
QuickTime Movies and
File Handling

9

AT THIS POINT,YOU KNOW ALL about interface elements such as windows, controls,
and menus, and you have a firm grasp on how your program recognizes and handles a
variety of types of events. So it’s on to the fun stuff. In this chapter, you’ll see how
your program opens and plays a QuickTime movie. QuickTime is movie-playing soft-
ware that is part of the system software of every Macintosh in your target audience.

It’s possible for a program to cause a QuickTime movie to spring forth from
(seemingly) nowhere. However, it’s more likely that a movie-playing application will
enable the user to select the file that holds the movie to play. Giving the user the
power to open a QuickTime movie file, or any other type of file, involves the Open
dialog box.We’ll look at the Open dialog box first in this chapter.

Files and Navigation Services
A file is a sequence of bytes stored on physical media, such as a hard drive, and a direc-
tory is another name for a folder.A volume can be an entire physical storage device or it
can be part of the device (the result of formatting the device to consist of multiple
volumes). For a program to access a file, it needs to know the file’s name, the directory
in which the file is located, and the volume on which that directory resides. In certain
circumstances, a program that’s to open a file includes these values (the file name and
location) directly within its code, but that’s a scenario few programs use. In addition,

09 1682 CH09 10/15/01 1:24 PM Page 255

256 Chapter 9 QuickTime Movies and File Handling

this hard-coding of file information prevents the user from choosing what file to
open, and it also sets up an application failure should the user move or delete the
sought-after file.

A better way to handle the situation is to call Navigation Services routines to make
use of the Open dialog box. By displaying the Open dialog box, you enable a user to
select the file to open. Handling file opening in this way also forces the system to do
the work of determining a file’s name and location, and it leaves it to the system to
convey this important file information to your program.

The Open dialog box provides the user with a standard interface for opening a file.
This same Open dialog box is used by any real-world application.You can see it by
choosing Open from the File menu of programs such as Apple’s TextEdit or by look-
ing at Figure 9.1.

Navigation Services is part of the Carbon API that makes is possible for your pro-
grams to include standard dialogs such as the Open dialog box. In addition, it is an
important and useful part of the Carbon API. It routines provide interface consistency
for the user and removes the burden of file location determination from the program-
mer. In this chapter, you’ll see how to make use of Navigation Services, so brace your-
self for a barrage of information about key Navigation Services routines.

Implementing an Open Dialog Box
You’ll make use of a number of Navigation Services routines to display and handle an
Open dialog box that is similar to the one TextEdit and other Mac OS X applications
use.To do that, your code will perform the following:

1. Create and display the standard Open dialog box.

2. Become aware of the user’s action in the Open dialog box.

3. Respond to the user’s action (for instance, open the appropriate file if the user
clicks the Open button).

4. Clean up by disposing of the Open dialog box when appropriate.

The overall look and behavior of an Open dialog box usually is the same. Such a dia-
log box includes Cancel and Open buttons and a list view of the folders and files on
the user’s machine.The general behavior of this type of dialog box is the same from
one implementation to another as well; the user navigates through the file list, clicks
the name of a file to open within the list, and then clicks the Open button to open
the selected file.To promote this consistent look and behavior, Navigation Services
defines the NavDialogCreationOptions data structure as the following:

struct NavDialogCreationOptions {
UInt16 version;
NavDialogOptionFlags optionFlags;
Point location;
CFStringRef clientName;
CFStringRef windowTitle;

09 1682 CH09 10/15/01 1:24 PM Page 256

257Files and Navigation Services

CFStringRef actionButtonLabel;
CFStringRef cancelButtonLabel;
CFStringRef saveFileName;
CFStringRef message;
UInt32 preferenceKey;
CFArrayRef popupExtension;
WindowModality modality;
WindowRef parentWindow;
char reserved[16];

};
typedef struct NavDialogCreationOptions NavDialogCreationOptions;

Figure 9.1 A typical Open dialog box (as displayed in TextEdit).

The NavDialogCreationOptions structure defines the features (such as size and loca-
tion) of an Open dialog box.The Navigation Services routine
NavGetDefaultDialogCreationOptions is used to fill the fields of a
NavDialogCreationOptions structure with default values. Use this routine by declaring
a variable of type NavDialogCreationOptions and then passing that variable’s address
as the routine’s one argument:

OSStatus err;
NavDialogCreationOptions dialogAttributes;

err = NavGetDefaultDialogCreationOptions(&dialogAttributes)

09 1682 CH09 10/15/01 1:24 PM Page 257

258 Chapter 9 QuickTime Movies and File Handling

After setting the values of the members of a structure to default values, you can cus-
tomize the structure by changing the value of any individual member. For instance, to
make the Open dialog box take over the application and disallow other application
actions to take its place, the value of the dialog box’s NavDialogCreationOptions
modality member can be set to the Apple-defined constant kWindowModalityAppModal:

dialogAttributes.modality = kWindowModalityAppModal;

You’ve seen how a program includes an application-defined event handler routine
that’s associated with a window or other object.The Open dialog box also needs an
application-defined event handler routine associated with it.This event handler will be
called by the system when the user dismisses the Open dialog box. Navigation
Services creates, displays, and runs the Open dialog box, but it is this event handler
that should perform the actual work of opening a user-selected file. Like other event
handlers, this Open dialog box event handler can have a name of your choosing, but it
must include arguments of specific types. Here’s the prototype for such a routine:

pascal void MyNavEventCallback(
NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void* callBackUD);

In a moment, you’ll pass a pointer to this event handler to the Navigation Services
routine that creates the Open dialog box.The pointer should be of type NavEventUPP.
The UPP in NavEventUPP stands for universal procedure pointer, which is a pointer that
is capable of referencing procedures, or routines, in different executable formats. In this
case, a NavEventUPP can point to a routine that is in native Mac OS X executable for-
mat or in pre-Mac OS X executable format.You’ll also need this pointer elsewhere in
your program, so declaring this pointer globally makes sense:

NavEventUPP gNavEventHandlerPtr;

Use the Navigation Services routine NewNavEventUPP to set this routine pointer vari-
able to point to the Open dialog box event handler:

gNavEventHandlerPtr = NewNavEventUPP(MyNavEventCallback);

Now it’s time to make a call to the Navigation Services routine
NavCreateGetFileDialog to create the Open dialog box.This routine requires seven
arguments, many of which can typically get set to NULL. Here’s the function prototype:

NavCreateGetFileDialog(
const NavDialogCreationOptions * inOptions,
NavTypeListHandle inTypeList,
NavEventUPP inEventProc,
NavPreviewUPP inPreviewProc,
NavObjectFilterUPP inFilterProc,
void * inClientData,
NavDialogRef * outDialog);

09 1682 CH09 10/15/01 1:24 PM Page 258

259Files and Navigation Services

Using the previously declared dialogAttributes and gNavEventHandlerPtr variables,
here’s how a call to NavCreateGetFileDialog could look:

NavDialogRef openDialog;

err = NavCreateGetFileDialog(&dialogAttributes, NULL,
gNavEventHandlerPtr, NULL, NULL,
NULL, &openDialog);

The inOptions parameter is a pointer to the set of Open dialog box features that was
returned by a prior call to NavGetDefaultDialogCreationOptions. In the preceding
code snippet, dialogAttributes holds that set of default values, with the exception of
the modality that was altered after NavGetDefaultDialogCreationOptions was called.

The inTypeList is a list of file types to display in the Open dialog box’s browser;
pass NULL to display all file types.

The inEventProc parameter is the procedure pointer that points to the Open dialog
box’s event handler routine. In the preceding snippet, the global UPP variable
gNavEventHandlerPtr, which was assigned its value from a call to NewNavEventUPP,
is used.

The next three arguments each can be set to NULL.The inPreviewProc parameter is
a pointer to a custom file preview routine.The inFilterProc parameter is a pointer to
a custom file filter routine.The inClientData parameter is a value that gets passed to
either of the just-mentioned custom routines (if present).The preceding snippet uses
NULL for each of these three arguments.

The last argument is a pointer to a variable of type NavDialogRef.After
NavCreateGetFileDialog executes, this argument will hold a reference to the newly
created Open dialog box.

NavCreateGetFileDialog creates an Open dialog box, but it doesn’t display or con-
trol it.To do those chores, call the Navigation Services routine NavDialogRun:

err = NavDialogRun(openDialog);

NavDialogRun handles the user’s interaction with the Open dialog box, so you don’t
need to write any code to follow the user’s actions as he or she uses the dialog box to
browse for a file to open.When the user clicks the Cancel or Open button, the appli-
cation-defined event handler associated with this Open dialog box is called. In doing
this, Navigation Services passes on information about the event that initiated the event
handler call.

As you’ll see a little later in this chapter, the event handler takes care of the opening of
the selected file and the dismissing of the Open dialog box. Control then returns to the
code that follows the call to NavDialogRun.That code should look something like this:

if (err != noErr)
{

NavDialogDispose(openDialog);
DisposeNavEventUPP(gNavEventHandlerPtr);

}

09 1682 CH09 10/15/01 1:24 PM Page 259

260 Chapter 9 QuickTime Movies and File Handling

If NavDialogRun completes without an error, your work is done. If there was an error,
the variable err will have a nonzero (non-noErr) value.Your code should call the
Navigation Services routines NavDialogDispose to dispose of the Open dialog box ref-
erence and DisposeNavEventUPP to dispose of the pointer to the Open dialog box
event handler.

Whew.That covers the process of displaying and running the Open dialog box.
Now it’s time to take a look at all the code as it might appear in an application-
defined routine that is used to enable a user to choose a file to open:

void DisplayOpenFileDialog(void)
{

OSStatus err;
NavDialogRef openDialog;
NavDialogCreationOptions dialogAttributes;

err = NavGetDefaultDialogCreationOptions(&dialogAttributes);

dialogAttributes.modality = kWindowModalityAppModal;

gNavEventHandlerPtr = NewNavEventUPP(MyNavEventCallback);

err = NavCreateGetFileDialog(&dialogAttributes, NULL,
gNavEventHandlerPtr, NULL, NULL,
NULL, &openDialog);

err = NavDialogRun(openDialog);

if (err != noErr)
{

NavDialogDispose(openDialog);
DisposeNavEventUPP(gNavEventHandlerPtr);

}
}

Open Dialog Box Event Handler
After the user of an Open dialog box makes a final decision (by clicking the Cancel or
Open button), the Open dialog box event handler is automatically invoked.When the
system invokes this handler, the system passes information about the event initiated by
the user’s action:

pascal void MyNavEventCallback(
NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void* callBackUD)

Your event handler uses the information in the callBackSelector argument to deter-
mine the action with which to deal.The bulk of the event handler consists of a switch
statement that determines which of the primary dialog box-related tasks needs handling:

switch (callBackSelector)
{

09 1682 CH09 10/15/01 1:24 PM Page 260

261Files and Navigation Services

case kNavCBUserAction:
// further determine which action took place (open or save)
// handle the action (open or save selected file)
break;

case kNavCBTerminate:
// clean up after the now-dismissed dialog
break;

}

The main two tasks handled in the switch consist of a user action
(kNavCBUserAction), such as the request to open a file, and the memory clean up
(kNavCBTerminate), which is in response to the dismissal of the dialog box.

To respond to a user action, call the Navigation Services routine
NavDialogGetReply. Pass this routine a reference to the dialog box that initiated the
event and a pointer to a reply record. NavDialogGetReply will fill the reply record
with information about the user’s action (such as the file to open).The context field
of the event handler argument callBackParms holds the dialog reference. Declare a
variable of type NavReplyRecord to be used as the reply record:

OSStatus err;
NavReplyRecord reply;
NavUserAction userAction = 0;

err = NavDialogGetReply(callBackParms->context, &reply);

Now call NavDialogGetUserAction, passing this routine a reference to the affected dia-
log box. Once again, the context field of the callBackParams event handler argument
is used. NavDialogGetUserAction tells your program the exact action the user took. In
the case of an Open dialog box, you’re looking for a user action of
kNavUserActionOpen. Note that similar code is used to handle a Save dialog, and in
such a case, you’d look for a user action of kNavUserActionSaveAs. Finish with a call
to NavDisposeReply to dispose of the reply record.

userAction = NavDialogGetUserAction(callBackParms->context);

switch (userAction)
{

case kNavUserActionOpen:
// open file here using reply record information
break;

}
err = NavDisposeReply(&reply);

Note
The preceding code snippet includes one very vague comment. Obviously, some code needs to actually

open the user-selected file, yet I’ve waved that chore off with a single comment. That’s because the par-

ticulars of opening a file are specific to the type of file to open; a move file, a graphics file, and an appli-

cation-defined file all require different code to be transformed from data on media to data in memory

and finally to information displayed in a window. Later in this chapter, we’ll jump into the general steps,

and the detailed code, for opening one type of file: a QuickTime movie file.

09 1682 CH09 10/15/01 1:24 PM Page 261

262 Chapter 9 QuickTime Movies and File Handling

You can put the just-described Open dialog box event handler code into a routine
that looks like the one shown here:

pascal void MyOpenDialogEventCallback(
NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void* callBackUD)

{
OSStatus err;
NavReplyRecord reply;
NavUserAction userAction = 0;

switch (callBackSelector)
{

case kNavCBUserAction:
err = NavDialogGetReply(callBackParms->context, &reply);
userAction = NavDialogGetUserAction(callBackParms->context);

switch (userAction)
{

case kNavUserActionOpen:
// open file here using reply record information
break;

}
err = NavDisposeReply(&reply);
break;

case kNavCBTerminate:
NavDialogDispose(callBackParms->context);
DisposeNavEventUPP(gNavEventHandlerPtr);
break;

}
}

The MyOpenDialogEventCallback routine is generic enough that it should work, with
very little alteration, in your own file-opening program. Now all you need to do is
replace the routine’s one comment with a call to an application-defined function
designed to open a file of the appropriate type. In the next section, you see how to
write such a routine.The code for the application-defined function
OpenOneQTMovieFile opens a QuickTime movie file.The OpenPlayMovie example
then uses the MyOpenDialogEventCallback routine with a call to OpenOneQTMovieFile.

QuickTime Movies
A sound knowledge of the fundamentals of developing an interface for your Mac OS
X program is of great importance, but you didn’t choose to learn about Mac program-
ming for the sole purpose of creating windows that include a few buttons.You most
certainly also want to know how your own program can include at least some multi-
media capabilities.

09 1682 CH09 10/15/01 1:24 PM Page 262

263QuickTime Movies

Unfortunately, Mac OS X programming for sound playing, sound recording, and
smooth animation are worthy of their own programming book. So, what can I show
you in just half a chapter? Well, I can show you one multimedia topic that best show-
cases Mac OS X multimedia in action: QuickTime. By giving your program the abil-
ity to play QuickTime movies, you can add high-resolution graphics, animation, and
sound playing to your program.

Note
QuickTime is now cross-platform software, but it started out as an extension of Mac-only

system software.

In this section, you see how to use the previously discussed Navigation Services routines
to present the user with an Open dialog box that lets him or her choose a QuickTime
movie file to open.After that file is open, you use Carbon API routines (which are
grouped into the Movie Toolbox area of the Carbon API) to play the movie.

Opening a QuickTime Movie File
This chapter’s “Files and Navigation Services” section provides all the details for pre-
senting the user with a standard Open dialog box. It also shows how to respond to a
user’s selection of a file that is listed in that dialog box.

In this part of the chapter, you’ll be using that information to give the user the
power to pick a QuickTime movie file to display. Specifically, I’ll jump into descrip-
tions of the techniques and Movie Toolbox routines that your program will use to get
QuickTime movie file data that exists on the user’s disk into a format that’s ready to
play as a movie in a window.The result will be an application-defined routine named
OpenOneQTMovieFile.Then, after you’ve developed this routine, you can insert it into
the kNavUserActionOpen case label section of the switch statement in the
MyOpenDialogEventCallback routine that was developed earlier in this chapter.

Transferring Movie File Data to Memory

Scan back just a bit in this chapter and you’ll see the heading “Opening a QuickTime
Movie File.” Look ahead a little and you’ll see the heading “Playing a QuickTime
Movie.” In broad terms, these are the two steps a program performs so that a user can
view a movie. However, each step is more involved that it would first appear. For
instance, in the case of opening a movie file, what’s actually taking place is the opening
of that file (so its data can be accessed), the copying of that file’s movie data content
into memory (where it can be referenced by the application), and the closing of the file
(because its contents are no longer needed).The goal of what’s loosely described as the
opening of a file is actually the transferring (or copying) of a file’s data into memory.

To open a file, your program needs to know the file’s name and location. If the user
selected the file in the Open dialog box, that dialog box’s event handler gets the
required information from the NavReplyRecord variable. Recall from this chapter’s

09 1682 CH09 10/15/01 1:24 PM Page 263

264 Chapter 9 QuickTime Movies and File Handling

“Open Dialog Box Event Handler” section that the Open dialog box event handler
called NavDialogGetReply to fill a NavReplyRecord with information about the user-
selected file to open:

NavReplyRecord reply;

err = NavDialogGetReply(callBackParms->context, &reply);

With years of computer programming experience comes an appreciation for a pro-
gramming task as simple as adding two numbers; the job’s simplicity ensures there’s lit-
tle or no chance of error.This is in contrast to a task such as file handling, which can
be fraught with peril! The task involves selecting a file, opening it, copying its contents
to memory, and then accessing that memory to make use of the data within. One
flipped bit in this process can really play havoc on a program or even the drive itself!

In an attempt to avoid intimacy with the debugger, file-handling code often makes
judicious use of error checking.To increase the explanation-to-code ratio in this book,
I’ve provided descriptions of some basic error-handling techniques in Chapter 2,
“Overview of Mac OS X Programming,” and then for the most part, kept error-
handling code to a minimum in the subsequent chapters. Now, however, is no time
to be stingy with error checking, so in upcoming snippets, you’ll see a little extra
precautionary code, starting right here:

OSStatus err;
AEDesc newDescriptor;
FSRef movieRef;

err = AECoerceDesc(&reply->selection, typeFSRef, &newDescriptor);

err = AEGetDescData(&newDescriptor, (void *)(&movieRef),
sizeof(FSRef));

The Apple Event Manager routine AECoerceDesc accepts data of one type (the first
argument), manipulates it to another type (specified by the second argument), and
saves the results in a new variable (the third argument).The usage of this routine veri-
fies that the reply variable that holds the user-selected file is in the format of an
FSRef.After the call to AECoerceDesc completes, your program is assured of having an
FSRef within the variable newDescriptor.The Apple Event Manager routine
AEGetDescData then is called to retrieve the FSRef from the newDescriptor variable.

At this point, the program has an FSRef (the variable movieRef) that holds informa-
tion about the user-selected file.Thus, we’re almost ready to open the QuickTime
movie file. However, we need to make one quick detour. Some of the Carbon API
routines are older (they existed as original Macintosh Toolbox API routines), and some
are newer (they were created to handle Mac OS X tasks for which no original
Macintosh Toolbox routine existed).The newer file-handling Carbon API routines that
require information about a file accept that information in the form of an argument of
type FSRef. In contrast, original file-handling Toolbox routines that became part of the
Carbon API look for this same information in the form of an argument of type

09 1682 CH09 10/15/01 1:24 PM Page 264

265QuickTime Movies

FSSpec. In addition, opening a QuickTime movie file requires the use of one of these
older FSSpec-accepting routines. Fortunately, for situations such as this, the routine
FSGetCatalogInfo function can be used to convert an FSRef to an FSSpec:

FSSpec userFileFSSpec;

FSGetCatalogInfo(&movieRef, kFSCatInfoNone, NULL, NULL,
&userFileFSSpec, NULL);

FSGetCatalogInfo is a workhorse of a utility routine in that it can be used to obtain
all sorts of information about a catalog file. (A catalog file is a special file used to keep
information about all the files and directories on a volume.) You can use
FSGetCatalogInfo to obtain information such as the reference number of the volume
on which a file resides or the parent directory ID of a file.You also can use
FSGetCatalogInfo to simply obtain an FSSpec for a file for which you already have an
FSRef.That’s what I’m interested in here. Of most importance in this usage of
FSGetCatalogInfo is the first argument, which is a pointer to the FSRef to convert,
and the fifth argument, which is a pointer to an FSSpec variable that
FSGetCatalogInfo is to fill with the file system specification.The only other non-NULL
value is the second argument.This argument normally is used to specify which of
many pieces of information about a file or directory are to be returned. I don’t need
any of this information, so the constant kFSCatInfoNone is used here.

Now it’s time to open the file.The Movie Toolbox routine OpenMovieFile does
that.The first OpenMovieFile argument is a file system specification.You can use the
one returned by the call to FSGetCatalogInfo.After OpenMovieFile opens the speci-
fied filem it provides your program with a reference number for that file.That refer-
ence number is your program’s means of (you guessed it) referring to that file in
subsequent calls to Movie Toolbox routines.The next argument is a pointer to a vari-
able in which OpenMovieFile places this reference value.The last argument is a per-
mission level for the opened file.A program that opens a movie for playing but that
won’t enable the altering of the movie contents should use the constant fsRdPerm.

OSErr err;
FSSpec userFileFSSpec
short movieRefNum;

err = OpenMovieFile(&userFileFSSpec, &movieRefNum, fsRdPerm);

Caution
Besides fsRdPerm, other permission constants include fsWrPerm (to enable writing) and

fsRdWrPerm (to enable reading and writing). In my simple examples, the permission level isn’t crucial.

That is, you can change it to, say, fsRdWrPerm, and the user still won’t be able to cut any frames from

an opened movie. However, in your full-blown application, permissions might be of importance. If your

program includes a functioning Edit menu that supports the cutting and pasting of multiple data types,

you might not want to give the user the ability to alter the frames of a movie. In such an instance, you’ll

want to make sure that movie files are opened with the fsRdPerm constant rather than with one of the

constants that enables file writing.

09 1682 CH09 10/15/01 1:24 PM Page 265

266 Chapter 9 QuickTime Movies and File Handling

After opening a movie file, that file’s data needs to be loaded into memory.A call to
the Movie Toolbox routine NewMovieFromFile does this:

Movie movie = NULL;
short movieResID = 0;

err = NewMovieFromFile(&movie, movieRefNum, &movieResID,
NULL, newMovieActive, NULL);

After NewMovieFromFile completes, the first argument holds a reference to the movie (a
variable of type Movie).To create this movie, NewMovieFromFile needs the movie file
reference number that was returned by the prior call to OpenMovieFile.You should pass
this as the second argument. NewMovieFromFile also needs the ID of the movie data in
the file in question.Although a single file typically holds one movie, it can hold multi-
ple movies.Thus, it’s necessary to specify which of a file’s movies is to be used.A value
of 0 as the third argument tells NewMovieFromFile to use the first movie in the file.
Thus, even if there is only one movie in the file, this value of 0 does the job.

When NewMovieFromFile exits, it fills in the fourth argument (movieName) with the
name of the movie resource that was used to create the movie. Note that this isn’t the
name of the file that holds the movie; it’s the name of a resource within the file.That’s
usually not of importance, so your program can pass NULL here.The fifth argument is
used to provide supplemental information to NewMovieFromFile. Using the constant
newMovieActive specifies that the new movie should be active; a movie needs to be
active for it to be played.The last argument tells whether NewMovieFromFile had to
make any changes to the data in the file.This shouldn’t occur, so again a value of NULL
typically suffices.

The call to OpenMovieFile opened the file in preparation for access to it.
NewMovieFromFile is the routine that accessed the file. Now, with the movie data safe
in memory and a Movie variable referencing that data, the file can be closed:

CloseMovieFile(movieRefNum);

CloseMovieFile needs to know which file to close.The reference number returned by
OpenMovieFile provides that information.

Displaying a Movie in a Window

At this point, a movie is in memory and accessible by way of a Movie variable. Now
the movie needs to be associated with a window.There’s nothing special about a win-
dow that holds a movie; you just create a new window resource in your program’s
main.nib file.You can make the window any size you want.Your code resizes this win-
dow to match the size of the movie that eventually gets displayed within the window.
With the window resource defined, include the standard window-creation code in
your code:

WindowRef window;
OSStatus err;
IBNibRef nibRef;

09 1682 CH09 10/15/01 1:24 PM Page 266

267QuickTime Movies

err = CreateNibReference(CFSTR(“main”), &nibRef);
err = CreateWindowFromNib(nibRef, CFSTR(“MovieWindow”), &window);
DisposeNibReference(nibRef);

Now, for the link between the movie and the window, call SetPortWindowPort to
make the window’s port the active port.Then, call the Movie Toolbox routine
SetMovieGWorld to associate the movie with the currently active port:

SetPortWindowPort(window);

SetMovieGWorld(movie, NULL, NULL);

The GWorld in SetMovieGWorld refers to a graphics world, which is a complex mem-
ory drawing environment used in the preparation of images before their onscreen dis-
play.The first SetMovieGWorld argument is the movie to associate with a port.The
second argument is the port; pass NULL here to tell SetMovieGWorld to associate the
movie with the current port, which is the window named in the call to
SetPortWindowPort.The last argument is a handle to a Gdevice, which is a structure
describing a graphics device.A value of NULL here tells SetMovieGWorld to use the
current device.

Now determine the size of the open movie and use those coordinates to resize the
window to match the movie size:

Rect movieBox;

GetMovieBox(movie, &movieBox);
OffsetRect(&movieBox, -movieBox.left, -movieBox.top);
SetMovieBox(movie, &movieBox);
SizeWindow(window, movieBox.right, movieBox.bottom, TRUE);
ShowWindow(window);

Pass GetMovieBox a movie and the routine returns a rectangle that holds the size of the
movie.This might be all you need, or it might not be.Although the returned rectangle
does hold the size of the movie, it’s possible that the top and left coordinates of this
rectangle each might not be 0. In such a case, looking at movieBox.right for the
movie’s width and movieBox.bottom for the movie’s height would provide erroneous
information. For instance, a movieBox.left value of 50 and a movieBox.right value of
200 means that the movie has a width of 150 pixels.A call to the QuickDraw routine
OffsetRect simply offsets the movieBox rectangle such that its left and top coordinates
each have a value of 0.A call to SetMovieBox makes the new, offset values the bound-
aries for the rectangle that defines the size of the movie.

Although the movie rectangle has been adjusted, the window that’s to display the
movie has not.A call to SizeWindow does that. Pass SizeWindow the window to resize,
along with the new width and height to use in the size change.The last argument is a
Boolean value that tells whether an update event should be generated.The call to
ShowWindow finally reveals the movie-holding window to the user.

To ensure that the window displays a frame of the movie, call MoviesTask. This
Movie Toolbox routine does just that. Pass the movie to use in the frame display as the

09 1682 CH09 10/15/01 1:24 PM Page 267

268 Chapter 9 QuickTime Movies and File Handling

first argument and a value of 0 as the second argument.This 0 value tells MoviesTask
to service (update) each active movie. If your program can display more than one
movie at a time, MoviesTask will jump to each open movie, displaying one new frame
in each. Precede the call to MoviesTask with a call to GoToBeginningOfMovie.This
Toolbox routine rewinds the movie to its first frame.Although a newly opened movie
will most likely be set to the movie’s first frame, a call to this routine ensures that that
will be so:

GoToBeginningOfMovie(movie);
MoviesTask(movie, 0);

Playing a QuickTime Movie
The movie’s now open and displayed in a window. Let’s play it from start to finish:

StartMovie(movie);

do
{

MoviesTask(movie, 0);
} while (IsMovieDone(movie) == FALSE);

Contrary to its name, StartMovie doesn’t start a movie. Instead, it prepares the speci-
fied movie for playing by making the movie active and setting the movie’s playback
rate.To actually play a movie, call MoviesTask within a loop. Each call to MoviesTask
plays a frame of the movie. Because your program won’t know how many frames are
in the movie to play, rely on a call to the Movie Toolbox routine IsMovieDone to
determine when the frame-playing loop should terminate. Pass IsMovieDone a movie
and the routine returns a value of TRUE if the last frame has been reached or FALSE if
there’s one or more frames left to play.

Note
Related to the running of a movie is the movie controller. It is the thin, three-dimensional control that

runs along the bottom of a window displaying a QuickTime movie. The movie controller is under the

user’s control, and it enables the user to run, pause, or step forward or backwards through the movie

displayed in the window. For more information on movie controllers, see the URL listed at the end of

this chapter.

OpenPlayMovie Program
The purpose of OpenPlayMovie is to demonstrate how the Navigation Services rou-
tines are used to display the standard Open dialog box. It also shows how to respond
to a user-selected file when that file is a QuickTime movie.

OpenPlayMovie starts by opening a window that includes a single line of text,
as shown in Figure 9.2.When you follow that window’s instructions, you see the

09 1682 CH09 10/15/01 1:24 PM Page 268

269QuickTime Movies

standard Open dialog box. Use the file lists to move about your drive or drives to find
a QuickTime movie.When you click the Open dialog box’s Open button, a new win-
dow displaying the first frame of the movie appears. Choose Play Movie from the
Movie menu and the movie plays from start to finish.You can choose Play Movie as
often as you wish.

Figure 9.2 Windows displayed by the OpenPlayMovie program.

Nib Resources

The main.nib window in the project’s main.nib file includes two windows, as shown in
Figure 9.3. By default, Interface Builder sets a new window to be resizable, and it gives
the window a small resize control in the lower-right corner of the window.The
OpenPlayMovie program eliminates this resize control from the movie-playing window.
The control would obscure a small part of one corner of the movie if it were present.

You can use Interface Builder to set a window so that it can’t be resizable.To do
that, click the MovieWindow window in main.nib (see Figure 9.3), choose Show Info
from the Tools menu, display the Attributes pane, and then uncheck the Resizable
checkbox.While you’re there, uncheck both the Close and the Zoom checkboxes so
that the window won’t be closeable or zoomable.

The Movie menu includes two items: Open Movie and Play Movie.The Open
Movie item has a command of Opmv.Assign it that command from the Attributes pane
of the item’s Info window.The Play Movie item has a command of PLmv. Play Movie

09 1682 CH09 10/15/01 1:24 PM Page 269

270 Chapter 9 QuickTime Movies and File Handling

item is initially disabled. Click that item, choose Show Info from the Tools menu, and,
from the Attributes pane, uncheck the Enabled checkbox. Because the program’s code
will be accessing the Movie menu, this menu needs an ID.You can give the Movie
menu a menu ID of 5 by clicking Movie in the menu window, choosing Show Info
from the Tools menu, and entering 5 in the Menu ID field.

Figure 9.3 The OpenPlayMovie nib resources.

Source Code

The QuickTime function prototypes aren’t included in a project by default, so you’ll
need to include QuickTime.h along with Carbon.h:

#include <Carbon/Carbon.h>
#include <QuickTime/QuickTime.h>

Define a constant to match the commands assigned to the Open Movie and Play
Movie menu items in the nib resource.Also, define constants to match the Movie
menu ID and the menu placement of the two items in the Movie menu:

#define kOpenMovieCommand ‘OPmv’
#define kPlayMovieCommand ‘PLmv’
#define kMovieMenuID 5
#define kMovieMenuOpenItemNum 1
#define kMovieMenuPlayItemNum 2

OpenPlayMovie declares three global variables.The procedure pointer
gNavEventHandlerPtr is used in setting up the Open dialog box event handler, gMovie
will reference the movie after it’s opened, and gMovieMenu will hold a handle to the

09 1682 CH09 10/15/01 1:24 PM Page 270

271QuickTime Movies

Movie menu so that the menu’s items can be enabled and disabled:
NavEventUPP gNavEventHandlerPtr;
Movie gMovie = NULL;
MenuHandle gMovieMenu;

Almost all the main routine is the same as in past examples.Additions of note include a
call to EnterMovies (a Movie Toolbox initialization routine that’s required before a
program makes use of other Movie Toolbox routines) and a call to GetMenuHandle (to
obtain a handle to the Movie menu):

int main(int argc, char* argv[])
{

IBNibRef nibRef;
WindowRef window;
OSStatus err;
EventTargetRef target;
EventHandlerUPP handlerUPP;
EventTypeSpec appEvent = { kEventClassCommand,

kEventProcessCommand };

EnterMovies();

// set up menu bar, open window, install event handler

gMovieMenu = GetMenuHandle(kMovieMenuID);

RunApplicationEventLoop();

return(0);
}

OpenPlayMovie demonstrates some simple menu adjustment techniques that make it
possible to force the program to enable only one movie to be opened.When the pro-
gram launches, the Open Movie item is enabled and the Play Movie item is disabled,
as specified in the menu resource in the nib file. If a menu item doesn’t make sense at
a particular moment in the running of a program, it should be disabled.When the
program launches, no movie is open, so the Play Movie item isn’t applicable.That’s
why it’s initially disabled.The program enables a user to select a movie to open, so the
Open Movie item starts out enabled.The toggling of the state of these two items takes
place in the application’s event handler.

The following snippet comes from MyAppEventHandler and shows the code that
responds to a command issued by the user’s choosing of the Open Movie menu item:

case kOpenMovieCommand:
DisplayOpenFileDialog();
if (gMovie != NULL)
{

DisableMenuItem(gMovieMenu, kMovieMenuOpenItemNum);
EnableMenuItem(gMovieMenu, kMovieMenuPlayItemNum);

}
result = noErr;
break;

09 1682 CH09 10/15/01 1:24 PM Page 271

272 Chapter 9 QuickTime Movies and File Handling

Handling an Open Movie menu item selection begins with a call to the application-
defined DisplayOpenFileDialog routine.The global Movie variable gMovie was initial-
ized to a value of NULL to signify that no movie is open. If the user opens a movie,
gMovie references that movie and will have a value other than NULL. In that case,
MyAppEventHandler disables the Open Movie item and enables the Play Movie item.
That makes it impossible for the user to attempt to open a second movie, and it makes
possible the playing of the now-open movie. If the user clicks the Cancel button in
the Open dialog box, gMovie will retain its NULL value and the two menu items will
retain their initial state.This enables the user to again choose Open Movie to open
a movie.

In your more sophisticated movie-playing programs, you might allow the display
and playing of multiple movies. In that case, you can expand on the technique dis-
cussed here by allowing the closing of movie windows and the toggling of the Play
Movie item from enabled to disabled when all such movie windows are closed. One
way to do that is to intercept window-closing events.When a window closes, check
whether it was the last movie window. (You could keep a global movie window
counter that increments and decrements as movies are opened and closed.) In Chapter
3,“Events and the Carbon Event Manager,” the MyCloseWindow example introduces
the topic of window closing events. (The program sounds a beep when the user clicks
a window’s Close button.) In Chapter 4,“Windows,” the MenuButtonCloseWindow
example elaborates on this technique. Finally, in Chapter 6,“Menus,” you learn how to
enable and disable menu items.

If the user chooses Play Movie, the application-defined PlayOneMovie routine is
called. Note that there’s no need for any menu-item disabling or enabling here. If this
item is enabled, it means a movie window is open and can be played. If no movie
window is open, this item will be disabled and the kPlayMovieCommand can’t be gener-
ated by the program!

case kPlayMovieCommand:
PlayOneMovie(gMovie);
result = noErr;
break;

In response to the user’s choosing Open Movie, the program calls
DisplayOpenFileDialog.This application-defined routine was developed in this chap-
ter’s “Implementing an Open Dialog Box” section.The OpenPlayMovie source code
listing (Example 9.1) shows this routine.The event handler, or callback routine, that
DisplayOpenFileDialog installs is the application-defined routine
MyOpenDialogEventCallback.(This is another routine discussed at length in the
“Implementing an Open Dialog Box” section. Refer to those pages for more informa-
tion on this callback function.) Here I’ll point out that if the system invokes this rou-
tine with a user action of kNavUserActionOpen, the callback routine invokes the
application-defined function OpenOneQTMovieFile to open the user-selected movie file.

The OpenOneQTMovieFile routine is basically a compilation of the code discussed in
this chapter’s “Transferring Movie File Data to Memory” section. AECoerceDesc makes

09 1682 CH09 10/15/01 1:24 PM Page 272

273QuickTime Movies

sure that the NavReplyRecord filled in by the Open dialog box is valid, AEGetDescData
retrieves an FSRef from that reply record, and FSGetCatalogInfo converts the FSRef to
an FSSpec for use in opening the movie file:

void OpenOneQTMovieFile(NavReplyRecord *reply)
{

AEDesc newDescriptor;
FSRef movieRef;
WindowRef window;
OSStatus err;
FSSpec userFileFSSpec;
IBNibRef nibRef;

err = AECoerceDesc(&reply->selection, typeFSRef, &newDescriptor);

err = AEGetDescData(&newDescriptor, (void *)(&movieRef),
sizeof(FSRef));

FSGetCatalogInfo(&movieRef, kFSCatInfoNone, NULL, NULL,
&userFileFSSpec, NULL);

gMovie = GetMovieFromFile(userFileFSSpec);

The application-defined routine GetMovieFromFile (discussed next) opens the movie
file and assigns gMovie a reference to the movie.A new window then is opened, its
port is set to the current port, and the application-defined routine AdjustMovieWindow
(discussed shortly) resizes the window and associates the movie with the window.
OpenOneQTMovieFile ends with a call to AEDisposeDesc to dispose of the AEDisc
created earlier in the routine:

err = CreateNibReference(CFSTR(“main”), &nibRef);
err = CreateWindowFromNib(nibRef, CFSTR(“MovieWindow”), &window);
DisposeNibReference(nibRef);

SetPortWindowPort(window);

AdjustMovieWindow(gMovie, window);

AEDisposeDesc(&newDescriptor);
}

GetMovieFromFile is a short routine that makes three Movie Toolbox calls.
OpenMovieFile opens the user-selected file. NewMovieFromFile loads the movie data to
memory and returns a reference to the movie. CloseMovieFile closes the movie file.
This chapter’s “Transferring Movie File Data to Memory” section discusses each
routine.

Movie GetMovieFromFile(FSSpec userFileFSSpec)
{

OSErr err;
Movie movie = NULL;
short movieRefNum;

09 1682 CH09 10/15/01 1:24 PM Page 273

274 Chapter 9 QuickTime Movies and File Handling

short movieResID = 0;

err = OpenMovieFile(&userFileFSSpec, &movieRefNum, fsRdPerm);

err = NewMovieFromFile(&movie, movieRefNum, &movieResID,
NULL, newMovieActive, NULL);

CloseMovieFile(movieRefNum);

return (movie);
}

AdjustMovieWindow combines the code discussed in this chapter’s “Displaying a Movie
in a Window” section to create a routine that calls SetMovieGWorld to associate the
open movie with the recently opened window and to resize the window to match the
size of the movie.

void AdjustMovieWindow(Movie movie, WindowRef window)
{

Rect movieBox;

SetMovieGWorld(movie, NULL, NULL);

GetMovieBox(movie, &movieBox);
OffsetRect(&movieBox, -movieBox.left, -movieBox.top);
SetMovieBox(movie, &movieBox);

SizeWindow(window, movieBox.right, movieBox.bottom, TRUE);
ShowWindow(window);

GoToBeginningOfMovie(gMovie);
MoviesTask(gMovie, 0);

}

At this point, a movie file has been opened and the first frame of the movie is dis-
played in a window.To play the movie, the user chooses Play Movie from the Movie
menu. Doing that initiates a command that the application event handler handles by
calling PlayOneMovie.This routine bundles the code discussed in this chapter’s “Playing
a QuickTime Movie” section, with the result being the playing of the movie from
start to finish:

void PlayOneMovie(Movie movie)
{

GoToBeginningOfMovie(movie);

StartMovie(movie);

do
{

MoviesTask(movie, 0);
} while (IsMovieDone(movie) == FALSE);

}

09 1682 CH09 10/15/01 1:24 PM Page 274

275QuickTime Movies

Example 9.1 OpenPlayMovie Source Code

#include <Carbon/Carbon.h>
#include <QuickTime/QuickTime.h>

#define kOpenMovieCommand ‘OPmv’
#define kPlayMovieCommand ‘PLmv’
#define kMovieMenuID 5
#define kMovieMenuOpenItemNum 1
#define kMovieMenuPlayItemNum 2

Movie GetMovieFromFile(FSSpec userFileFSSpec);
void AdjustMovieWindow(Movie movie, WindowRef window);
void PlayOneMovie(Movie movie);
void DisplayOpenFileDialog(void);
void OpenOneQTMovieFile(NavReplyRecord *reply) ;
pascal OSStatus MyAppEventHandler(EventHandlerCallRef handlerRef,

EventRef event, void *userData);
pascal void MyOpenDialogEventCallback(

NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void* callBackUD);

NavEventUPP gNavEventHandlerPtr;
Movie gMovie = NULL;
MenuHandle gMovieMenu;

int main(int argc, char* argv[])
{

IBNibRef nibRef;
WindowRef window;
OSStatus err;
EventTargetRef target;
EventHandlerUPP handlerUPP;
EventTypeSpec appEvent = { kEventClassCommand,

kEventProcessCommand };

EnterMovies();

err = CreateNibReference(CFSTR(“main”), &nibRef);
err = SetMenuBarFromNib(nibRef, CFSTR(“MainMenu”));
err = CreateWindowFromNib(nibRef, CFSTR(“MainWindow”), &window);
DisposeNibReference(nibRef);

ShowWindow(window);

target = GetApplicationEventTarget();
handlerUPP = NewEventHandlerUPP(MyAppEventHandler);
InstallEventHandler(target, handlerUPP, 1, &appEvent, 0, NULL);

gMovieMenu = GetMenuHandle(kMovieMenuID);

continues

09 1682 CH09 10/15/01 1:24 PM Page 275

276 Chapter 9 QuickTime Movies and File Handling

Example 9.1 Continued

RunApplicationEventLoop();

return(0);
}

pascal OSStatus MyAppEventHandler(EventHandlerCallRef handlerRef,
EventRef event, void *userData)

{
OSStatus result = eventNotHandledErr;
HICommand command;

GetEventParameter(event, kEventParamDirectObject, typeHICommand,
NULL, sizeof (HICommand), NULL, &command);

switch (command.commandID)
{

case kOpenMovieCommand:
DisplayOpenFileDialog();
if (gMovie != NULL)
{

DisableMenuItem(gMovieMenu, kMovieMenuOpenItemNum);
EnableMenuItem(gMovieMenu, kMovieMenuPlayItemNum);

}
result = noErr;
break;

case kPlayMovieCommand:
PlayOneMovie(gMovie);
result = noErr;
break;

}
return result;

}

void DisplayOpenFileDialog(void)
{

OSStatus err;
NavDialogRef openDialog;
NavDialogCreationOptions dialogAttributes;

err = NavGetDefaultDialogCreationOptions(&dialogAttributes);
dialogAttributes.modality = kWindowModalityAppModal;

gNavEventHandlerPtr = NewNavEventUPP(MyOpenDialogEventCallback);

err = NavCreateGetFileDialog(&dialogAttributes, NULL,

09 1682 CH09 10/15/01 1:24 PM Page 276

277QuickTime Movies

gNavEventHandlerPtr, NULL, NULL,
NULL, &openDialog);

err = NavDialogRun(openDialog);
if (err != noErr)
{

NavDialogDispose(openDialog);
DisposeNavEventUPP(gNavEventHandlerPtr);

}
}

pascal void MyOpenDialogEventCallback(
NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,
void* callBackUD)

{
OSStatus err;
NavReplyRecord reply;
NavUserAction userAction = 0;

switch (callBackSelector)
{

case kNavCBUserAction:
err = NavDialogGetReply(callBackParms->context, &reply);
userAction = NavDialogGetUserAction(callBackParms->context);
switch (userAction)
{

case kNavUserActionOpen:
OpenOneQTMovieFile(&reply);
break;

}
err = NavDisposeReply(&reply);
break;

case kNavCBTerminate:
NavDialogDispose(callBackParms->context);
DisposeNavEventUPP(gNavEventHandlerPtr);
break;

}
}

void OpenOneQTMovieFile(NavReplyRecord *reply)
{

AEDesc newDescriptor;
FSRef movieRef;
WindowRef window;
OSStatus err;
FSSpec userFileFSSpec;
IBNibRef nibRef;

continues

09 1682 CH09 10/15/01 1:24 PM Page 277

278 Chapter 9 QuickTime Movies and File Handling

Example 9.1 Continued

err = AECoerceDesc(&reply->selection, typeFSRef, &newDescriptor);

err = AEGetDescData(&newDescriptor, (void *)(&movieRef),
sizeof(FSRef));

FSGetCatalogInfo(&movieRef, kFSCatInfoNone, NULL,
NULL, &userFileFSSpec, NULL);

gMovie = GetMovieFromFile(userFileFSSpec);

err = CreateNibReference(CFSTR(“main”), &nibRef);
err = CreateWindowFromNib(nibRef, CFSTR(“MovieWindow”), &window);
DisposeNibReference(nibRef);

SetPortWindowPort(window);

AdjustMovieWindow(gMovie, window);

AEDisposeDesc(&newDescriptor);
}

Movie GetMovieFromFile(FSSpec userFileFSSpec)
{

OSErr err;
Movie movie = NULL;
short movieRefNum;
short movieResID = 0;

err = OpenMovieFile(&userFileFSSpec, &movieRefNum, fsRdPerm);

err = NewMovieFromFile(&movie, movieRefNum, &movieResID,
NULL, newMovieActive, NULL);

CloseMovieFile(movieRefNum);

return (movie);
}

void AdjustMovieWindow(Movie movie, WindowRef window)
{

Rect movieBox;

SetMovieGWorld(movie, NULL, NULL);

GetMovieBox(movie, &movieBox);
OffsetRect(&movieBox, -movieBox.left, -movieBox.top);
SetMovieBox(movie, &movieBox);

09 1682 CH09 10/15/01 1:24 PM Page 278

279QuickTime Movies

SizeWindow(window, movieBox.right, movieBox.bottom, TRUE);
ShowWindow(window);

GoToBeginningOfMovie(gMovie);
MoviesTask(gMovie, 0);

}

void PlayOneMovie(Movie movie)
{

GoToBeginningOfMovie(movie);

StartMovie(movie);

do
{

MoviesTask(movie, 0);
} while (IsMovieDone(movie) == FALSE);

}

For More Information
The following web sites provide extra information about some of this chapter’s topics:

n Navigation Services:
http://developer.apple.com/techpubs/macosx/Carbon/Files/NavigationServi

ces/navigationservices.html

n QuickTime technologies:
http://developer.apple.com/techpubs/quicktime/quicktime.html

n QuickTime API:
http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

n Movie controllers:
http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

09 1682 CH09 10/15/01 1:24 PM Page 279

09 1682 CH09 10/15/01 1:24 PM Page 280

