Chapter 4

The Promise of XML

With this chapter, we begin discussing ebXML’s
background and underlying technology, starting with
the Extensible Markup Language (XML). We will pro-
vide an overview of XML technologies, and discuss
various features related to e-business, as well as its
limitations for business purposes. This chapter is
mostly technical in nature, to explain the raw tech-
nology itself and how the various components relate
together. Our goal is to provide the reader enough of
a sense of XML so that its overall use for business is
clarified. The reader should view this chapter as a
roadmap to the salient features of XML itself; howev-
er, it is not intended to be a tutorial in XML syntax.

What Is XML?

XML makes possible the entire idea of using the
‘World Wide Web and the Internet for exchanging
business messages. XML is a generic markup language,
which means that it provides instructions that only
define the message or document content, not how
that content is displayed or printed. For example, the
instructions can say, “This block of text contains a
business shipping address.”

By focusing on the content and detailing the precise
business context, XML makes it possible for systems
in remote locations to exchange and interpret such

documents without human intervention. This ability

104 ebXML: The New Global Standard for Doing Business Over the Internet

to automatically send, retrieve, interpret, transform,
and process the data in electronic messages is of
course critical to the conduct of electronic business
itself.

The World Wide Web Consortium (W3C) developed
XML in 1996-97, and officially released version 1.0
in February 1998.1 While XML is widely recognized
as a technology and the W3C is a highly respected
organization, drawing its membership from both
major software vendors and academic institutions, the
W3C chooses to call its fully approved technical
documents recommendations rather than standards, to
avoid anti-competitive lawsuits in the U.S.
Recommendations represent a consensus within the
W3C as well as the approval of the W3C director,
now Tim Berners-Lee. As recommendations, docu-
ments such as the XML specifications demonstrate
stability and are considered ready for widespread
implementation and business use.2

Markup: Seeing Is Believing

The World Wide Web emerged as a common com-
munications medium once the Hypertext Markup
Language (HTML) became available in the early
1990s.3 HTML is also a recommendation of the
W3C (the latest version is 4.01, December 1999),
and now there is also an XHTML recommendation
(February 2001). HTML provides a good example of
a markup language in wide use, and makes a con-
vincing case study for the importance of consistent
standards.

You can see HTML markup by opening any web
page with Internet Explorer or Netscape
Communicator. Using the top-level menu in the
browser, select View, Source (Internet Explorer) or
View, Page Source (Netscape). What you see dis-
played is the internal HTML syntax that the browser
uses to render the page content you see onscreen.
The familiar web page with its human-readable text
and images are exposed as machine-readable comput-
er markup code. Notice that the code contains a lot
of instructions in angle brackets, such as <HTML>,
<BODY>, <HEAD>, <TITLE>, <TABLE>, and so on. (See
Listing 4.1 for an example.)

4: The Promise of XML

105

Enclosing the syntax text within angle brackets cre-
ates a tag or element. Close to the top of the web
page’s HTML markup source is the tag <HTML>. This
tag tells the web browser that the page is coded in
HTML,; the web browser responds by displaying the
information as directed by the rest of the tags on the
page. At the bottom of the page is a similar tag,
</HTML>. The slash after the opening angle bracket in
the tag tells the browser that it has reached the end
of the HTML page. The <HTML> tag is called an open
tag, and the </HTML> tag is a close tag. The markup also
contains other tag pairs: <HEAD> and </HEAD>, <TITLE>
and </TITLE>, <BODY> and </BODY>.These tags define
parts and functions of the HTML document.

Listing 4.1 Sample of HTML Markup

<HTML>

<HEAD>

<TITLE>Dynamiks Research Center News
Homepage</TITLE>

<meta http-equiv="Content-Type"
content="text/html; charset=is0-8859-1">

<meta name="keywords" content="press releases,
wind tunnels, aerospace".>

</HEAD>

<BODY bgcolor="#FFFFFF">

<TABLE width="100%" border="0" cellpadding="0"
cellspacing="0">

</TABLE>

</BODY>

</HTML>

The power of HTML is that it’s very simple to use, as
the HTML software excuses most obvious mistakes
by human editors—unclosed tags, orphaned tags,
mistyped tags—by always displaying something, not
just a blank page. This leads to very complex HTML
software, but ease of use for content creators. HTML
has a fixed set of markup tags and most HTML soft-
ware readily understands such commonly used tags.
Because HTML is a standard more or less recognized
by the browser manufacturers,* millions of people
and companies worldwide have found new and inno-
vative ways of communicating over the web—and in
many cases doing good business—without worrying
about too many technical details.

106 ebXML: The New Global Standard for Doing Business Over the Internet

XML takes a different approach, first by allowing its
users to create their own tags (hence the extensible
part of its name). As a result, XML is highly suited to
describing your own particular business data in mes-
sages and exchanging those messages with trading
partners. Listing 4.2 shows the XML markup of a
customer’s telephone number, using the XML vocab-
ulary from version 3.0 of the xCBL syntax:5

Listing 4.2 Sample XML Content for a Supplier Mailing
Address

<?xml version="1.0" encoding="UTF-8"?>

<Supplier>
<NameAddress>
<Name1>ABC Wholesale</Name1>
<Address1>1222 Industrial Park Way
</Addressi1>
<City>South San Francisco</City>
<StateOrProvince>California</StateOrProvince>
<PostalCode codetype='ZIP'>96045</PostalCode>
<Country>US</Country>
</NameAddress>
</Supplier>

XML elements use start and end tags as in HTML.
However, the elements also contain attributes such as
codetype within the <PostalCode> tag. Attributes act
as qualifiers of the elements, providing more defini-
tion or direction to the trading partners exchanging
the messages. Attributes are familiar in HTML too,
such as the I said
hello! instruction, where italic qualifies
the style of presentation font for the text. Similarly, in
the case of the XML postal code number shown in
Listing 4.2, the attribute tells us that this is a U.S.-
style numeric-based ZIP code.

HTML uses a fixed set of tags for display of text, not
for the definition of data. Listing 4.3 shows the same
information as in Listing 4.2, but coded in HTML.

You may notice another characteristic of XML from
this example—its readability. XML doesn’t restrict tag
writers to specific string lengths; tags can be labeled
to confer hierarchy, context, and meaning.

4: The Promise of XML

107

Listing 4.3 HTML Content for a Supplier Mailing
Address

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD>
<META HTTP-EQUIV="Content-Type"
CONTENT="text/html; charset=is0-8859-1">
<META NAME="Author" CONTENT="Alan Kotok">
<META NAME="GENERATOR"
CONTENT="Mozilla/4.06 [en]C-gatewaynet
(Win95; I) [Netscape]">

</HEAD>

<BODY>

<ADDRESS>
Supplier name and address:</ADDRESS>

<ADDRESS>
Name: ABC Wholesale</ADDRESS>

<ADDRESS>
Address: 1222 Industrial Park Way</ADDRESS>

<ADDRESS>
City: South San Francisco</ADDRESS>

<ADDRESS>
State: California</ADDRESS>

<ADDRESS>
Zip: 96045</ADDRESS>

<ADDRESS>
County: USA</ADDRESS>

</BODY>
</HTML>

XML, Where Past Is Prologue

A review of XMLs background shows some further
thinking behind the development of XML, as well as
its current readiness as a tool for business.

XML is a subset of the Standard Generalized Markup
Language (SGML), a markup language first conceived
in the late 1960s. A committee of the Graphic
Communications Association (GCA) determined the
need for standard page-composition instructions sent

108 ebXML: The New Global Standard for Doing Business Over the Internet

HTML’s large set of features
was designed to handle the
demanding requirements
of scientific and technical
documentation and went
well beyond the needs of
people and companies to
display text and images

or exchange business
messages.

from publishers of books and journals to printing
plants. Individual printers at the time had their own
means of marking up the text with codes that trans-
lated into font sizes or effects, such as boldface or
italics. They recognized that a standard means of
marking up the text would make it possible for any
publisher to communicate in the same way with any
printer, and save the publishers the headaches of rec-
onciling one form of markup with another.

The GCA committee proposed separating the infor-
mation content from the presentation format and
developing a generic code to represent the format,
rather than trying to decipher each printer’s specific
coding scheme. The generic code would be repre-
sented in a set of descriptive tags. The tags would
indicate where the information for the heading of
the document resided—identification of the author,
date, title, and other general details—as opposed to
the body of the document that contained the intel-
lectual product.

By 1969, Charles Goldfarb, then working at IBM, led
a research project to build on the GCA committee’s
ideas for a Generalized Markup Language (GML) for
text editing and formatting to enable electronic doc-
ument sharing and retrieval. GCA, working first with
the American National Standards Institute (ANSI) and
then with the International Organization of Standards
(ISO), moved GML from an IBM proposal into a
recognized international standard—the Standard
Generalized Markup Language (SGML), ISO 8879, in
1986.6

Based on this standard, the U. S. Department of
Defense, the Internal Revenue Service, and other
such organizations with large numbers of complex
documents were able to invest in systems to help
them manage their electronic publishing operations.
The European Particle Physics Laboratory in Geneva
(which uses the organization’s original French
acronym, CERN) became another major user of
SGML. While on staff at CERN, Tim Berners-Lee
developed HTML as an application of SGML in the
late 1980s and early 1990s.7

4: The Promise of XML

109

The development of SGML predated the emergence
of the Internet, at least as we know it in the year
2001. What attracted Berners-Lee and many of the
other web pioneers to the Internet was its decentral-
ized nature and a design that allowed any kind of
computing platform to plug in, as long as it complied
with the Net’s protocols. The public availability of
the Internet created the potential for anyone to
exchange such marked-up documents with ease.8
HTML transformed the Internet from islands of
hard-to-find content into one homogeneous whole
that’s visible through a web browser interface.

Meanwhile, companies, agencies, and organizations
with large electronic publishing operations—usually
technical, scientific, engineering, financial, or legal—
found SGML useful in managing their documents
and re-purposing the content in those documents.
Because of its nurturing in the publishing world,
however, SGML contains complexity that the average
user finds intractable. Its large set of features was
designed to handle the demanding requirements of
scientific and technical documentation and went well
beyond the needs of people and companies to display
text and images or exchange business messages.?

Figure 4.1 shows the timeline for development of
XML and the other main markup languages, as well
as EDI and ebXML. The development of the web-
based markup languages, both HTML and XML,
came about in part to provide an alternative to the
highly complex and feature-rich SGML. With
HTML, the ability to write web pages with simple
and inexpensive tools (free, in many cases) makes
everyone with a web connection a potential

publisher.

And the numbers seem to point out that the world
has responded accordingly. According to Whois.Net,
more than 32 million domain names with .com, .net,
or .org extensions were registered as of November
2000, and NetCraft’s domain search engine lists
nearly 1,000 domains with XML somewhere in the
name.10

110 ebXML: The New Global Standard for Doing Business Over the Internet

E-Business/Markup Events Timeline

2005

2000
1995

1990
1985

Year

1975

T ED_/
1980

Figure 4.1
Evolution of markup
technologies.

‘While HTML offered an effective way of presenting
images, text, and multimedia content on the Internet,
it still didn’t meet many of the critical needs of busi-
ness information dissemination. HTML has a fixed
set of tags. While easy to learn, it’s too generalized,
and in particular doesn’t provide any means to
interpret the context of the information within a
web page.

XML aimed to bridge the gap. Figure 4.2 shows how
the needs can be viewed as four interrelated tech-
nologies: the Internet delivering content, HTML
presenting it, XML identifying the data content, and
Java and similar programming tools providing the
process control.

Having identified the need, the World Wide Web
Consortium committee convened in 1996, and, led
by Jon Bosak of Sun Microsystems and Tim Bray of
Textuality, designed XML for electronic publishing.
The group focused on creating a simpler form of
markup to overcome the obstacles to broad adoption
shown by SGML. They therefore set 10 design objec-
tives for the new language:

m XML shall be straightforwardly usable over
the Internet.

m XML shall support a wide variety of
applications.

m XML shall be compatible with SGML.

4: The Promise of XML 111

m It shall be easy to write programs that process
XML documents.

m The number of optional features in XML is to
be kept to the absolute minimum, ideally zero.

m XML documents should be human-legible
and reasonably clear.

m The XML design itself should be prepared
quickly by the W3C team.

m The design of XML shall be formal and
concise.
XML documents shall be easy to create.
Terseness in XML markup is of minimal
importance.!!

platform presentation

Internet HTML

The Internet Creates a Need
for Platform-Independent

Technology
Java XML
processing data
XML Validation and Parsing Figure 4.2

The role of XML: the four-

An XML document by itself is just arbitrary text. To
legs-of-the-table metaphor.

describe the actual rules to be followed in creating
your particular type of XML content, you need an
additional mechanism.

One of the features of SGML that carried over into
XML version 1.0 is the concept of a schema, which
describes the layout of a document, also known as
the Document Type Definition (DTD).The role of both
schemas and DTD:s is to allow the author to define
the structure permitted for any given XML docu-
ment, including the relationships among elements in
the document. Think of schemas or DTDs like the
instructions that come with a Lego™ bricks model
for assembling the pieces in the correct order.

112 ebXML: The New Global Standard for Doing Business Over the Internet

The combination of its
extensibility, structure, and
validation makes XML useful
not only for electronic pub-
lishing but for business
messages sent between
companies.

The terms schema and DTD are often used inter-
changeably, but they have specific meanings. A
schema is a generic term for document or data
structures with a predetermined set of rules. A DTD
is one type of schema, specified in SGML and
XML 1.0.

The DTD also provides a way of testing the structure
of a document against the prescribed structure in the
DTD, a process called validation. This validation step,
designed as a quality check for documents, also can
be used to check the structure of business messages
sent using XML.

The XML schema or DTD therefore performs two
roles. It acts as a blueprint to allow someone who has
no prior knowledge of your particular XML to cre-
ate that content. It also allows software to check con-
tent to make sure it is correctly structured.

But XML allows for sending documents without
such validation being required. The XML creators
allowed for XML documents that are correctly
tagged, but that don’t have a schema DTD, and thus
can’t be tested for any structural validity. These docu-
ments are referred to as well-formed documents, indicat-
ing that they meet the basic XML markup syntax
rules.

A valid XML document is both well-formed and meets
the additional requirements of the schema DTD.12
Again, the Lego model is instructive; if you lose the
printed directions, you can probably still build an
interesting model, but you won’t know if it exactly
matches the original design.

The combination of its extensibility, structure, and
validation makes XML useful not only for electronic
publishing but for business messages sent between
companies. The ability to define the elements
exchanged between companies and the structure of
the elements means that trading partners can define
messages in advance and thus process the messages
automatically on receipt. Having validation means
that trading partners can test the messages against the
associated schema DTD, and thus provide a form of
quality assurance.

4: The Promise of XML

113

To validate an XML message with a DTD, the mes-
sage needs to be read and interpreted, in a process
called parsing. A software component called a parser
reads the XML message and interprets the XML tags
it finds. A validating parser tests the message against the
predefined rules of the schema DTD and then
reports any errors.

To help provide software programmers using parsers
with a standard connection between the message and
the parser, the W3C developed the Document Object
Model (DOM), independent of software languages or
computing platforms.’> XML documents have a nest-
ed structure that resembles a tree with a trunk and
branches. The DOM represents the XML message as
an inverted hierarchical tree, starting with the root
element and branching out from there. By defining
this logical structure in a common application pro-
gram method, parsers and other software packages
can manipulate messages consistently. Software devel-
opers call this kind of tool an Application Program
Interface (API).

Microsoft’s web browser, Internet Explorer (IE), dis-
plays XML documents using the DOM. If you open
a well-formed XML document with IE 5.0 or high-
er, you'll see the document hierarchy clearly por-
trayed. The W3C approved Level 1 of the DOM in
1998, but had some enhancements approved as of
November 2000.14 Under the hood, IE 5.0 provides
an automatic visual display of an XML document
with another technology called the Extensible
Stylesheet Language (XSL), and a default stylesheet.

One limitation of the DOM approach is that the
whole XML document must be stored in memory at
the same time. Obviously, this doesn’t work for high
transaction-volume or large-sized business informa-
tion flows. In a process befitting the free and open
nature of the Internet, members of the XML
Developers mailing list (XML-DEV) developed an
event-based programming interface called Simple API
for XML (SAX), while waiting for the W3C to finish
work on the more complex DOM specifications.
SAX therefore allows programmers to process just
fragments of XML content at high speed.!5

114 ebXML: The New Global Standard for Doing Business Over the Internet

We often take the ASCII-
English alphabet codeset for
granted, but we forget that
most of the world uses
alphabets and characters
not based on simple Latin
(Roman) characters.

Therefore, SAX is an event-based rather than a tree-
based API. The event-based approach looks for tags
and content meeting some conditional criteria that
identifies the fragment within the overall information
stream. The SAX API then passes that fragment to a
custom event handler (software program) that the
programmer has defined. SAX lets systems access and
query only those parts of XML documents without
loading them entirely into memory, thus working
faster and more efficiently. All the major vendors pro-
viding XML parser implementations support SAX.16

XML's Global Reach and Accessibility

Although XML is a creation of the W3C, companies
don’t need the web to send and receive XML
messages. XML’ first design objective makes XML
straightforwardly usable over the Internet, not just the
web. As a result, trading partners can exchange docu-
ments with email messages or File Transfer Protocol
(FTP) downloads, as well as over the web. With
XML, the means of transporting the messages is
independent of the message content.

XML Works with Non-English Character Sets

Since the Internet made the information technology
business truly a worldwide endeavor, the designers of
XML added an important XML feature, namely the
ability to support non—English character sets. In
North America and Western Europe, we often take
the ASCII-English alphabet codeset for granted, but
we forget that most of the world uses alphabets and
characters not based on simple Latin (Roman) char-
acters. XML supports the Unicode standard, a system
for representing text characters for computer process-
ing of all the known 50,000 written languages on the
planet.

The latest version of Unicode (3.0) matches up to
the international standard for character sets, ISO/IEC
10646-1:2000. It uses pairs of two bytes or 16 bits to
represent characters, which allows for encoding most
of the world’s known character sets, including scien-
tific and mathematical symbols. As a result, Unicode
provides codes for more than 65,000 characters.!?

4: The Promise of XML

115

With the worldwide nature of business today, this
ability to represent non—English characters has
become vital for many businesses.'8 Fortunately, the
design of XML is backwardly compatible with
today’s ASCII 8-bit encoding, so regular ASCII
editors and tools work just fine handling and
creating what are labeled as “UTF-8 encoded”
XML documents.

XML Works with Java

While the development of the Java!® programming
language preceded the development of XML, the
two technologies now complement each other. Java is
a high-level language used extensively in distributed
applications over the web. Sun Microsystems devel-
oped Java to run on any computing platform.
Programs written in Java are first compiled into an
intermediate form called byfecodes—machine codes
that are interpretable on most computing platforms.20

In 1997, Jon Bosak of Sun Microsystems, one of the
creators of XML, wrote a white paper describing
ways that the two technologies could work together.
Bosak pointed out that “XML gives Java something
to do.” He described potential applications of XML
in which the processing is distributed among client
and server sites rather than centralized in a single
server, using Java applets. For example, a design engi-
neer could download XML data from a manufactur-
er’s web site, and then use distributed Java code to try
the circuits in various configurations.2!

Matthew Fuchs notes several affinities between XML
and Java that make them a productive partnership.
Java uses a simple and predictable package structure
that follows the structure of a typical Windows or
UNIX filesystem. As a result, when sharing data with
XML documents, programmers can easily route the
data to the correct location thanks to this property of
Java.

116 ebXML: The New Global Standard for Doing Business Over the Internet

XML supports the use of
style sheets that contain the
instructions for presenting
data on screens, in print,
and in audio formats. Style
sheets provide the format-
ting details for visual display
or printing, such as page
size, margins, and fonts.

Another feature of Java loads code dynamically at
runtime, which allows for applets—pieces of Java code
that browsers can download and run locally rather
than relying on a full program at a remote site. This
ability allows applets to run code that can process
XML documents locally at much higher speeds and
with much less overhead.

Fuchs also names Java Beans technology as an inno-
vation that works well with XML. Java Beans are a set
of application program interfaces that work as com-
ponents with other software.22

XML Works with Style Sheets

Early in this chapter we discussed how markup lan-
guages such as XML separate content from its pres-
entation format. Since business-to-business exchanges
involve sending data from one computer to another,
they don’t require a human-readable version at either
end of the exchange. But many business processes
need to present the exchanged data in some human-
readable presentation form. XML supports the use of
style sheets that contain the instructions for presenting
data on screens, in print, and in audio formats.23

Style sheets provide the formatting details for visual
display or printing, such as page size, margins, and
fonts. They are used frequently in word processing
(but often called templates); for example, many organi-
zations have a standard fax cover page template.

Style sheets have important business uses and do
much more than just make data look pretty. For
example, documents formatted for North American
customers generally need to be printed on standard
letter-size pages (8 1/2 inches by 11 inches), while
other parts of the world commonly use the A4 size
(210 x 297 mm).

‘While HTML by itself offers some ways to present
text and images on a web page, its features are limit-
ed and don’t provide enough power or flexibility for
professional print content designers.

4: The Promise of XML

117

Another problem with HTML is consistency and
reuse. This problem has been addressed in advanced
word processing products by the use of styles; the user
can apply a paragraph style, a table of contents style,
an indented list style, and so on. HTML also has a
need to use consistent style of text display size, font,
and layout. HTML needs a separate style system,
called Cascading Style Sheets (CSS), to display web
page content. CSS can also be used to display XML
content in the same way.2* The method CSS uses is
very simple, but requires that the content of the
XML already be structured in a way that matches the
output layout.

The W3C has developed an even more powerful
style sheet for XML documents, called the Extensible
Style Sheet Language (XSL), that gets around the
restrictions of CSS and has two sets of core features:

m Transformation changes XML data accord-
ing to predefined program rules.

m Formatting provides presentation rules and
instructions to display the XML content as
HTML, or some other provided target
markup.

The transformation features of XSL give it extra
power over CSS. With XSL, you can add or remove
elements from an XML file, rearrange the elements,
and make decisions about the display of the
elements.?> Figure 4.3 shows an example of XSL
stylesheets displaying XML data on an HTML page.

The next need is to locate information consistently
within an XML document. What if you need the
second occurrence of Address, not the first?
Associated with XSL Tiansformations (XSLT) is the
XML Path Language, also called Xpath, which permits
the location of any part of the tree branch path of an
XML document hierarchy to be specified. Figure 4.3
gives an example of this capability, to find and select
Database/People/Person.

118

ebXML: The New Global Standard for Doing Business Over the Internet

Fle Edt Vi Favorites

i i xml- Notepad

T Edt Format Help « «

content

Address

ity

Favourite Colour [Blue _~

<?xml version="1.0
«?uml-stylesheet t
<Database>
<Peoples

<Personx><FavoriteColor=2</Favanin

</People>
<Colorss

oo
wpe="text/xs1" href="dropdown.xs1" 7>

rson:

\Seminars\London'\Day1-|
Fil._Edt Actions Options Window

D[|| & [Feshaeimomsic|

</Colorss>
/Databasex

«Color>«<ColornName>Red</ColorName>«ColorId=1</ColorId>=</Colors
<Color=><ColorName>Blue</ColorName><ColorId=2</ColorId=</Color=
«Color>«ColorName>Grean</Colornames<Colorld>3«/Colorid>«/Colors

<HTML > <BODY >
<table>

<tr>

<td>
<select>

<option»

<susl:attribute>

<xgl:stylesheet xmlns:xsl="http . //www w3, org /TR WD-xsl">
«xsl:template match="">
<xsl:for-each select="Database People Person"»

<td>Favourite Colour<-/td>

<xsl:for-each select="-Database Colors Color"»
¢<xsl:attribute name="value"><xsl:value-of select="Colorld text()"/>

<xsl:if test=". [context(-1

XSLT stylesheet

J-Colorlds/text() = context(-2)/FavoriteColo

Figure 4.3
How a style sheet works to
display XML as HTML.

A transformation using XSLT needs to address spe-
cific components in an XML document, and Xpath
provides that ability. It works like a pair of program-
ming tweezers to find and return the exact piece of
an XML document desired. XSLT can also change
the hierarchical structure of an XML document
using a set of predefined XSLT syntax rules that
dynamically inspect and traverse the document
structure.26 27 28

Using either CSS or XSL style sheet references with
an XML document provides a way to visually display
XML content to end users, or to morph XML docu-
ments for input processing by business application
software.2

Building XML Messages from
Processes to Data

This section looks at the process for building business
messages with XML. As we discussed earlier in this
chapter, XML lets trading partners define their own
elements and tags, taking advantage of XML’ exten-
sible nature—the X in XML. But XML messages also
represent the structure of those elements, following
their prescribed relationships in the hierarchy. The
message schema DTD captures the names of the

4: The Promise of XML

119

elements as represented by the tags and their hierar-
chical structure. Messages exchanged among trading
partners therefore must represent the rules and prac-
tices of a business or industry, as captured in the
schema DTD.

For example, in Chapter 3, “ebXML at Work,” the
Marathoner running store case study points out how
retailer and manufacturers can exchange product
identifiers and precise inventory levels, so that manu-
facturers can compare inventory levels to predefined
reorder points and decide whether they need to ship
more product. Before any of these exchanges can
happen, however, the retailer and the manufactur-
ers—or, better yet, the entire industry—need to agree
on common terminology and structure of the mes-
sages. With this common set of rules, shoe manufac-
turers and retailers can use the same basic set of
messages, which promotes the use of packaged soft-
ware and makes it possible for the parties to develop
their systems faster and for less money.

We call this common set of rules a data model
because, like a schematic drawing, it offers a skeleton
view of the messages, specifies the order of the ele-
ments in a message, and shows how the various ele-
ments relate to one another in a hierarchy. The term
comes from the database world, where database
design needs to meet the users’ business requirements
as efficiently as possible, yet still allow for future
growth. The logical model defines the information
fields and their relationships in a database (much like
a schema DTD in an XML message), while the
physical model details field sizes and datatypes, such as
alphanumeric or date formats.30 In fact, defining an
XML schema of information is analogous to creating
traditional row-and-column layouts for a database
design system.

The XML syntax is not just about interpreting the
content. The business process is a vital component of
the content and is helped along by XML.

120 ebXML: The New Global Standard for Doing Business Over the Internet

By working out larger
processes, trading partners
can agree on the overall
conduct of the business,
before trying to determine
the individual messages.

Determine Processes

As shown in the case studies in Chapter 3, the parties
identify business processes or actions taken by the
companies to achieve their business goals. For exam-
ple, the travel agency case proposes a process to
decide on a tour package. This process has contingen-
cies built in for continued bids and best-and-final
offers if the customers don’t want to accept one of
the first offers. By working out these larger processes,
the trading partners can agree on the overall conduct
of the business, before trying to determine the indi-
vidual messages.

A tool called use cases can help identify these
processes. Use cases describe scenarios in which users
interact with each other and the systems under
development. Each scenario describes the accom-
plishment of a specific task or achievement of a goal.
They also identify the players, steps in the process,
and the messages or even the data exchanged. By
describing these situations in a storytelling mode, use
cases often uncover the processes underlying business
practices.3!

One of the ebXML development activities involves
identifying similarities in business processes across
industries. While each industry has its own language
and culture, using these common processes helps
speed the work and improves the chances for inter-
operability among industries.32

Determine Message Flows

Each process contains a set of individual messages
exchanged among the trading partners. In Chapter 3,
the running store case listed a series of messages in
the process of reporting inventory levels and replen-
ishing the stock:

m Periodic inventory report sent from the store
to the manufacturer

m Ship notice sent from the manufacturer to the
store with the shipment details

m Receiving report sent from the store to the
manufacturer once inventory is accepted

4: The Promise of XML

121

Industries defining their processes can identify the
individual messages contained in those processes, as
well as how and when the companies send and
receive the messages. These messages may resemble
EDI transaction sets (see Chapter 5,“The Road
Toward ebXML,” for a discussion of EDI), as in
the running store case, or look nothing like EDI
transactions, as in the travel agency case.

Identify Data in the Messages

Once industries identify the messages, they next need
to identify the sets of business data that go into those
messages. Industry organizations that have previously
developed EDI transactions can use this work as the
basis for identifying data for XML messages. Newer
business processes must rely on information analysis
between companies to determine the content
required, often replacing older, paper-based docu-
ments. But the objective is to improve the way com-
panies do business—not necessarily to follow the
current EDI transactions or old paper-process docu-
ments. Industries sometimes use this exercise to test
traditional assumptions and practices, which can cut
out captured or exchanged data that’s no longer
needed. On the other hand, this process can generate
more pieces of data needed by trading partners to
meet their business requirements.

When applying this process to XML, industry groups
develop XML vocabularies that put these groups of
data into definable messages, also identifying the
structure of the data in the messages. To aid under-
standing and reuse, the XML structure should link
related and most-used pieces of information together
as logical blocks. The messages thus embody the rules
and practices of doing business in a particular indus-
try, defined in terms of XML. In this way, industries
can design common groups of data with common
structures as industry-wide rules for processing XML
messages.

122 ebXML: The New Global Standard for Doing Business Over the Internet

XML vocabularies can define
business functions found in
multiple industries, or entire
frameworks that provide
interoperability across
industries and functions.

XML vocabularies can represent more than vertical
industries. Vocabularies can also define business func-
tions found in multiple industries, or entire frame-
works that provide interoperability across industries
and functions. One of these frameworks is ebXML
itself, which provides the underpinning for global
business, not just an industry sector.33

Business Schema DTDs

As discussed earlier, DTDs, as specified for XML,
contain the rules for both constructing and struc-
turally validating XML messages. We’ll now describe
schemas in more detail to give you an understanding
of how this key piece of the XML technology is used
to enable consistent electronic business.

DTDs assemble information into elements with con-
nected attributes. Elements are the basic building
blocks of XML messages, and therefore the basic
components of DTDs. Elements can contain other
elements expressed in a hierarchy (compound elements),
or they can stand alone as simple containers for char-
acter data. Compound elements for parent/child
blocks can be referenced together. When the model-
ing process identifies the data in proposed XML mes-
sages, most of these data items will become elements,
identified as such in DTDs. In XML messages them-
selves, elements are marked up as tags within the now
familiar angle brackets (<>). Element definitions can
indicate the frequency with which the elements
occur—once or more than once—and whether
they’re required or optional.34

Then attributes provide additional description or qual-
ification for elements. Using the language metaphor
often applied to XML, one can think of elements as
nouns and attributes as adjectives. The XML docu-
ment example presented earlier and the following
DTD fragment identify the PostalCode as an ele-
ment, with the codetype and its use as an attribute of
that element:

<PostalCode codetype='ZIP'>96045
</PostalCode>

4: The Promise of XML

123

<! — DTD definition for element and
attribute —>

<!ELEMENT PostalCode (#PCDATA) >
<!ATTLIST PostalCode
codetype CDATA #IMPLIED >

With the schema DTD syntax, the attributes also
provide a limited form of data typing, which means
that they describe the kind of data allowed for that
element. Attributes can contain strings (character
data), enumerated lists, or references to other compo-
nents in the document called fokens.

Enumerated lists restrict the attribute to only permit-
ted character strings. For example, an attribute to
identify smoking preferences for hotel reservations
would have the following as its enumerated listing:
SMOKING or NONSMOKING. Attributes can likewise indi-
cate a default response, used routinely unless the cus-
tomer requests otherwise. Returning to the hotel
example, the NONSMOKING response could serve as the
default, unless the customer specifically requests
SMOKING.3 While schema DTD datatyping is deliber-
ately simplistic but thereby more easily understood,
the new W3C extended schema datatyping is exten-
sive and sophisticated.3¢

The Entity Referencing System

Entities are rather misnamed. They’re really aliases or
substitution strings, intended to identify the reusable
objects in a schema DTD, providing handy shortcuts
and helping to ensure consistency in the rules
expressed by the DTD. These reusable objects can
consist of text strings, such as legal boilerplate, or
more complex data element and attribute combina-
tions, defined in advance and recalled when needed.
Entities can be internal to the DTD or stored as frag-
ments externally.37

Entities also help when placing a character inside a
character data or CDATA section of an XML docu-
ment that would cause confusion with the processing
of the XML, such as &, <, >, and ".

124 ebXML: The New Global Standard for Doing Business Over the Internet

Consider the telephone number in the following
example. The boldfaced element <Telephone> is a
substitution string declared as an entity in the schema
DTD telephone-usa.xml, and then included as
needed in XML documents based on that DTD. The
OpenTravel Alliance uses this technique in its cus-
tomer profile, which specifies several telephone num-
bers (customer, emergency contact, travel agency, and
so on). The use of this technique simplifies the
schema DTD and guarantees that all telephone num-
bers in the valid messages are defined consistently.3

<?xml version="1.0"7>
<!DOCTYPE Cust.Telephone SYSTEM
"http://xml.org/telephone-usa.xml' []>
<Cust.Telephone PhoneTech="Voice"
PhoneUse="Home">
< Telephone CountryAccessCode="1">
< Phone.AreaCityCode>703
</Phone.AreaCityCode>
< Phone.Number>555-9999
</Phone.Number>
</ Telephone>
</ Cust.Telephone>

Example of Building a Data Model and XML
Equivalent

Using a traveler’s customer profile, we can show an
example of a DTD and how it helps build and vali-
date an XML message.

Table 4.1 shows the pieces of information in a
scaled-down traveler profile database, showing three
levels in the data hierarchy, as well as the content of
each level—element, text, or attribute—as well as
single/multiple occurrences, requirement indicator,
and allowable options.

The control information identifies the creator of the
profile (a travel agency, for the purpose of this exer-
cise), whether it’s a new record or an update, whether
the customer has given permission to share the data
in the profile, and a date/time stamp that most
systems can generate routinely.

4: The Promise of XML 125

Table 4.1: Traveler Profile Database Structure

Data level 1 Data level 2 Data level 3 Content Occurs Required? Options
Control info Element Single Yes
Share Attribute Yes
permission?
No
Agency Element Single Yes
Agency name Text Single Yes
Agency ID Text Single
New/Update Text Single Yes New
Update
Date-time Text Single Yes
Traveler ID Element Multiple Yes
Traveler name Element Single Yes
Title Text Multiple
Family name Text Single Yes
Given names Text Multiple
Address Element Multiple Yes
Address type Attribute Mailing
Delivery
Number/street ~ Text Single Yes
Room/floor Text Multiple
City name Text Single Yes
Postal code Text Single Yes
State/Province Text Multiple
Country Text Single
Telephone Element Multiple Yes
Telephone use Attribute Work
Home
Country access Text Single
Area/city code Text Single Yes
Tel. number Text Single Yes
Email Element Multiple
Email type Attribute Work
Personal
Email address Text Single
Form of payment Element Multiple Yes
Payment type Attribute Credit card
Debit card
Payment detail Element Multiple Yes
Card number Text Single Yes
Exp. date Text Single Yes
Name on card Text Single Yes

continues

126 ebXML: The New Global Standard for Doing Business Over the Internet

Table 4.1: Continued

Data level 1 Datalevel 2 Data level 3 Content Occurs Required? Options
Travel preferences Element Multiple
General Element Multiple
Smoking section Text Single Smoking
Non-
smoking
Meal preferences Text Multiple
Special needs Multiple
Loyalty Element Multiple
programs
Program type Attribute General
Airline
Hotel
Rental car
Program name Text Single
Program ID Text Single
Airline Element Multiple
Departure Text
airport
Seat selection Text Aisle
Center
Window
Hotel Element Multiple
City section Text Downtown
Suburbs
Airport
Room type Text Single
Double
Car rental Element Multiple
Car type Text Compact
Midsize
Full
Suv
Truck
Child seat Text Single Yes
No

The DTD for this database structure (Traveler.dtd)
is found on this book’s web site (www.ebxmlbooks.

com). Please note that this DTD example is meant

only to illustrate how a DTD works, and should not

be used for normal business messages.

4: The Promise of XML

127

From this database structure, a travel agency wants to
create a traveler profile record for a traveler, with the
following specific data and preferences:

Administrative control data

Agency name: GoGo Travel

Agency ID code: ZZY 98234

Purpose of record: new

Date/time: 21 June 2001, 3:55 pm
Permission to share data in profile? No

Traveler identification

Traveler’s name: Ms. Phoebe P. Peabody-Beebe
Address (delivery): 312 Sycamore St., Buffalo,
NY 14204

Telephone (work): 716-555-9999

Email: Phoebe@PeabodyBeebe.com

Payment data

m Type of payment: Credit card

m Card number: 0000111122223333

m Expiration date: 12/2002

m Name on card: Phoebe P Peabody-Beebe
Preferences

Nonsmoking
Meal type:Vegetarian
Loyalty program—airlines: US Airways,
no. 24680
m Loyalty program—car rental: National Car
Rental, no. 54321
m Loyalty program—general: AmEx Membership
Miles, no. 09876
Departure airport (IATA code): BUF
Airline seat preference: Aisle
Hotel, city section preference: downtown

Hotel room preference: single

Car type preference: Compact

Listing 4.4 gives a validated XML document for
these entries based on the rules presented in
Traveler.dtd.

128 ebXML: The New Global Standard for Doing Business Over the Internet

Listing 4.4 Sample XML Document Based on
Traveler.dtd

<Traveler>
<Control>

<Agency>
<AgencyName>Go-Go Travel
</AgencyName>
<AgencyID>Z7ZY98234</AgencyID>

</Agency>

<Purpose>New</Purpose>

<DateTime>20010621t15:55:00</DateTime>

</Control>
<TravelerID Share="No">
<TravelerName>

<Title>Ms</Title>
<Family>Peabody-Beebe</Family>
<Given>Phoebe</Given>
<Given>P.</Given>
</TravelerName>
<Address AddressType="Deliver">
<NumberStreet>312 Sycamore St
</NumberStreet>
<City>Buffalo</City>
<PostalCode>14204</PostalCode>
<StateProv>NY</StateProv>
</Address>
<Telephone PhoneUse="Work">
<AreaCity>716</AreaCity>
<PhoneNumber>555-9999
</PhoneNumber>
</Telephone>
<Email>
<EmailAddress>
Phoebe@PeabodyBeebe.Com
</EmailAddress>
</Email>
</TravelerID>
<Payment>
<PayDetail>
<CardNumber>
0000111122223333
</CardNumber>
<ExpDate>12/2002</ExpDate>
<NameOnCard>
Phoebe P Peabody Beebe
</NameOnCard>
</PayDetail>
</Payment>

4: The Promise of XML

129

<Preferences>
<General>
<Smoking>Non-smoking</Smoking>
<MealPref>Vegetarian</MealPref>
</General>
<Loyalty LoyalType="Airline">
<LoyalName>US Airways
</LoyalName>
<LoyalID>24680</LoyalID>
</Loyalty>
<Loyalty LoyalType="Car Rental">
<LoyalName>National Car
Rental</LoyalName>
<LoyallID>54321</LoyalID>
</Loyalty>
<Loyalty LoyalType="General">
<LoyalName>Amex Member
Miles</LoyalName>
<LoyalID>09876</LoyallD>
</Loyalty>
<Airline>
<DepartAirport>BUF
</DepartAirport>
<SeatSelect>Aisle</SeatSelect>
</Airline>
<Hotel>
<CitySection>Downtown
</CitySection>
<RoomType>Single</RoomType>
</Hotel>
<CarRent>
<CarType>Compact</CarType>
</CarRent>
</Preferences>
</Traveler>

This message referencing the Traveler.dtd contains
all of the required data, uses tags that match the ele-
ment names in the DTD, presents the elements and
tags in the order prescribed by the DTD, and there-
fore conforms as a valid structure to that DTD.
Notice that the example doesn’t have any data for
child seat preferences listed under the XML car
rentals section, but does have three different loyalty
programs listed. The rules expressed in the DTD
allow for such variations. However, if a message left
out the traveler’s name, a validating parser would
return an error message accordingly.

130 ebXML: The New Global Standard for Doing Business Over the Internet

Software and systems
supporting XML Schema

will need to resist the temp-
tation to cover all of the
bells and whistles, since they
build in more complexity
and cost than is needed.

XML Schema

The generic name for DTDs is schemas, a term bor-
rowed from the database world. DTDs represent data
only in a hierarchy, which works fine for documenta-
tion; remember that the W3C borrowed DTDs from
SGML, designed for electronic documentation and
the predecessor to XML.

However, many business databases use other kinds
of structures—such as relational databases or object-
oriented classes and properties—some of which don’t
always lend themselves to a hierarchical model. In
some cases, particularly when working with a simple
data structure, data architects have been able to adapt
object-oriented structures or relational data models
to the kind of hierarchies represented in DTDs. But
business doesn’t always deal a simple hand, and tech-
nologists need more robust and flexible tools than
the DTD to be prepared for these more complex
conditions.

The W3C has developed XML Schema, a major
enhancement to XML that offers extended tools for
representing information structures and objects, as
well as providing extended datatypes beyond those
in DTDs. In May 2001, XML Schema reached full
recommendation status.3

XML Schema provides more power for defining the
structure, content, and semantics of XML documents.
The W3C specifications document has three parts:

m Methods for describing the structure of data
m Definition of datatypes
m A primer, explaining its features*

The first part of the specification deals with struc-
tures, documenting the meaning, use, and relation-
ships of the components of an XML document, such
as elements, attributes, and entities. It provides the
rules for validating XML documents, based on the
rules described in the schemas. It also allows for ref-
erencing partial or multiple schemas, thus providing a
great deal more flexibility and power than DTDs.#!

4: The Promise of XML

131

The second part of XML Schema covers datatypes
and addresses the need for defining more kinds of
data in the rules used to validate XML documents.
This part of the specification identifies a group of
basic (or primitive) datatypes such as strings, integers,
dates, and sequences. The specification describes fea-
tures of a datatype system, including acceptable
ranges of values and valid representations of the data
(such as whole numbers or scientific notation).

The specification identifies datatypes derived from
those built into the basic XML recommendations,
such as character data (CDATA), tokens, and entities.
And it defines various components of datatypes to
allow for the development of unanticipated
datatypes.*2

This greater flexibility comes with a price, however.
While it’s tempting to use many of these new fea-
tures, many business applications require just a few of
them at any time. For example, being able to validate
dates and times will be a significant addition to
XML ability to support business. Few businesses,
however, will need the ability to create entirely new
datatypes. Software and systems supporting XML
Schema will need to resist the temptation to cover all
of the bells and whistles, since they build in more
complexity and cost than is needed.*

As an alternative, work on RELAX NG is being
developed by an OASIS Technical Committee and
eventually for submission to ISO. RELAX NG is
designed as a simpler and more accessible approach
to providing schema functionality for XML
documents.**

Other Details

XML Schema incorporates one of the first enhance-
ments to the XML specification, called XML
Namespaces. With XML Namespaces, schemas can
address multiple XML vocabularies in a single docu-
ment. Namespaces provide for uniqueness in element
names by combining the namespace prefix (mapped
to a uniform resource identifier, like a web address),
and the local part or element or attribute name.*>

132 ebXML: The New Global Standard for Doing Business Over the Internet

The major inhibitor to the
use of XML for business is
its inability to provide for
interoperability among the
various vocabularies written
for exchanging business
messages.

Put simply, XML Namespaces allow different compa-
nies or industries to avoid name clashes where they
both use the same word with different meanings or
contexts, but with the same tag name. An example is
the word stock, which has at least six possible mean-
ings. An obvious example is using formats such as
billing:address and supplier:address to clarify
that address is being used in two different contexts.

Is XML Ready for Business?

While the XML family of technologies goes a long
way to build up the features needed for exchanging
business messages, XML markup technology by itself
can’t do all that’s needed. The major inhibitor to the
use of XML for business is its inability to provide for
interoperability among the various vocabularies writ-
ten for exchanging business messages. The number of
these vocabularies is expanding rapidly; a survey in
2000 showed these vocabularies doubling between
February and August 2000.46 Unless a way is found
to allow businesses using these vocabularies to under-
stand messages from other vocabularies, the promise
of XML as a data exchange technology will go
unfulfilled.

To achieve this interoperability, companies using
XML need to have a common set of methods with
translation among the different industry syntaxes. Also
needed is a way of relating the XML messages to
overall business processes that give context to the
messages and the data contained within them. XML
by itself also has no inherent provisions for security
and privacy, although the W3C has undertaken
important initiatives in these areas, notably with
digital signatures and privacy preferences using
extensions to the base XML specifications.

At the same time, no solution can just pile on all

of these requirements without keeping an eye on
the impact it will have on achieving the desired
objectives—keeping within the scale and price range
of the millions of smaller businesses that so far are
left out of the data-exchange experience. This is the
challenge laid at the feet of ebXML.

4: The Promise of XML

133

Endnotes

LA second edition, issued in October 2000, incorporates
error corrections from the original February 1998
version.

2“W3C Technical Reports and Publications,” World Wide
Web Consortium, 3 November 2000, www.w3.org/TR/.

3Tim Berners-Lee with Mark Fischetti, Weaving the Web
(New York: Harper Collins, 1999), pp. 44—45.

4+ We say “more or less recognized” because the leading
browser makers have added their own features to HTML
for competitive advantage. The Web Standards Project
(www.webstandards.org) seeks to reduce or eliminate this
variation.

5xCBL business language specifications, Version 3.0,
January, 2001, www. xCBL.org. The xCBL syntax is derived
from SimplEDI, developed originally by a UN/EDIFACT
working group.

6 Charles Goldfarb, “A Brief History of the Development
of SGML,” (SGML Users Group, 11 June 1990),
www.sgmlsource.com/history/sgmlhist.htm.

7Berners-Lee, p. 4.
8 Berners-Lee, pp. 16-17.
9 Berners-Lee, pages 41-42.

10 “Domain Stats”, 4 November 2000, www.whois.net/, and
Netcraft, www.netcraft.com/?host=codes.

11411, Origin and Goals,” Extensible Markup Language
(XML) 1.0,W3C Recommendation 10 February 1998,
www.w3.0rg/TR/1998/REC-xml-19980210.

122 8, Prolog and Document Type Declaration,”
Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation 6 October 2000,
www.w3.0org/TR/2000/REC-xml1-20001006.

13 The DOM applies to more than XML documents. The
discussion here focuses only on the DOM’s XML
aspects.

14 “Document Object Model Activity Statement,” World
Wide Web Consortium, 25 June 2001, www.w3.org/DOM/
Activity.

134 ebXML: The New Global Standard for Doing Business Over the Internet

15 David Megginson, “SAX: History and Contributors”
(undated), www.megginson.com/SAX/SAX1/history.html.

16 David Megginson, “What is an Event-Based Interface?”
(undated), www.megginson.com/SAX/event.html.

17“The UNICODE Standard: A Technical Introduction,”
UNICODE Consortium, December 2000,
www.UNICODE.org/UNICODE/standard/principles.html.

18 Note that XML documents don’t require 16 bits per
character, but can be stored in 8-bit configurations
known as Unicode Transformation Format (UTF-8).

19 Java is a registered trademark of Sun Microsystems.

20 Sun Microsystems, Inc., “About the Java Technology,” The
Java Tutorial, undated, http://java.sun.com/docs/books/
tutorial/getStarted/intro/definition.html.

21 Jon Bosak, “XML, Java, and the future of the Web,” 10
March 1997, www.ibiblio.org/pub/sun-info/standards/
xml/why/xmlapps.htm.

22 Matthew Fuchs, “Why XML Is Meant for Java,” Web
Techniques, July 1999, www.webtechniques/1999/06/fuchs/.
Reprinted in XML.com, 16 June 1999, www.xm1.com/
pub/a/1999/06/fuchs/fuchs.html.

23 “What are Style Sheets,” World Wide Web Consortium,
13 July 2001, www.w3.org/Style/.

24 Matt Rotter, Charity Kahn, and Paul Anderson, “Get
Started With Cascading Style Sheets: How Cascading
Style Sheets Work,” CNet Networks Inc., 2 November
2000, http://builder.cnet.com/webbuilding/
pages/Authoring/CSS/.

2 Jan Egil Refsnes, “Introduction to XSL,” XML101
(undated), www.xm1101.com/xs1/xsl_intro.asp.

26 XML Path Language (XPath) Version 1.0, W3C
Recommendation, 16 November 1999, World Wide Web
Consortium, www.w3.org/TR/xpath.

27XSL 1.0 became a recommendation of W3C in February
2001.

28 “Extensible Style Sheet Language (XSL).”W3C User
Interface Domain, World Wide Web Consortium, 13 July
2001, www.w3.org/Style/XSL/.

29 A good resource for anything involving XSLT is the web
site www.xslt.com.

4: The Promise of XML

135

30 Stephen Knilans, “Data Modeling Simplified: What Is
Data Modeling?”” 14 July 2001, Seasoned Software Inc.,

http://quick-tips.com/local-search/pages/Detailed/
2750.html.

31 Karl E. Wiegers, “Listening to the Customer’s Voice,”
Process Impact, March 1997, www.processimpact.com/
articles/usecase.html.

32 “ebXML Business Process Project Team” (undated),
www.ebxml.org/project_teams/business_process/.

33 Alan Kotok, “Even More Extensible: An Updated Survey
of XML Business Vocabularies,” XML.com, 2 August
2000, www . xm1.com/pub/2000/08/02/ebiz/
extensible.html.

34Jan Egil Refsnes, “DTD-Elements,” XML 101 (undated),
www.xml101.com/dtd/dtd_elements.asp.

35 3.3, Attribute List Declarations,” Extensible Markup
Language (XML) 1.0 (Second Edition), World Wide Web
Consortium Recommendation, 6 October 2000,
www.w3.0org/TR/REC-xml.

36 “XML Schema Part 2: Datatypes,” W3C
Recommendation, 2 May 2001, www.w3.org/TR/
xmlschema-2/.

37 Jan Egil Refsnes, “DTD-Entities,” XML 101 (undated),
www.xml101.com/dtd/dtd_entities.asp.

38 OpenTravel Alliance Message Specifications—version
2001A, www.opentravel.org/opentravel/Docs/
OTA_v2001A.pdf.

39 “XML Schema,” World Wide Web Consortium, 25 May
2001, www.w3.org/XML/Schema.

40 “World Wide Web Consortium Issues XML Schema
as a Candidate Recommendation,” World Wide Web
Consortium, 24 October 2000, www.w3.0rg/2000/10/
xml-schema-pressrelease.

41 “XML Schema Part 1: Structures,” W3C Candidate
Recommendation, 24 October 2000, www.w3.org/TR/
xmlschema-1/.

42“XML Schema Part 2: Datatypes,” W3C Candidate
Recommendation, 2 May 2001, www.w3.org/TR/2000/
CR-xmlschema-2-20001024/datatypes.html.

136 ebXML: The New Global Standard for Doing Business Over the Internet

43 David R.R. Webber and Alan Kotok, “Less Is More in
E-Business: The XML/edi Group,” XML.com, 10
November 1999, www.xml.com/pub/a/1999/11/edi/
index.html.

44 See www.oasis-open.org/committees/relax-ng/.

4 “Namespaces in XML,” World Wide Web Consortium,
14 January 1999, www.w3.org/TR/REC-xml-names/.

46 Alan Kotok, “Even More Extensible—An updated survey
of XML business vocabularies,” XML.com, 2 August
2000, www . xm1.com/pub/2000/08/02/ebiz/
extensible.html.

