Concepts and Fundamentals of
JMS Programming

I N THIS CHAPTER,YOU WILL LEARN the fundamentals and basic elements of Java
Message Service (JMS) programming. In the next chapter, you will write three
simple programs to help you understand how to develop a JMS application.

What Is a Messaging System or Service?

Messaging is a way or a mechanism that provides communication between
software applications, programs, or objects on a distributed system. Remote
Method Invocation (RMI) and socket programming are also types of
messaging according to this definition. But, the focus of this book is on a
message-based messaging system. As a simple definition, a message identifies
the content transmitted between two or more applications or programs.

One or more programs send a message, and the other one or more programs
receive the message. You might think that a query from a SQL-based database
using a graphical user interface (GUI) is a message. It is direct, one-to-one
messaging, but a messaging system is more sophisticated than this simple
example. It is more like using TCP/IP packets on a computer network. In a
messaging system, there are clients that can send and receive messages. Each
client connects to the messaging system, which provides a platform to create,
send, and receive messages. A messaging system has three major features:

110 Chapter 5 Concepts and Fundamentals of JMS Programming

= A messaging system is loosely coupled. This is the most important feature
of a messaging system and might be an advantage compared to other sys-
tems such as RMI. An application or program, called a sender or publisher,
sends a message to a destination, not directly to another client. Another
application or program, called a receiver or subscriber, receives the message
from a destination. Senders and receivers do not have to be aware of
each other.

= A messaging system isolates clients from each other. Neither sender nor
receiver needs to know about each other. They only need to know the
message format and destination.

= A messaging system allows decoupling. A sender and receiver use the
system at different times. They do not have to be up and running at the
same time. A sender sends the message to a destination, and the receiver
takes the messages whenever it is ready. A sender does not need to wait
for a response. It can process another task without being blocked. I refer
to this feature as asynchronous messaging in the remainder of the book,
which generally means that clients are able to use the system at different
times, and they do not have to know whether other clients in the system
are up and running.

Some developers consider email a part of a messaging system. Although email
is a way of communication between people, and sometimes between people
and software applications, a messaging system is different. It is used for com-
munication between software applications or objects.

A messaging system 1s based on message-oriented middleware (MOM),
which was explained in the previous chapter. MOM defines the rule of mes-
saging as:

» How the message looks

» How a sender application sends the message

» How a receiver application receives the message

= How a receiver application reads the message

Advantages and Disadvantages of a Messaging System

In the messaging service (or system), there is a server, and clients connect to
this server to communicate with each other (see Figure 5.1).

What Is a Messaging System or Service? 111

@ e @

Figure 5.1 The messaging service architecture.

The server provides some essential services such as message persistence, load
balancing, and security. The server provides asynchronous communication and
guaranteed delivery from senders to receivers.

A messaging service is a great way for applications to communicate with
each other, but it has some disadvantages:

= You have to send header and other information with the message
content. Therefore, the total amount of information is larger than the
message content itself, which might increase network traffic.

= Every message goes to the receivers through a server, which makes com-
munication slower than a direct connection.

= Your messaging service provider (vendor) might not support all the JMS
specifications defined by Sun Microsystems.

Before designing your JMS projects, you should compare the disadvantages
such as network traffic, slower communication, and vendor-specific issues with
the advantages such as loosely coupled or decoupled systems, portability, per-
sistent messaging, and guaranteed delivery.

Briefly, if you only need to insert some new records into a local database
and you have a very reliable network, you might not need to use a messaging
system. Keep in mind that a messaging-based application consumes additional
resources.

112 Chapter 5 Concepts and Fundamentals of JMS Programming

However, if you want to isolate networking problems in your client source
code or if the database you want to access is in a different location, you might
need to use a messaging service. A messaging service can ensure completion of
transactions of an application properly such as manipulating data in a table of
the database (for example, Insert, Delete, and Update statements), particularly if
the database is unavailable (such as when using a laptop that is disconnected
from the network). It will process the command (the message content) at a
later time. Decoupling or loosely coupling is the best feature of a messaging
service.

What Is the JMS API?

The JMS is a Java Application Programming Interface (API), which allows
software applications, components, and objects to create, send, receive, and read
messages. Sun Microsystems is a JMS vendor that markets an iPlanet product,
but Sun designed and developed JMS specifications in collaboration with JMS
vendors, not by itself. Sun also provides developers with reference implementa-
tions to test and apply specifications to your projects. In this book, I will use
the JMS API Reference Implementation bundled with the Java 2 Platform
Enterprise Edition (J2EE) version 1.3 or later to test sample applications
instead of commercial JMS products. If you need more information about JMS
products, refer to Appendix C, “Java Message Service (JMS) API Vendors.” The
JMS API enables communication that:

= Is loosely coupled

= Is asynchronous, which means that a JMS server delivers a message to the
client, but the client does not have to read immediately

= [s reliable, which means that a JMS server ensures that a message is
delivered once and only once

Point-to-Point and Publish-and-Subscribe Messaging

As mentioned in the previous chapter, there are two major messaging types:
point-to-point (p2p or PTP) and publish-and-subscribe (pub/sub). They are
the fundamentals of MOM and are supported by JMS specifications. (JMS
vendors are not required to support both types of messaging, although many
of them do.)

Recall that in p2p messaging, the domain (or destination) is called a queue
(see Figure 5.2). The sender sends the message to the queue, and the receiver
(recipient) takes (or reads) the message from the queue whenever it is ready.
Although this seems like peer-to-peer, there can be two or more senders for
the same queue.

What Is the JMS API?

Message Message
Sender sonds Queue roads Receiver
reply or
acknowledge

Figure 5.2 The p2p messaging service.

This queue is stored in the messaging server or in a relational database if data
persistence is required. JMS does not ban using direct messaging, but it uses a
queue for p2p messaging.

A human resource application that sends a message to the accounting appli-
cation about annual salary increases for workers in a factory plant in Wisconsin
is an example of p2p messaging.

In the pub/sub messaging type, a messaging domain (destination) is called a
topic, a sender is called a publisher, and a receiver is called a subscriber (see
Figure 5.3). Publishers send the message to a topic. Subscribers receive all of
the messages sent to that topic as long as they subscribe to the topic. In this
model, there are one or more publishers and receivers. If one publisher sends a
message to the topic, all subscribers receive a copy of the same message. You
might need to use this messaging model to notify a group of applications
using the same message. An example of the pub/sub messaging model is when
a production application sends a message to a NewProduct topic, and subscribers
to the NewProduct topic, such as a sales application and a marketing applica-
tion, receive this message.

This model supports multiple senders and receivers, and applications do not
need to act together. Senders called publishers send (publish) their messages at
different times, independently from other senders to the topic. Receivers called
subscribers also read (subscribe) the messages from the topic, independently
from other receivers.

113

114 Chapter 5 Concepts and Fundamentals of JMS Programming

) Subscriber 1
1 subscribes
delivers
Message|
1
Publisher 1
sends Message
Topic
2 2
Message Message
Publisher 2 Subscriber 2
subscribes
sends
delivers
1and 2
Message

Figure 5.3 The pub/sub messaging service.

The JMS API and the J2EE Platform

Sun first released the JMS API in 1998. Its main purpose was to allow Java
applications to work with MOM-based products. Because it was found very
useful, many MOM vendors adopted and implemented the JMS API. In
version 1.2 of the J2EE platform, vendors were not required to implement the
JMS APL. It was an add-on product, and vendors had to provide a JMS API
interface. With version 1.3 of the J2EE platform, the JMS API is an integrated
part of the platform. J2EE certified vendors, including Sun Microsystem’s own
application server product, “iPlanet,” must support the JMS API. The JMS API
in the J2EE platform version 1.3 has some valuable features:

= Enterprise JavaBeans (E]JBs) or an enterprise Web component can create,
send, and synchronously receive a message.

= Message-driven beans, which are new enterprise beans included with
version 1.3 of the J2EE platform, allow asynchronous messaging.

= Messages that are sent and received can participate in Java Transaction
API (JTA) transactions.

Concepts of JMS Programming

Additionally, EJB container architecture provides support for distributed trans-
actions and allows for the concurrent consumption of messages.

The JMS API makes developing enterprise applications easier for developers
and allows loosely coupled, synchronous and asynchronous, reliable communi-
cations and interactions between J2EE components and other applications
capable of messaging.You can develop enterprise applications with new mes-
sage-driven beans for specific business events in addition to the existing
business events.

Another technology, the J2EE Connector, exists within the J2EE platform
version 1.3, and it provides tight integration between Java enterprise applica-
tions and enterprise information systems (EIS). The JMS API is difterent from
connector technology because it provides loosely coupled interaction

between J2EE applications and database servers or information application
servers (LAS).

Concepts of JMS Programming

In this section, I discuss some basic elements of JMS programming before
providing you with some simple JMS examples and advanced applications.

JMS Architecture

Figure 5.4 shows the five main elements of the JMS architecture.

JMS client

JMS client Destinations

Connection Factories

JMS client Administered objects

)F(9’6) }

i
(o

non-JMS clientf«<———>|

J

non-JMS client JMIS Provider

Message ‘
K

Figure 5.4 The five main elements of the JMS architecture.

115

116 Chapter 5 Concepts and Fundamentals of JMS Programming

Some brief information about each element follows, and more detailed infor-
mation is provided in the remainder of the book.

= JMS provider—The JMS provider is like a container for the messaging
system. It implements JMS interfaces, which are defined by the JMS
specifications. It also provides some administrative features as well as
some additional components, which are not required by the JMS specifi-
cation, but are MOM-based technologies.

» JMS clients—The JMS clients are applications, components, or objects
that produce and consume messages. They must be written in the Java
language in order to be a JMS client.

= Non-JMS clients—Non-JMS clients are applications that use native
client APIs instead of the JMS APIL

» Administered objects—Administered objects are for client use, but are
created by an administrator. There are two main administered objects—
destination and connection factories—which are examined in subsequent
sections.

= Message—The message 1s the heart of the messaging system. It is the
object that provides information transfer between messaging system
clients. If you do not have a message, there is no need to use a messaging
system.

Message Consumption

One of the important concepts in the messaging system is message consump-
tion, which is defined by timing properties of the system. Consuming a mes-
sage means receiving the message, reading the message, or taking the message
from the destination (queue or topic). A message is produced by a messaging
client (sender or publisher), but the producing client is not interested in how
the message will be consumed. This process is part of the receiving side, which
is the target of the message.
The JMS specification defines two ways to consume a message:

» Synchronously—A receiver reads or takes the message from the destina-
tion by calling the receive() method. This receive() method blocks the
application until a message arrives (blocking means that the receiver
application waits for a message to arrive and does not perform any other
transactions during this time). As a developer, you can specify a time limit
to receive a message. If the message does not arrive within a specified
time limit, it can time out, which releases the block.

Concepts of JMS Programming

= Asynchronously—A client can define a message listener (a mechanism
similar to an event listener). Whenever a message arrives at its destination,
a messaging server (JMS provider) delivers the message to the recipient
(subscriber) by calling the onMessage () method. The client will not be
blocked while waiting for the message.

Destinations

As one of two administered objects, a destination is the target of a message.
The destination is where the message will be delivered. It is provider-
independent. In the JMS specification, the Destination interface does not
define a specific method. It is an administrative object, and its physical location
on the server is chosen and handled by the provider. There are two types of
destinations in the JMS specifications: queue and topic.

Recall from a previous section that the p2p messaging model uses a queue
destination, and the pub/sub model uses a topic destination. The most impor-
tant aspect and advantage of a destination is that its implementation is defined
by the JMS provider. A sender sends the message to the destination by using
the Destination interface, and the recipient receives the message from the
Destination object. A recipient does not see the detail of the implementation.
The messaging server, which in this case 1s the JMS provider, performs the
implementation of the Destination object.

A destination is an administered object, and you can create it by using the
Administrator tool in your application server, which is also included in the
JMS server. Because J2EE Reference Implementation version 1.3 is used as the
application server in this book, I will not use any vendor-specific features for
this server. You will have to modify some commands or steps depending on
your server.

If you want to create a queue for a p2p messaging model, you can type
j2eeadmin at the command line as follows:

j2eeadmin -addJmsDestination <jndi_name_for_queue> queue
As an example, if you want to create a queue named levent_Boston, you can
type it at the command line like this:

j2eeadmin -addJmsDestination levent_Boston queue

In JMS application client code, you usually need to look up a destination after
you look up a connection factory. When you look up the levent_Boston
queue, the line might look like the following in the code for lookup:

Queue erdQueue = (Queue) ctx.lookup("levent_Boston");

117

118 Chapter 5 Concepts and Fundamentals of JMS Programming

If you want to create a topic for a pub/sub messaging model, you can type
j2eeadmin at the command line as follows:

j2eeadmin -addJmsDestination <jndi_name_for_topic> topic

As an example, if you want to create a topic named levent_Europe, you can
type it at the command line like this:

j2eeadmin -addJmsDestination levent_Europe topic

In JMS application client code, you usually need to look up a destination after
you look up a connection factory. When you look up the levent_Europe topic,
the line might look like the following in the code for lookup:

Topic erdTopic = (Topic) ctx.lookup("levent_Europe");

A JMS application can use multiple queues and topics depending on your
projects.

In addition to a permanent queue and topic, which are created by JMS
administrators for the use of JMS clients, there are temporary queues and top-
ics. These queues and topics are dynamic and are only created for the lifetime
of the session. These temporary destinations:

» Are only used when a response is expected. A response can be specified
by a JMSReplyTo message header when a message is sent.

» Are created by the current destination (queue or topic) and can only be
accessed by this session and all other sessions that belong to the same
connection.

» Are deleted automatically when the session is closed.

Connection Factory

A connection factory is another administered object. It is used to create a
connection to the JMS provider by the client. It is similar to DriverManager in
the Java Database Connectivity (JDBC) API, which hides the JDBC driver
detail from the programmer. It encapsulates a series of connection configura-
tion parameters and information. The host, which the JMS provider is
running, or the port, which the JMS provider is listening to, is an example of
the information that will be put into a connection factory. These types of
configurations are the JMS administrator’s responsibility, but they are needed
by the client to create a proper connection to the JMS server.

A connection factory is defined in the JMS specification as an interface
(javax.jms.ConnectionFactory) without a method. This is the root interface.
In the client applications, you use two subtype interfaces—javax.jms.
QueueConnectionFactory and javax.jms. TopicConnectionFactory—

Concepts of JMS Programming

depending on the messaging model (destination) used in your project. These
subtype interfaces define the methods to create a connection to the server.

You can use two default connections, QueueConnectionFactory and
TopicConnectionFactory, to create connections with the J2EE Reference
Implementation version 1.3 if the JMS administrator did not create a
connection factory.You can also create new connection factories as a JMS
administrator.

The p2p Messaging Model for the Connection Factory
In the p2p messaging model, you can create a connection factory at the
command line like this by typing the following:

j2eeadmin -addJmsFactory <jndi_name_for_conn_factory> queue

For example, if you name the connection factory conFactory_Montreal, the
command will look like this:

j2eeadmin -addJmsFactory conFactory Montreal queue

At the beginning of the JMS client application, you have to look up the
connection factory after calling InitialContext(). For p2p messaging, the lines
that contain calling the initial context and looking up the connection factory

will look like this:

Context myContext = new InitialContext();

QueueConnectionFactory myQueueConnectionFactory =

(QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");

QueueConnectionFactory in the ctx.lookup() is the default connection
factory preconfigured on the JMS server. If another is created and it needs
to be used, you should substitute the default connection factory with the
created one.

The pub/sub Messaging Model for the Connection Factory

In the pub/sub messaging model, you can create a connection factory at the
command line like this by typing the following:

j2eeadmin -addJmsFactory <jndi_name_for_conn_factory> topic

For example, if you name the connection factory conFactory_SanDiego, the
command will look like this:

j2eeadmin -addJmsFactory conFactory SanDiego topic

119

120 Chapter 5 Concepts and Fundamentals of JMS Programming

At the beginning of the JMS client application, you have to look up the
connection factory after calling InitialContext(). For pub/sub messaging, the
lines that call the initial context and look up the connection factor, will look
like this:

Context myContext = new InitialContext();
TopicConnectionFactory myTopicConnectionFactory =
(TopicConnectionFactory) ctx.lookup("TopicConnectionFactory");

TopicConnectionFactory in the ctx.lookup() is the default connection factory
preconfigured on the JMS server. If another 1s created and needs to be used,
you should substitute the default connection factory with the created one.

In both messaging model examples, I used InitialContext() without para-
meters. This means that your code will search the jndi.properties file in the
current CLASSPATH if it exists. This file contains vendor-specific information
about the parameters to connect the JMS provider as well as other Java
Naming Directory Interface (JNDI) parameters. If you need to, you can create
a properties type variable and put these parameters into this properties vari-
able.You can then provide this variable as a parameter in the
InitialContext(), but you will lose portability of the client application. The
parameters will specifically define the properties of the JMS vendor. If you
want your application to be vendor-independent, use InitialContext() with
no parameter.

Connections

A client application makes a connection after it completes configuring the
administered objects, such as the connection factory object and the destina-
tion. It creates a virtual connection to the JMS provider, which is similar to an
open TCP/IP socket between the client and the JMS provider.

Connections are created using factory methods from connection factories.
If the client application has a connection factory, it can use this connection
factory to create a connection. You can think of the connection as a commu-
nication channel between the application and the messaging server. You use a
connection to create one or more sessions.

In the JMS specifications, methods of connections are defined in the
javaxjms.Connection interface. Refer to Appendix D, “Overview of JMS
Package Classes,” for methods of the Connection interface.

Similar to connection factories, this interface has two subtype interfaces—
javax.jms.QueueConnection and javax.jms.TopicConnection—depending on
the messaging model. In the client code, you choose the methods from one of
the interfaces depending the messaging model you are using.

Concepts of JMS Programming

The p2p Messaging Model for a Connection

In the client application of a p2p messaging model (queue type destination),
you can create a connection like this:

QueueConnection myQueueConnection =
myQueueConnectionFactory.createQueueConnection();

The myQueueConnectionFactory object should be created before creating the
QueueConnection line by using the default or administrator-created
ConnectionFactory object. Before the application consumes the message, you
need to call this connection’s start() method like this:

myQueueConnection.start();

When the application completes, you need to close any connection you
created; otherwise, you will keep occupying the resource without using it.
Closing a connection also closes its sessions, message producers, and message
consumers. You can close the connection by calling the close() method

like this:

myQueueConnection.close();

If you want to stop delivery of the messages without closing the connection,
call the stop() method of the connection like this:

myQueueConnection.stop();

The pub/sub Messaging Model for a Connection

Similar steps are carried out when creating a connection using the topic
(pub/sub) model as those carried out using the queue (p2p) model. Just substi-
tute the word queue with the word topic. For consistency, I will explain them
explicitly. You can create a connection for the pub/sub model like this:

TopicConnection myTopicConnection =
myTopicConnectionFactory.createTopicConnection();

The myTopicConnectionFactory object should be created before creating
the TopicConnection line by using the default or administrator created
ConnectionFactory object. Before the application consumes the message,
you need to call this connection’s start() method like this:

myTopicConnection.start();

When the application completes, you need to close any connection you
created; otherwise, you will keep occupying the resource without using it.
Closing a connection also closes its sessions, message producers, and message

consumers.You can close the connection by calling the close() method
like this:

myTopicConnection.close();

121

122 Chapter 5 Concepts and Fundamentals of JMS Programming

If you want to stop delivery of the messages without closing the connection,
call the stop() method of the connection like this:

myTopicConnection.stop();

When a connection is stopped by calling the stop() method temporarily,
message delivery to this connection channel will be stopped. You must call
the start() method to restart message delivery. Stopped mode prevents a
client from receiving a message, but the client can still send a message.

Sessions

As defined in the JMS specification, a session is a single-threaded context used
to produce and consume the messages in a messaging system. After creating a
connection, you should create a session, which creates message producers,
message consumers, and messages. Sessions allow the application to access the
connection in order to send and receive messages. Sessions serialize the mes-
sage, which is sent and received in a single-threaded model.

Let me explain the serialization in a single-threaded model. A messaging
application (JMS client) acting as a sender produces n messages, but another
application acting as a receiver will not receive these n messages at the same
time. A JMS provider ensures that a receiver consumes the messages one
by one.

As defined in the JMS specifications, a session provides a fransactional con-
text for the messaging. This means that the message is sent or received as a
group in one unit. The context stores the messages for delivery until the
messages are committed. For example, if the message has four parts, and if
transacted messaging is chosen, these four messages are not delivered by the
server (provider) until the transaction is committed. They are sent as a block.

Transactions are very important if you send a group of related information
in different sessions. All of the transactions must be completed at once, such as
in a banking transaction. For example, you might want to transfer an amount
of money from one account to another. One of the sessions withdraws money
from the first account, and the other transaction deposits the money into the
second account. If you encounter a networking problem after you complete
the first session, the money that you want to transfer from one account to
another will disappear. Therefore, all related transactions should be put in
one transaction unit and must be committed at the end of all successtul
transactions.

Another advantage of a transaction is that it gives you the chance to change
your mind before completing the transaction by providing a rollback option.
You can cancel all messages that are sent in one block using the rollback
option.

Concepts of JMS Programming

A transaction is optional, and if it is off-state (meaning that no transaction is
chosen), messages are delivered when they are sent. They are not stored for
block delivery. If the session is without transactions, the recipient sends an
acknowledgment when the message is received. If the sender client receives
the acknowledgment, the message will not be sent to the client again.

There are three types of acknowledgment options:

= AUTO_ACKNOWLEDGE—An acknowledgment message is
automatically sent to the sender whenever the delivery is complete.

= CLIENT_ ACKNOWLEDGE—The client must send the acknowledg-
ment for each message programmatically.

= DUPS_OK_ ACKNOWLEDGE—The acknowledgment is not very
strict and delivering the message again is possible if networking
problems occur.

The basic methods for JMS sessions are specified in the javax.jms.Session
interface. Refer to Appendix D for more information about the methods of a
Session interface.

A Session interface, like a Connection interface, has two subtype inter-
faces—javax.jms.QueueSession and javax.jms.TopicSession—depending on the
messaging model. I will explain how you can create a session in the client
application in the following sections.

The p2p Messaging Model for a Session

In the p2p messaging model (queue type destination), you can create a session
like this:

QueueSession myQueueSession =
myQueueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE) ;

A queue session is created without a transaction (the first parameter is false in
the createQueueSession() method) and the sender is acknowledged whenever
the recipient receives the message (the second parameter is

Session. AUTO_ACKNOWLEDGE in the createQueueSession() method). Do
not forget to create the myQueueConnection object before this line.

The pub/sub Messaging Model for Session

Tasks in the pub/sub messaging model (topic type destination) are similar to
the p2p model; you can create a session like this:

TopicSession myTopicSession =
myTopicConnection.createTopicSession(true,
Session.AUTO_ACKNOWLEDGE) ;

123

124 Chapter 5 Concepts and Fundamentals of JMS Programming

A topic session is created with a transaction (the first parameter is true in the
createTopicSession() method) and the sender is acknowledged whenever the
recipient receives the message (the second parameter is
Session. AUTO_ACKNOWLEDGE in the createTopicSession() method). Do
not forget to create the myTopicConnection object before this line.

A JMS connection can have one or more JMS sessions associated with this
connection.

Message Producer

In the JMS specification, a message producer is defined as an object that is
created by a session and is used to send a message to the destination. If you
want to send a message in your code, you have to create a message producer
through the session. Message-sending methods are implemented by the root
javaxjms.MessageProducer interface. Refer to Appendix D for the methods of
the MessageProducer interface. If the default values are valid for your applica-
tion, you do not need to implement all the methods of MessageProducer. You
most likely only need to create a message producer, send the created messages
with the producer, and close it.

Like other interfaces, such as Session and Connection, this interface has two
subtype interfaces: QueueSender and TopicPublisher. You should choose one
of them in the client application depending on the messaging model you
are using.

The p2p Messaging Model for a Message Producer

In the p2p messaging model (queue type destination), you can create a mes-
sage producer object by using the QueueSender interface in the client code
like this:

QueueSender myQueueSender =
myQueueSession.createSender (myQueue);

The myQueueSender object is created for the myQueueSession session object
to send a message to a queue type destination. Do not forget to create a queue
session (myQueueSession object) before this line. myQueue is an administered
object that specifies the queue name.

You can create an unidentified producer by specifying null as an argument
in the createSender () method. In this case, you can wait until you send a
message to specify the destination to send the message to.

After you create a message producer, your client application is ready to send
the message if you created and prepared a message to send. In the p2p model,
you can send the message by using the send() method like this:

myQueueSender.send(message) ;

Concepts of JMS Programming 125

If you created an unidentified producer, specify the destination as the first
parameter in the send() method. The following lines show how to send a
message to the myQueue queue:

QueueSender myQueueSender =
myQueueSession.createSender(null);
//other lines such as creating message
myQueueSender.send(myQueue, message);

The pub/sub Messaging Model for a Message Producer

Similarly, in the pub/sub messaging model (topic type destination), you can
create a message producer object by using the TopicPublisher interface in the
client code like this:

TopicPublisher myTopicPublisher =
myTopicSession.createPublisher(myTopic);

The myTopicSender object is created for the myTopicSession session object to
send a message to a topic type destination. Do not forget to create a topic ses-
ston (myTopicSession object) before this line. myTopic is an administered
object that specifies the topic name.

You can create an unidentified producer by specifying null as an argument
in the createPublisher() method. In this case, you can wait until you send a
message to specify the destination of the message.

After you create a message producer, your client application is ready to pub-
lish the message if you created and prepared a message to send. In the pub/
sub model, you can send the message by using the publish() method like this:

myTopicPublisher.publish(message);

If you created an unidentified producer, specify the destination as the first
parameter in the publish() method. The following lines show how to send a
message to the myTopic topic:

TopicPublisher myTopicPublisher =
myTopicSession.createPublisher(null);
//other lines such as creating message
myTopicPublisher.publish(myTopic, message);

Message Consumer

If an application produces a message, it should be consumed by other applica-
tions. In the JMS specification, a message consumer is defined as an object that
is created by a session and is used to receive a message that is sent to the desti-
nation. If you want to receive a message in your code, you have to create a
message consumer through the session. Message-sending methods are imple-
mented by the root javax.jms.MessageConsumer interface. Refer to Appendix
D for the methods of the MessageConsumer interface.

126 Chapter 5 Concepts and Fundamentals of JMS Programming

Like other interfaces, such as Session and Connection, this interface has two
subtype interfaces: QueueR eceiver and TopicSubscriber. You should choose
one of them in the client application depending on the messaging model you
are using.

A message consumer allows the JMS client to register to a destination
through a JMS provider, which handles and manages message delivery from
the specified destination to the registered consumers for this destination.

Messages are consumed in two ways: synchronously and asynchronously
for both messaging models. The following sections examine synchronous and
asynchronous consuming for the p2p and pub/sub messaging models.

Synchronous Consuming for the p2p Messaging Model

In the synchronous p2p messaging model (queue type destination), you can
create a message consumer object by using the QueueReceiver interface in
the client code like this:

QueueReceiver myQueueReceiver =
myQueueSession.createReciever(myQueue);

The myQueueReceiver object is created for the myQueueSession session
object to receive a message that is sent to a queue type destination. Do not
forget to create a queue session (myQueueSession object) before this line.
myQueue is an administered object that specifies the queue name.

In the synchronous p2p messaging model, there is an additional receiving
method: receiveNoWait (). This method is used when the message is immedi-
ately available. The difference between the receive() and receiveNoWait ()
methods is blocking. The receive () method blocks and waits until a message
arrives if a timeout is not specified as a parameter. The receiveNoWait ()
method does not block a message consumer.

After you create a message consumer, your client application is ready to
receive the message using the receive () method like this:

Message theMessageReceived = myQueueReceiver.receive();

If you want to set a timeout, specify the time in milliseconds as a parameter in
the receive() method.You can use the receive() method at any time after
calling the start() method of the queue connection. By adding the starting
queue connection line, receiving lines listed in the preceding paragraph will
look like this:

myQueueConnection.start();
Message theMessageReceived = myQueueReceiver.receive();

Concepts of JMS Programming 127

The myQueueConnection is the connection that was previously created.

After you receive the message, you can call the close() method to close
the message consumer and release the resources dedicated to the message
consumer.

Synchronous Consuming for the pub/sub Messaging Model

In the synchronous pub/sub messaging model (topic type destination), you can
create a message consumer object by using the TopicSubscriber interface in the
client code like this:

TopicSubscriber myTopicSubscriber =
myTopicSession.createSubscriber(myTopic);

The myTopicSubscriber object is created for the myTopicSession session
object to receive a message that is sent to a topic type destination. Do not
forget to create a topic session (myTopicSession object) before this line.
myTopic is an administered object that specifies the topic name.

In the synchronous pub/sub messaging model, there is an additional receiv-
ing method: receiveNoWait (). This method is used when the message 1s imme-
diately available. The difference between the receive() and receiveNoWait()
methods is blocking. The receive () method blocks and waits until a message
arrives if a timeout is not specified as a parameter. The receiveNoWait()
method does not block a message consumer.

After you create a message consumer, your client application is ready to
receive the message using the receive() method like this:

Message theMessageReceived = myTopicReceiver.receive();

If you want to set a timeout, specify the time in milliseconds as a parameter in
the receive() method.You can use the receive() method at any time after
calling the start() method of a topic connection. By adding a starting topic
connection line, the receiving lines listed in the preceding paragraph will look
like this:

myTopicConnection.start();
Message theMessageReceived = myTopicReceiver.receive();

The myTopicConnection is the connection that was previously created.

After you receive the message, you can call the close() method to close
the message consumer and release the resources dedicated to the message
consumer.

128 Chapter 5 Concepts and Fundamentals of JMS Programming

A Message Listener for Asynchronous Messaging

Before providing you with information about asynchronous messaging, I need
to explain the concept of a message listener. You will find more information
about p2p and pub/sub messaging as well as sample code in the next two
sections of this chapter.

As defined in the JMS specifications, a message listener is an object that acts
as an asynchronous event handler for messages. There is one method in a mes-
sage listener class that implements the MessageListener interface: onMessage().
In the onMessage () method, you define what should be done when a message
arrives. From a developer’s view, you develop a class that implements the
MessageListener interface and overrides the onMessage () method in this class
by putting proper codes in this method. The following sample code lines show
you the structure of a developer created message listener class that can be used
in an asynchronous receiver or publisher client application:

public class myListener implements MessagelListener {
// overriding onMessage method for your message type and format
public void onMessage(Message parMessage) {
// in the body of onMessage() method,
/] put the proper code lines what should
/| be done when a message arrives
} //end of onMessage method
} //end of class

One of the most important aspects of the message listener is that it is not
specific to a particular destination type. The same listener can obtain messages
from either a queue or a topic, depending on the messaging model, for exam-
ple, p2p (QueueReceiver) or pub/sub (TopicSubscriber).

Another important aspect of the message listener is that a message listener
usually expects a specific message type and format. You should define this
message type in the onMessage () method. If the client application does not
receive the proper message type, it must warn the client.

A message listener can reply to messages in two ways. First, it assumes a
particular destination type specified in the code explicitly. Second, it can
obtain the destination type of the message and create a producer for that
destination type by using a temporary destination.

A message listener is serialized. The session that created the message
consumer serializes the execution of all message listeners registered with the
session. This means that only one of the current session’s message listeners is
running.

J2EE version 1.3 has a special bean that acts as a message listener: the
message-driven bean. Message-driven beans are discussed in Chapter 10, “JMS
and Web.”

Concepts of JMS Programming

Asynchronous Consuming for the p2p Messaging Model

Asynchronous messaging is preferred in the pub/sub messaging model,
but you can use it for both types of messaging models by using the
MessageListener interface.

You should first register the message listener with the current
QueueReceiver through the setMessageListener method for asynchronous
messaging. For example, let’s assume that you have developed a
LevQueueListener class as a message listener that implements the
MessageListener interface and overrides the onMessage () method.You can
register the message listener like this:

LevQueueListener myQueueListener = new LevQueuelListener();
myQueueReceiver.setMessagelListener(myQueueListener);

The myQueueReceiver object is created for the myQueueSession session
object to receive a message that is sent to a queue type destination. The
myQueueListener object is a message listener object that listens to the channel
whether the message arrives or not.

After you register the message listener, do not forget to call the start()
method on the QueueConnection to begin message delivery. If you call the
start() method before you register the message listener, you will miss
messages.

Once message delivery begins, the message consumer automatically calls the
message listener’s onMessage () method whenever a message is delivered. The
onMessage () method has a message type parameter. This parameter, which is a
delivered message from the destination, will be cast as a proper message for the
client. I will provide information about the message types in the next section.

Asynchronous Consuming for the pub/sub Messaging Model

Asynchronous messaging for the pub/sub messaging model is implemented by
using a MessageListener interface similar to the one in the p2p model.

You should first register the message listener with the current
TopicSubscriber through the setMessageListener method for asynchronous
messaging. For example, let’s assume that you have developed an
ErdTopicListener class as a message listener that implements the
MessageListener interface and overrides the onMessage () method.You can
register the message listener like this:

ErdTopicListener myTopicListener = new ErdTopicListener ();
myTopicSubscriber.setMessagelListener(myTopicListener);

129

130 Chapter 5 Concepts and Fundamentals of JMS Programming

The myTopicSubscriber object is created for the myTopicSession session
object to receive a message that is sent to a topic type destination. The
myTopicListener object is a message listener object that listens to the channel
whether the message arrives or not.

After you register the message listener, do not forget to call the start()
method on the TopicConnection to begin message delivery. If you call the
start() method before you register the message listener, you will miss
messages.

Similar to the p2p messaging model, once message delivery begins, the
message consumer automatically calls the message listener’s onMessage ()
method whenever a message 1s delivered. The onMessage () method has a
message type parameter. This parameter, which is a delivered message from
the destination, will be cast as a proper message for the client.

Messages

Earlier, I explained many concepts and techniques for a messaging system
based on the JMS specifications. So far, I've discussed transferring a message
from one application (client) to another application (client) or applications.
This discussion about messages is the most important part of the chapter.

Technically, by transferring a message from one point to another you are
actually producing a message in one software application and consuming that
message in another software application. Even though the JMS message format
1s very simple, it still allows you to create compatible messages with other
non-JMS applications on different types of platforms.

In other systems, such as Java RMI, Distributed Component Object Model
(DCOM), or Common Object Request Broker Architecture (CORBA),
message definition and usage is different from the JMS specification. In these
systems, a message is a command to execute a method or procedure. In a JMS
system, a message is not a command. It is a pure message that is transferred
from one point to another. The message does not force the recipient to do
something. The sender does not wait for a response.

As shown in Figure 5.5, a message object has three main parts: a message
header, message properties, and a message body. Detailed information about
the parts of a message object is provided in the following sections.

Concepts of JMS Programming 131

Header

Properties

Body

Figure 5.5 The three parts of a message structure.

The Header Part of the Message Object

A JMS message header contains some predefined fields. These fields are identi-
fiers for a client and a provider. For example, every message has a unique id,
time stamp, or priority. In addition to some optional fields, a message header
must have certain fields such as a JMS destination. These accessor or mutator
methods obey setfMS<HeaderName> and getfMS<HeaderName> syntax. A
list of methods in a message header follows. If you need more information
about properties methods, refer to Appendix D.

= getdMSDestination()

= setJMSDestination(Destination paramDestination)
= getJMSDeliveryMode ()

= setdMSDeliveryMode(int deliveryMode)
= getJMSMessageID()

= setJMSMessageID(String ID)

= getJMSTimestamp()

= setJMSTimestamp(long timeStamp)

= getJMSExpiration()

= setdMSExpiration(long expiration)

= getJMSRedelivered()

= setJMSRedelivered(boolean redelivery)

132 Chapter 5

Concepts and Fundamentals of JMS Programming

getdMSPriority()

setJMSPriority(int priority)

getJMSReplyTo()

setJMSReplyTo(Destination replyTo)
getJMSCorrelationID()

setdJMSCorrelationID(String correlationValue)
getJMSCorrelationIDAsBytes()
setJMSCorrelationIDAsBytes(byte[] correlationValue)
getJMSType ()

setdMSType (String type)

Some of these fields are assigned by the client, some are assigned automatically
when the message is delivered, and one field is assigned by a JMS provider (see
Table 5.1).

Table 5.1 Message Header Fields and How They Are Set

Header Field Set By
JMSDestination Message Producer
JMSDeliveryMode Message Producer
JMSExpiration Message Producer
JMSPriority Message Producer
JMSMessagelD Message Producer
JMSTimestamp Message Producer
JMSR edelivered JMS provider
JMSCorrelationID Client
JMSReplyTo Client

JMSType Client

The Properties Part of the Message Object

Properties of a JMS message are like additional headers that are assigned to a
message to provide information to the developer. These properties can be used
to provide compatibility with other messaging systems. Properties can be used
for message selectors, which are discussed later in this section.

Properties can either be predefined or user defined. They can be divided
into three classes: application-specific properties, JMS-defined properties, and
provider-specific properties.

Concepts of JMS Programming 133

For example, if you want to define a String type hostuserID property, you
can define it by using the setStringProperty () accessor like this:

myTextMessage.setStringProperty("hostUserID", hostuserID);

The myTextMessage is the TextMessage type message created by using the
createTextMessage () method. This hostUserID property is valid and meaning-
ful only in the application. This kind of property specified in the property part
of the message object is useful to filter messages using message selectors.

Most properties methods (accessor or mutator methods) of a message obey
the set<DataType>Property and get<DataType>Property syntax. The proper-
ties methods list follows. If you need more information about properties meth-
ods, refer to Appendix D.

= clearProperties()

= propertyExists(String name)

= getBooleanProperty(String name)

= getByteProperty(String name)

= getShortProperty(String name)

= getIntProperty(String name)

= getLongProperty(String name)

= getFloatProperty(String name)

= getDoubleProperty(String name)

= getStringProperty(String name)

= getObjectProperty(String name)

= getPropertyNames()

= setBooleanProperty(String name, boolean value)
= setByteProperty(String name, byte value)

= setShortProperty(String name, short value)

= setIntProperty(String name, int value)

= setLongProperty(String name, long value)

= setFloatProperty(String name, float value)

= setDoubleProperty(String name, double value)
= setStringProperty(String name, String value)

= setObjectProperty(String name, Object value)

134 Chapter 5 Concepts and Fundamentals of JMS Programming

Message Selectors

In this section, I provide some brief information about message selectors,
which are used in message headers and properties.

Another feature of a message consumer is to filter the message using
message selectors. This process is like a SQL type query, and a message selector
is a string that contains a criteria expression.You can filter a message with
criteria from the message headers and the message properties. The message
consumer only receives messages whose headers and properties match the
criteria specified in the selector. A message selector cannot select messages
based on the content of the message body.

For example, assume that there is an identifier named cityName in the JMS
property of a message. You want to filter some cities when the message arrives.
You can write a selector like this:

String mySelector = "cityName IN ('New York', 'Boston', 'Newark');

You can use this selector in the message receiver like this:

TopicSubscriber mySubscriber =
session.createSubscriber(topic, mySelector, false);

The selector sentence can be as complex as necessary. The identifier used in
the selector sentence must always refer to the JMS property name or the JMS
header name in the message.

The Body of the Message Object

In the JMS specifications, there are five different message body formats, which
are also called message types: TextMessage, ObjectMessage, MapMessage,
BytesMessage, and StreamMessage. Actually, these five message types are subin-
terfaces of the Message interface. JMS defines the Message interface, but it
does not define its implementation. Vendors are free to implement and transfer
the message in their own way. JMS tries to maintain standard interfaces for
JMS developers. Vendors might ignore one message type and support their
own message type in the Message interface.

Information about these five subinterfaces is provided in the following
sections. You can find more information about subinterfaces of the Message
interface and their methods in Appendix D.

TextMessage Interface

The TextMessage interface contains the java.lang.String type object. It is used
when you need to transfer simple text messages. You can transfer more compli-
cated messages such as XML documents as long as they are text-based. Before
you send the message, you need to use the createTextMessage() and

Concepts of JMS Programming

setText() methods. The setText() method takes a String type value or vari-
able as a parameter. The following sample lines send a text message to a topic
destination (pub/sub):

TextMessage messageOnBoard = session.createTextMessage();
messageOnBoard.setText("This is a text message");
myTopicPublisher.publish(messageOnBoard);

If the destination is a queue type (p2p), you only need to change the sender
method as follows:

TextMessage messageOnBoard = session.createTextMessage();
messageOnBoard.setText("This is a text message");
myQueueSender.send(messageOnBoard) ;

When the message arrives at the consumer, it is extracted by the getText()
method and is assigned a String variable. As an example, you can extract a text
type message from the preceding example like this:

TextMessage recTextMessage = (TextMessage)message;
String recOnBoard = recTextMessage.getText();

ObjectMessage Interface

The ObjectMessage interface contains a serializable Java object. It is used
when you need to transfer Java objects. Before you send the message, you need
to use the createObjectMessage() and setObject () methods. The setObject()
method takes a serializable object as a parameter. The following sample lines
send an object message to a topic destination (pub/sub):

ObjectMessage theObjMessage =
session.createObjectMessage();
theObjMessage.setObj("This is an object message");
myTopicPublisher.publish(theObjMessage);

If the destination is a queue type (p2p), you only need to change the sender
method as follows:

ObjectMessage theObjMessage =
session.createObjectMessage();
theObjMessage.setObj("This is an object message");
myQueueSender.send(theObjMessage) ;

When the message arrives at the consumer, it is extracted by the getObject()
method and is assigned an Object variable. As an example, you can extract an
object type message from the preceding example like this:

ObjectMessage recObjectMessage = (ObjectMessage)message;
Object recObjMessage = recObjectMessage.getObject();

135

136 Chapter 5 Concepts and Fundamentals of JMS Programming

MapMessage Interface

The MapMessage interface contains a set of name-value pairs. It is used when
you need to transfer keyed data. This method takes a key-value pair as a para-
meter. Before you send the message, you need to use the createMapMessage ()

method and certain setXxX() methods depending on the value data type. The
setXXX () methods are:

» setInt() for integer type value

= setFloat() for float type

» setString() for String type value

= setObject() for object type value

= setBoolean() for boolean type value
» setBytes() for byte type value

» setShort() for short type value

= setChar() for char type value

» setLong() for long type value

» setDouble() for double type value

The following sample lines send a map message to a topic destination
(pub/sub):

MapMessage theMapMessage = session.createMapMessage();
theMapMessage.setString("HostName", "Montreal");
theMapMessage.setFloat("RAM", 512);
theMapMessage.setFloat("Disk", 80);
myTopicPublisher.publish(theMapMessage);

If the destination is a queue type (p2p), you only need to change the sender
method as follows:
MapMessage theMapMessage = session.createMapMessage();
theMapMessage.setString("HostName", "Montreal");
theMapMessage.setFloat ("RAM", 512);
theMapMessage.setInt("Disk", 80);
myQueueSender.send(theMapMessage) ;

When the message arrives at the consumer, it is extracted by the getXXX()
methods and assigned to a proper type variable. As an example, you can extract
the map type message from the preceding example like this:

MapMessage recMapMessage = (MapMessage)message;

String recHostName = recMapMessage.getString("HostName");
float recRAM = recMapMessage.getFloat("RAM");

int recDisk = recMapMessage.getInt("Disk");

Concepts of JMS Programming 137

BytesMessage Interface

The BytesMessage interface contains an array of primitive bytes. It is used
when you need to transfer data in the application’s native format, which might
not be suitable for existing message types in the JMS specifications. You can
transfer data between two applications regardless of its JMS status. Before you
send the message, you need to use the createBytesMessage() method and
certain writeXXX () methods depending on the value data type. The writeXXX()
methods are:

= writeByte(byte parValue) for byte type value

= writeBytes(byte[] parValue) for array of byte value
= writeBoolean(boolean parvalue) for boolean type value
= writeChar(char parValue) for char type value

= writeShort(short parvalue) for short type value

= writeInt(int parvalue) for integer type value

= writeLong(long parValue) for long type value

= writeFloat(float parValue) for float type value

= writeDouble(double parvalue) for double type value
= writeUTF(String parvalue) for String type value

= writeObject(Object parvalue) for object type value

The BytesMessage interface is very similar to java.io.DatalnputStream and
java.io.DataOutputStream. The following sample lines send byte messages to a
topic destination (pub/sub):

BytesMessage theBytesMessage =
session.createBytesMessage();
theBytesMessage.writeUTF("San Fransisco");
theBytesMessage.writeInt(120);
myTopicPublisher.publish(theBytesMessage);

If the destination is a queue type (p2p), you only need to change the sender
method as follows:

BytesMessage theBytesMessage =
session.createBytesMessage();
theBytesMessage.writeUTF("San Fransisco");
theBytesMessage.writeInt(120);
myQueueSender.send(theBytesMessage);

When the message arrives at the consumer, it is extracted by the readxxx()
methods and is assigned to a proper type variable. As an example, you can
extract the bytes type message from the preceding example like this:

138 Chapter 5 Concepts and Fundamentals of JMS Programming

BytesMessage recBytesMessage = (BytesMessage)message;
String cityName = recBytesMessage.readUTF();
int carParking = recBytesMessage. readInt();

StreamMessage Interface

The StreamMessage interface contains a stream of primitive Java types such as
int, char, double, boolean, and so on. Primitive types are read from the message
in the same order they are written. The StreamMessage interface and its meth-
ods look like the BytesMessage, but they are not the same. StreamMessage
keeps track of the order of written messages, and the message is then
converted to the primitive type by following formal conversion rules.

Before you send the message, you need to use the createStreamMessage ()
and certain writexxx() methods depending on the value data type. The
writeXXX() methods are:

= writeByte(byte parvValue) for byte type value

= writeBytes(byte[] parValue) for array of byte value

» writeBoolean(boolean parValue) for boolean type value

= writeChar(char parValue) for char type value

= writeShort(short parvalue) for short type value

» writeInt(int parvalue) for integer type value

= writeLong(long parValue) for long type value

» writeFloat(float parvalue) for float type value

» writeDouble(double parvalue) for double type value

= writeString(String parvalue) for String type value

= writeObject(Object parvalue) for object type value
You have to be careful when converting a message stream from a written
format to a reading format. For example, you can write the message in long

data type, and you can read it in long or String data type. Data type conver-
sions are listed in Table 5.2.

Table 5.2 StreamMessage Conversion Rules

Written Message Type Read Message Type
boolean boolean, String

byte byte, short, int, long, String
char char, String

short short, int, long, String

Concepts of JMS Programming

Written Message Type Read Message Type

int int, long, String

long long, String

float float, double, String

double double, String

String String, boolean, byte, short, int,

long, float, double
byte[| byte] |

The following sample lines send a stream message to a topic destination
(pub/sub):

StreamMessage theStreamMessage =
session.createStreamMessage();
theStreamMessage.writeString("Alaska");
theStreamMessage.writeShort(49);
myTopicPublisher.publish(theStreamMessage);

If the destination is a queue type (p2p), you only need to change the sender
method as follows:

StreamMessage theStreamMessage =
session.createStreamMessage();
theStreamMessage.writeString("Alaska");
theStreamMessage.writeShort(49);
myQueueSender.send(theStreamMessage) ;

When the message arrives at the consumer, it is extracted by the readxxx()
methods and assigned to a proper type variable. As an example, you can extract
the stream type message from the preceding example like this:

StreamMessage recStreamMessage = (StreamMessage)message;
String stateName = recStreamMessage.readString();
int stateNo = recStreamMessage. readShort();

Because some data types of the message written can be read in another data
type by obeying formal conversion rules, the last line of the reading example
can be written like this:

int stateNo = recStreamMessage. readInt();

or

int stateNo = recStreamMessage. readLong();

139

140 Chapter 5 Concepts and Fundamentals of JMS Programming

Summary

In this chapter, you learned the concepts of JMS programming and the basics
of JMS API programming techniques. I started this chapter by explaining the
definition of a messaging service and its major features. The messaging system
is based on message-oriented middleware (MOM), which was explained in the
previous chapter. Advantages and disadvantages of using a messaging system
were then discussed prior to providing information about the JMS API.

The JMS API, which is built onto the J2EE 1.3 platform specifications,
covers point-to-point and publish-and-subscriber messaging models used in
MOM providers.

In this chapter, you learned the concepts of JMS programming including its
architecture, message consumption, destination, connection factory, connec-
tion, session, message producer, message consumer, and message listener.

I also showed you how to create two administered objects,
ConnectionFactory and Destination, and how to use them in JMS messaging
applications.

I explained synchronous messaging and asynchronous messaging and com-
pared the two models. You also learned about message structure and different
message types in the JMS specifications.

Although I provided some information about JMS programming concepts
and techniques, more details such as methods of some interfaces are discussed
in Appendix D. Many concepts were explained using a few sample lines
of code, but you can find complete and more valuable examples in the
next chapter.

Questions and Answers

1. If there is no ConnectionFactory object created by the JMS provider
administrator, what can I do?

A ConnectionFactory object is an administered object and must be created by
the JMS provider administrator. If there is no ConnectionFactory object cre-
ated, you can use the default ConnectionFactory object. You will learn more
detailed information in the section, “Basic Steps to Write a JMS Application,”
in the next chapter.

2. If there is no Destination object created by the JMS provider
administrator, what can I do?

A Destination object is an administered object like the ConnectionFactory
object and must be created by the JMS provider administrator. If there is no
Destination object created, you cannot use the JMS API for messaging. There
is no default Destination object.

Questions and Answers

3. If'I do not specify a value for the time-to-live method of the Message
interface, what will happen to the message if the receiver is inactive?

If you do not specify a time for time-to-live, it means that the message will
never expire. The message will be delivered whenever the receiver client is
available, depending on the messaging model you are using.

4. Can I create two or more connections to send messages?

Yes, you can. Some advanced applications might use several connections. But a
connection is a relatively heavyweight object. Therefore, only one connection
is preferred. If you need to, you can create two or more sessions—which are
lightweight JMS objects—and a number of message producers and consumers
to send messages on different channels.

5. If T use transacted messaging and if the connection or session is closed in
the middle of transmitting without an acknowledgment, what will hap-
pen to the message that is not sent to the destination?

In this case, the JMS provider will call the rollback() method, the messages
that are not delivered will be deleted, and the messages already delivered to the
destination will be removed from the destination by a JMS provider. The
recipient will not receive any messages.

6. I want to filter some messages that should not be delivered to the con-
sumer. How can I define a field in a message selector for some values in
the message body?

A message selector only works with header and property fields. You cannot
filter messages based on values in the message body.

7. In the message received, there is a ReplyTo field. If this destination is not
created, how can I send a message to the destination specified in a
ReplyTo field?

You can create a temporary destination dynamically. During the session, the
connection is open, so you can send the message to this temporary destina-
tion. Whenever the connection is closed, this destination is removed along
with the messages that have not yet been delivered.

141

