
M O V I E M A K E R

11
by Jason Krogh
with original audio and design by Brian Ziffer and James Lloyd of www.systemsoular.com

BUILDING AN ONLINE APPLICATION

Recently a new breed of developers has

taken on the challenge of creating applications

that enable users to create their own

content. In this chapter, you’ll build one

such application—an online Movie Maker

that enables users to build short movies

from a set of premade animations.

Working on projects like Movie Maker presents

a special challenge to developers who are

learning ActionScript. This project takes

advantage of some powerful new features,

including movie clip buttons, dynamic event

handlers, and the registerClass method.

Difficulty rating: *****

Made with:
Animation created using Adobe Photoshop, Extreme 3D, LightWave, AfterEffects, ImageReady
Audio processed using Reason, Max/Nato Custom applications
Original audio and design by Brian Ziffer and James Lloyd, www.systemsoular.com

Final file size: 30KB (moviemaker.swf), 2MB (assets_ziffer.swf)

Modem download time: 7 seconds + time for assets

Development time: 5 days

1607 movie maker 03.22.02 8:28 AM Page 168

169

M
O

V
I

E

M
A

K
E

R

IT WORKS LIKE THIS
The Movie Maker enables users to create a movie by arranging animated clips within a

timeline. The drag-and-drop interface is designed to be easy to use while giving users

a great deal of f lexibility.

The Movie Maker timeline contains 480 frames and playback is set at 20 frames per

second (fps). To create a movie, the user drags a timeline clip from a palette into one

of three tracks. These timeline clips are visual representations that indicate when the

animated clips begin and end as well as where they sit in the stacking order. (For

example, items in track 1 appear on top of items in track 3.)

The movie displays in a preview window. This preview is constantly updated based on

the arrangement of the timeline clips and the position of the playhead marker. The user

can use the playback controls to play, stop, rewind, or fast forward through the movie.

PREPARING TO WORK
Before you get started, you need to copy the 11_Movie_Maker folder onto your hard

drive and launch Flash MX. Take a moment to try out the finished Movie Maker, and

then open the starter source file.

1 From your hard drive, open the moviemaker.html

page in your web browser. Drag timeline clips

from the palette into one of the three tracks and

experiment with the playback controls.

2 Open the mm_start.f la file from the

11_Movie_Maker folder on your hard drive.

The start file includes all the buttons, movie

clips, and some of the functions needed to make

things work.

3 Advance to frame 2 and examine the layer structure

in the timeline.

Note: This project uses two Flash files. The main
file (moviemaker.swf) contains the interface and
programming. The assets file (assets_ziffer.swf)
contains the animation and a movie clip containing the
background audio. By having the assets in a separate
movie, you can more easily manage the artwork with-
out interfering with the core of the application. The
assets file contains a set of movie clips with linkage
identifiers, enabling you to use the attachMovie
method to place them on the stage programmatically.
Examine the assets_sample.fla file to see how
it is organized.

Note: Flash MX makes it easier to take advantage of
object-oriented programming (OOP) techniques. An
object is just a set of shared properties (information)
and methods (capabilities). The example most Flash
users are already familiar with is the MovieClip
object. All movie clips share certain properties,
such as _x, _y, and _alpha, as well as methods,
such as getDepth and loadMovie. Although a full
discussion of OOP concepts is beyond the scope of
this chapter, a few relevant topics are covered.

1607 movie maker 03.22.02 8:28 AM Page 169

170

4 Open the Movie Explorer panel from the Window

menu and examine the movie clips and buttons.

The interface on the main timeline is set up with

four parts: the palette, the timeline area, the preview

window, and the playback controls. Nearly all the

code is found on the main timeline.

Note: The start file already includes most of the
functions needed for the Movie Maker. These functions
are located on the first keyframe of the Functions
layer. Each function performs a certain part of the work
and many correspond to the actions of the user.

The Movie Explorer shows
the movie clips and buttons
that have been placed on
the stage.

The spawn function is used
to create timeline clips.

5 Open the Library from the Window menu. Open

the Track Clip folder in the Library and examine

the track-clip symbol.

CREATING NEW TIMELINE CLIPS
The timeline clips are the central element of the Movie Maker. The number, type,

and position of these clips represent the composition. Timeline clips are created

by the spawn function, which is triggered when the user clicks an item in the palette.

1 On the main timeline, with the Actions panel

open, select the keyframe in frame 1 of the

Functions layer. Locate the spawn function

in the Actions panel.

1607 movie maker 03.22.02 8:28 AM Page 170

171

2 Add this code directly after the line defining the

spawn function.

This code attaches a new instance of the timeline

clip symbol to the holder movie clip. You use four

arguments with the .attachMovie method: the

linkage identifier "clip", and then the instance

name, depth value, and an initObject.

The code for the initObject argument makes use

of an abbreviated syntax for creating objects. The

{id:this.id} statement creates a simple object

with a single property id.

M
O

V
I

E

M
A

K
E

R

clipCount++;

var i = "clip"+clipCount;

holder.attachMovie("clip", i, clipCount, {id:this.id});

Macromedia Flash MX: The optional initObject argument is a
new feature of Flash MX. It enables you to assign a set of methods and
properties to the clip as it is attached. In this case, you use this feature
to pass the id to the newly created movie clip instance. You will see how
this is used when you look at the TimelineClip class.

DEFINING THE TIMELINECLIP CLASS
A class is used to define a set of objects with common features (for instance, a class of

trees or a class of kindergarten kids). In ActionScript you define a class using a function.

The timeline clips added by the spawn function share certain properties (for instance,

which animation segment they represent) and methods (for example, resizing them-

selves). Using a class enables you to define a single blueprint for your timeline clips.

1 Locate the TimelineClip function in the Actions

window. Add this code directly under the line

marked //Properties.

The id used when setting the span property is

passed to the object by the attachMovie method

invoked in the spawn function. It identifies which

segment of animation the timeline clip represents.

(They are numbered 1–15.) The span represents the

length of the clip in frames, and the offset is used

when positioning the clip while it is being dragged.

Note: The distinction between a function and a
method is subtle but important. A method is a function
that has been associated with an object. The beauty
of methods is that they have direct access to the
properties of the object to which they are attached.

this.span = clipLengths[this.id-1];

this.offset = this.span/2;

this.trackAsMenu = true;

1607 movie maker 03.22.02 8:28 AM Page 171

172

2 Add this code directly under the line marked

//Setup:

These three lines are performed as soon as the new

timeline clip is created. The gotoAndStop action

changes the mini view of the animation based on the

id of the clip. You then call the resize and drag

methods right away. These two methods are defined

by existing functions.

3 Add this code directly under the line marked

//Events:

Here you assign callback functions to the built-in

movie clip event handlers. The first line triggers the

drag function when the user moves her mouse, and

the second line triggers the dropSpawn function

when the user drops the clip.

4 Add this code directly under the line marked

//Register Class:

The first line tells the player that your

TimelineClip inherits all the built-in methods

and properties of the MovieClip class. Any of the

new methods and properties you attach are added

to those already available in all movie clips.

The second line makes use of a powerful

new ActionScript command. You use the

registerClass method to associate the

TimelineClip class with the Library symbol

with the linkage identifier "clip". Note that you

are not associating the class with an instance but

rather the Library symbol. This means that all new

instances of the symbol with the linkage identifier

"clip" are members of the TimelineClip class

and therefore have all the properties and methods

defined for this class.

this.mini.clip.gotoAndStop(this.id);

this.resize();

this.drag();

this.onMouseMove = drag;

this.onRelease = this.onReleaseOutside = dropSpawn;

TimelineClip.prototype = new MovieClip();

Object.registerClass("clip", TimelineClip);

Adding a new timeline
clip to the movie.

1607 movie maker 03.22.02 8:28 AM Page 172

173

The spawn function attaches and initializes a new

clip. The drag function moves the clip to follow the

cursor. The dropSpawn function adds or removes

the clip based on its position.

M
O

V
I

E

M
A

K
E

R

TimelineClip.prototype.dropLocationOkay = dropLocationOkay;

TimelineClip.prototype.updateQuePoints = updateQuePoints;

TimelineClip.prototype.drag = drag;

TimelineClip.prototype.resize = resize;

MacromediaFlash MX: In Flash 5, you used movie clip events by placing code within an
onClipEvent (MovieClipEvent) statement. This approach severely limited your ability to
centralize your code, because these statements needed to be placed directly on movie clip instances.
In Flash MX you can assign callback functions to these events programmatically. Not only that, but there
are also new handlers for button events (for instance, .onPress), which you can use with movie clips.

The ability to add button events to movie clips can simplify complex movies considerably. In Flash 5
it was often necessary to nest a button inside a movie clip. This was necessary any time you needed
to catch button events while being able to manipulate visual properties of the button (such as, _x, _y,
_width, and _alpha). Now we can add those events directly onto the movie clip instance.
In fact, because of these new features there is very little reason for experienced developers to use
button symbols.

5 Add this code directly under the line marked

//Methods:

Because these methods are common to all members

of the TimelineClass, you attach them to the

class’s prototype. By doing so, all objects created

from this class do not contain their own copies of

these methods but rather share the exact same set

of code. The result is more efficient use of memory

in the Flash player.

ADDING DRAG AND DROP BEHAVIOR
Now that you have your new timeline clip, you need to create some of the methods that it

will use. Four methods are involved in this process: drag, dropSpawn, updateQuePoints,

and dropLocationOkay. You are going to add the first two of these.

The drag method has been assigned to the onMouseMove event and is called continuously

until you remove the handler. It positions the timeline clip according to the location of the

cursor and provides user feedback as the clip is moved around. It does this with the help of

updateQuePoints and dropLocationOkay. The dropSpawn method is called when the

user releases the mouse button after having just created a new timeline clip.

Assign functions to act as methods for the timeline clips.

1607 movie maker 03.22.02 8:28 AM Page 173

174

1 Locate the drag function in the Actions panel. Add

this code directly following the line defining the

drag function:

The first two lines reposition the clip based on

the user’s cursor position. The offset is used to

handle situations where the user picks up the clip

by the edge.

The updateQuePoints updates important informa-

tion about each timeline clip as it is manipulated by

the user. It sets three properties based on the clip’s

position: begin, end, and track. begin and end

are set to the first and last frame where the clip is

present. The track property is set to one of four

values: 1, 2, 3, or null if the clip is not in a track.

2 Add this code:

The dropLocationOkay method uses the new

begin, end, and track values and tests to see

whether they overlap with any existing clips.

The dropLocationOkay method returns true

if the location is acceptable.

If the method returns false, we know that the

timeline clip is not in a valid location. We indicate

this to the user by setting the alpha property to 50%.

Otherwise you set the alpha to 100% and snap the

clip to the nearest timeline.

3 Add this code directly following the line defining

the dropSpawn function:

The first line removes the onMouseMove handler.

This stops the drag method from being called. The

next line checks to see whether the user released

the clip in an acceptable position. If not, the clip is

deleted (along with all of its methods and properties).

this._x = this._parent._xmouse-this.offset;

this._y = this._parent._ymouse;

this.updateQuePoints();

if (this.dropLocationOkay()) {

this._y = _root["track"+this.track]._y;

this._alpha = 100;

} else {

this._alpha = 50;

}

updateAfterEvent();

delete this.onMouseMove;

if (!this.dropLocationOkay()) this.removeMovieClip();

this.onPress = startMove;

this.onRelease = this.onReleaseOutside = dropMove;

Repositioning the timeline clip.

Testing the location of clips.

Deleting the clip when its
location is unaccepatble.

1607 movie maker 03.22.02 8:28 AM Page 174

175

Note that when the user moves an existing clip

things are treated a little differently. Because of this

you have separate move and dropMove methods.

The last line of code reassigns the .onRelease and

.onReleaseOutside events to trigger the

dropMove method the next time the clip is dropped.

M
O

V
I

E

M
A

K
E

R

var occupied = new Array(3);

if (playing) moveMarker();

frame = 1+Math.floor((marker._x-tl_left));

THE DISPLAYFRAME FUNCTION
The playback of the movie is controlled by the displayFrame function. This function

calculates the current frame and then goes through each timeline clip to see which clips

are present in that frame. The f lexibility in the user interface makes your work a little

more difficult. You cannot assume that the movie is going to be played from start to

finish. Instead you have to consider other scenarios, such as the following:

� The playhead is dragged back and forth.

� Playback is started while midway through a timeline clip.

� The playSpeed is set for rewind or fast forward.

� The timeline clips are being moved during playback.

In short the function must work in isolation without knowing what has happened

before or after it. The user can move the clips or the playhead and always see (and hear)

the correct animation in the preview display.

1 Locate the displayFrame function in the Actions

panel. Add this code to the displayFrame function:

The first line declares a new array called occupied.

You will use this later to monitor which tracks

contain clips on the current frame.

The next line calls the moveMarker function if

the movie is playing. The moveMarker changes the

position of the playhead based on the playSpeed

variable. Next you calculate the current frame based

on the playhead marker’s position.

Tracking the presence
of timeline clips.

1607 movie maker 03.22.02 8:28 AM Page 175

176

2 Add this code directly following the statements added

in Step 1:

The first line sets up a for-in loop. This type of

loop is used to step through the contents of an object.

In this case, you are checking each item inside the

holder movie clip.

The body of the for-in loop checks each timeline

clip within the holder to see whether the current

frame lies between the clip’s begin and end values.

If it is not already present, the clip is added using the

attachMovie method.

If the movie is playing normally and the clip is not

being dragged, you let the animation segment play.

If the movie is not playing back or the clip is being

moved, however, you instead set the frame position

of the clip based on how far into the clip you are.

for (item in holder) {

if (holder[item]._alpha == 50) continue;

if (frame >= holder[item].begin and frame <= holder[item].end) {

var instance = "i"+holder[item].track;

if (preview[instance].id != holder[item].id) {

var linkage = "clip"+holder[item].id;

var depth = 4-holder[item].track;

preview.attachMovie(linkage, instance, depth);

preview[instance].id = holder[item].id;

}

occupied[holder[item].track] = true;

var isDragging = (holder[item].onMouseMove == drag);

if (playing && playSpeed == 1 && !isDragging) {

preview[instance].play();

} else {

var clipFrame = 1+frame-holder[item].begin;

preview[instance].gotoAndStop(clipFrame);

}

}

}

3 Add this code directly after the end of the

for-in loop:

First you remove any animation clips that are no

longer needed.

Next you handle the playback of the background

audio. The background audio is treated differently

than the other elements. The background audio

clip is attached in frame 2 of the Actions layer and

is present throughout the movie.

If the movie is playing, the movie clip containing the

audio is told to play. Otherwise you cue the movie

clip to the right point so that when the movie is

played, the audio starts in the appropriate place.

for (var i=1;i<4;i++) {

if (!occupied[i]) preview["i"+i].removeMovieClip();

}

if (playing && playSpeed == 1) {

preview.bgAudio.play();

} else {

preview.bgAudio.gotoAndStop(frame);

}

1607 movie maker 03.22.02 8:28 AM Page 176

177

4 Now test your movie. If it is not functioning

as expected, make sure the assets file is located

in the same directory. Use the finished file,

moviemaker.f la, to check the code you have added.

M
O

V
I

E

M
A

K
E

R

Note: It is extremely rare that a programmer writes polished code in a
single pass. This is especially true for routines such as displayFrame.

When tackling a complex problem, it’s often best to start with a diagram
and then translate it into pseudo-code. The descriptions of the code in this
chapter are examples of pseudo-code, or explanations in plain English of
what the code does. However, real-life pseudo-code more often consists
of scribbled notes on the back of a piece of paper.

You can create the framework for your projects using a combination
of function declarations, comments, and trace statements. Here is a
simple example:

//This function returns the average of two integers.

function average(a,b) {

trace("calculating an average");

}

Now you can choose where to start filling in the details. Much like taking
a test, it’s sometimes better to start with the easy questions and return to
the tough ones later. For complex routines, you often need several passes
to get the exact functionality you need. Getting comfortable with this iterative
approach will help you tackle all sorts of complex programming challenges.

SUMMARY
Flash MX enables developers to create sophisticated applications. However, building such

applications involves more than a knowledge of ActionScript. It also requires the ability

to step back, look carefully at the steps involved, and translate these steps into code.

In this chapter you looked at a few of the new features of Macromedia Flash MX that

enable you to create f lexible centralized code. Specifically, you made use of dynamically

assigned event handlers and classes to define a blueprint for a set of objects.

Although creating applications requires a certain discipline in how you approach your

work, don’t ever be afraid to write, rewrite, and experiment as you go.

1607 movie maker 03.22.02 8:28 AM Page 177

