
P R O G R A M M I N G T H E
C O L L I S I O N D E T E C T I O N O F
M U L T I P L E P R O J E C T I L E S

9

By Samuel Wan

The concept of collision detection is easy

enough to understand: Compare the areas of

two movie clips to see if they overlap. The

hitTest function in ActionScript makes the

detection of colliding movie clips simple enough

by comparing two objects to see if they over-

lap. If they do overlap at some point, the two

movie clips are considered to have collided

against one another. The hitTest() function in

Actionscript is a very convenient method of

collision detection. This function compares the

bounding boxes of two movie clips to see if

they overlap. Bounding boxes are like imagi-

nary rectangles around the edges of a movie

clip that define its left edge, right edge, top

edge, and bottom edge. For example, if you

were to compare the collision of two movie

clips, bubble and ship, you would simply call

the hitTest method of one movie clip and insert

the instance name of the other movie clip as

the parameter. The method returns a true or

false: true if a collision was detected, or false if

no collision was detected.
IsCollided = Bubble.hitTest("ship");

In the preceding line, the bubble movie clip’s

hitTest method is called to compare against the

ship movie clip. If the bubble movie clip

97

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
overlaps with the ship movie clip, the hitTest function

will return a true to the IsCollided variable.

Otherwise, the function will return a false if they

don’t overlap. This line of code is simple enough, but

unlike the ship module, which contains only one ship,

the bubble module contains many bubbles. How do

you use the hitTest function to detect collision of the

ship against more than one bubble? Objects in con-

stant motion, also referred to as projectiles, change

their position after every iteration of ActionScript.

You could take a very crude approach and write

code to compare the collision of each bubble to the

ship like so:
IsCollided = Bubble1.hitTest("ship");
IsCollided = Bubble2.hitTest("ship");
IsCollided = Bubble3.hitTest("ship");
IsCollided = Bubble4.hitTest("ship");

However, writing out a line of code for every single

projectile in the game is not only an inefficient way

to program, but it’s also tough on your fingers. So

the question remains: How do you apply collision

detection to multiple projectiles in an efficient, ele-

gant way? To answer this question, you need to

come up with a way to associate all the bubbles

into a single, easy-to-use catalog system.

This scene has several bub-
bles that must be able to
detect a collision with the
ship.

Multiple copies of the same
two bubbles must be able to
detect a collision with the
ship in this scene.

PREPARING FOR ASSOCIATIVE ARRAYS
A catalog system is a handy way to reference objects—like the drawers of alphabetically

organized cards that provide information about books in a library. In the same way, asso-

ciative arrays allow us to build a small box of cards that are “associated” with objects, such

as movie clips. If an associative array is like a box of reference cards, the card inside the box

would be the equivalent of an “element” inside the associative array. This element could

refer to an object, a variable, a value, and so on, but in this case, you want to build an array

and associate its elements to movie clips. Let’s walk through the construction of an asso-

ciative array of bubbles in the game.

1 Open the BubbleFighter_Start3.f la file in the Chapter 09 folder and save it to your

local hard drive. (The final file is BubbleFighter_Final3.f la.)

98

2 In the main timeline, look for the layer named

Bubbles and select the second frame (frame 2) on that

layer. Open the Bubbles Folder in the Library and

drag the Good Bubble Module movie clip onto the

Stage.

3 Give the movie clip an instance name of

GoodBubbleModule, and double-click on it to take

a quick peek inside.

You’ll notice that the movie clip contains another

movie clip with an instance name called original-

bubble. This movie clip contains the graphics that

draw a bubble, and it acts as a template from which

you can duplicate more bubbles.

Drag the GoodBubbleModule movie clip
onto the Stage at the second frame of the
Bubbles layer.

4 Go back to the original timeline and open up the

Actions panel of the GoodBubbleModule movie clip.

Apply this ActionScript to initialize the bubble

module:

onClipEvent (load) {

maxBubbles = 5;

bubble = new Array();

}

Apply the onClipEvent (load)
code to the GoodBubbleModule
movie clip.

99

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S

You created one variable and one array as soon as

the GoodBubbles movie clip was loaded into the

Flash player. The variable maxBubbles stores the

maximum number of bubbles needed for the

GoodBubbles module. The bubbles array will act

as the cataloging box to keep track of all the bubbles.

The Object Actions
window shows the
onClipEvent(load)
code assigned to the
GoodBubbleModule
movie clip.

Note: As explained in previous chapters of
this arcade game, onClipEvent(load) is an
event handler that will execute all the code
within its brackets one time after the movie
clip has loaded.

DUPLICATING BUBBLES AND ASSOCIATING
THEM TO AN ARRAY
Now that you’ve initialized this module, you’re ready to work with the bubble array. In

this section, you add the ActionScript to accomplish three tasks. The first task is to dupli-

cate the original Bubble movie clip inside the GoodBubbleModule movie clip into a new

bubble movie clip with an appended number (such as bubble0, bubble1, bubble2, bubble3,

and so on). The second task is to associate an element of the bubbles array to each new

bubble instance. The third task is to assign random speed, direction, and original position

of the new bubbles.

1 After the code that creates the new bubble array,

insert this code: var screen = _root.screen.getBounds(_root);

Add the screen variable to the
GoodBubbleModule movie clip.

This code creates an object called screen that holds

the left, right, upper, and lower bounds of the game

area on the main timeline. Thus, the screen object

contains properties of screen.xMin, screen.xMax,

screen.yMin, and screen.yMax.

100

The screen variable is added
to the GoodBubbleModule
movie clip.

2 Use this code to duplicate to create a new instance of

the original Bubble movie clip, and then assign that

instance to the bubble[] array:

To do this many times without writing many lines of

code, you use a for loop to run through the whole

process as many times as specified by the value of

maxBubbles. The first line of code in the load event

handler gave maxBubbles a value of 5, so you loop

through the duplication and array assignment five

times.

Note that the variable i will increment from 0

through 4, for a total of five times (counting 0, 1, 2,

3, and 4). This code creates a new instance with the

name bubble followed by the value of i, so that

you create four duplicated movie instances with

the names bubble0, bubble1, bubble2,

bubble3, and bubble4, at depths from 0

through 4, respectively.

Note: See the previous chapter for more
information about bounds and how you use
the screen movie clip to get the bounds of
the game area.

for (var i = 0; i < maxBubbles; i ++){

duplicateMovieClip (originalBubble, "bubble" + i, i);

bubble[i] = eval("bubble" + i);

Continue adding to the
onClipEvent(load) code
on the GoodBubbleModule
movie clip.

The for loop is added to the
GoodBubbleModule movie
clip.

101

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
3 Set the bubble’s location to a random x and y posi-

tion, within the x and y bounds of the screen movie

clip, using this code:

If all the bubbles moved at the same speed in the

same direction, the game would feel too artificial, so

you want to assign two variables, one for horizontal

xspeed and one for vertical yspeed, inside each

bubble’s movie clip.

4 Use this code to assign the variables:

The formula in the two lines actually works in two

parts to generate a random value for the xspeed and

yspeed directions. The first part of the formula,

(int(random(5) + 2)), generates a random number

from 2 through 6.

The second part of this formula, (1 - (random(2)*

2)), returns a value of either 1 or –1. Its actual func-

tion is a bit more complicated than the first part, but

it’s much more worthy of a closer look. Note that the

expression random(2) will return either zero or one

(0 or 1). When you multiply that random expression

by 2 to express (random(2) * 2), you receive a value

of either zero or 2 (0 or 2). The results are limited to

these two values because zero times two is still zero

(0 * 2 = 0), whereas one times two is equal to two

(1 * 2 = 2). Subtracting this random expression of

either zero or 2 from a number of 1 will produce

only two possible calculations:

(1 - (random(2)* 2))
First possible calculation: 1 – 0 = 1
Second possible calculation: 1 – 2 = -1

Multiplying both parts of the formula results in ran-

dom values from –6 through –2 or 2 through 6. This

allows us to tell the bubble to move randomly at a

speed ranging from two through six in either a for-

ward or backward direction. Because you use the

same formula to set the values for xspeed and

bubble[i] ._x = random(screen.xMax);

bubble[i] ._y = random(screen.yMax);

Use this code to set a ran-
dom location for each of the
duplicate bubbles.

bubble[i] .xspeed = (int(random(5)) + 2) * (1 - (random(2)* 2));

bubble[i] .yspeed = (int(random(5)) + 2) * (1 - (random(2)* 2));

}

Insert this code to set a ran-
dom speed for each of the
duplicate bubbles.

The additional code is added
to the onClipEvent(load)
code.

yspeed, those two lines of code will make the bubble

move forward or backward, upward or downward,

within a specific range of random numbers.

After all the duplication, positioning, and randomiz-

ing of speed has been completed, you no longer need

the originalBubble movie clip, so you simply make it

invisible.

102

Note: For more detailed explanations about
the mechanics inside the random function,
refer to the Macromedia Flash documentation
under the keyword “Random”.

originalBubble. _visible = false;
}

Insert the code that makes
the originalBubble movie clip
invisible.

The bubbles appear randomly on
the stage and move in random
directions and at random speeds.

The onClipEvent(load) code
now turns the original Bubble
movie clip invisible.

5 Use this code to make the movie clip invisible and

close out the onClipEvent(load) event handler with a

closing bracket:

Your final code for the onClipEvent(load) event han-

dler for the goodbubble module should look like this:

onClipEvent (load) {
maxBubbles = 5;
bubble = new Array();
var screen = _root.screen.getBounds(_root);
for (var i = 0; i < maxBubbles; i ++){

duplicateMovieClip (originalBubble, "bubble" +
➥ i, i);
bubble[i] = eval("bubble" + i);
bubble[i]._x = random(screen.xMax);
bubble[i]._y = random(screen.yMax);
bubble[i].xspeed = (int(Random(5)) + 2) *
➥ (1 - (random(2)* 2));
bubble[i].yspeed = (int(Random(5)) + 2) *
➥ (1 - (random(2)* 2));

}
originalBubble. _visible = false;

}

(The ➥ symbol you see here is for editorial purposes only.)

103

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
The steps you’ve taken to initialize the bubble mod-

ule during the load event handler ref lect an essential

concept in advanced Flash programming. Let’s go

over it one more time to make sure all the concepts

are understood…

You create a loop with a counter variable called i that

counts from zero to a number right below the num-

ber stored in maxBubbles.

You start with the number zero because the first ele-

ment in an array is counted as the zero element

instead of the first element.

Every time the loop iterates, a new duplicate of the

originalBubble Movie Clip is created, and it is

dynamically given an instance name of “bubble” with

the increasing value of variable i attached at the end

(for example bubble0, bubble1, bubble2, bubble3 and

so on). The new duplicate movie is also given a depth

of i, because two duplicate movies cannot occupy the

same depth in the same timeline.

You assign the new bubble instance to an element of

the bubbles array according to the increasing i vari-

able. You then have to use the eval() statement to

reference an object with the name bubble + i instead

of simply creating a string value. The result of run-

ning through the for loop and associating objects will

produce an array with associated bubble instances.

For example, the first four elements of the array will

be associated like so:

Bubble[0] = bubble0;
Bubble[1] = bubble1;
Bubble[2] = bubble2;
Bubble[3] = bubble3;

Note: Even though you started with zero as
the first element in the array (bubble[0]),
it’s perfectly acceptable to duplicate a movie
into a depth of 0, but not a depth with a
negative number.

The onClipEvent(load)
code uses duplicate movie
clips to make several copies
of the GoodBubble movie clip.

To set the location of the bubbles, you assign a ran-

dom value between zero and the maximum bounds

of the screen movie clip in the main timeline to the

_x and _y values of the bubble instance.

bubble[i] ._x = random(screen.xMax);
bubble[i] ._y = random(screen.yMax);

To set the initial speed, you create two variables

inside the duplicated movie clip: one for the horizon-

tal speed (xspeed) and one for the vertical speed

(yspeed). Use the formula (1 - (random(2)* 2) with

the variables to generate a random number between 2

and 6.

104

Compare this figure to the
previous figure (both were
shot at the beginning of
game play), and you see
that the bubbles are ran-
domly positioned at the
beginning of the game.

By varying the horizontal and vertical speed of the

bubbles, each bubble’s direction is likely to be

unique. You can add more variety to a bubble’s

direction by multiplying xspeed and yspeed by a

positive 1 or –1.

You set the original Bubble to invisible because you

need only the new duplicated instances.

Although it’s difficult to tell on
the printed page, the Bubbles
movie offers a variety of dif-
ferent directions and speeds.

105

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
MOVING THE BUBBLES
As far as the movement and screen-wrapping goes, the code for the bubble and ship are

quite similar. Again, you insert code inside the looping onClipEvent (enterframe) event

handler to continuously update the position of each bubble and to monitor for any col-

lisions against the ship. The only difference is that the movement and screen-wrapping

algorithms refer to elements of an associative array inside a for loop instead of a single

object. The for loop uses the variable i for a counter again, and the loop iterates until the

value of i reaches the maximum number of elements in the bubbles array. We are using

the array length as the maximum number of iterations in the loop for a very important

reason, which is revealed near the end of this chapter.

1 After the onClipEvent (load) handler, add this code

to begin the onClipEvent (enterframe) handler and

the looping:

In the previous section, during the load event han-

dler, you associated each new duplicated instance of

the originalBubble movie clip with an element in the

bubble array, where bubble0 is associated with

bubble[0], bubble1 is associated with bubble[1],

bubble2 is associated with bubble[2], and so on.

Now you’re looping through each array and moving

each associated bubble movie clip. Looping from 0

through the length of the bubble array will also loop

through each element in the bubble array.

As you loop through each bubble, you want to move

it in the x and y direction according to its unique

randomized speed that you assigned during the load

event handler (explained at the beginning of this

chapter).

2 Add the bubble’s xspeed and yspeed to the bubble’s

current x and y position.

Instantiate the onClipEvent(enterFrame)
handler and add a for loop.onClipEvent (enterFrame) {

for (var i=0; i<= bubble.length; i++) {

The onClipEvent(enterFrame)
code begins after the
onClipEvent(load) code.

//Propulsion

bubble[i] ._x = bubble[i] ._x + bubble[i] .xspeed;

bubble[i] ._y = bubble[i] ._y + bubble[i] .yspeed;

Insert the code that handles
movement or propulsion.

106

3 Next, you need to apply the exact same screen wrap

technique that was explained in Chapter 7. The only

difference is that instead of screen-wrapping the ship,

you’ll simply replace all references to the ship with

references to the current bubble element, bubble[i] .

Remember, when you use the reference to an array

element as bubble[i] , the value of variable i

increments (increases by 1) during each loop, so all the

code within the loop will affect all the duplicated

instances of the bubble movie clips.

//Screen wrap

var screen = _root.screen.getBounds(_root);

var bubbleBounds = bubble[i] .getBounds(_root);

var localscreen = _root.screen.getBounds(this);

if (bubbleBounds.yMax < screen.yMin) {

bubble[i] ._y = localscreen.yMax;

}

if (bubbleBounds.yMin > screen.yMax) {

bubble[i] ._y = localscreen.yMin;

}

if (bubbleBounds.xMax < screen.xMin) {

bubble[i] ._x = localscreen.xMax;

}

if (bubbleBounds.xMin > screen.xMax) {

bubble[i] ._x = localscreen.xMin;

}

}

}

Add the code that handles
the screen wrapping for the
bubbles.

INSERTING THE ACTIONSCRIPT FOR THE
ACTUAL COLLISION DETECTION
Now that you have a way to conveniently reference all the bubbles within the module,

you can also apply the hitTest() method within the for loop to detect for collision detec-

tion of each of the bubbles against the ship.

1 Apply this ActionScript right after the screen-wrap

code inside the enterframe event handler:

The code goes into the bottom of the enterFrame

event handler code so it fits like this:

onClipEvent (enterFrame) {
for (var i=0; i<= bubble.length; i++) {

//Propulsion
bubble[i] ._x = bubble[i] ._x + bubble[i] .xspeed;
bubble[i] ._y = bubble[i] ._y + bubble[i] .yspeed;

//Collision Detection

if (bubble[i] .hitTest(_root.ship.Hull)) {

bubble[i] .gotoAndPlay(2); // pop bubble

}

Add the beginning of the col-
lision detection code to the
onClipEvent(enterFrame)
handler.

107

//Screen wrap
var screen = _root.screen.getBounds(_root);
var bubbleBounds = bubble[i] .getBounds(_root);
var localscreen = _root.screen.getBounds(this);
•
•
•
if (bubbleBounds.xMin > screen.xMax) {

bubble[i] ._x = localscreen.xMin;
}
//Collision Detection
if (bubble[i] .hitTest(_root.ship.Hull)) {

bubble[i] .gotoAndPlay(2); // pop bubble
}

}

Each iteration of the loop causes each bubble instance

to run a hitTest against the ship’s main structure, the

Hull. If a collision is detected, the bubble movie clip

goes to a frame with the pop graphics. If you take a

peek inside the Good Bubble Unit, which has an

instance name of originalBubble, you will see that the

second frame, which contains the popping bubble

image, begins to play until the third frame. The third

frame contains the command removeMovieClip

(this), which deletes that instance of the duplicated

bubble movie clip. This structure allows you to

choose how many frames to display the popped

image before removing the bubble itself. Keep in

mind that an original movie clip (one that wasn’t

duplicated from another clip) cannot be removed

using the removeMovieClip command.

In the code you just inserted, there is an if condition-

al with a hitTest function that determines whether

the bubble collided with the ship. The line of code

inside that if conditional tells the bubble movie clip

to go to the second frame.

bubble[i] .gotoAndPlay(2); // pop bubble

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
The first few lines of the
collision detection code
are entered.

The third frame of the
GoodBubbleModel movie
clip contains a pop
graphic and code that
removes or deletes the
movie clip.

108

2 Just below that gotoAndPlay command, inside the if

conditional, add a splice method to remove that

associated element from the array.

The splice method simply removes an element from

an array and decreases the length of the array by the

number of elements removed. You remove the ele-

ment from the array because that bubble is popped,

so it saves the CPU power if it doesn’t have to check

bubbles that have been popped already. Because

you’ve already set the loop to stop as soon as the i

counter reaches the array length, the number of itera-

tions in the loop will decrease as the bubbles are

removed from the array. A gradually reduced number

of iterations allows the game to run more smoothly

because the CPU gradually has to do less work.

bubble.splice(i, 1); //remove associated element from the array

Add the bubble.splice code to the
Collision Detection code within
the onClipEvent(enterFrame)
handler.

Removing bubbles as the ship col-
lides with them saves CPU power
because they no longer have to
continually be accounted for.

3 Add one more line of code after the splice command

to add ten points to the score if the good bubble is

hit.

_root.score = _root.score + 10;

}

Add the _root.score code to the
Collision Detection code.

//Is Game Over?

if (bubble.length == 0) {

_root.gotoAndStop("BigBoss");

}

Add this code to the
onClipEvent(enterFrame)
handler below the Collision
Detection code.

4 Add some code to check whether the game is over. If

the bubbles array has reached zero, that means that

all the bubbles have been popped, and all the associat-

ed elements in the array have been spliced out.

Your complete script for the GoodBubble Module

should look like this:

onClipEvent(load){
maxBubbles = 5;
bubble = new Array();
var screen = _root.screen.getBounds(_root);
➥ onClipEvent (load) {
for (var i = 0; i < maxBubbles; i ++){

duplicateMovieClip (originalBubble,
➥ "bubble" + i, i);

109

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S

Your completed
onClipEvent(enterFrame)
handler should look like this
after you add the Game
Over code.

bubble[i] = eval("bubble" + i);
bubble[i] ._x = random(screen.xMax);
bubble[i] ._y = random(screen.yMax);
bubble[i] .xspeed = (int(Random(5)) + 2) * (1 -
➥ (random(2)* 2));
bubble[i] .yspeed = (int(Random(5)) + 2) * (1 -
➥ (random(2)* 2));

}
originalBubble. _visible = false;

}
onClipEvent (enterFrame) {

for (var i=0; i<= bubble.length; i++) {
//Propulsion
bubble[i] ._x = bubble[i] ._x + bubble[i] .xspeed;
bubble[i] ._y = bubble[i] ._y + bubble[i] .yspeed;

//Screen wrap
var screen = _root.screen.getBounds(_root);
var bubbleBounds = bubble[i] .getBounds(_root);
var localscreen = _root.screen.getBounds(this);
if (bubbleBounds.yMax < screen.yMin) {

bubble[i] ._y = localscreen.yMax;
}
if (bubbleBounds.yMin > screen.yMax) {

bubble[i] ._y = localscreen.yMin;
}
if (bubbleBounds.xMax < screen.xMin) {

bubble[i] ._x = localscreen.xMax;
}
if (bubbleBounds.xMin > screen.xMax) {

bubble[i] ._x = localscreen.xMin;
}
//Collision Detection
if (bubble[i] .hitTest(_root.ship.Hull)) {

bubble[i] .gotoAndPlay(2); // pop bubble
bubble.splice(i, 1);
_root.score = _root.score + 10;

}

//Is Game Over?
if (bubble.length == 0) {

_root.gotoAndStop("BigBoss");
}

}
}

(The ➥ symbol you see here is for editorial purposes only.)

Note: The ActionScript for the good bubble
module and the bad bubble module look
nearly identical except for the code triggered
by a collision detection, because hitting either
kind of bubble with the ship will have differ-
ent consequences in the game. This is a
good example of how solid modular program-
ming allows the same portions of script to be
reused for similar tasks.

110

Drag an instance of the Bad
Bubble Module movie clip
onto the Stage on the
Bubbles layer and give it an
instance name of
BadBubbleModule.

REUSING CODE
In this section, you quickly and painlessly copy, paste, and modify that same code for the BadBubble module.

1 Select all the code in the Action panel for the Good

Bubble Module, and then copy the code into the

Clipboard by using Edit > Copy. Close the

ActionScript panel.

2 Open the library and locate the Bad Bubble Module

in the Bubbles Folder. Select the second frame of the

Bubbles layer on the same timeline, the same frame

that contains the Good Bubbles Module. Drag a copy

of this movie clip onto the Stage and give it an

instance name of BadBubbleModule.

3 Open the Action panel for the BadBubbleModule

instance, put the cursor inside the Action panel, and

choose Edit > Paste.

Voila, you have just copied and pasted all the code

from the Good Bubble Module into the Bad Bubble

Module.

4 Look at the if statement inside the //Collision

Detection section. Instead of adding points each time

a bubble is popped, you need to cause some damage

to the ship. Right after the splice method, add code

to show that the shield “sparks” a bit, because these

are “bad” bubbles that are supposed to damage the

ship. Because it damages the ship, you also have to

reduce the shield transparency to show that it’s weak-

ening the shield. To do so, reduce the shield trans-

parency by 10, and then reduce the hitpoints by 20.

If the bad bubbles (the bigger blue bubbles) hit the

ship too many times, the ship should lose its shield,

and the player loses the game. If the player loses the

game, the Flash movie goes to a frame called

LoseGame that informs the player of the bad news.

Because the LoseGame frame is text, you should also

//Collision Detection

if (bubble[i] .hitTest(_root.ship.Hull)) {

bubble[i] .gotoAndPlay(2); // pop bubble

bubble.splice(i, 1);

//Reduce shields

_root.ship.shield.gotoAndPlay(2); //Show shield sparks

_root.ship.shield._alpha -= 20; //Reduce shield transparency

_root.score = _root.score - 10; //Reduce score by 10 points.

_root.ship.hitpoints -= 20;

}

//Is Game Over?

if (bubble.length == 0) {

_root.gotoAndStop("BigBoss");

}

Modify the code that you
copied and pasted from the
GoodBubbleModule movie clip
instance to reduce the shield
and reduce points.

111

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S
toggle the movie to high quality, so the text will

show up anti-aliased and will be easy to read. You

will make such changes to the //Is Game Over?

section of the code.

The Shield value is reduced
every time the ship collides
with a bad bubble.

5 Find the following code from the original Good

Bubble Module version:

//Is Game Over?
if (_root.ship.hitpoints <= 0) { //Remember to change to
➥ reflect shield strength

_root._highquality = 1;
_root.gotoAndStop("LoseGame");

}

(The ➥ symbol you see here is for editorial purposes only.)

Modify the Collision
Detection code as shown.

6 Replace the selected code with the Bad Bubble

Module version: //Is Game Over?

if (_root.ship.hitpoints <= 0) {

//Remember to change to reflect shield strength

_root._highquality = 1;

_root.gotoAndStop("LoseGame");

}

Modify the Game
Over code to ensure
high-quality viewing and
to display the LoseGame
frame instead of
BigBoss.

The final code for the BadBubbleModule should look like this:

onClipEvent (load) {
maxBubbles = 5;
bubble = new Array();
var screen = _root.screen.getBounds(_root);
for (var i = 0; i < maxBubbles; i ++){

duplicateMovieClip (originalBubble, "bubble" + i, i);
bubble[i] = eval("bubble" + i);
bubble[i] ._x = random(screen.xMax);
bubble[i] ._y = random(screen.yMax);
bubble[i] .xspeed = (int(Random(5)) + 2) * (1 - (random(2)* 2));
bubble[i] .yspeed = (int(Random(5)) + 2) * (1 - (random(2)* 2));

}
originalBubble. _visible = false;

}

onClipEvent (enterFrame) {
for (var i=0; i<= bubble.length; i++) {

//Propulsion
bubble[i] ._x = bubble[i] ._x + bubble[i] .xspeed;
bubble[i] ._y = bubble[i] ._y + bubble[i] .yspeed;

//Screen wrap
var screen = _root.screen.getBounds(_root);
var bubbleBounds = bubble[i] .getBounds(_root);
var localscreen = _root.screen.getBounds(this);
if (bubbleBounds.yMax < screen.yMin) {

bubble[i] ._y = localscreen.yMax;
}

112

if (bubbleBounds.yMin > screen.yMax) {
bubble[i] ._y = localscreen.yMin;

}
if (bubbleBounds.xMax < screen.xMin) {

bubble[i] ._x = localscreen.xMax;
}
if (bubbleBounds.xMin > screen.xMax) {

bubble[i] ._x = localscreen.xMin;
}
//Collision Detection
if (bubble[i] .hitTest(_root.ship.Hull)) {

bubble[i] .gotoAndPlay(2); // pop bubble
bubble.splice(i, 1);
//Reduce shields
_root.ship.shield.gotoAndPlay(2); //Show shield sparks
_root.ship.shield._alpha -= 20; //Reduce shield transparency
_root.score = _root.score - 10; //Reduce score by 10 points.
_root.ship.hitpoints -= 20;

}

//Is Game Over?
if (_root.ship.hitpoints <= 0) { //Remember to change to reflect shield strength

_root._highquality = 1;
_root.gotoAndStop("LoseGame");

}
}

113

P
R

O
G

R
A

M
M

I
N

G

T
H

E

C
O

L
L

I
S

I
O

N

D
E

T
E

C
T

I
O

N

O
F

M

U
L

T
I

P
L

E

P
R

O
J

E
C

T
I

L
E

S

The ship’s shield loses strength when you collide with a bad bubble.

HOW IT WORKS
If this chapter were simply titled “Collision Detection,” it would require only a para-

graph explaining the hitTest(target) method. What makes this chapter worth reading is

the fact that we’ve written code to detect collisions for multiple projectiles. To program

algorithms for multiple objects (such as many bubbles f lying around at once), you used

a technique called “associative arrays.” This type of array contains an element that refers

to another object, such as a movie clip, and it is an elegant way to apply the same block

of code to many associated movie clips by running through each element of the array

inside a loop.

The two steps happened simultaneously to duplicate the originalBubble movie clip and

to associate each duplicate instance to an element in the bubbles array. These two steps

occurred inside the onClipEvent(load) event handler so they would execute only once,

right after the bubble modules had loaded into the Flash Player. You initialized each

movie clip by assigning it a randomized xspeed and yspeed, and then you set each

movie clip to a random location on the screen.

The Collision Detection engine must account for a number of objects or an array
of objects.

The player gets to go to the Big Boss screen if he removes all the good bubbles
(the green ones).

The onClipEvent(enterFrame) handler contained all the code executed continually to

move the bubbles and detect for collision. You used the same screen-wrap code with slight

modification for the bubbles, too.

Several events occur in sequence when a collision is detected between a bubble and the

ship’s hull:

1. The bubble’s associated element in the bubbles array is spliced (or removed) from

the array.

2. The bubble goes to frame two and begins playing until frame three.

3. The ActionScript in frame three causes the bubble movie clip to remove itself.

If the ship has collided with a “good” bubble, the collision adds 10 points to the score. If it

has collided with a “bad” bubble, the collision reduces the shield by 20 points.

Finally, you copied and pasted the complete code from the GoodBubbleModule to the

BadBubbleModule and made certain adjustments to the code to ref lect the behavior of the

two different kinds of bubbles.

114

The player is sent to the Loser screen if he removes all the bad bubbles (the blue ones).

