
chap_6 10.09.01 2:27 PM Page 130

c6 CHAPTER
Flash deCONSTRUCTION

BILLABONG-USA.COM-INNOVATIVE

ACTIONSCRIPT NAVIGATION

chap_6 10.09.01 2:27 PM Page 131

c6CHAPTER
Flash deCONSTRUCTION
BILLABONG-USA.COM—INNOVATIVE

ACTIONSCRIPT NAVIGATION

6.1

Page 133

Skate Team Riders

6.2

Page 138

Billabong-USA.com Surf Featured Rider

6.3

Page 142

Movie Control

6.4

Page 148

Embedding Videos

6.5

Page 152

Summary

1496_06 10.09.01 2:40 PM Page 132

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 133

Billabong is a company that makes apparel for people who are
into extreme sports and live very active lifestyles. The company’s
branding is not so much about certain colors and fonts; instead, it’s
about energy, attitude, and freshness. This branding was a driving
force behind the interaction we built into the site.

Many sites I see on the web force interactivity onto a brand or
content that has no real need for it. In fact, it works against that
brand. Billabong-USA.com is a site that is as perfect a place as ever
there was for dynamic and interesting interactivity.

In this chapter, we will be breaking down some of the interesting
interactive pieces that work to make the site a total experience.

6.1 SKATE TEAM RIDERS
In the youth sports apparel market, one of the major marketing
tactics used is building teams of riders in specific sports by offering
sponsorships to these riders. Billabong has hundreds of pro and
amateur sponsored riders spread across several sports. It is a
symbiotic relationship because Billabong gives the riders gear and
money, and the riders wear the gear to promote the brand. We
learned firsthand in creating this site that these guys are always on
the move and are hard to pin down at times. Nevertheless, they’re
always supporting the brand out in the water and on the streets.

6.1.1 NAME CLUSTERER
On the skate team rider page, we abstractly captured this dynamic
of the riders through something we call the “name clusterer” or
“the swarm.” We wanted to display the riders’ names in a dynamic
and organic manner, as per the dynamics of the relationship we
talked about previously. The concept we came up with was similar
to a raging virus—a growing mass of graphical elements that spread
across the screen in a random, frantic manner, as shown in
Figure 6.1.

Figure 6.1 The name clusterer on the riders screen on Billabong-USA.com.

NOTE

Without the proper server and Generator environment, these files will
not work when run from your desktop. However, we have provided files
for you to explore and follow along with the examples.

NOTE

This chapter deals with Macromedia Generator application development.
It requires that you have the Generator Extensions installed in Flash. If
you do not have the extensions installed, you can download them for
free from Macromedia's web site at
www.macromedia.com/software/generator/download/extensions.html.

1496_06 10.09.01 2:40 PM Page 133

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 134

Open the file namecluster.fla (see Figure 6.2). We’ve isolated the
clusterer to demonstrate how it was done.

Start by looking at the actions on the main timeline:

nameList = new Array();

nameList[0] = "Scott Van Vliet";

nameList[1] = "Anthony Thompson";

nameList[2] = "Brian Drake";

nameList[3] = "Deborah Schulz";

nameList[4] = "Phil Scott";

nameList[5] = "Lisa Brabender";

nameList[6] = "Sue McDonald";

nameList[7] = "Steve Wages";

nameList[8] = "Todd Purgason";

nameList[9] = "Paul Nguyen";

nameList[10] = "Matt Kipp";

nameList[11] = "Luis Escorial";

Figure 6.2 Script on a frame in the main timeline in namecluster.fla.

Figure 6.3 The nameclutter_name movie
clip-editing mode.

In the Billabong-USA site, we used a lot of 2-bit, black and white
bitmaps to create a gritty design aesthetic. For this name clusterer,
we chose black and white because it was consistent with the
site’s feel.

In the Billabong-USA site, we obtained the skate riders’ names
from the database. In this similar example, we’ve created an array
called nameList populated by the names of a few Juxt Interactive
employees.

Now that we’ve set up the names we’ll use, we’ll look at the symbol
nameclutter_name in the library (see Figure 6.3). We’ve set up this
movie clip with two frames labeled “black” and “white.” Each frame
has a stop action to keep the clip from looping. There’s a dynamic
text field called displayName that, if you look at the character palette,
is set to black text on the black frame and white text on
the white frame.

1496_06 10.09.01 2:40 PM Page 134

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 135

Notice that this clip isn’t actually placed in the stage anywhere.
Examine the linkage properties for this clip to see that we’re
exporting it with an identifier of nameClip (see Figure 6.4).

Now look at the action clip on the name clusterer layer. You’ll see
later that we’ve written the cluster script to cluster around wherever
this clip is placed. So we’ve placed it in the center of the stage. Look
at the clipEvent on this movie clip (see Figure 6.5):Figure 6.4 The Symbol Linkage Properties dialog box for the

nameclutter_name movie clip.

onClipEvent (load) {

// Set Cluster Area

clusterWidth = 300;

clusterHeight = 300;

clusterLeft = -clusterWidth/2;

clusterRight = clusterWidth/2;

clusterTop = -clusterHeight/2;

clusterBottom = clusterHeight/2;

// Set Cluster Core

clusterCoreX = clusterLeft+(Math.round(Math.random()*49)*(clusterWidth/50));

clusterCoreY = clusterTop+(Math.round(Math.random()*49)*(clusterHeight/50));

// Initialize Cluster Count

clusterCount = 1;

}

onClipEvent (enterFrame) {

if (clusterCount<75) {

// Attach nameClip

this.attachMovie("nameClip", "cluster"+clusterCount, clusterCount);

// Set Name

randomName = Math.round(Math.random()*(_root.nameList.length));

continues

1496_06 10.09.01 2:40 PM Page 135

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 136

set ("cluster"+clusterCount+".displayName", _root.nameList[randomName]);

// Set Color

eval("cluster"+clusterCount).gotoAndStop(Math.round(Math.random()*1)+1);

// Set Cluster Position

clusterX = clusterCoreX+(Math.round(Math.random()*(1.5*clusterCount))*(1-Math.round(Math.random()*2)));

clusterY = clusterCoreY+(Math.round(Math.random()*(1.5*clusterCount))*(1-Math.round(Math.random()*2)));

if (clusterX>clusterRight) {

clusterX = clusterRight-Math.round(Math.random()*4);

} else if (clusterX<clusterLeft) {

clusterX = clusterLeft+Math.round(Math.random()*4);

}

if (clusterY>clusterBottom) {

clusterY = clusterBottom-Math.round(Math.random()*4);

} else if (clusterY<clusterTop) {

clusterY = clusterTop+Math.round(Math.random()*4);

}

// Move Cluster to Position

eval("cluster"+clusterCount)._x = clusterX;

eval("cluster"+clusterCount)._y = clusterY;

// Increase clusterCount

clusterCount = clusterCount+1;

} else {

// Set Cluster Core

clusterCoreX = clusterLeft+ (Math.round(Math.random()*49)*(clusterWidth/50));

clusterCoreY = clusterTop+(Math.round(Math.random()*49)*(clusterHeight/50));

// Initialize Cluster Count

clusterCount = 1;

}

}

continued

1496_06 10.09.01 2:40 PM Page 136

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 137

First, with the onClipEvent(load), we initialize the script. We’ll
start by determining the cluster area. We’ve picked 300 width and
300 height.

We then set variables for the left, right, top, and bottom of the
cluster area.

Next we’ll set the “cluster core.” This is the point from which the
cluster will form. For the X and Y position of this core, we divide the
cluster area by 50 and then randomize which 50th of the area we’ll
place the cluster at. You can change out 50 with a higher or lower
number, depending on the density of the possible spots you want
the cluster to grow out of.

Lastly, we set the clusterCount to 1.

The rest of the actions are contained in an onClipEvent(enterFrame),
so they’ll be continually looped. First we’ll determine if the
clusterCount is less than 75. This means that after there are 75
names, the cluster will move to another position and start building
again. If the count is less than 75, we’ll add names. We start by
attaching the nameClip that we previously set to export. Next we’ll
choose which name from the nameList array we’ll display. The
variable randomName is a number chosen from the length of
the array and then used to transfer the value of a name from the
array to the displayName variable in the current cluster clip.

Now we’ll set the color of the cluster. As we discussed before, this
can either be black or white. By putting gotoandStop(random(2)+1),
we’ll send the cluster to either frame 1 or frame 2.

Now we’ll determine where the current cluster will be positioned.
We’ll set two position variables, clusterX and clusterY. Let’s
examine the logic behind clusterX and clusterY, which is the same.
We start at the clusterCoreX, which is the center of the cluster.
The (1-random(3)) will return either –1, 0, or 1. This will take the
result of random(1.5*clusterCount) and either make it negative,
leave it positive, or counteract it by setting the X position to the core
X position. We chose 1.5 because it fit within our usage. If you use
a higher number, the clusters will be spaced out farther. The inverse
is also true.

Figure 6.5 The script on the name clusterer layer on the main timeline.

1496_06 10.09.01 2:40 PM Page 137

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 138

Before we move the cluster to the new X and Y positions, we need
to check whether the new position is within the cluster area we
initially set through a series of if statements. If the cluster will
be out of the cluster area, we manually reposition the X and Y
coordinates to the boundary of the cluster area and then break up
the numbers with a little randomization.

Finally, we move the cluster to the X and Y positions we just set.

Now we come back to the initial if statement. The preceding
actions were to be run if the clusterCount was less than 75.
Once the clusterCount exceeds 75, we rerun the initialization script,
which randomizes the position of a new “core” and sets the count
back to 1.

Now we start again. Notice that we don’t remove the clips we
attached before starting again. In Flash, only one movie clip can
occupy a specific “depth.” By restarting to attach the movie clips,
we “eat away” at the first cluster by attaching clips to depths
that contain the nameClips from the first time the script ran. We
intentionally set up the script this way because we were pleased
with the way the clusters grew across the screen while slowly
“dissolving” after a while.

6.2 BILLABONG-USA.COM SURF
FEATURED RIDER

One of the sections of the Billabong-USA.com site that afforded us
the most creative experimentation was the featured rider section.
Designed to be a frequently updated section of the site, each new
featured rider for the three sports received a new design treatment
and content navigation experimentation. We used several interesting
techniques for each featured rider section. Now we’ll look at the
Featured Surf Rider for Shane Dorian.

For this feature, we were conceptually playing with the dynamics of
the fluid motion of surf (see Figure 6.6). The content comes into the
screen much like swells come to a beach. They roll in as they get
closer to shore. They peak, break, and slide back into the sea. So,
in this feature, the content rolls to a peak and then falls back down
and out of the scene.

6.2.1 FEATURED RIDER NAVIGATION
Open the file featuredrider.fla. We’ll first look at the content
navigation system we devised for this particular rider spotlight.

Because this is a surf rider, we tried to develop a navigation system
that loosely simulated the feel of a wave. Once the concept was
finalized, there were several approaches we could have taken to
accomplish the interaction we were looking for. We finally went with
a hybrid approach of keyframed/tweened animation and ActionScript
because we felt some of the animation control could be done easier
without complex mathematical scripts.

Figure 6.6 A Featured Rider screen on the Billabong-USA site.

1496_06 10.09.01 2:40 PM Page 138

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 139

First we’ll look at the symbol called content on the main timeline
(see Figure 6.7). The movie clip is also given an instance name of
content. Edit this symbol and observe the timeline. There’s a lot
of manual animation here. Scrub the timeline to see how we
animated the content nodes in and out of the view area.

There’s an important issue to remember when you keyframe
animation like this. Because the content movie’s timeline needs to
act in a fluid motion, its play movement could be ActionScripted
to stop or start at intervals designated by the tween keyframes.
At these tween points, the feature, or node, needs the ability
to be ActionScripted to life. It is important to make sure that each
keyframe of the tween retains its instance name, thus enabling it
to receive actions at any of these points. For example, look at node1
on the layer node1 on all three keyframes. We’ve made sure the clip
has an instance name of node1 on frames 1, 5, and 10.

We’ll return to this clip later, but let’s move on to the navigation.
On the main timeline, there’s a clip, featured_nav, with the instance
name nav. Edit this symbol. You’ll see we have eight copies of the
movie clip featured_nav_node. Each has a unique instance name:
node1, node2, and so on. Edit this symbol (see Figure 6.8).

Figure 6.7 The movie clip named content on the main timeline.

Figure 6.8 The featured_nav_node movie clip is
duplicated eight times in the parent clip.

We’ve set up this clip with a growth animation starting on frame on
and a shrink animation starting on frame off. The hotspot on the off
frame tells the clip to gotoAndPlay(“on”), as shown in Figure 6.9.

1496_06 10.09.01 2:40 PM Page 139

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 140

On the frame labeled on, we have the following actions:

if (_parent.selected != null) {

_parent[_parent.selected].gotoAndPlay("out");

}

_parent.selected = _name;

onClipEvent (load) {

// Set Content Frame Positions

node1frame = 1;

node2frame = 5;

node3frame = 10;

node4frame = 15;

node5frame = 20;

node6frame = 25;

node7frame = 30;

node8frame = 35;

// Turn Node1 On

node1.gotoAndPlay("on");

_root.movingStopped = true;

}

onClipEvent (enterFrame) {

// Move Content

if (_root.content._currentframe != this(selected+"frame")) {

for (a=1; a<=8; ++a) {

_root.content["node"+a].gotoAndStop("off");

}

if (_root.content._currentframe> this[selected+"frame"]) {

_root.moveDirection = -1;

} else if (_root.content._currentframe< this[selected+"frame"]) {

_root.moveDirection = 1;

}

_root.content.gotoAndStop(_root.content._currentframe+
_root.moveDirection);

} else {

_root.movingStopped = "true";

_root.content[onNode].gotoAndStop("on");

}

}

Figure 6.9 The script on the on frame in the featured_nav_node clip
and the action on the button within the hotspot layer.

Because we only want one node to be designated as on at a
time, we’ve set a variable called selected on the parent timeline
(_root.nav) to the _name of the current on node. If this isn’t the first
time we’ve run this script (_parent.selected != null), we first tell the
current selected node to go to the out sequence. We then set
selected to the current node’s _name.

Now that we’ve seen the structure of the navigation nodes, go back
to the main timeline and view the clip events on the nav clip (see
Figure 6.10).

1496_06 10.09.01 2:40 PM Page 140

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 141

We start by initializing some settings with onClipEvent(load). The
variables node(1-8) frame are the actual frame numbers in which the
content is correctly positioned on the stage. Because the content
starts out with content node1 focused on, we’ll turn the navigation
node1 on by telling it to gotoAndPlay(“on”).

And now for the actions that move the content. Because we want
these actions to loop, we put them in an onClipEvent(enterFrame)
located on the nav movie clip. We’ll start by determining whether
the content is at the correct position by comparing the current frame
of the content clip against the result of the concatenation of the
variable called selected (node1, node2, etc.) and the string called
frame. The result of the [selected+”frame”] statement will look
something like node1frame. If selected = node3, the concatenation
of the variable called selected with the string frame gives us
node3frame. If you recall, node3frame is a variable that has already
been set to be equal to 10 within the onClipEvent(load) statement
we used on the nav clip. To highlight the content for node3, the
content movie clip’s desired frame location would be at the value of
node3frame, or in this case, 10. Using the brackets to concatenate
and evaluate the variable selected with the string frame works well,
but must be used with the content of a timeline identifier presented
before the brackets. In addition, the dot notation usually found
between two objects in a timeline reference is dropped directly
before the bracket. For example, _root.content[“node”+a]
.gotoAndStop(“off”).

Next, we’ll determine which “side” of the desired frame the content
clip is on. If the current content frame is greater than the desired
frame, we’ll set the variable moveDirection to –1. Otherwise, we’ll
set the moveDirection to 1. Once we’ve determined which direction
to move the content clip, we’ll move the content to the currentframe
plus the direction we’ve determined. This action will keep looping
until the currentframe is the same as the desired frame. Once we’ve
moved the content clip to the desired frame, we’ll tell the correct
content node to gotoAndStop(“on”).

Figure 6.10 The clip events on the nav clip.

1496_06 10.09.01 2:40 PM Page 141

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 142

Now we’ve set up the navigation. Go back to the content clip. Edit
one of the content nodes (for example, content_node1). Look at the
actions on the hotspot on the off frame:

on (rollOver) {

if (_root.movingStopped == true) {

_root.nav[this._name].gotoAndPlay("on");

_root.movingStopped = false;

}

}

Because each content node has an instance name of node1,
node2, and so on, when we concatenate _root.nav with _name,
Flash will return _root.nav.node1,2,3,etc. We tell this clip to
gotoAndPlay(“on”). By controlling the nav in this manner, the user
can roll over either a content node or a navigation node to move
the content. The if (_root.movingStopped == “TRUE”) checks to
make sure the content isn’t currently animating. The if statement
used here checks to make sure the content isn't currently animating.
This prevents the clip action from happening more than once.

6.3 MOVIE CONTROL
In the Shane Dorian featured rider section, we kept the higher
res color images and the two movies as external movie clips
to help cushion the download time for the user. To demonstrate
the controller, we developed for the movies. We’ve included one
of the movies in the featuredrider.fla file.

Before we look at that file, we’ll quickly discuss how to use video
inside of Flash. As of Flash 5, you cannot directly play a QuickTime,
AVI, or MPEG (and so on) movie inside your Flash file. There are
times, however, when you need to utilize bitmap movies inside
of Flash. To do this, you’ll need to import your video as an image
sequence. Motion pictures are basically many still images displayed
rapidly in a sequence. With just about any 2D effects/compositing/

NLE software available today (that is, After Effects, Premier, Final
Cut Pro), you can export digital video to a folder of sequentially
named, still images. See your software’s manual for specific
instructions on how to do this.

If you don’t own any of this software, and your budget’s not ample,
a cheap tool that can do this function is QuickTime Pro, which sells
for about $30 at www.apple.com/quicktime. QuickTime Pro can
do a variety of tasks, including exporting your movies as image
sequences. Regardless of what software you use, we recommend
using no compression on the still images. It’s advantageous to
bring images into Flash as high-quality images and let Flash do the
compression. This avoids even further loss of quality from redundant
compression. Also, make sure your output files are named with a
sequential numeric order. Most software will do this automatically
or will offer it as an option.

One great feature of Flash is that it recognizes sequentially named
image sequences. All you need to do is import the first image of a
sequence, and Flash will recognize the other images. Flash will then
prompt you to decide whether or not to import the whole sequence.
If you select yes, Flash will create a new keyframe on the currently
selected layer of your timeline for every image. Export this and—
viola!—your video is playing in Flash. Keep in mind that Flash isn’t
meant for just displaying video, and you’ll start fighting performance
issues depending on the size of the video and how many frames it
is. Remember, the user has to download every single still image,
which can quickly add up.

One technique you can use to deal with this is to delete every other
frame of video and leave one frame in between each of the remain-
ing keyframes. The motion will start to be less smooth, but now
your user only has to download half as many images. If this isn’t
enough, delete every other two frames. Experiment until you reach
an acceptable equilibrium between quality of the motion and file size.

We used this technique for the two videos controlled in Flash. Let’s
go back to featuredrider.fla (see Figure 6.11).

1496_06 10.09.01 2:40 PM Page 142

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 143

Open this file, edit the content clip, and then edit the symbol
content_node3 (see Figure 6.12). You’ll see that we structured
the clip like the other content clips, with an off frame and an
on frame.

On the movie layer, we’ve put the movie clip node3_movie
with an instance name of surfmovie on the on frame. Edit this
symbol. You’ll see that we’ve imported an image sequence into a
movie clip. Go back one level to the node3 clip.

We’ll be concentrating on the movie clip content_video_controller,
which is on the controls layer (see Figure 6.13). Edit this clip.

Figure 6.11 A screen from the feature rider page.

Figure 6.12 The timeline on the
content_node3 clip.

Figure 6.13 The timeline on the
content_video_controller clip.

We’ve structured this clip with a “playing” frame and a “paused”
frame. On the first frame, playing, there are the following actions:

stop ();

controller.gotoAndPlay("playing");

_parent.surfmovie.play();

1496_06 10.09.01 2:40 PM Page 143

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 144

We start by telling the controller clip (which we’ll look at next) to
gotoAndPlay(“playing”). We also tell the surfmovie to start playing.
On the paused frame:

stop ();

controller.gotoAndPlay("paused");

_parent.surfmovie.stop();

Look at the hotspot layer. The playing frame has a hotspot over the
timeline graphic that tells the clip to go to the paused frame. On
the paused frame, we have several hotspots with actions to tell the
clip to go back to the playing frame.

Now edit the content_video_controller_button movie clip with an
instance name of controller (see Figure 6.14).

You’ll see that we’ve set up two, two-frame loops. The first loop
starts at the playing frame. The first frame has the actions, and the
second frame loops back to the first frame. The second loop starts
at the paused frame. During the playing loop, the movie is playing,
and we want the scrub bar to move in sync with the movie.

Look at the actions on the playing frame:

dragLeft = -32;

dragRight = 80;

frame = _parent._parent.surfmovie._currentframe;

step = (dragRight-dragLeft)/(_parent._parent.
surfmovie._totalframes);

_x = (frame*step)+dragLeft;

First, we set the left and right limits of the scrub bar with the
variables dragLeft and dragRight. These values were determined by
manually moving the scrub bar to the left and right of the timeline
and noting the X position.

We next set the frame variable to the currentframe of the
surfmovie. Step is a variable determined by taking the drag area
(dragRight-dragLeft) and dividing it by the number of frames in the
surfmovie (_parent._parent.surfmovie._totalframes).

Lastly, we set the X position of the scrub bar to the frame variable
multiplied by the step variable. We offset this variable by the left of
the drag area. Now, on every loop, the scrub bar will move along
with the surfmovie.

Now that we’ve set up the scrub bar to move along with the
surfmovie, we need to set it up so that when the user rolls over
the scrub area, he or she can drag the scrub bar and consequently
the surfmovie.

Figure 6.14 The timeline on
content_video_controller_button.

1496_06 10.09.01 2:40 PM Page 144

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 145

Look at the actions on the paused frame.

_root.moviePosition = Math.round((_x-dragLeft)/step);

_parent._parent.surfmovie.gotoAndStop(_root.moviePosition);

First, we set the variable moviePosition. This is an inverse
equation to the step variable we set in the previous loop.
We limit this value to an integer. We tell the surfmove to
gotoAndStop(_root.moviePosition).

Finally, look at the actions on the hotspot on the paused frame.

on (press) {

startDrag ("", true, dragLeft, _y, dragRight, _y);

}

on (release) {

stopDrag ();

}

Now the scrub bar is draggable and is constrained to the scrub area.
When the user drags the scrub bar, it will evaluate its position and
move the surf movie to the appropriate frame. This technique is
scalable and can be used to control a movie clip of any length.

6.3.1 JAVASCRIPT POP-UP WINDOW
In our minds, the key to creating a good site is to use technology for
its strengths and work around its weaknesses, if possible, with other
technologies. We love Flash because it has so many strengths that
work around the many weaknesses of HTML. However, Flash has its
own weaknesses, and at times we use things like HTML, JavaScript,

and QuickTime to provide solutions for those weaknesses. The
key is to weave all these elements together to make a consistent
presentation that feels seamless. You can opt to make every page
a hybrid. In other words, a balance of HTML and Flash together on
each page. Or you can isolate the unique elements of content that
will need HTML and pop them up in JavaScript windows. This is the
method we choose on the Billabong site because it allows the main
focus of the content to reach a high level of concentration through
Flash without the distracting breaks in experience that come with
HTML page loads.

To open a new browser window with JavaScript, the window.open()
method is used. The syntax of that JavaScript method is as follows:

window.open(theURL,winName,features);

The benefit of using JavaScript to open a new window rather than
targeting a blank new window is that you are given control over the
size and properties of the new window. To control the features, you
would use a method similar to this example:

window.open(‘window_url.html’,’window_name’,’toolbar=no,
location=no,status=no,menubar=no,scrollbars=no,
resizable=no,width=400,height=400’);

All of the features set to no can be set to yes. At Juxt, if a new
window will be filled with Flash (such as Pickled.tv), we’ll set
status=yes and the other features to no. We do this so that
the user can see the browser’s status bar, which will display the
download status of the files being loaded (see Figure 6.15).

1496_06 10.09.01 2:40 PM Page 145

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 146

There are several ways to invoke this JavaScript method from Flash.
The most compatible way is to define a JavaScript function in the
HTML page where you’ve embedded your Flash file. Put this in
the head of your document:

<SCRIPT LANGUAGE="JavaScript">

<!--

function openWindow(theURL,winname,features) {

window.open(theURL,winname,features);

}

//-->

</SCRIPT>

In Flash, create a button with a getUrl action that calls the JavaScript
function (see Figure 6.16). For example:

on (release) {

getURL ("javascript:openWindow('http://www.yahoo.com',
'newWindow','width=400,height=400')");

}

Figure 6.15 We set the status to yes for new windows opening with Flash
so that the user can monitor the browser’s status.

NOTE

This is the only method that works for Internet Explorer 4.5
on the Macintosh.

Figure 6.16 A button in Flash with a getUrl action
that calls a JavaScript function.

1496_06 10.09.01 2:40 PM Page 146

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 147

There’s another technique we use that involves a hidden frame.
When a Flash site is contained in a pop-up window, usually the
HTML file that the window contains is actually an HTML frameset
with one or more hidden frames. A hidden frame is a frame that
isn’t allowed any viewable space. Here’s a sample frameset for you
to see this principle:

<html>

<head>

<title></title>

</head>

<frameset rows="100%,*" frameborder="NO" border="0"
framespacing="0">

<frame src="maincontent.html" name="mainframe"
marginwidth="0" marginheight="0" scrolling="NO"
noresize frameborder="NO">

<frame src="blank.html" name="hidden" marginwidth="0"
marginheight="0" scrolling="NO" noresize frameborder="NO">

</frameset>

<noframes><body bgcolor="#FFFFFF">

</body></noframes>

</html>

You’ll see that we’ve given the mainframe frame100% of the
viewable size, while the hidden frame is limited to whatever’s left
(*), which in this case isn’t anything.

Through the browser, the only frame you will see is the mainframe.
But the hidden frame is still there, and its existence allows us to
load data into that frame without the user seeing it. We can use this
hidden frame to launch JavaScript functions as well as opening
JavaScript windows. Create an HTML file called launch_yahoo.html
with the following contents:

<HTML>

<HEAD>

<TITLE></TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

function openWindow(theURL,winname,features) {

window.open(theURL,winname,features);

}

function openYahoo() {

openWindow('http://www.yahoo.com','yahooWindow','
toolbar=yes,location=yes,status=yes,menubar=yes,
scrollbars=yes,resizable=yes,width=400,height=400');

}

//-->

</SCRIPT>

</HEAD>

<BODY onLoad="openYahoo()">

</BODY>

</HTML>

1496_06 10.09.01 2:40 PM Page 147

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 148

In your Flash file, the getURL action will look like this:

on (release) {

getURL ("launch_yahoo.html", "hidden");

}

When you invoke this action, the launch_yahoo.html file will be
loaded into the hidden frame, and the JavaScript function will run,
opening a new window.

6.4 EMBEDDING VIDEOS
Another technology that has strengths in its own right is video.
Billabong has lots of great video footage that is great content for
the site. As we showed you earlier in this chapter, you can export
video as stills and import the stills into Flash as frames to simulate
video. But this takes a fair amount of development time to do and
would mean we would have to be involved every time Billabong
wanted to add a video to the site. For the Footage sections of the
site, it was a much better choice to rely on the widely distributed
QuickTime and Windows Media players to augment the Flash
experience. This enabled us to build a system for Billabong to upload
videos at any time on their own without having to call on us. We will
cover the content management aspect of this in the next chapter.
For now, let’s focus on the embedding video formats.

On the Billabong-USA site, we gave the user the option of viewing
the surf/skate/snow videos in either QuickTime or Windows Media
formats. Embedding these video formats in an HTML page is very
easy. For the Windows Media format, the following HTML is used:

<OBJECT ID="MediaPlayer" classid="CLSID:22d6f312-b0f6-
11d0-94ab-0080c74c7e95" width=200 height=160
CODEBASE="http://activex.microsoft.com/activex/
controls/mplayer/en/nsmp2inf.cab#Version=5,1,52,701"
standby="Loading Media Player components..."
TYPE="application/x-oleobject">

<PARAM NAME="FileName" VALUE="MEDIA FILE URL">

<PARAM NAME="AutoStart" VALUE="true">

<PARAM NAME="ShowControls" VALUE="0">

</OBJECT>

<EMBED TYPE="application/x-mplayer2"
PLUGINSPAGE="http://www.microsoft.com/Windows/
MediaPlayer/" SRC="MEDIA FILE URL" NAME="MediaPlayer1"
SHOWCONTROLS="0" WIDTH="200" HEIGHT="160"
AUTOSTART="FALSE"></EMBED>

Just replace MEDIA FILE URL with the actual URL of the Windows
Media file in both the OBJECT and EMBED tags.

For a QuickTime movie, use the following:

<EMBED SRC=”QUICKTIME FILE URL” WIDTH=”200”
HEIGHT=”160” TYPE=”video/quicktime”>

Again, replace QUICKTIME FILE URL with your URL and you’re
ready to go.

6.4.1 VIDEO LIST
The Footage section of Billabong-USA utilizes Generator to create a
dynamic list of the videos available for each sport. We’ve included
the source file for this, but please note that Generator is a web
server application for creating dynamic Flash content. Because we
have a unique server environment, these files won’t “work” upon
export. We’re examining them to give you insight into how we
utilize Generator. We’ll be delving more into Dynamic Flash content
management in the next chapter.

1496_06 10.09.01 2:40 PM Page 148

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 149

That being said, look at the file video_list.fla. There aren’t many
actions on the main timeline. Other than two stops on the last two
frames, there is a simple preloader on frame 3 (see Figure 6.17).

An alternative method for this would be to use the movie clip object
methods getBytesLoaded() and getBytesTotal() to perform the same
function. The getBytesLoaded method returns the number of bytes
loaded on a movie clip. The getBytesTotal method returns the size
of a movie clip. These methods are used for both internally and
externally loaded movie clips.

Go to the frame featured. This is the list of the three featured videos
in this sport section. Because we’ve constrained the featured video
section to three videos, there’s no need for a scrolling list. We went
with a static, hard-coded list (see Figure 6.18).

Figure 6.17 The script on frame 3 of the
file named video_list.fla.

if (getBytesLoaded () == getBytesTotal ()) {

_root.loaded = "TRUE";

}

if (_root.loaded == "TRUE") {

gotoAndStop ("featured");

} else {

gotoAndPlay ("loop");

}

The getBytesTotal() function returns the value in bytes of the current
timeline. The getBytesLoaded() function returns the value of the
bytes loaded. We compare these values and, if they’re equal, set
the loaded variable to true. Then there is an if statement that
continues playing if loaded is true or continues looping if it isn’t.
The reason for the additional if statement is that it gives the
flexibility to add additional requirements before continuing.

Figure 6.18 The featured videos list on the featured frame.

The data from this list comes from the environment data. The
environment data is the first icon of the three icons at the top
right of the Flash application window. You’ll see that we’re using
the data source {team}_video_list.txt, as shown in Figure 6.19.

1496_06 10.09.01 2:40 PM Page 149

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 150

The Generator variable {team} is provided through the URL of the
.swt. We’ll discuss URL variables and offline Generator in the next
chapter. All we need at this point is to know that {team}_video_list.txt
will evaluate to surf_video_list.txt (or skate or snow). Here’s the
contents of snow_video_list.txt:

name,value

video_src1,"crawford.jpg"

video_name1,"Crawford"

video_descr1,"Crawford ripping on anything with snow on it"

video_id1,"8"

video_src2,"kevin.jpg"

video_name2,"Kevin"

video_descr2,"Kevin Jones knows how to snowboard"

video_id2,"10"

video_src3,"kevin_2.jpg"

video_name3,"Kevin"

video_descr3,"Kevin at Mammoth 12/01"

video_id3,"16"

Look at the stage. If you look at the Generator variables {}, you’ll
see where the data flows. Select one of the video buttons (see
Figure 6.20). Look at the actions:

Figure 6.19 The Set Environment dialog box in Flash.

Figure 6.20 The actions on one of the video buttons.

on (release) {

getURL ("video_media.cfm?video_id={video_id1}", "left");

}

You’ll see that we use Generator variables here to construct a URL
string to pass to Cold Fusion.

In the library, look at the symbols video_thumb1,2,3. We’ve got an
Insert JPG with a source of ../../images/video/{video_src1}.

Now that we’ve seen the featured section using an environment
data source, go to the archive frame, as shown in Figure 6.21.
This is the archived list of footage.

1496_06 10.09.01 2:40 PM Page 150

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 151

The central part of this section is a Generator scrolling list
(see Figure 6.22).

The Data Source is {team}_video_archive.txt, which, like the previous
environment data source, will evaluate to snow_video_archive.txt (or
skate, surf). Here’s the content of snow_video_archive.txt:

clip,video_name,video_descr,video_id

archive_item,"Crawford","Crawford ripping on anything with snow
on it",8

archive_item,"Kevin","Kevin Jones knows how to snowboard",10

archive_item,"Kevin","Kevin at Mammoth 12/01",16

A Generator scrolling list uses the clip parameter to decide
which movie clip in the library to use for this list. Look at the clip
archive_item in the library (see Figure 6.23).

Figure 6.21 The archived list of footage on the
archive frame in the main timeline.

Figure 6.22 The Generator template named Scrolling
List displays the Generator scrolling list window.

Figure 6.23 The timeline of the clip
named archive_item.

The clip is set up like a rollover with off and on frames. The content
of the clip is inserted through Generator variables.

1496_06 10.09.01 2:40 PM Page 151

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 152

6.5 SUMMARY
We are really excited about all of the dynamic, interesting interaction
and content we included in the Billabong site. You can see from
this example how interactivity can be used not only to create an
interesting experience, but also to reinforce creative concepts in
your designs. This is the stuff that really excites us. We feel that
it makes a site successful and makes us successful as designers
and developers.

To clients, however, what really makes a site successful is that
they can flawlessly and easily update the content of the site,
keeping it current with their business. Even in this hard-core market
segment of extreme sports apparel, that is a main concern for these
companies. So, in the next chapter, we are going to show you how
we married the immersive Flash experience on Billabong-USA.com
with a custom-built web application that gives clients the control
they want and need for their content so the site can be successful.

1496_06 10.09.01 2:40 PM Page 152

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 153

1496_06 10.09.01 2:40 PM Page 153

fred sharples 10.09.01 3:01 PM Page 154

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 155

I was introduced to Fred Sharples by Hillman Curtis at a one-
day Flash seminar that Hillman had put together back in the
very early days of Flash 4.

The three of us were doing a seminar for a couple hundred
people at Macromedia. Hillman and I were covering motion and
sound stuff, thinking we’re all bad. Then Fred gets up there and
blows us away with this game he created over the weekend
while watching the infamous Yellow Submarine on TV. He called
it Blimpo, and it was insanely freaky. But more importantly, it
was a sophisticated, interactive experience, which that at that
time was just not seen. Games were in the Shockwave space,
not in Flash.

Since then, I have worked with Fred on other projects and have
followed the progress of Orange Design closely. The company
has had the opportunity to do some innovative Flash work for
some of the biggest brands around like Coke, Old Navy, and
Kodak. In addition, Orange Design will go down in history as the
first company to produce a gaming interface in Flash, due to
their work for Lucas Arts on the Star Wars Star Fighter game.

Fred is a great guy, and he has more experience with Flash and
Director than just about anyone out there.

Fred Sharples Interview
by Todd Purgason

Introduction
www.orangedesign.com

FRED SHARPLES

fred sharples 10.09.01 3:01 PM Page 155

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 156

Teaser from the Interview

TP: So, we’re here with Fred
Sharples from Orange Design.
So, who is Fred Sharples?

FS: Fred Sharples, the enigma.

That’s a hard one, Todd.

TP: He’s the guy with the bird
on his shoulder.

FS: Yeah, I’m the guy with the
bird on his shoulder in
Hillman’s book.

TP: Ok, who is Orange Design?
We’ll put it that way.

FS: Yeah, that’s probably bet-
ter. Orange Design is a small

Flash studio, actually a multi-
media studio, I’d say. But we
do all Flash stuff, and we just
started it so we could have a
small company that would be
fun to work at, that would
make a little money, and you
know, stay focused on doing
interesting projects. Kind of an
escape from working in really
big agencies and big compa-
nies. That’s sort of an antidote
to that. And it was an experi-
ment by Pam and myself that
turned out really well. We were
able to believe that we could
have our own sort of creative
group that could be indepen-
dent, that would be able to say
no when we needed to, and
that would be able to reap the
benefits when it was good to

say yes. And we were able to,
you know, really control what
projects we’d take, how we
would do them, how we would
treat people that worked with
us, and how we would be
treated by our clients, it
worked out really well. So that
was the main focus. And then,
additionally, it was just to
make sure that we had really,
really good people that worked
for, with us and to ensure that
we can deliver in a stress-free
environment, I’d say.

TP: Wait, wait, stress free?
What’s that?

FS: Yeah, well…

TP: Relatively.

FS: Yeah, compared to most
places, yeah definitely. So
yeah, we all work really hard,
obviously, but it’s more of a
social experiment.

TP: Cool.

FS: That’s all. It’s turned out
really well.

fred sharples 10.09.01 3:01 PM Page 156

Chapter 6 BILLABONG-USA.COM—INNOVATIVE ACTIONSCRIPT NAVIGATION / Page 157

QUESTIONS

02. If you were a fish/sea creature,

what would you be?

03. What CD or mp3 is in your

player right now?

04. What is your definition of

design?

05. What was your very first

impression of Flash?

06. If you were walking down the

street and came across John Gay

and Jakob Nielsen engaged in a

fistfight, what would you do?

07. You will go down in history as

the first Flash developer to do a

game interface. Was Flash a good fit

for this, or was it just a crazy idea?

08. You do a ton of games in Flash.

Do you think that with Flash 5,

Flash ActionScript can finally

compete with Lingo in this space?

09. You have a very long history

with interactive media. Your

experience at Macromedia put

you on some very interesting

Director projects. The big debate

flies was is up with Director now

that Flash is getting so smart.

Can you explain, in your

perspective, the difference

and value of the two?

10. What the hell is up with that

bird on your shoulder in your

photo in Hillman’s book, anyway?

11. Can you tell us a little about

your process?

12. You do a lot of games for Old

Navy. Do you pitch game concepts

to them, or do they come to you

with the concepts?

13. You take your staff to Burning

Man every year. Is there any risk

for them? You must have a fun

office culture. Is that a correct

assumption?

14. What is it that happens in a

typical day that gives you a feeling

of satisfaction when you go home

at night?

15. You guys partner with a lot

of other companies to do Flash

programming work. Does this

create coordination and

expectation problems?

16. If you could do one last project

before you had to hang up your

designer’s cap, what would you

want that project to be?

To hear the rest of Fred’s answer, as well as his answers to the following questions, please go to the

Inspirations section of the book’s site at www.JUXTinteractive.com/deCONSTRUCTION.

fred sharples 10.09.01 3:01 PM Page 157

