name=”BookTitle”><![CDATA[Critical Space]]></item>

<item name=”AuthorName”><![CDATA[Greg Rucka]]></item>

<item name=”MainCharacter”><![CDATA[Atticus Kodiak]]></item>

</repeatEntry>

<repeatEntry>

<item name=”BookTitle”><![CDATA[Blackwater Sound]]></item>

<item name=”AuthorName”><![CDATA[James W. Hall]]></item>

<item name=”MainCharacter”><![CDATA[Thorn]]></item>

</repeatEntry>

</repeat>

That’s it. The following listings show the completed code.

NOTE: Don’t get the

idea that template data

can only be exported

from static pages.

Dynamic pages, which

often include code

outside of the <html>

tag pair, can also be

exported. Dreamweaver

uses a special syntax for

code that appears before

the opening <html> tag:

<item name=”(code

before HTML tag)”>

or

<pre_html>

Similar tags are used for

code that appears after

the closing </html> tag.

NOTE: If your template

region names include

special characters—

including spaces or

underscores—then

Dreamweaver only lets

you export using the

standard Dreamweaver

method.

06 2778_CH04 10/1/02 1:30 PM Page 84

Listing 4-1 Standard Items Sample (04_standarditems.xml)

<?xml version="1.0"?>

<templateItems template="/Templates/Basic Admin.dwt"

codeOutsideHTMLIsLocked="false">

<item name="(code after HTML tag)"><![CDATA[

]]></item>

<item name="(code before HTML

tag)"><![CDATA[<%@LANGUAGE="VBSCRIPT"%>

]]></item>

<item name="doctitle"><![CDATA[

<title>Untitled Document</title>

]]></item>

<item name="Content"><![CDATA[

<p>The content goes here.</p>

<p> </p>

]]></item>

</templateItems>

Chapter 4 XML Transference from Data to Layout 85

Listing 4-2 Editable Regions Sample (04_editableregions.xml)

<?xml version="1.0"?>

<Basic_Admin template="/Templates/Basic Admin.dwt"

codeOutsideHTMLIsLocked="false">

<post_html><![CDATA[]]></post_html>

<pre_html><![CDATA[<%@LANGUAGE="VBSCRIPT"%>

</pre_html>

<doctitle><![CDATA[

<title>Untitled Document</title>

]]></doctitle>

<Content><![CDATA[

<p>The content goes here.</p>

<p> </p>

]]></Content>

</Basic_Admin>

06 2778_CH04 10/1/02 1:30 PM Page 85

Exporting an Entire Site
Undoubtedly, the Export, Template Data as XML command is quite useful
at extracting the content from a templated page; unfortunately, it’s also
somewhat tedious. If you are responsible for exporting the content from an
entire site, you have quite a repetitive task ahead of you when you’re using
just this feature. Luckily, Dreamweaver includes an equally powerful
command for extracting all the data from all the template-derived pages
in a site.

Although the command for exporting a single page is front and center, you
really have to dig to find the equivalent site-wide command. In fact, you have
to perform an entirely different—somewhat antithetical—operation to get
the XML output. Dreamweaver MX includes the ability to export a site,
completely stripping out all the template markup from template-derived
documents. When you choose Modify, Templates, Export Without Markup,
the dialog box shown in Figure 4.2 is displayed.

Part II Automations86

4.2

To extract all the data as

XML from a site, you first

must choose Templates >

Export Without Markup.

To enable the XML operation, make sure that the Keep Template Data Files
option is selected. This is the signal to Dreamweaver to make two copies of
template-derived documents: one without template markup and another in
XML data format. Dreamweaver stores both files in the same folder. If you’ve
previously exported the site and want to update the data files, select Extract
Only Changed Files.

Exporting Selected Files in a Site
So far, we’ve seen how Dreamweaver can export XML data from a single
page or from an entire site. However, what if you need something in
between? What if you need to export the five files you’re working on or only
a couple of folders of files? What if you don’t want to make a template-less
copy of the site to get the exported files?

Although Dreamweaver makes exporting template data as XML
programmatically appear straightforward, there’s an aptly named function,

NOTE: To avoid having to

ask for individual names

for each file exported,

Dreamweaver automati-

cally appends the .xml

extension to whatever the

original filename is—

including the extension.

For example,

marchbooklist.htm

becomes

marchbooklist.htm.xml.

06 2778_CH04 10/1/02 1:30 PM Page 86

dw.exportTemplateDataAsXML(). It’s not as easy as it seems. Every time
the exportTemplateDataAsXML() function is called, the Export Template
Data as XML dialog box opens, disrupting the automatic nature of the
operation. Luckily, Dreamweaver makes it fairly easy to get an array of all the
editable regions in a document with another API function,
dom.getEditableRegionList(). That function serves as the basis for the
Export XML extension.

The Export XML extension (see Figure 4.3) allows the user to select the
scope of the operation (Current Document, All Open Documents, Selected
Files in Site Panel or Entire Site), which template to declare in the XML
file, and where to store the files.

Chapter 4 XML Transference from Data to Layout 87

TIP: To see the full

range of Massimo Foti’s

work, visit www.

massimocorner.com.

4.3

Export XML uses Massimo

Foti’s site-wide library to

work with a wide range of

file selections.

Another real challenge is developing a system to supply the file URLs as
needed, whether it’s just from the current document, from the selected files,
or from the entire site. Although Macromedia hasn’t seen fit to provide this
functionality, a robust solution has emerged from Dreamweaver’s premier
third-party developer, Massimo Foti. Fairly early on in the development of
his extensions, Massimo came across this very problem: How do you process
a single command across a site?

Over the years, Massimo has refined his library numerous times, and it is
quite full featured and extremely useful. Although the code is too lengthy to
reproduce and analyze in this chapter, I have included it as Bonus Listing
4-A (Massimo Foti’s Site-Wide Library [04_siteutils.js]) on the book’s web
site, with Massimo’s permission, as well as a small extension to demonstrate
its use, shown here in listing 4-3.

continues

Listing 4-3 Export XML (04_exportxml.mxp)

<html>

<head>

<title>Export XML</title>

06 2778_CH04 10/1/02 1:30 PM Page 87

Part II Automations88

<script language="javascript"

src="../Shared/Beyond/Scripts/Beyond_Site.js"></script>

<script language="JavaScript" src="../Shared/MM/Scripts/CMN/UI.js"

type="text/JavaScript"></script>

<script language='javascript'>

//init globals ***

var theSelect = findObject('fileList');

var theWildText = findObject('wildText');

var theTemplateList = findObject("template_list");

var theXML = "";

//******************* Primary Functions **************************

function commandButtons(){

return new Array('OK', 'doCommand()', 'Cancel',

'window.close()', 'Help', 'getHelp(theHelpFile)')

}

function exportXML(theURL) {

var theDOM = dw.getDocumentDOM();

if(theDOM.documentElement.innerHTML.indexOf("InstanceBegin

template=") != -1) {

var theERs = theDOM.getEditableRegionList();

var theName, theData

theXML = "";

for (i = 0; i < theERs.length; ++i) {

theName = theERs[i].getAttribute("name");

theData = theERs[i].innerHTML;

theXML += '<item name="' + theName + '"><![CDATA[' +

theData + ']]></item>' + '\n';

}

var theXMLHeader = "";

theTemplate = theTemplateList.options

[theTemplateList.selectedIndex].text;

var theTemplateFile = dw.getSiteRoot() + "Templates/" +

theTemplate;

06 2778_CH04 10/1/02 1:30 PM Page 88

theXMLHeader += '<?xml version="1.0"?>' + '\n';

theXMLHeader += '<templateItems template="/Templates/' +

theTemplate + '" codeOutsideHTMLIsLocked="false">' + '\n';

theXML = theXMLHeader + theXML + '\n' + '</templateItems>'

+ '\n';

var fileURL = findObject("folder_text").value +

theURL.substr(theURL.lastIndexOf("/") + 1) + ".xml";

r = DWfile.write(fileURL, theXML);

}

dw.releaseDocument(theDOM);

}

function doCommand() {

var selectArray = new Array("currentDoc","openedDocs",

"siteSelected","wholeSite");

var theRes = 1

var theWildCards = ".htm;.html;.shtm;.shtml;.asp;.cfm;.cfml;

.php;.php3"

for (var i=0; i<theSelect.options.length; i++){

if (theSelect.options[i].selected){

whichFiles = selectArray[i];

}

}

switch (whichFiles){

case "currentDoc":

urlArray = getCurrentDoc();

if(urlArray){

exportXML(urlArray);

}

break;

case "openedDocs":

agree = confirm("This command cannot be undone.

Proceed?");

Chapter 4 XML Transference from Data to Layout 89

continues

06 2778_CH04 10/1/02 1:30 PM Page 89

//If it's ok, go

if (agree){

openFilesArray = new Array();

//Get the currently opened files

openFilesArray = getOpenedDocs();

//Filter them to get just the ones matching extensions

urlArray = filterFiles(theWildCards,openFilesArray);

for (var i=0; i<openFilesArray.length; i++){

exportXML(urlArray[i]);

}

} else {

return;

}

break;

case "siteSelected":

var siteFocus,agree;

siteSelectedArray = new Array();

writeSiteSelectedArray = new Array();

siteFocus = site.getFocus();

if(siteFocus == "local" || "site map"){

//Ask the user

agree = confirm("This command cannot be undone.

Proceed?");

//If it's ok, go

if (agree){

//Get the urls of the files selected inside

//the site window

siteSelectedArray = site.getSelection();

if (siteSelectedArray.length == 0 | |

siteSelectedArray[0].indexOf(".") == -1) {

alert("No files in Site window selected.

\nChoose another Generate From option.")

return;

}

//Filter them to get just the matching extensions

Part II Automations90

06 2778_CH04 10/1/02 1:30 PM Page 90

urlArray = filterFiles(theWildCards,

siteSelectedArray);

for (var i=0; i<urlArray.length; i++){

exportXML(urlArray[i]);

}

} else {

return;

}

}

else{

alert("This command can affect only local files");

}

break;

case "wholeSite":

var agree;

wholeSiteArray = new Array();

writeFilesArray = new Array();

//Ask the user

agree = confirm("This command cannot be undone.

Proceed?");

//If it's ok, go

if (agree){

//Get all the urls of files in the site with

//matching extensions

wholeSiteArray = getWholeSite();

//Filter them to get just the matching extensions

urlArray = filterFiles(theWildCards,wholeSiteArray);

for (var i=0; i<urlArray.length; i++){

exportXML(urlArray[i]);

}

} else {

return;

}

break;

}

window.close();

Chapter 4 XML Transference from Data to Layout 91

continues

06 2778_CH04 10/1/02 1:30 PM Page 91

return;

}

function findFolder() {

findObject("folder_text").value = dw.browseForFolderURL();

}

function getTemplateList() {

//returns a list of templates in site

var theTemplateDir = dw.getSiteRoot() + "Templates/";

var theTemplates = new Array();

theTemplates = DWfile.listFolder(theTemplateDir + "*.dwt",

"files");

if (theTemplates){

loadSelectList(theTemplateList,theTemplates);

}

}

function initUI() {

getTemplateList();

}

</script>

</head>

<body onLoad="initUI()">

<form name="theForm">

<table border="0">

<tr>

<td nowrap> <div align="right">Export XML from</div></td>

<td nowrap> <select name="fileList" style="width:220px">

<option selected>Current Document</option>

<option>All Open Documents</option>

<option>Selected Files in Site Window </option>

<option>Entire Site</option>

</select> </td>

Part II Automations92

06 2778_CH04 10/1/02 1:30 PM Page 92

</tr>

<tr>

<td nowrap><div align="right">Template</div></td>

<td nowrap><select name="template_list" id="template_list"

style="width:220">

<option selected>Loading templates.............</option>

</select></td>

</tr>

<tr>

<td><div align="right">Save In</div></td>

<td><input name="folder_text" type="text" id="folder_text"

style="width:155">

<input type="button" name="Button" value="Browse"

onClick="findFolder()"></td>

</tr>

</table>

</form></body>

</html>

Chapter 4 XML Transference from Data to Layout 93

After Massimo’s function does the heavy lifting of finding all the required
file URLs, that information is passed to the exportXML() function in the
extension. As is often the case, the Document Object Model (DOM) for the
document is first appropriated and put into a variable. Then the function
tests to make sure that the document is derived from a template and that it’s
possible to export XML from it. Again, there is a Macromedia API function
intended for this purpose—and again, we can’t use it because it requires the
document to be open before it will work. Because I don’t want to open and
close every document, I found another way to determine whether the file is
template derived:

if(theDOM.documentElement.innerHTML.indexOf(“InstanceBegin

template=”) != -1)

This code walks down the DOM a bit and looks for the key words that
indicate the document is a template instance. If so, we’re ready for the
process to begin by getting all the editable regions in the file:

var theERs = theDOM.getEditableRegionList();

06 2778_CH04 10/1/02 1:30 PM Page 93

The next significant action takes place in a loop where the editable region
name and innerHTML are extracted and inserted into an XML format:

Part II Automations94

for (i = 0; i < theERs.length; ++i) {

theName = theERs[i].getAttribute(“name”);

theData = theERs[i].innerHTML;

theXML += ‘<item name=”’ + theName + ‘“><![CDATA[‘ + theData +

‘]]></item>’ + ‘\n’;

}
Added to format output

Next, we’re ready to set up the template name variable, which we’ll soon
insert into the XML file:

theTemplate = theTemplateList.options[theTemplateList.

selectedIndex].text;

The header for the XML file is constructed next, integrating the template
name:

theXMLHeader += ‘<?xml version=”1.0”?>’ + ‘\n’;

theXMLHeader += ‘<templateItems template=”/Templates/’ +

theTemplate + ‘“ codeOutsideHTMLIsLocked=”false”>’ + ‘\n’;

Now the entire XML file is concatenated into one string:

theXML = theXMLHeader + theXML + ‘\n’ + ‘</templateItems>’ + ‘\n’;

After building the file URL to store the XML file, the DWfile API is used
to write it out:

Closing XML tag

var fileURL = findObject(“folder_text”).value +

theURL.substr(theURL.lastIndexOf(“/”) + 1) + “.xml”;

r = DWfile.write(fileURL, theXML);

The final instruction in the code is used to release the memory used to work
with the DOM—a necessary step when possibly processing an entire site:

dw.releaseDocument(theDOM);

06 2778_CH04 10/1/02 1:30 PM Page 94

Manually Importing from XML
On the flip side of exporting XML data from templates, Dreamweaver has
the capability to import XML data into a template to create a new template-
derived document. For the import operation to work as intended, the XML
must be in a specific format. Each XML tag corresponds to a template region
or markup. Both XML syntax used during export—the standard
Dreamweaver <item> syntax and the editable region names as XML tags—
are supported for import, with the same restrictions. For complex templates,
including any template markup other than just editable regions, the standard
Dreamweaver syntax must be used.

Perhaps the best way to understand the format required for import is to
examine an exported XML file. Here’s a simple example:

Chapter 4 XML Transference from Data to Layout 95

<?xml version=”1.0”?>

<templateItems template=”/Templates/planet.dwt”

codeOutsideHTMLIsLocked=”false”>

<item name=”diameter”><![CDATA[

<P> 7926 miles

]]></item>

<item name=”moons”><![CDATA[

<P> 1

]]></item>

<item name=”planetImage”><![CDATA[<IMG

SRC=”assets/Images/earth.gif” ALIGN=”TOP” WIDTH=”72” HEIGHT=”72”

VSPACE=”0” HSPACE=”0” ALT=”Earth Photo” BORDER=”0”>]]></item>

<item name=”doctitle”><![CDATA[

<TITLE>Earth</TITLE>

]]></item>

<item name=”orbital_period”><![CDATA[

<P> 365 days, 6 hours, 9 minutes, 13 seconds

]]></item>

</templateItems>

Link to Template

Note placement in file

The first thing to notice is the tag identifying the template from which the
document was derived. Another important aspect is the order—or rather the
lack of order—of the item entries. In the original file, the editable regions

06 2778_CH04 10/1/02 1:30 PM Page 95

appeared in this sequence: doctitle, planetImage, diameter,
orbital_period, and moons. In the exported data file, they are written in
this order: diameter, moons, planetImage, doctitle, and
orbital_period. This is one of the major advantages of an XML file over
a less structured layout of information—the order the data is written is
irrelevant to the order of its final presentation.

Dreamweaver imports XML files written in both standard and editable
region-based syntax. Either of the following two formats is supported:

Part II Automations96

<templateItems template=”/Templates/planet.dwt”

codeOutsideHTMLIsLocked=”false”>...</templateItems>

<planet template=”/Templates/planet.dwt”>...</planet>

When the File, Import, XML into Template command is given and a
properly formatted XML file is selected, the data and the template instance
are merged and a new document is created immediately.

Automated Import to Template
Again, we’re faced with a powerful command that does exactly what we
want—except that it does it with only one document at a time. What’s clearly
needed here is a parallel to the Export XML extension—one that permits the
same choices in scope (current document, open documents, selected files in
site panel, or entire site) and stores all the HTML documents generated from
importing XML files in a single folder. Constructing this extension takes
even less time because much of the work (looping through the selected files,
for example) has already been done once before. A key point to take away
from this section—aside from how to build the function—is how you can
leverage work in one extension to make another.

Let’s start by defining how we expect the new extension, Import XML, to work:

1. From the Extension dialog box, the user selects which XML files
should be included in the operation.

2. The user also selects a folder to store the generated pages.

3. When the command executes, the program gathers the URL of each
XML file.

NOTE: The approach

described in this section

is not the only way to

combine data and

templates to create new

pages. To see how you can

generate HTML pages

directly from a data source,

look at Chapter 5,

“Automating Static Page

Production from a Data

Source.”

NOTE: To View the

completed code, see

Listing 4-4 at the end of

this section.

06 2778_CH04 10/1/02 1:30 PM Page 96

4. The URL is passed to a function that first creates a blank document to
hold the template instance and then imports the XML data.

5. The new file is saved and closed—and the next XML file, if any, is
processed.

The process and the Import XML extension are pretty straightforward. Best
of all, we have a starting point to jump off from: the Export XML extension.
In a situation like this where so much is duplicated from one extension to the
next, I typically open the original extension and do a File, Save As to create a
new extension. I save the new file in the appropriate Configuration folder; in
this case, that would be Commands.

Next, I change the title of the extension. The title is displayed in the title bar of
the Extension dialog box. Changing the title is a small thing, but I often forget
to do it if I don’t do it right away. Now we can begin to seriously modify the
base extension, starting with the user interface. In this case, we’ll take away an
element found in Export XML that is not needed in Import XML: the
Template drop-down list. For this version of Import XML, it is assumed that
all the XML files declared their associated template. Why? The primary reason
is that the key API function we will be using, dw.importXMLIntoTemplate(),
requires it. It also greatly simplifies our coding.

With the Template drop-down list and its label deleted, the Import XML
extension (see Figure 4.4) is ready for user input.

Chapter 4 XML Transference from Data to Layout 97

TIP: Remember that

Dreamweaver MX now

supports multiuser configu-

rations. If you are working

with a multiuser-compatible

OS (such as Windows

2000 or Mac OS X), the

custom extensions need to

be saved in the appropriate

user/Macromedia/

Dreamweaver MX/

Configuration folder.

Extensions for single-user

systems are stored in the

Programs/Macromedia/

Dreamweaver MX/

Configuration folder

(Windows) or in the

Applications:Macromedia:

Dreamweaver MX:

Configuration folder

(Macintosh).

4.4

Why rebuild when you can

duplicate? The Import XML

extension is a duplicate of

Export XML with one user

interface element removed.

06 2778_CH04 10/1/02 1:30 PM Page 97

I need to make only one small change to code within the doCommand()
function of Import XML. In the Export XML extension, the Wildcards
variable was set to allow almost every type of Web document extension: .htm,
.html, .shtm, .shtml, .asp, .cfm, .cfml, .php, and .php3. For the Import XML
extension, the selection needs to be limited to just one file type: .xml.

As before, the main function is separated from the code that takes the user’s
selection of which files to be processed. Here, that function is named
importXML(), whereas in the original extension, it was named exportXML().
Because the user selection code calls the function for each choice of scope
potentially made, the easiest way to modify the code is to do a find and
replace.

The first line in the importXML() function serves to create a new, blank
document:

Part II Automations98

var theTempDOM = dw.createDocument();

If this is not done, the template instance is loaded onto the current document.

The next bit of code represents one of the real pitfalls of extension program-
ming: incorrect documentation. According to the Extending Dreamweaver
manual, the importXMLIntoTemplate() function takes a file URL as its only
argument. Unfortunately, that’s wrong. Although it does take a URL pointing
to an XML file, the string should be formatted as a file path, like this:

D:\fp2dw\newTemp\anotherTest.xml

instead of a file URL, like this:

file:///D |/fp2dw/newTemp/anotherTest.xml

Dreamweaver provides a function in the MMNotes API collection that
converts a file URL to a file path. We can use that without including any
other JavaScript file:

var theNewURL = MMNotes.localURLToFilePath(theURL);

06 2778_CH04 10/1/02 1:30 PM Page 98

With our new URL created, we’re ready to perform the key operation of
importing the XML into a template:

dw.importXMLIntoTemplate(theNewURL);

Now we create a new document name based on the XML filename and save
the file. The new name substitutes an .htm extension for the file’s
original.xml one and incorporates the user-selected path to a folder:

Chapter 4 XML Transference from Data to Layout 99

docName = findObject(“folder_text”).value +

theURL.substring(theURL.lastIndexOf(“/”) + 1, theURL.length - 4) +

“.htm”;

res = dw.saveDocument(theTempDOM, docName);

Finally, if the save operation was successful, the document is closed and
control passes back to the doCommand() function to get another URL for
processing, if necessary.

if (res) {

dw.closeDocument(theTempDOM);

}

return;

The most common error to watch for when using an extension like this is
malformed XML. If you encounter problems, check the XML file by
choosing Validate Current Document as XML from the Validation panel.

Listing 4-4 Import XML (04_importXML.mxp)

<html>

<head>

<title>Import XML</title>

<script language="javascript"

src="../Shared/Beyond/Scripts/Beyond_Site.js"></script>

<script language="JavaScript" src="../Shared/MM/Scripts/CMN/UI.js"

type="text/JavaScript"></script>

<script language='javascript'> continues

06 2778_CH04 10/1/02 1:30 PM Page 99

//init globals ***

var theSelect = findObject('fileList');

var theWildText = findObject('wildText');

var theXML = "";

//******************** Primary Functions *************************

function commandButtons(){

return new Array('OK', 'doCommand()', 'Cancel',

'window.close()', 'Help', 'getHelp(theHelpFile)')

}

function importXML(theURL) {

var theTempDOM = dw.createDocument();

var theNewURL = MMNotes.localURLToFilePath(theURL);

dw.importXMLIntoTemplate(theNewURL);

docName = findObject("folder_text").value +

theURL.substring(theURL.lastIndexOf("/") + 1, theURL.length -

4) + ".htm";

res = dw.saveDocument(theTempDOM, docName);

if (res) {

dw.closeDocument(theTempDOM);

}

return;

}

function doCommand() {

var selectArray = new Array("currentDoc","openedDocs",

"siteSelected","wholeSite");

var theRes = 1

var theWildCards = ".xml"

for (var i=0; i<theSelect.options.length; i++){

if (theSelect.options[i].selected){

whichFiles = selectArray[i];

Part II Automations100

06 2778_CH04 10/1/02 1:30 PM Page 100

}

}

switch (whichFiles){

case "currentDoc":

urlArray = getCurrentDoc();

if(urlArray){

importXML(urlArray);

}

break;

case "openedDocs":

agree = confirm("This command cannot be undone.

Proceed?");

//If it's ok, go

if (agree){

openFilesArray = new Array();

//Get the currently opened files

openFilesArray = getOpenedDocs();

//Filter them to get just the ones matching extensions

urlArray = filterFiles(theWildCards,openFilesArray);

for (var i=0; i<openFilesArray.length; i++){

importXML(urlArray[i]);

}

} else {

return;

}

break;

case "siteSelected":

var siteFocus,agree;

siteSelectedArray = new Array();

writeSiteSelectedArray = new Array();

siteFocus = site.getFocus();

if(siteFocus == "local" || "site map"){

//Ask the user

Chapter 4 XML Transference from Data to Layout 101

continues

06 2778_CH04 10/1/02 1:30 PM Page 101

agree = confirm("This command cannot be undone.

Proceed?");

//If it's ok, go

if (agree){

//Get the urls of the files selected inside the

//site window

siteSelectedArray = site.getSelection();

if (siteSelectedArray.length == 0 | |

siteSelectedArray[0].indexOf(".") == -1) {

alert("No files in Site window selected.\nChoose

another Generate From option.")

return;

}

//Filter them to get just the matching extensions

urlArray = filterFiles(theWildCards,

siteSelectedArray);

for (var i=0; i<urlArray.length; i++){

importXML(urlArray[i]);

}

} else {

return;

}

}

else{

alert("This command can affect only local files");

}

break;

case "wholeSite":

var agree;

wholeSiteArray = new Array();

writeFilesArray = new Array();

//Ask the user

agree = confirm("This command cannot be undone.

Proceed?");

//If it's ok, go

if (agree){

Part II Automations102

06 2778_CH04 10/1/02 1:30 PM Page 102

//Get all the urls of files in the site with matching

//extensions

wholeSiteArray = getWholeSite();

//Filter them to get just the matching extensions

urlArray = filterFiles(theWildCards,wholeSiteArray);

for (var i=0; i<urlArray.length; i++){

importXML(urlArray[i]);

}

} else {

return;

}

break;

}

window.close();

return;

}

function findFolder() {

findObject("folder_text").value = dw.browseForFolderURL();

}

function findFile() {

findObject("file_text").value = dw.browseForFileURL("select");

}

function getTemplateList() {

//returns a list of templates in site

var theTemplateDir = dw.getSiteRoot() + "Templates/";

var theTemplates = new Array();

theTemplates = DWfile.listFolder(theTemplateDir + "*.dwt",

"files");

if (theTemplates){

loadSelectList(theTemplateList,theTemplates);

}

}

Chapter 4 XML Transference from Data to Layout 103

continues

06 2778_CH04 10/1/02 1:30 PM Page 103

function initUI() {

}

</script>

</head>

<body onLoad="initUI()">

<form name="theForm">

<table border="0">

<tr>

<td nowrap> <div align="right">Import XML from</div></td>

<td nowrap> <select name="fileList" style="width:220px">

<option selected>Current Document</option>

<option>All Open Documents</option>

<option>Selected Files in Site Window </option>

<option>Entire Site</option>

</select> </td>

</tr>

<tr>

<td><div align="right">Save In</div></td>

<td><input name="folder_text" type="text" id="folder_text"

style="width:155">

<input type="button" name="Button" value="Browse"

onClick="findFolder()"></td>

</tr>

</table>

</form></body>

</html>

Part II Automations104

✹

06 2778_CH04 10/1/02 1:30 PM Page 104

