
SLIDE
Knowing how to move an object around the screen can open up new possibilities of what you
can do with your Flash designs. This chapter looks at the basic ‘slide’ algorithm, which can
easily be built upon.

0473_03.qxd 09.14.01 2:28 PM Page 39

40

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Creating Sliding Panels for Navigation
and Transition Effects

The sliding panel navigation system has become quite prevalent in
Flash-powered sites. Click a button and a panel slides into place to take
you to a new area of the site. The goal of this chapter is not to show you
techniques that have been done to death, but knowing how this effect

works will give you some important principles about programmatic
movement. In this chapter you’re going to look at the basic principle of
creating motion and then look at how you can expand on it to create
some more interesting effects, and not just for navigation.

Basic Slide Algorithm

The sliding action works by manipulating the X value (or if you prefer,
the Y value) of the targeted movie clip. When a button is pressed or
rolled over, a variable is set which specifies the new X position of the
panel movie clip. A script is then run, looping around and moving the
panel a bit at a time to its new X position. And that’s all there is to
creating a basic slide action! But how does it seem to ease in and out
during the slide, slowing down as it reaches its final X position? Well,
that’s really simple also, but I’ll show you that later in the chapter.

1 First, you need to have something to slide. I created a 3-panel
bitmap in Photoshop that consisted of three 400×250 pixel
images laid out in a row 1200 pixels wide (see Figure 3.1). You
can make your own or use this same one, which is available from
the book’s web site (dragslidefade.com).

2 Create a new Flash movie sized at 400×250 pixels.

3 In the first layer, import your panel image by pressing Ctrl+R
(Cmd+R on Mac).

4 Select the image and then turn it into a movie clip by pressing
F8. Name it panel and press OK.

5 With this clip selected, position it so that the middle picture in
your panel strip is in the center and the upper edge is against the
top of the main movie (see Figure 3.2).

6 Using the Instance panel, name it panel.

7 Above this layer, create a new layer and name it script. This is
where you will put your script movie clip that will control the
movement of the panel.

3.1 Save the image as a high-quality Pict or Bitmap. You can compress
it later in Flash.

0473_03.qxd 09.14.01 2:28 PM Page 40

41

SLIDE3chapter

3.2 Use the Align panel to easily position the movie clip correctly.

Setting Up the Script Loop

The script loop is the main engine that will control the movement
of the panel. It is a standard movie clip script loop with the main
code being on one frame and a gotoAndPlay action on a subsequent
frame to make it loop.

1 Make sure nothing is selected by pressing Ctrl+Alt+A
(Cmd+Opt+A on Mac) and then press Ctrl+F8 (Cmd+F8 on
Mac) to create a new movie clip. Name it script and press OK
(see Figure 3.3).

3.3 When you create this new movie clip, you automatically go into the
symbol editing mode for it.

2 Insert a keyframe (F6) at frame 5 and then one also at frame 6.
You now have keyframes in your script movie clip at frames 1,
5, and 6.

3 Name the first layer script. Insert a new layer above the first
layer and name it labels.

4 In this labels layer, add a keyframe at frame 5.

5 Click frame 1 in the labels layer and use the Frame panel to
give it the label of stop. For frame 5, give it a label called move
(see Figure 3.4).

continues…

0473_03.qxd 09.14.01 2:28 PM Page 41

42

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

These labels enable you to execute the code in the script without
having to remember which frame you put your code on!

6 In the first layer (the script layer), double-click the first frame to
display the Frame Actions panel for that frame.

7 This first frame does two jobs. First, put a stop() command in, so
the movie clip doesn’t automatically start when it first appears on
the stage. Next, set a variable called baseRate. This dictates the
speed of the panel slide, as you will see in a moment. So for this
frame, add the following code to the Frame Actions window:

stop();
baseRate = 1.6;

…continued

3.4 Adding labels makes it easier to keep track of the script setup.

Coding the Slide Algorithm

The code on frame 5 is the main piece of code that loops around,
moving the panel to its target destination, either left or right, when
a button is pressed. First, look at how you move the panel left if the
target X position is less than the panel’s current X position.

1 Double-click the keyframe at frame 5 in the script layer to dis-
play the Frame Actions panel.

2 Check to see if the panel’s X position is greater than the value
contained in the targetx variable, which is set when a button is
clicked:

if (_root.panel._x > _root.targetx) {

If this is the case, then you need to move the panel to the left.
To work out how much you move the panel with each pass of
the loop, use a very simple algorithm.

First find out the difference in the two X positions and put that
into a variable called difference. Say, for example, your current
panel’s X position is 500, and the target X position is 200. 500
minus 200 is 300. You can’t simply move the panel 300 pixels
to the left, as there would be no perceived movement—it would
just jump to its new X position. So, what you need to do is
divide the difference by a number. The number you use is the
value of baseRate, which in this case is 1.6.

Thus, difference divided by baseRate equals rate in the current
example:

300/1.6=187.5

0473_03.qxd 09.14.01 2:28 PM Page 42

43

SLIDE3chapter

This gives you the amount that you move your panel to the left.
Now you’re probably thinking, “Hang on, I can’t simply just keep
moving it 187.5 pixels to the left. It should slow down as it
reaches its destination.” Well the thing is, the difference is recal-
culated every time the script loops around. So in the given exam-
ple, the next time it loops around the current X position of the
panel, it will be 500 minus 187.5, which is 312.5. See how the
new calculation works out as follows:

312.5–200=112.5 (panel_x–targetx=difference)

112.5/1.6=70.3125 (difference/baseRate=rate)

You can see that the amount you will move the panel is just over
70 pixels. Obviously the nearer the panel gets to its target X posi-
tion, the slower the panel moves each time the loop circles
around. Eventually it stops moving because the difference is zero!
The effect of this is that the panel seems to ease into its final
resting place. Of course you can alter the baseRate and try differ-
ent numbers. The higher numbers move the panel more slowly,
lower, and more quickly. Season to taste!

Following is the complete code for moving the panel left and
right. Enter this into the current open Script window, which is
frame 5 of the script layer (see Figure 3.5).

difference = _root.targetx - _root.panel._x;
rate = difference / baseRate
_root.panel._x += rate;

3 Double-click frame 6 in the script layer.

4 In this Frame Actions panel, add the following code that will
keep the script looping:

gotoAndPlay(“move”);

That’s it for the script! Now you need to add the buttons that will
actually execute the code.

3.5 After putting this code into the open Script window, you are ready for the
final looping command.

0473_03.qxd 09.14.01 2:28 PM Page 43

44

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Adding the Buttons

The buttons actually execute the code you’ve just written by simply
telling the script movie clip to gotoAndPlay the frame with the label
move. You also set a few variables when a button is clicked so that the
panel knows where to move.

1 Back on the main stage, drag the script movie clip into the script
layer.

2 With the clip still selected, use the Instance panel to name it
script (see Figure 3.6). This is to help reference the script from
your buttons when they’re clicked.

3 Create a new layer called buttons above the script layer.

4 Draw out a rectangle on the stage, select it, and then turn it into a
button (F8). Name it something creative, such as button, and
click OK (see Figure 3.7).

When this button is clicked, you want it to do two things. First,
it needs to set the value of the variable targetx. This is the new X
position you want the panel to move to as follows:

targetx = 600;

Second, you want to actually call the script itself to move the
panel as follows:

script.gotoAndPlay(“move”);

5 To add this functionality to the button, select it and press
Ctrl+Alt+A (Cmd+Opt+A on Mac) to display the Object Actions
panel.

3.6 Always try to use descriptive instance names for movie clips.

3.7 You can add a great deal of functionality to the buttons you have
created here.

0473_03.qxd 09.14.01 2:28 PM Page 44

45

SLIDE3chapter

6 Add an on(release) event handler to the Script window as
follows:

on (release) {
}

This means that when the button is released (that is, clicked) the
code between the curly brackets is executed.

7 Add the following code between the curly brackets to finish the
button script:

targetx = 600;
script.gotoAndPlay(“move”);

8 Back on the main stage, copy the button and paste it twice so that
you have three buttons on the stage (see Figure 3.8).

9 Select button 2, open the Object Actions panel for that button
(Ctrl+Alt+A [Cmd+Opt+A on Mac]), and alter the targetx vari-
able so that it now reads as follows:

targetx = 200;

10 Do the same for the third button, but alter the targetx variable to
–200. You now have three buttons that set the panel to different
X positions.

11 Test your movie to see if it works. You should find that clicking
the buttons sends the panels sliding left and right in a very fluid
fashion (see Figure 3.9).

Try altering the baseRate variable to a lower or higher number to
get different speeds.

3.8 The three buttons you have created will set the panels to different
X positions.

3.9 The key test of successful button making is how smoothly the motions
of the panels execute.

0473_03.qxd 09.14.01 2:28 PM Page 45

46

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Other Uses of the Slide Algorithm

Now that you have a handle on the basic slide algorithm and how it
works, you can start to use it in more inventive ways. (Versus doing a
carbon copy of an effect that’s probably already overused anyway.) That’s
what’s so great about interactive design—there’s always room to expand
on a technique and take it to new places—it’s not just limited to copying
a good idea.

Multiple Mouse Slide

Okay, the title of this is a bit confusing, but it actually refers to moving
several panels at different speeds to the mouse X position. As they reach
their destination, the panels gradually fade out. Again, this looks great
over the top of a bitmap. I’ve used a shot taken with my Canon Digital
Ixus on the train to Manchester, one cold January morning. The picture
is available from the book’s web site (dragslidefade.com), but you can, of
course, use any image you’d like.

Setting Up the Movie

1 Create a new Flash movie sized at 500×375.

2 Rename the first layer image and then import your bitmap into
this layer.

3 Use the Align panel to center align the image to the stage (see
Figure 3.10).

4 Next you need something to slide. Create a new layer above the
image layer and name it panel1.

5 In this layer draw a rectangular box 125×375. Use the Info panel
to set the dimensions (see Figure 3.11).

6 Select the rectangle and turn it into a movie clip by pressing F8.
Name it panel and press OK.

7 With this movie clip still selected, use the Instance panel to name
it panel1 (see Figure 3.12).

8 Create a new layer and name it panel2. 3.10 After the image is aligned to the stage, you can prepare for the coding
that will get your movie moving.

0473_03.qxd 09.14.01 2:28 PM Page 46

47

SLIDE3chapter

3.11 Using the Info panel is a very easy way to alter dimensions to a certain
size, rather than trying to do it by sight.

3.12 This is the first of two panels into which you will be coding movement.

9 Copy the movie clip from the panel1 layer and then paste it into
the panel2 layer by choosing Edit/Paste In Place.

10 With this second panel selected, use the Instance panel to rename
it panel2.

You now have two panels on separate layers above your bitmap
image. Now it’s time to do the coding to get them to move.

Coding the Multiple Movement Algorithm

The brute-force way to make this work is to simply take your previous
slide code, copy and paste the same code underneath the original code,
and then alter this second part so that it affects the movie clip called
panel2. As a result, you would end up with four if statements. That’s
reasonable when you only have two things to slide, but what if you had
5 or 10? What I want to do is show you a much more efficient way of
coding this using something you will fall in love with—functions.

Using Functions to Make Efficient Code

Functions are self-contained bits of code that are executed or “called”
when you need to use them. The best way to describe it is to give you
an example. Say, for example, you have a button that, when it’s
clicked, will increase the scale of myClip in the X and Y axes. You
could write the following code:

on (release) {
myClip._xscale = myClip._xscale + 10;
myClip._yscale = myClip._yscale + 10;
}

0473_03.qxd 09.14.01 2:28 PM Page 47

48

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

This would, of course, work fine. But what if you needed to do this on
several buttons? Writing the same two lines would be a pain. Instead,
you can define a function in the first frame of the main timeline as
follows:

function increaseScale() {
myClip._xscale = myClip._xscale + 10;
myClip._yscale = myClip._yscale + 10;
};

Now whenever you want to increase the scale of the movie clip with the
button, you can simply write the following code:

on (release) {
_root.increaseScale()
}

This will have exactly the same effect, but it’s much more efficient. It
also means that if you wanted to amend the code—to decrease the alpha
as well as the scale, for example—you could just add it to the function.
Before I would have had to go into every single button and alter each
piece of code.

Passing Parameters to Functions

The true power of functions is their capability for allowing you to pass
parameters to them. For instance, in the previous example, the function
always affects the myClip movie clip. By defining a parameter in the
function, you can change which movie clip is affected as follows:

function increaseScale(whichClip) {
_root[whichClip]._xscale = _root[whichClip]._xscale + 10;
_root[whichClip]._yscale = _root[whichClip]._yscale + 10;
};

Define the parameter inside the brackets following the function name.
I’ve called it whichClip. Inside the function itself, use the parameter the
same as any other variable. Notice that the clip is referenced in a slightly
different way as follows:

_root[whichClip]

Basically this is the same as writing _root.myClip, but you can’t literally
write _root.whichClip because it would try and find a movie clip with an
instance name of whichClip. So, instead use a different way of referring
to the clip. To normally access myClip written this way we would enter
the following:

_root[“myClip”]

Instead, replace it with a variable. In this case, it’s whichClip (notice
there are no inverted commas).

So, how do you set the whichClip parameter so that it contains the
instance name myClip. Do this when you call the function from your
button as follows:

on (release) {
_root.increaseScale(“myClip”)
}

If you want to affect a different movie clip with the same function, you
would simply enter the following:

on (release) {
_root.increaseScale(“anotherClip”)
}

Those are the basics of using functions. We’ll cover more ground with
them later. Now move on to coding the multiple slide.

0473_03.qxd 09.14.01 2:28 PM Page 48

49

SLIDE3chapter

Defining the Slide Function

You can now add the main function to a frame on the main timeline,
ready to be called when needed. I usually place all my functions in the
same frame on a layer named “functions.” This makes it easier to find
code when I return to a project months later. Remember, even though
your function will be set on the first frame of the movie, they will not
execute until they are “called.”

1 On the main stage create a new layer and name it functions. This
layer will contain your function.

2 Double-click the first frame of this new layer to bring up the
Frame Actions panel. In this window you will define the function.

Functions are always defined in the same basic way. First, write
the actual word function. This tells Flash that what follows is a
function definition.

Following the word “function” is the name of the function itself.
This is the name you use to call or execute the function when you
want to use it. Function names cannot include spaces, so if you
need to, you can use an underscore instead. I have a basic syntax I
always employ when writing function names. In this example you
are going to create a function called movepanel. To make for easier
reading, I always start the second word and any subsequent word
with a capital letter (for example, movePanel). This has become a
common standard amongst JavaScript and the like, and it’s not a
bad thing to employ the same sense here.

After the function name come the parameters for the function,
held within parentheses. You don’t have to define parameters, but
you always need the parentheses. You can have more than one

parameter. In fact, in this example you’re going to use two—one
called whichClip and the other called baseRate. A comma sepa-
rates these two parameters when you define them as follows:

function movePanel(whichClip,baseRate)

The final part of the basic function definition is adding the curly
brackets. These go at the beginning and end of your function and
define any code between them as belonging to that function as
follows:

function movePanel(whichClip,baseRate) {
code goes here
}

3 Add this function definition into the open Script window. Your
script should look like Figure 3.13.

continues…

3.13 When your script looks like this, you then need to add some previous
script, but with modifications that will determine the movie clip you call.

0473_03.qxd 09.14.01 2:28 PM Page 49

50

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

4 Add your basic slide script from the previous example into
this function, but with three slight changes. Wherever
there is mention of _root.panel, you need to change it to read
_root[whichClip]. You do this so that you can dynamically change
which movie clip is affected when you call the function (remem-
ber, whichClip is a parameter of this function). The second change
is that your target destination is no longer the variable targetx.
Instead, you want the target destination to be the X position of
the mouse. To do this use the built-in property _xmouse. The third
change is that a line of code has been added that sets the panel
clip’s alpha setting to the value of rate. Remember, rate is con-
stantly decreasing as it reaches its destination. This will result in
the panel fading to nothing as it comes to rest.

_root[whichClip]._alpha = rate;

The full code is as follows. Your script window should now look
like Figure 3.14.

function movePanel(whichClip,baseRate) {

difference = root._xmouse - _root[whichClip]._x;
rate = difference / baseRate * 2.3

root[whichClip]._x += rate;
}

…continued

3.14 When your Script window looks like this, you’re ready to script
the looping.

0473_03.qxd 09.14.01 2:28 PM Page 50

51

SLIDE3chapter

Building a Script Loop

All that remains now is to build a simple script loop movie clip to
trigger the function.

1 Create a new layer above the functions layer and name it script
loop.

2 Make sure nothing is selected and press Ctrl+F8 (Cmd+F8 on
Mac) to create a brand-new movie clip. Name it script loop and
press OK.

3 When you create this new clip, it automatically opens, and is
ready to be edited. Double-click the first frame in this movie clip
to display the Frame Actions panel.

4 This first frame is where the function will be called as follows:

_root.movePanel(“panel1”,3);

When the script sees this line of code, it will execute the function
called movePanel, which is on the main timeline (_root). When
you call the function, you set panel1 as the movie clip you want to
be affected. You also define the baseRate of the movement as 3.

Now don’t forget you have two panels to move. No problem! Just
put another function call after the first, but this time specify the
panel2 movie clip, and with a slightly higher baseRate of 4 (so this
panel moves more slowly) as follows:

_root.movePanel(“panel2”,4);

This is the power of functions. The same code written once is
doing two different things, per the parameter’s instructions.

5 Add a keyframe (F6) on frame 2 and then double-click it. Add a
gotoAndPlay(1) action as follows so that this script keeps looping:

gotoAndPlay(1)

6 Back on the main stage, drag the script loop clip you’ve just
created into the script layer.

7 Test the movie. As you move your mouse across the movie, the
panels slide across to the current X position of the mouse, gradu-
ally fading away. See Figure 3.15.

3.15 Try altering the speed of the panels by changing the numbers in the
function calls. A higher number makes the panels move more slowly;
a lower number makes them move faster.

0473_03.qxd 09.14.01 2:29 PM Page 51

52

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Further Streamlining the Code

The code you’ve put together so far is pretty efficient. One engine—
the function—is driving all the panel movement. Next I want to show
you a way to automate the number of panels on the stage, each with
its own speed. What I mean is, you only create one master panel on
the stage. When the movie is run, the panel is duplicated as many
times as you want. In this example you’ll make 10 panels, each one
progressively slower than the first. What I want to get across is how,
after you’ve completed your code, there is nearly always a way to fine-
tune it and make it more efficient.

1 You are not going to need your script loop. Instead, make use of a
movie clip onClipEvent handler. In your previous movie, delete the
script layer and the panel2 layer. You should be left with just three
layers (see Figure 3.16).

To call the function and move the panel, you are going to put the
function call inside an onClipEvent(enterFrame) event for the
panel movie clip; so that when you come to duplicate the movie
clip on-the-fly, the function call is self-contained inside each
panel movie clip.

One difference with the function call is that you need it to
dynamically know what its own instance name is. You can do this
by using the movie clip property _name. When you call the func-
tion, instead of hard coding the instance name, you can enter the
following:

_root.movePanel(this._name,3);

You see that the code includes this._name, whereas before you
wrote panel1 or panel2. Because this code will be attached to each
individual clip, use this._name to get the instance name of the
movie clip that the code is attached to.

2 Select the movie clip on the panel1 layer and press Ctrl+Alt+A
(Cmd+Opt+A on Mac) to display the Object Actions panel.

3 Add the onClipEvent handler with the function call as follows:

onClipEvent(enterFrame) {
_root.movePanel(this._name,speed);
}

3.16 Another efficient coding method is to just delete a script layer and utilize an
onClipEvent handler.

0473_03.qxd 09.14.01 2:29 PM Page 52

53

SLIDE3chapter

If the movie clip doesn’t have a stop action in it (and this one
doesn’t), the clip event will continually loop, executing the code
in between the onClipEvent curly brackets. This has the same
effect as your previous script loop movie clip.

Now you should notice that instead of using a number for the
speed, as you did before, you’ve used a variable. This is so that
each time this clip is dynamically duplicated, the speed for each
clip will get steadily slower. You’ll learn how exactly you do that
in a moment.

Duplicating the Movie Clip On-the-Fly

To duplicate the movie clip many times, when the movie is run, you
need to add some code to the main timeline. This code is run only once.

To duplicate a movie clip, use the built-in function duplicateMovieClip.
This function has two parameters. The first is the new name of the
duplicated movie clip. The second is the level number of this new clip.
Note, however, that you can only have one movie clip per level. Any new
clip put onto a level where there is an existing movie clip will delete the
old clip. So, to duplicate the panel1 movie clip, for instance, you could
enter the following code:

_root.panel1.duplicateMovieClip(“panel2”,2)

This would duplicate the movie clip with the instance name of panel1
and give it a new instance name of panel2. This new clip is put onto
level 2. When you duplicate a movie clip, you get an exact copy,
complete with all the attached onClipEvent handlers, and in exactly the
same place on the stage.

Using a Loop to Duplicate Movie Clips

In your movie, you want to duplicate the original movie clip
(panel1) 10 times. To do this, use a for loop as follows:

for (loopCount = 1; loopCount < 10; loopCount ++) {
}

for loops repeat code that is in between its own curly brackets until
a certain condition is met. In the previous example, a variable called
loopCount was set to 1 as follows:

loopCount = 1;

This is its starting value. The loop continues as long as loopCount is
less than 10 (the condition).

loopCount < 10;

So, how do you increment the value of loopCount? This is done by
the last part of the for loop as follows:

loopCount ++

This is exactly the same as writing loopCount=loopCount+1. It’s just a
shorthand way of writing it.

You can now add the code that you want repeated—inside the for
loop’s curly brackets as follows:

_root.panel1.duplicateMovieClip(“panel” + loopCount, loopCount)

continues…

0473_03.qxd 09.14.01 2:29 PM Page 53

54

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Notice that the new instance name you give each duplicated clip is
made from taking the word “panel” and then sticking the current value
of loopCount on the end:

“panel” + loopCount

So if loopCount is 3, then the instance name for this new clip is
panel3. Consequently, the next time the loop comes around, the new
instance name for the next duplicated clip is panel4.

You also use the value of loopCount to set the level of each new dupli-
cated clip. Because loopCount is increased with every pass of the loop,
each new duplicated movie clip will be on its own level.

You need to add this code into your main timeline, and you might as
well put it into the function layer. The following steps show you how
to do this:

1 Double-click the first frame in the functions layer to display the
Frame Actions panel. You should see the existing function (see
Figure 3.17).

2 Add the following code into the Script window, making sure it’s
above the movePanel function:

for (loopCount = 2; loopCount < 10; loopCount ++) {
_root.panel1.duplicateMovieClip(“panel” + loopCount,
➥loopCount)
}

The loopCount variable is set to 2 rather than 1, as this is the level at
which you want to start duplicating the movie clips.

3.17 If this is what you see on your screen, adding a little more code will
enable you to start duplicating movie clips.

…continued

0473_03.qxd 09.14.01 2:29 PM Page 54

55

SLIDE3chapter

Changing the Speed of Each Panel

Each successive panel needs to be slightly slower than the one before.
If you remember from the earlier example, you can alter the speed of
each panel by increasing the number in the movePanel function call
(the higher the number, the more slowly the panel moves). Because
you are duplicating panels on-the-fly, you want to automatically set
each panel at a slower pace than the last as they are duplicated. To do
this, make use of the onClipEvent(load) event handler, which you
attach to your first panel.

1 Select the panel movie clip on the panel1 layer. Press Ctrl+Alt+A
(Cmd+Opt+A on Mac) to display the object actions for this clip.

2 You should see the enterFrame clip event script in this window
(see Figure 3.18).

3 Add the following code to the Script window:

onClipEvent(load) {
_root.counter = _root.counter + 1;
speed = _root.counter

}

When the movie clip loads, it increases a variable called counter
on the main timeline by an increment of one:

_root.counter = _root.counter + 1;

This helps you keep track of how many of these panels you have
on the stage. Each time the panel is duplicated, this script runs
and increases the value of counter. This variable will always match
the number of panel movie clips on the stage.

3.18 You can duplicate panels and set their movement speeds on-the-fly with just
a little scripting.

continues…

0473_03.qxd 09.14.01 2:29 PM Page 55

56

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Adding Scale to the Effect

Before you test the movie, add the following piece of code into the
movePanel function as the last line:

_root[whichClip]._xscale = rate;

This will have the effect of scaling down the xscale of each panel as it
moves to its final resting place (remember the value of rate is constantly
decreasing). This creates quite a good transition effect, but play with it
to suit your taste.

Now test your movie. You should see 10 panels move across the stage to
where the mouse rests, all with varying degrees of speed (see Figure 3.20).

…continued

3.19 The order in which the onClipEvents appear in the Script window
doesn’t matter.

3.20 This test gives you 10 panels in a parade on your screen, but it is easy to
add more.

4 Use this information to set a variable called speed as follows:

speed = _root.counter

The speed variable is then used in the function call in the
enterFrame event handler to set the speed of the panel. Your
Script window should now look like Figure 3.19.

0473_03.qxd 09.14.01 2:29 PM Page 56

57

Do you want more than 10 panels? No problem. Simply increase the
number in the for loop. For instance, if you want 20 panels, just change
the condition in the for loop to the following:

loopCount < 20;

This is the real beauty of designing with ActionScript. By changing just
a few numbers, you can create different effects, quickly and easily. You
can see how we have taken one basic slide algorithm, and used it not just
for navigation, but also for visual effects. But there’s still more you can
do!

The Sliding Mask Transition Effect

By combining multiple panels with masks applied to them, you can
create some interesting transition effects. This always looks great with
photographs, and World Domination Design Group (WDDG) used it
brilliantly on its John Mark Sorum web site.

The basic principle is this: The stage contains two identical movie clips
that contain your pictures laid out vertically with one above the other.
Clicking a button slides the panels to a new Y position, with the second
panel moving slightly more slowly than the first. Each movie clip having
its own mask applied to it achieves the transition effect. When both
movie clips are in the same position, you can’t visibly see the mask. But
when you slide the clips, you see the masks because panel 2 is taking
longer to reach its destination (see Figures 3.21 and 3.22).

SLIDE3chapter

3.21 The two movie clips move toward their target position…

3.22 …and then finally come to rest, revealing the new picture.

0473_03.qxd 09.14.01 2:29 PM Page 57

58

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Setting Up the Main Stage

I’m going to show you how to build a function that can achieve this
effect, not just in the Y-axis but also in the X-axis. You’ll also expand
on the technique to create some other effects.

1 Create a new movie sized at 500×300.

2 Rename layer 1 pictures1, and then import a suitable strip of
pictures. I’ve used pictures that are 300 pixels tall. You can down-
load the two-picture strip I’ve used from dragslidefade.com (see
Figure 3.23).

3 Select the picture strip and press F8 to turn it into a movie clip.
Name it pictures and press OK.

4 Create a new layer above this one and name it function.

5 Double-click the first frame in this layer to show the Frame
Actions panel. This is where you will create the main function to
move the panels. 3.23 Go to dragslidefade.com to download this or other strips of pictures.

Creating the Function for X and Y Movement

This function is basically the same as your previous function, except you
specify a target X position and a target Y position for the movement.
This means you can move panels diagonally as well as up and down or
left and right. The X and Y target positions are defined as new parame-
ters in your function definition as follows:

function movePanel(x,y,whichClip,baseRate)

When you call the function, you set the X and Y positions to where you
want to move the panel as follows:

function movePanel(100,300,this._name,1.6)

Before, the panel headed towards the X position of the mouse, this time
it moves towards the value of X and Y.

0473_03.qxd 09.14.01 2:29 PM Page 58

59

The full function follows. The Y movement is the same as the X move-
ment, only this time you alter the _y property. Add the following code to
the Script window:

function movePanel(x,y,whichClip,baseRate) {
if (_root[whichClip]._x > x) {

difference = _root[whichClip]._x - x;
rate = difference / baseRate;
_root[whichClip]._x = _root[whichClip]._x - rate;

}
if (_root[whichClip]._x < x) {

difference = x - _root[whichClip]._x;
rate = difference / baseRate;
_root[whichClip]._x = _root[whichClip]._x + rate;

}
if (_root[whichClip]._y > y) {

difference = _root[whichClip]._y - y;
rate = difference / baseRate;
_root[whichClip]._y = _root[whichClip]._y - rate;

}
if (_root[whichClip]._y < y) {

difference = y - _root[whichClip]._y;
rate = difference / baseRate;
_root[whichClip]._y = _root[whichClip]._y + rate;

}
}

SLIDE3chapter

Calling the Function

You need to create a script loop that constantly calls the function
and moves the panels into their target positions when a button is
clicked. You could do this with a conventional movie clip script
loop, but instead you’ll do what you did in the previous example and
use an onClipEvent handler on the pictures movie clip itself:

1 Select the pictures movie clip. Use the Instance panel to name
it pictures1.

2 With this movie clip still selected, press Ctrl+Alt+A
(Cmd+Opt+A on Mac) to display the Object Actions panel
for this movie clip. You can add the onClipEvent(enterFrame)
handler in this Script window.

The main point of this script is to loop around and call the
function each time so that it moves the panel to its target desti-
nation. But you only want it to do this when a button is clicked.
Because of this you are going to use a variable of type boolean.
This type of variable can only be set to true or false. When you
click a button, you will set a variable called pressed to true. If
this variable is true, you know you need to move the panel.

if (_root.pressed == true) {

Accordingly, call the function as follows:

_root.movePanel(_root.targetx,_root.targety,this._name,1.5);

The full script for this is as follows:

onClipEvent(enterFrame) {
if (_root.pressed == true) {

continues…

0473_03.qxd 09.14.01 2:29 PM Page 59

60

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

_root.movePanel(_root.targetx,_root.targety,this
➥._name,1.5);

}
}

Your code should look like Figure 3.24.

…continued

3.24 This is the code you will need to begin to call the functions.

Notice that when you call the function, you don’t actually specify
the target X or Y position. You tell it to use the values of two
variables—targetX and targetY. These variables are set on the main
timeline when a button is clicked, so you can easily alter the destina-
tion of the panels with the ActionScript you attach to the buttons.

Of course, you need to set the value of pressed to false when the
movie first starts; otherwise, the panels will start to move immedi-
ately, rather than waiting for a button click. To set it to false, open
the script in the functions layer and add this line of code above the
function:

_root.pressed = false;

Triggering the Function with a Button

1 Create a new layer and name it buttons.

2 Draw a small box on the stage in this layer (see Figure 3.25).

3 Select this box and turn it into a button by pressing F8 and
choosing the Button radio button. Name it button. Click OK.

3.25 Buttons can be programmed to call a variety of functions,
including multiple functions with a single click.

0473_03.qxd 09.14.01 2:29 PM Page 60

61

SLIDE3chapter

When this button is clicked, it needs to do three things. First, it
must set the value of the targetx variable. If you don’t actually
want to move it across the X-axis, you can simply tell it to stay
put by using the panel’s current X position as follows:

_root.targetx = pictures1._x;

Next, set the value of the targetY position as follows:

_root.targety = 0;

Finally, set the value of pressed to true as follows, causing the
function to kick in:

_root.pressed = true;

This all needs to go in an on(release) event handler. To do this,
select the button and press Ctrl+Alt+A (Cmd+Opt+A on Mac) to
display the Object Actions panel for this button. Add the follow-
ing script:

on (release) {
_root.targetx = pictures1._x;
_root.targety = 0;
_root.pressed = true;

}

Setting Up the Masks

So far you’ve created a movie clip with your pictures in it, created the
main function, and made a button to move the panel. For your transi-
tion effect to work, you need to have two identical panels—the second
moving slightly more slowly than the first.

1 Select the pictures1 movie clip and copy it (Ctrl+C [Cmd+C
on Mac]).

2 Underneath the layer with the pictures1 movie clip on it, create a
new layer and name it pictures2. (see Figure 3.26).

3.26 Make sure this layer is underneath the pictures1 layer.

continues…

0473_03.qxd 09.14.01 2:29 PM Page 61

62

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

3 Paste the copied movie clip into this layer (Ctrl+Shift+V
[Cmd+Shift+V on Mac]). You now have the second copy of the
pictures movie clip in place. You might want to turn off the visi-
bility for the pictures1 layer for the time being so you can just see
this new clip (see Figure 3.27).

4 With this new, copied panel selected, rename it in the Instance
panel as pictures2. Each clip should have its own name so that it
doesn’t confuse the script.

…continued

3.27 Turn off the visibility of the pictures1 layer to see the layer underneath,
or alternatively turn that layer into an outline.

Now that you have the second panel in place, you need it to move
more slowly than the first panel. All you have to do is alter the
movePanel function call attached to this clip.

5 With the clip still selected, press Ctrl+Alt+A (Cmd+Opt+A on
Mac) to display the Object Actions panel. You should see that it
already has an enterFrame event handler attached to it. This is
because this clip is a copy of the original.

6 To slow this clip down, increase the number at the end of the
function call. Remember, the higher the number, the more slowly
the panel moves. The original was set to 1.5, so set this to 2 (see
Figure 3.28).

3.28 Play around with these numbers to alter the speed of the effect.

0473_03.qxd 09.14.01 2:29 PM Page 62

63

SLIDE3chapter

Creating the Mask Shapes

You next need to create the actual mask shapes for the two picture
layers. Remember that the two masks must form a whole when shown
together. Other than that, they can be any shape you desire.

1 Create a new layer above the pictures1 layer and name it mask1.
You will create the first of the two masks on this layer.

2 Draw a rectangle on this layer. Use the Info panel to make the
rectangle 225×40 (see Figure 3.29).

3.29 The rectangle you create here begins the mask creation.

continues…

3.30 After the rectangle is aligned on the stage, you then begin the
replication.

3 With this rectangle still selected, use the Align panel to align it to
the upper edge and center it on the stage (see Figure 3.30).

This shape needs to be copied four times, with each of the five
blocks spaced evenly across the vertical space of the stage.

4 With the rectangle selected, copy it (Ctrl+C [Cmd+C on Mac]).

5 Paste it in place (Ctrl+Shift+V [Cmd+Shift+V on Mac]).

0473_03.qxd 09.14.01 2:29 PM Page 63

64

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

6 Without deselecting this new rectangle, use the arrow keys to
move it underneath the original (see Figure 3.31).

Repeat this procedure for this new rectangle until you have five
rectangles spread out across the stage from top to bottom. Align
the lower-most rectangle so it’s at the bottom of the picture.
You’ll want to space them evenly across the stage. To do this,
select all the rectangles. The best way to do this is to lock all the
other layers and press Ctrl+A (Cmd+A on Mac) to select all the
objects in the mask1 layer. Now use the Align panel and make
sure the To Stage option is depressed. Click the Distribute
Vertical Center button, and the rectangles will be spaced evenly in
the vertical direction (see Figure 3.32).

…continued

3.31 If your alignment matches this figure, you’re ready to copy and space the
new rectangles.

3.32 Make sure the To Stage button is depressed.

0473_03.qxd 09.14.01 2:29 PM Page 64

65

SLIDE3chapter

7 To turn this layer into a mask for the pictures1 layer underneath,
first deselect all the panels on the mask layer by pressing
Ctrl+Shift+A (Cmd+Shift+A on Mac).

8 Right-click (Ctrl+click on Mac) the mask1 layer name and
choose Mask from the popup (see Figure 3.33).

The picture on the pictures1 layer is now masked off, with the
only areas showing through now being the areas defined by the
rectangles. To see the mask effect, turn off the visibility of the
pictures2 layer (see Figure 3.34).

You also need the pictures2 layer to be masked in exactly the
same way, but its mask should be the opposite of the pictures1
mask. That is, to the point where you can’t see the image in
pictures1; you should be able to see the image in pictures2.

9 Unlock the mask1 layer, and select all five rectangles and copy
them (Ctrl+C [Cmd+C on Mac]).

10 Lock that layer again to turn the mask back on. Above the
pictures2 layer, add a new layer and name it mask2.

11 Paste the copy (Ctrl+Shift+V [Cmd+Shift+V on Mac]) of the five
rectangles into this layer. You won’t see them appear, however,
because they will be covered by the pictures1 layer above them.

3.33 After you have masked off the picture…

3.34 …you can evaluate the mask effect.

continues…

0473_03.qxd 09.14.01 2:29 PM Page 65

66

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

12 Use the arrow keys to move all five rectangles down so you can
see them (see Figure 3.35).

13 Finally, turn this layer into a mask for the pictures2 layer by
repeating Steps 7 and 8.

…continued

3.35 If you now are looking at all five rectangles, creating the mask
is simple.

Adding the Final Button

Now you have your two movie clips masked off with alternate
masks, and you have a button in place to move the strip upward.
What you need now is a button to move the strip back down again.

1 In the button layer, select the small button, copy it (Ctrl+C
[Cmd+C on Mac]), and then paste it in place (Ctrl+Shift+V
[Cmd+Shift+V on Mac]).

2 Use the arrow keys to move it below the original button (see
Figure 3.36).

3.36 Building the down button is the final step.

0473_03.qxd 09.14.01 2:29 PM Page 66

67

SLIDE3chapter

3 With this new button still selected, press Ctrl+Alt+A
(Cmd+Opt+A on Mac) to open the Object Actions panel.

4 In the on(release) script, change the targetY position value to
300. This means that when this button is clicked, the panel is
moved so that its Y position will equal 300. The full code for
the button is as follows:

on (release) {
_root.targetx = pictures1._x;
_root.targety = 300;
_root.pressed = true;

}

5 Now test the movie. Click on the top button and the panel will
slide upwards, giving a venetian blind type transition effect.
Click the bottom button and it slides back to its original posi-
tion (see Figure 3.37).

3.37 If your code is in place, you should be able to move the panels up
or down.

Adding to the Transition Effect

After you have the basic effect working, try altering the speed of the
panels by changing the numbers in the function calls. Also try making
some more interesting mask shapes, rather than simple boxes.
Remember, you also can move the images left, right, and diagonally by
specifying a targetX position. For example, the best way to utilize this is
to have nine images laid out in a 3×3 grid. You can then set up nine but-
tons that move the images up, down, left, or right, all without any addi-
tional programming to the main function.

Adding Rotation

One addition you can make to the movePanel function is rotation.
When the panel is moved, you can make the rotation equal to the
rate variable. This makes the image spin into its resting place!

1 Double-click the first frame of the functions layer to display
the movePanel function.

2 Inside this function, add the following piece of code to the last
line of the function (before the last curly bracket):

_root[whichClip]._rotation = rate;

This makes the _rotation property of the targeted movie clip
(whichClip) equal to the value of the rate variable. Remember rate
starts off as a big number and gradually decreases down to 0.

0473_03.qxd 09.14.01 2:29 PM Page 67

68

DAWES Flash ActionScript for Designers: Drag, Slide, Fade

Adding Scale

Another effect you can add is that of scale. When the panel is moved,
you can make it seem like the picture is zooming in as it reaches its
target destination.

1 Underneath the rotation line you’ve just added to the function,
add another line of code:

_root[whichClip]._xscale = 100 + (rate *2);

This sets the _xscale property of the targeted movie clip to a
value of 100 (which is its normal state) plus the value of rate
multiplied by two. It’s been multiplied by two here so that it has a
more dramatic effect.

2 Test the movie. You should find it spins and zooms into place
when the panel moves. See Figure 3.38.

Play with the script to achieve different effects. Remove the rotation
line to see what it looks like with just the scale effect, or add the scale
effect to the yscale of the movie clip. Play around and experiment.

3.38 The spinning and zooming effects you see are just the first of the special
effects you can add.

Conclusion

You’ve learned how to take a basic ActionScript algorithm and apply it
in various ways. First, the slide algorithm was used for a navigation type
system. Then you used it to create transition type effects. This shows
how you can move clips around without the use of tweening.

You’ve also been introduced to functions. Functions are incredibly
powerful and allow you to streamline your code, and also keep track
more easily of where all your main script is located. I usually put all my

functions in one place on the main timeline. This way I can easily find
something if I come back to it a few months later.

As always, experiment with the code. You don’t have to take it liter-
ally. You can use the basic code to move any movie clip, not just a
panel! Try altering various parameters or adding lines of code to see if
you can expand on them. Why not try adding the mask effect at the
end of the last chapter, combining it with the slide algorithm?

0473_03.qxd 09.14.01 2:29 PM Page 68

