
. Use constants in fields and formulas

. Use formulas in forms

. Use formulas in views

. Use formulas in agents

. Use formulas in actions

. Understand new and enhanced @Functions

. Understand new and enhanced @Commands

. Troubleshoot formulas

4
Coding Formulas

OB J E C T I V E S

C H A P T E R

06 8770 CH04 10/30/00 2:30 PM Page 161

CH A P T E R 4 Coding Formulas

Domino 5.x provides a powerful application development environment
in large part because a number of programming languages can be used
exclusively, or in conjunction with one another, to build powerful and
sophisticated applications. At the present time, Domino 5.x supports the
following programming languages: Notes Formulas, LotusScript, Java,
and JavaScript. Of the four, the Notes Formula language has been
around since the earliest days of Notes and provides a fairly simple inter-
face for programming Domino applications. In fact, some coding tasks
in Notes can be accomplished only using the Formula language!

According to the Lotus Designer Help, a formula is “an expression that
has program-like attributes.” In Domino 5.x, some of the many things
you can do with formulas are

l Create selection criteria for a view.

l Return a value to a field.

l Validate a field.

l Manipulate the value of a field.

l Create new fields in a document.

l Perform actions when documents are open, refreshed, or closed.

l Create replication formulas.

l Return a value in a view column.

l Automate buttons or hotspots and code agents.

USE CONSTANTS IN FIELDS AND
FORMULAS

In Domino, formulas are used to

l Automate tasks.

l Act on a condition.

l Compare values.

l Compute values.

l Modify values.

l Create selection criteria: views, agents, and replication formulas.

162

06 8770 CH04 10/30/00 2:30 PM Page 162

Use Constants in F ie lds and Formulas

A formula is composed of one or more statements, which consist of any
of the elements listed in Table 4.1.

TABLE 4.1

FO R M U L A EL E M E N T S

Element Description

@Commands Similar to functions, @Commands execute Notes commands, most
of which duplicate menu options such as File, Save.

@Functions Prebuilt functions that perform a specific action and return a result.

Constants Static values that do not change. Notes supports three types of
constants: Text, Number, and Date. The following is an example
of a text constant: “Samuel Hatter.”

Keywords Statements that perform special functions. There are five: DEFAULT,
ENVIRONMENT, FIELD, REM, and SELECT.

Operators Operators assign values and modify values. Domino supports a
large number of operators.

The remainder of this section is not intended to be a comprehensive
compendium of formula functions and commands; there are far too
many! Rather, it is intended to provide an overview of how they are
used. You can refer to the Domino Designer Help database
Help5_Designer.nsf.

Computing Values Using Formulas
One of the main uses for the Formula language is to compute values for
an application. When computing values, there a four ways to get data
used for the computations: Constants, Fields, new values created with
operators, and temporary variables. Each is explained in the following
sections.

Using Operators to Compute New Values
As mentioned before, operators can be used to combine and compare
values. Table 4.2 lists all the Formula language operators and their prece-
dence, meaning the order in which they are operated upon, or, in other
words, which operations are performed first.

163

06 8770 CH04 10/30/00 2:30 PM Page 163

CH A P T E R 4 Coding Formulas

TABLE 4.2

FO R M U L A OP E R AT O R S

Operator Operation Performed Precedence

:= Assignment NA

: List concatenation 1

+ Positive 2

- Negative

* Multiplication 3

** Permuted multiplication

/ Division

*/ Permuted division

+ Addition, concatenation 4

*+ Permuted addition

- Subtraction

*- Permuted subtraction

= Equal 5

*= Permuted equal

<> Not equal

!= Not equal

=! Not equal

>< Not equal

*<> Permuted not equal

< Less than

*< Permuted less than

> Greater than

*> Permuted greater than

<= Less than or equal

*<= Permuted less than or equal

>= Greater than or equal

*>= Permuted greater than or equal

! Logical NOT 6

& Logical AND

| Logical OR

164

06 8770 CH04 10/30/00 2:30 PM Page 164

Use Constants in F ie lds and Formulas

The following examples illustrate the use of some of the more common
operators.

Assignment:
tTemp:=”Ted Nugent”;

Concatenating text:
“Welcome to our site” + tWebUser+ “!”;

Creating a text list:
“Abraham Lincoln”:”Ronald Reagan”:”George Bush”;

Adding numbers:
nSubtotal+nTax;

Subtracting numbers:
nSubtotal-nDiscount;

Dividing numbers:
nTotal/nTax;

Multiplying numbers:
nSubtotal*nRate

Equality:
@if(@UserName=”Dave Hatter/Definiti”;@Prompt([OK];”Authorized”;”User
➥Authorized”);@Return(@Prompt([OK];”Error”;”Not Authorized”)));

Inequality:
@if(@UserName<>”Dave Hatter/Definiti”;@Return(@Prompt([OK];
➥”Error”;”Not Authorized”)); @Prompt([OK];”Authorized”;”User
➥Authorized”));

Greater than:
@if(nSubTotal>100000;@Failure(“Order entry error”);@Success);

Greater than or equal to:
@if(nSubTotal>=100000;@Failure(“Order entry error”);@Success);

Less than:
@if(nSubTotal<1;@Failure(“Order entry error”);@Success);

Less than or equal to:
@if(nSubTotal<=1;@Failure(“Order entry error”);@Success);

165

06 8770 CH04 10/30/00 2:30 PM Page 165

CH A P T E R 4 Coding Formulas

Logical AND:
@if(nSubTotal<1 & nTotal=””;@Failure(“Order entry error”);@Success);

Logical OR:
@if(nSubTotal<1 | nTotal=””;@Failure(“Order entry error”);@Success);

Logical NOT:
@if(! nSubTotal<1;@Success;@Failure(“Order entry error”));

Using Constants in Formulas
As mentioned earlier, constants are static values that do not change. In
Notes and Domino, they come in three flavors: Text, Number, and Date.
Each is illustrated as follows:

l Text. Text constants should be enclosed in double quotes—for
example, “Wyatt Hatter”. If the string contains embedded double
quotes, the backslash character should be used as an escape charac-
ter—for example, “Samuel said \” Merry Christmas\”!”. A text list
can also be represented as a constant: “Samuel Hatter”:”Wyatt

Hatter”:”Leslee Hatter”.

l Number. Number constants are represented simply as numbers—
for example, 8, -23, 100.002, 18E2. Be sure not to use quotes or
the numbers will be interpreted as text constants. Number lists can
be represented as a constant as well: 1:2:3:4:5.

l Date-Time. Date-time constants are used to represent date
/time values and should be enclosed in square brackets ([].)
You can use “AM” and “PM” in the constant to indicate time
in a 12-hour format—for example, [18:23], [6:45PM],
[12/21/1995], [12/05/1998 12:39PM]. Like text and number
lists, date-time lists can also be represented by constants:
[01/01/1900]:[01/01/2000].

The following example illustrates using a text constant in an action for-
mula to determine whether the current user is authorized to perform the
action.

@if(@IsMember(@Name([CN];@UserName);”Samuel Hatter”:”Wyatt Hatter”);
➥””;@Prompt([OK];”Authorization Error”;”You are not authorized to
➥perform that operation.”));

166

06 8770 CH04 10/30/00 2:30 PM Page 166

Us ing Formulas in Forms

Using Temporary Variables
Temporary variables are used to temporarily store values that exist only
within the currently executing formula. (When the code ends, the vari-
able is no longer available.) Variables can go a long way toward making
your formulas more readable and more modular. A temporary variable
need not be declared before it is used, and it is instantiated simply by
using the assignment operator “:=”. The following example illustrates
using a temporary variable to hold a list of values returned from a lookup
and then testing the variable for errors before using its value.

List:=@Dblookup(“”;”Gonzo/Definiti”:”names.nsf”;”People”;”Samuel
➥Hatter”;2);
@If(@IsError(List);”Error in lookup”;List);

Using Fields in Formulas
Formulas have access to fields in the current document, which may be
the document that is currently open in a form, a document selected in a
view, or selected documents that an agent runs against. To use a field in
a formula, you simply reference the name of the field in the formula. For
example, if you want to compute the value of the nTotal field based on
the values in the nSubTotal and the nTax fields, you might make the nTotal
field computed and enter the following formula:

nSubTotal+nTax

When the form containing the nTotal field is opened, refreshed, or saved,
the value is recalculated.

The next example illustrates sending an email using the Formula lan-
guage to users in a field named tRecipients. The contents of the tSubject
field provide the email’s subject.

@MailSend(tRecipients ; “”;”” ; tSubject);

USING FORMULAS IN FORMS

Forms provide the structure for documents. They’re used to create,
modify, and display the data contained in documents. Because forms are
the primary tool used to create and modify data, they are highly pro-
grammable, and formulas play a large role. This section focuses on writ-
ing formulas in forms. You can use formulas to do many things in a form,
including the following:

167

06 8770 CH04 10/30/00 2:30 PM Page 167

CH A P T E R 4 Coding Formulas

l Set the window title for a form.

l Validate editable fields before a document is saved.

l Set the default value of an editable field.

l Calculate the value of a computed field.

l Provide the value for a keyword field.

l Send a mail message based on certain conditions.

l Set HTML attributes of a form or field.

l Perform tasks when document is opened, saved, or recalculated.

l Set the target frame of a form.

l Provide help.

l Set the value of computed text.

The places where the Formula language can be used in a form are
defined in the following list:

l Window Title

l HTML Head Content

l HTML Body Attributes

l Web Query Open

l Web Query Save

l Help Request

l Target Frame

l Queryopen

l Postopen

l Querymodechange

l Postmodechange

l Postrecalc

l Querysave

l Postsave

l Queryclose

168

06 8770 CH04 10/30/00 2:30 PM Page 168

Us ing Formulas in Forms

l Default field values

l Field input translation

l Field validation

l Field HTML attributes

Creating a Formula in a Form
Like any design element, a form is an object that contains other objects,
most of which are programmable in some way. The following list pro-
vides a generic overview of the steps involved in adding a formula to a
form.

1. Open the form.

2. Select the element to which you want to add code from the Objects
tab shown in Figure 4.1.

3. Enter the formula in the Programmer’s pane.

4. Save the form and test it.

169

F I G U R E 4 . 1
Adding a formula to a form’s HTML Body Attributes element.

06 8770 CH04 10/30/00 2:30 PM Page 169

CH A P T E R 4 Coding Formulas

Because there are so many ways to use formulas in forms, this section
covers only the most common usage.

Computing the Window Title
By default, the title of a form (or page for that matter) is “Untitled,”
which is not very descriptive or useful. You can use the Formula lan-
guage to set the form title, which is a very good habit to get into. Just
follow these steps:

1. Open the form.

2. Select the Window Title element on the Objects tab.

3. Enter the formula in the Programmer’s pane.

4. Save the form.

5. Test the form.

The following example illustrates the creation of a conditional window
title:

@If(@isNewDoc;”New Contact”;”Contact:” +tLastName +
➥@if(!@Trim(tFirstname)=””;”, “+tFirstName;””))

Using Computed Values in a Form
Computed values can be used to make forms more dynamic and inter-
active without requiring the database to store unnecessary information.
Two types of computed values are not stored (contrast with Computed and
Computed When Composed fields): computed text and computed for display
fields.

Computed text can be used whenever you want to dynamically display
information on the screen, but don’t necessarily need to use the value
elsewhere, such as in a computed or editable field. Computed text can
be formatted with any of the normal text formatting options. The only
real restriction on computed text is that the formula used to compute it
must return a text value. To create computed text, follow these steps:

170

06 8770 CH04 10/30/00 2:30 PM Page 170

Us ing Formulas in Forms

1. Open the form in the Designer.

2. Position the cursor where the text should appear.

3. Select Create, Computed Text from the menu.

4. Enter your formula in the Programmer’s pane. Remember that
it must evaluate to text.

5. Optionally format the text.

6. Save the form.

7. Test the form.

The following formula is an example of a computed text formula:
“Welcome visitor“ + @Environment(“Counter”)

If you need to use a computed value in other formulas, or if the value is
not text and does not lend itself to text conversion, you can use a
Computed for Display field. Computed for Display fields have all the features
and characteristics of the other types of computed fields, but their values
are not stored in the document.

When using computed fields, keep the following in mind:

l Computed for Display fields (or any computed field) must have a
formula.

l Computed for Display fields re-execute their formulas when the form
is opened, refreshed, or saved.

l The values produced by Computed for Display fields are not stored.

l Computed for Display fields can be used to provide values to other
formulas.

To create a Computed for Display field, follow these steps:

1. Open the form in the Designer.

2. Position the cursor where the field should appear.

3. Select Create, Field from the menu.

4. Name the field.

171

06 8770 CH04 10/30/00 2:30 PM Page 171

CH A P T E R 4 Coding Formulas

5. Set the field properties; be sure to set the proper data type for the
value your formula is to return.

6. Enter your formula in the Programmer’s pane.

7. Optionally format the text.

8. Save the form.

9. Test the form.

The following example illustrates using a formula to compute the value
of a Computed for Display field that displays a total. Because the total is
easily calculated and should be recalculated whenever the other fields
change, this would be a good use for a Computed for Display field.

nSubtotal+nTax+nShipping

Computing the Values for a Keyword Field
One of the most useful ways to apply formulas in a form is to provide the
values for a keyword list field. There are two basic ways to do this: using
@DbColumn or @DbLookup. @DbColumn returns a column of values from a view,
whereas @DbLookup returns a column of values (or a field) for all docu-
ments in a view that match a supplied key. Using one of these two for-
mulas enables you to dynamically populate keyword fields.

Using @DbColumn
If you want to populate a list with values from a single column in a view,
you should use @DbColumn.

@DbColumn(class : mode ; server : database ; view ; columnNumber)

The first parameter that @DbColumn takes is class:mode. This parameter is a
text list. The first element in the list, class, specifies the type of database
being accessed (Notes or ODBC). If the database is a Notes database,
you can pass an empty string (“”). The second element in the list, mode,
determines whether the results should be cached or not. Indicate NoCache
to force the results to be looked up each time the function is called.
Although this method is slower, it ensures the most current list.

The second parameter, server:database is also a text list. It specifies the
server and the database that contains the view that should be used to

172

06 8770 CH04 10/30/00 2:30 PM Page 172

Us ing Formulas in Forms

provide the result set. If the view is in the current database, you can pass
an empty string (“”). You can also use the replica ID of a database rather
than specifying the name of the server and database—for example,
8525682F:0070B14.

The third parameter, view, specifies the name of the view to use for the
lookup.

Although you can supply either the view name or alias for this parameter, it
is generally preferred to use the view alias so that if the view name
changes, the formulas still work.

The final parameter, columnNumber, is a number value that represents the
column that contains the values to return. When determining which col-
umn number to use, be sure to count hidden columns. For example, if
the column is the second column displayed on the screen, but there is a
hidden column between the first and second column, the correct value
for this parameter would be 3.

If you provide a column number in a lookup formula, you should not
count hidden columns, columns that use a constant for their formulas
(such as “1”), or columns that use any of the following formulas:
@DocChildren, @DocDescendants, @DocLevel, @DocNumber,
@DocParentNumber, @DocSiblings, @IsCategory, and @IsExpandable.

The following example illustrates using @DbColumn to retrieve a list of user
names from a view in the Domino Directory named People:

View:=”People”;
Col=1;
List:=@DbColumn(“”:”NoCache”;”Gonzo/Definiti”:”names.nsf”;View;Col);
@If(@IsError(List);”Lookup Error”;List)

Using @DbLookup
If you want to populate a list with values from a column in a view where
the documents match a certain key, rather than all documents in the

173

T
IP

T
IP

06 8770 CH04 10/30/00 2:30 PM Page 173

CH A P T E R 4 Coding Formulas

view, you should use @DbLookup. Keep in mind that for the lookup to
work, the first column in the view must be sorted.

@DbLookup(class : mode ; server : database ; view ; key;
➥columnNumber)

@DbLookup(class : mode ; server : database ; view ; key; fieldName)

The first three parameters of @DbLookup are identical to the earlier
@DbColumn.

The fourth parameter, key, is a text value that specifies how the returned
values should be filtered.

The final parameter can either be a number representing the column to
return (columnNumber) or a text value (fieldName) representing a field in
the document. Only documents that match the value specified in the key
parameter will have their values returned.

The following example illustrates using @DbLookup to search a view sorted
on department, which returns a list of people whose department is IT:

View:=”People”;
Key:=”IT”;
Col=2;
List:=@DbLookup(“”;””;View;Key;Col);
@If(@IsError(List);”Lookup Error”;List)

Follow these steps to add a formula to a keyword field:

1. Open the form in the Designer.

2. Position the cursor where the keyword field should appear.

3. Select Create, Field from the menu.

4. Name the field.

5. Set the field type to Dialog List, Radio Button, Check Box, List
Box, or Combo Box.

6. Click the Control tab and select Use Formula for Choices.

7. Save the form.

8. Test the form.

174

06 8770 CH04 10/30/00 2:30 PM Page 174

Us ing Formulas in Forms

Computing Stored Values with Formulas
Formulas can also be used to compute values that are to be stored in a
document. To store values in a document, you must create one of the
following field types:

l Computed

l Computed When Composed

l Editable

Using Formulas in Computed Fields
Computed fields are an important resource for developers. Not only are
their values stored when a document is saved, but they can be used in
other formulas and fields.

Computed When Composed fields are computed only once, when the form is
opened for the first time. They are useful when you want to store a value,
but its value is recomputed. For example, the original author of a docu-
ment or the time and date the document was originally created.

Computed fields are the most flexible and useful of the three types of
computed fields because they are stored and recomputed whenever a
form is opened, refreshed, or saved. They are best suited for storing the
results of computations involving other fields.

To create a computed field, follow these steps:

1. Open the form in the Designer.

2. Position the cursor where the computed field should appear.

3. Select Create, Field from the menu.

4. Name the field.

5. Set the type to Computed.

6. Enter a formula for the field in the Programmer’s pane.

7. Save the form.

8. Test the form.

175

06 8770 CH04 10/30/00 2:30 PM Page 175

CH A P T E R 4 Coding Formulas

Using Formulas in Editable Fields
Editable fields are the primary tools for gathering, storing, and modify-
ing information from users. Editable fields can be enhanced by the use
of formulas in numerous ways. Formulas can be used to

l Set a default value for an editable field when a document is created.

l Reformat or mask data in a field.

l Validate the data a user has entered in a field before the document
is saved.

Setting a Default Value
You can use the Formula language to specify a default value for an
editable field. To supply a default value, follow these steps:

1. Open the form in the Designer.

2. Select or create the field for which you want to add a default value.

3. Choose Default Value on the Objects tab.

4. Enter a formula in the Programmer’s pane.

5. Save the form.

6. Test the form.

Using Translation Formulas to Format Field Values
If you want to ensure that data in certain fields is formatted properly, you
can use an input translation formula. When a document is saved or
refreshed, the input translations formulas are executed. Input translation
formulas can do a number of tasks such as

l Trim leading and trailing spaces off a value (@Trim).

l Make a value all uppercase or lowercase (@UpperCase or @LowerCase).

l Make a value, such as a name, a proper noun (@Propercase).

l Provide a format to values such as zip codes or phone numbers by
inserting characters such as hyphens, parentheses, periods, and/or
commas.

176

06 8770 CH04 10/30/00 2:30 PM Page 176

Us ing Formulas in Forms

To add an input translation formula to a field, follow these steps:

1. Open the form in the Designer.

2. Select or create the field for which you want to add an input trans-
lation formula.

3. Select Input Translation on the Objects tab.

4. Enter a formula in the Programmer’s pane.

5. Save the form.

6. Test the form.

The following example demonstrates a simple input translation formula
that trims leading and trailing spaces off the value in a field:

@Trim(tLastName)

Using Input Validation Formulas
Input validation formulas provide a means to ensure that users enter cor-
rect and complete data by stopping users from saving a document if a
field’s value is incorrect. Every time a document is saved or refreshed,
the input validation formulas are executed to ensure that the proper val-
ues have been entered. For each field, the value is tested according to the
formula, and if the value is acceptable, the formula returns true and the
document can be saved. If a value is unacceptable, the formula returns
false and the document cannot be saved until the proper data is entered.
Additionally, the user is prompted with a message supplied by the devel-
oper to explain the problem.

When creating input validation formulas, you must use the @Failure and
@Success functions. @Success returns true and allows the document to be
saved and to continue. @Failure returns false and displays a prompt with
a message the developer supplies as a parameter. Additionally, it causes
the termination of the save.

To create an input validation formula, follow these steps:

1. Open the form in the Designer.

2. Select or create the field for which you want to add an input vali-
dation formula.

3. Select Input Validation on the Objects tab.

177

06 8770 CH04 10/30/00 2:30 PM Page 177

CH A P T E R 4 Coding Formulas

4. Enter a formula in the Programmer’s pane.

5. Save the form.

6. Test the form.

The following example demonstrates an input validation formula that
tests the tLastname field to ensure that it is not empty. If tLastname is
empty, a prompt displays the message Please enter a value for last name.
and the save is aborted.

@if(@Trim(tLastName)=””;@Failure(“Please enter a value for last
➥name.”);@Success);

USING FORMULAS IN VIEWS

As you know from Chapter 2, views present a sorted and/or categorized
list of documents, and serve as the primary way to access data in a Notes
database. The Formula language is the primary development language
used to build views and are used to create view selection criteria, to
add logic to view columns, and to perform actions based upon user-
generated events such as opening and closing a view or pasting a docu-
ment into a view. This chapter focuses on writing formulas in views. The
places where the Formula language can be used in a view are defined in
the following list:

l View Selection

l View Columns

l Form Formula

l Help Request

l Target Frame (single click)

l Target Frame (double click)

l Queryopen

l Postopen

l Regiondoubleclick

l Queryopendocument

178

06 8770 CH04 10/30/00 2:30 PM Page 178

Us ing Formulas in V iews

l Queryrecalc

l Queryaddtofolder

l Querypaste

l Postpaste

l Querydragdrop

l Postdragdrop

l Queryclose

Creating View Selection Formulas
By default, a view displays all documents in the current database. In most
cases, this is not what a developer wants to do, hence, the view selection
formula. View selection formulas enable you to select a subset of docu-
ments by specifying criteria that a document must meet before it is
included in a view. After a view selection formula has been applied to a
view, all documents are tested against the formula. If a document meets
the criteria, the selection formula returns true (1) and the document is
included in the view. Otherwise, false (0) is returned and the document
is excluded from the view.

A view selection formula has two basic parts: the SELECT keyword, which
indicates that the view should be filtered, and the formula that tests the
desired criteria and returns true or false for each document.

To create a view selection formula, follow these steps:

1. Open the View window in Domino Designer (see Figure 4.2).

2. Select View Selection from the Objects tab in the Programmer’s
pane.

3. Select Formula in the Run drop-down list on the code window.

4. Code your selection formula.

5. Save and test the view to ensure that the proper documents are
selected.

179

06 8770 CH04 10/30/00 2:30 PM Page 179

CH A P T E R 4 Coding Formulas

F I G U R E 4 . 2
The View design window in Designer 5.x.

Table 4.3 illustrates the use of view selection formulas.

TABLE 4.3

V I E W SE L E C T I O N FO R M U L A EX A M P L E S

Selection Formula Selects Documents

SELECT @All Selects all documents
in the database. This is
the default selection
formula.

SELECT @Contains(@ProperCase(tLastName);”Hatter”); Selects all documents
where the field
tLastname contains
“Hatter”.

SELECT nTaxRate>=.33 Selects all documents
where the nTaxRate
field contains values
greater than or equal
to 33%.

180

06 8770 CH04 10/30/00 2:30 PM Page 180

Us ing Formulas in V iews

SELECT @Created <= [01/01/2000] Selects all documents
that were created on or
before 01/01/2000.

SELECT nTaxRate>=.33 & nOverTaxed=1 Selects all documents
where the field
nTaxRate is greater than
or equal to 33% and the
field nOvertaxed is
true.

Creating View Column Formulas
View columns provide the mechanism to display values from the under-
lying documents in a view. A column can either contain a value from a
field in a document, or it can contain a computed value that may or may
not be based on fields. The most simple column formula is one in which
a single field value is displayed. You can either select the field from the
Database Fields list on the Reference tab, or you can type it in directly.
For example, to display the contents of the tLastName field, simply enter
tLastName. Figure 4.3 illustrates column design.

181

Selection Formula Selects Documents

F I G U R E 4 . 3
A view column in design mode.

06 8770 CH04 10/30/00 2:30 PM Page 181

CH A P T E R 4 Coding Formulas

Although using fields in views is a common and simple practice, the
Formula language enables you to build very complex (and useful) for-
mulas for columns. The first thing that you must remember when build-
ing column values is that values displayed in a column must be of the
same data type, or must be converted to the same type. For example, if
you wanted to display someone’s name (text) and birthday (date-time)
in the same column, you must convert the date to text value and then
concatenate the values in the column. Table 4.4 lists the most common
and useful @Functions for converting values from one data type to
another. For more detailed information on these and other @Functions,
see the Domino Designer Help database (help5_designer.nsf).

TABLE 4.4

FU N C T I O N S F O R TE S T I N G A N D MA N I P U L AT I N G DATA TY P E S

Function Action

@Text(value) Converts the supplied value to a text string.

@Text(value; format) Converts the supplied value to a text string
according to a specified format.

@TextToNumber(value) Converts the supplied text string to a number.

@TextToTime(value) Converts the supplied text string to a date-time.

@IsText(value) Returns true (1) if the supplied value is a text
string or text string list.

@IsNumber(value) Returns true (1) if the supplied value is a number
or number list.

@IsTime(value) Returns true (1) if the supplied value is a time-
date or time-date list.

Table 4.5 contains examples illustrating column formulas.

182

06 8770 CH04 10/30/00 2:30 PM Page 182

Us ing Formulas in V iews

TABLE 4.5

EX A M P L E CO L U M N FO R M U L A S

Formula Result

tLastName + “, “ + tFirstName Displays the contents of the
tLastname field followed by
a space and a comma and the
contents of the tFirstName
field—for example:
Hatter, Samuel

“Opened: “ + @Text(@Created;”S0D0”) Displays the text constant
“Opened: “ and the date-
only portion of the date and
time the document was cre-
ated—for example: “Opened:
11/27/99”

“Assessed Value = “+ @Text(nAValue;”C,2”) Displays the text constant
“Assessed Value = “ and
the value of the nAValue with
two decimal places and a cur-
rency symbol—for example:
“Assessed value =
$123,000.00”

“Total: “ + @Text(nAValue * nRate;”C,2”) Displays the text constant
“Total: “ and the product
of nAValue * nRate with
two decimal places and a cur-
rency symbol—for example:
“Total: $888.23”

@TexttoTime(@Right(tCreatedOn;8)) Reads the right 8 characters of
the tCreatedOn field and
converts them to a date,
which is displayed in the
column.

@TexttoNumber(tPublish) Converts the tPublish field
to a number and displays it in
the column.

183

06 8770 CH04 10/30/00 2:30 PM Page 183

CH A P T E R 4 Coding Formulas

USING FORMULAS IN AGENTS

As you know from Chapter 3, agents are self-contained blocks of code
that can perform a number of tasks throughout an application. In many
cases, the Formula language in an agent is the best tool to accomplish
simple tasks quickly and easily. For example, creating an agent that
processes selected documents and updates a field named nExported takes
only one line of code with the Formula language! Figure 4.4 shows an
agent in design mode.

To use the Formula language in an agent, follow these steps:

1. Open the database in the Domino Designer.

2. Select Agents in the Navigator pane.

3. Click New to create a new agent or double-click an existing agent.

4. Select Formula in the Run box in the Programmer’s pane.

5. Enter a formula in the Programmer’s pane.

6. Save the agent.

7. Test the agent.

184

F I G U R E 4 . 4
Building an agent in the Designer.

06 8770 CH04 10/30/00 2:30 PM Page 184

Unders tand ing New and Enhanced @Funct ions

The following code example illustrates a simple agent that sets a field in
selected documents based on the value of another field:

@if(nExported=1;@SetField(“nArchive”;”1”);@SetField(“nArchive”;0));

USING FORMULAS IN ACTIONS

As you know from Chapter 3, actions are handy tools that can be used
to automate user tasks and can be used in forms and views. And Domino
5.x adds shared Actions, enabling you to write code once and share it
across multiple Views and Forms—very cool!

To use the Formula language in actions, follow these steps:

1. Open the database in the Domino Designer.

2. Open the form or view that contains the action, or open the shared
action from the database resources.

3. Click New to create a new action, or double-click an existing
action.

4. Select Formula in the Run box in the Programmer’s pane.

5. Enter a formula in the Programmer’s pane.

6. Save the action.

7. Test the action.

The following example demonstrates using the Formula language in an
action to print the current document or view:

@Command([FilePrint])

UNDERSTANDING NEW AND ENHANCED
@FUNCTIONS

In the past, the venerable Formula language has been expanded and
enhanced in each new release of Notes, and R5 is no exception. Table
4.6 displays the new and enhanced @Functions in R5.

185

06 8770 CH04 10/30/00 2:30 PM Page 185

CH A P T E R 4 Coding Formulas

TABLE 4.6

NE W A N D EN H A N C E D @FU N C T I O N S

Function Type

@BrowserInfo New

@ValidateInternetAddress New

@UserNamesList New

@AddtoFolder New

@UndeleteDocument New

@SetTargetFrame New

@Name Enhanced

@PickList Enhanced

New @Functions
The @AddtoFolder, @BrowserInfo, @SetTargetFrame, @UndeleteDocument,
@UserNamesList, and @ValidateInternetAddress are new @Functions. Each
function is explained in the following sections.

@AddtoFolder
This function can be used in SmartIcons, button formulas, and agent
formulas, and it can perform one of three possible actions:

l Add current document to a folder.

l Add current document to one folder while removing it from
another.

l Remove current document from one folder.

Which action is performed depends on which parameters are supplied
when the function is called. The following example shows the functions
syntax:
@AddToFolder(foldernameadd ; foldernameremove);

186

06 8770 CH04 10/30/00 2:30 PM Page 186

Unders tand ing New and Enhanced @Funct ions

The FolderNameAdd parameter is a string that indicates the folder into
which the document should be added. The FolderNameRemove parameter
indicates the name of the folder from which the document should be
removed. To perform only one of the actions, an empty string (“”) can
be substituted for either argument. The following example illustrates
using this function to add the current document to a folder without
removing it from any other folders:
@AddToFolder(“Contacts” ;””);

@BrowserInfo
The @BrowserInfo function returns information about the current client
(Notes or Web browser). @BrowserInfo can be used in any formula with
the exception of view selection column formulas. When opening forms
using this formula, non-R5 Notes clients receive the error message
Invalid formula: unknown function/operator. . Using the @Version formula
to test the client version before executing this formula can prevent this
situation. The following example illustrates how the @BrowserInfo func-
tion is used:

@BrowserInfo(“propertyname”)

The function takes one parameter, propertyname, which indicates which
browser property you’d like to view. Table 4.7 lists and explains each of
parameters supported by this function.

TABLE 4.7

@BROW S E R IN F O P R O P E R T I E S

Property Type Return Value Return Value
for Browsers for Notes Client

BrowserType Text Browser type: Notes
“Compatible”,
“Microsoft”,
“Netscape”,
“Unknown”.

Cookies Boolean 1 is cookie support, 0
else 0.

DHTML Boolean 1 if DHTML 0
support, else 0.

187

continues

06 8770 CH04 10/30/00 2:30 PM Page 187

CH A P T E R 4 Coding Formulas

Property Type Return Value Return Value
for Browsers for Notes Client

FileUpload Boolean 1 file uploads are 0
supported, else 0.

Frames Boolean 1 if <FRAME> tag 1
is supported, else 0.

Java Boolean 1 if Java applet 1
support, else 0.

JavaScript Boolean 1 if JavaScript 1
support, else 0.

Iframe Boolean 1 <IFRAME> tag 0
is supported, else 0.

Platform Text The operating system Unknown
the browser is running
on: “Win95”, “Win98”,
“WinNT”, “MacOS”,
or “Unknown”.

Robot Boolean 1 if browser is a 0
Web robot, else 0.

SSL Boolean 1 if SSL support, 0
else 0.

Tables Boolean 1 if <TABLE> tag 1
is supported, else 0.

VBScript Boolean 1 if VBScript support, 0
else 0.

Version Number The browser version Notes client build
number. -1 for number
unrecognized browsers.

In the following example, calling the @BrowserInfo function with the
“Tables” property returns 1 in most current browsers and the Notes
client:

@BrowserInfo(“Tables”);

@SetTargetFrame
The @SetTargetFrame function enables you to explicitly specify a target
frame when opening a form, page frameset, or view, or when creating or
editing a document. The syntax of the @SetTargetFrame function is

@SetTargetFrame(targetframe);

188

TABLE 4.7 cont inued

06 8770 CH04 10/30/00 2:30 PM Page 188

Unders tand ing New and Enhanced @Funct ions

The @SetTargetFrame function takes one parameter, “TargetFrame”, which
indicates the frame into which the element should be opened. This para-
meter works in one of two ways. Supplying a text value that is a valid
frame name indicates the frame into which the element should be
opened. A text-list can be supplied if the element should be opened in a
frameset containing nested frames. This function can be used in action
and hotspot formulas. An example of the @SetTargetFrame function
follows:

@SetTargetFrame(“Body”);
@Command([Openpage];”Welcome”);

@UndeleteDocument
The @UndeleteDocument function can be used to remove the soft delete sta-
tus of a document in databases that have the “Soft Delete” property
enabled. It can be used in SmartIcons, button, or agent formulas in a
view that is designed to display “soft deleted” documents. The @Undelete
function syntax is shown as follows:

@UndeleteDocument

@UserNamesList
This handy new function returns a text list containing the current user-
name, any group names, and any roles under which the user has been
granted access. The following example shows the function’s syntax:

@UserNamesList

Keep in mind that this function works only for a database on a server or
a local database with “Enforce a Consistent Access Control List Across
All Replicas” in effect. It does not work in column, selection, mail agent,
or scheduled agent formulas. On local databases that do not enforce
consistent ACLs, this function returns an empty string (“”). The fol-
lowing example illustrates using this function:

UserList:=@UserNamesList;
@If(@IsMember(@Name([CN];@UserName);UserList);@Prompt([OK];
➥”Membership”;”User is a member.”);@Prompt([OK];”Membership”;
➥”User is not a member.”));

189

06 8770 CH04 10/30/00 2:30 PM Page 189

CH A P T E R 4 Coding Formulas

@ValidateInternetAddress
This function can be used to evaluate a string to determine whether it is
a valid Internet mail address. If the function returns NULL, the address
was successfully validated; otherwise an error message indicating why the
address could not be validated is returned.

@ValidateInternetAddress([Keyword]; Address)

@ValidateInternetAddress validates mail addresses based on the RFC 821
and RFC 822 standards, each of which is shown as follows:

l RFC 821: dhatter@davehatter.com

l RFC 822: “Last, First” <Flast@davehatter.com>

The following illustrates using the @ValidateInternetAddress function in a
field. Validate formulas to ensure that the user enters an email address in
the either the RFC 821 or RFC 822 format.

RFC821:=@ValidateInternetAddress([RFC821];mailaddress);
RFC822:=@ValidateInternetAddress([RFC822];mailaddress);
Failure:=”Please enter a valid e-mail address.”;
@if(RFC821=NULL;@If(RFC822=NULL;@Success;@Failure(Failure));
➥@Failure(Failure));

Enhanced @Functions
The @Name and @Picklist functions now support new options in R5. Each
function is explained in the following sections.

@Name
The @Name function has been significantly enhanced in R5. In addition to
its old functionality, it can now perform the following functions as well:

l Return the local part of an Internet address ([LP] option).

l Return an Internet address in RFC 821 format ([Address821]
option).

l Return the phrase part of an RFC 822 formatted Internet address
([PHRASE] option).

l Remove the common name part of a distinguished name and
return the remaining parts ([HeirarchyOnly] option).

190

06 8770 CH04 10/30/00 2:30 PM Page 190

Unders tand ing New and Enhanced @Funct ions

The following example shows the syntax of the @Name function:
@Name([action]; name);

The following example shows the use of the @Name function to return the
phrase portion of an Internet mail address in RFC 822 format:

@Name([PHRASE];mailaddress);

@Picklist
@Picklist displays a modal dialog box containing either a specified view,
from which the user can select one or more documents and which
returns the specified column value from the selected documents, or it
launches the Address dialog box, displaying documents from all available
Domino Directories. When the user makes a selection, @PickList returns
those names. Its various syntaxes are shown as follows:

@PickList([Custom] : [Single] ; server : file ; view ; title ;
➥prompt ; column ; categoryname)

@PickList([Name] : [Single])

@PickList([Room])

@PickList([Resource])

@PickList([Folders]; [Single]server:database)

@PickList([Folders]; [Shared] server:database)

@PickList([Folders]; [Private] server:database)

@PickList([Folders]; [NoDesktop]server:database)

R5 offers two enhancements to @PickList. First, in a custom picklist (the
[custom] parameter is specified), you can use the ReplicaID of a database
in place of the server and database parameters. Additionally, a new para-
meter, categoryname, has been added for custom picklists. The category-
name parameter enables you to limit the documents displayed in the
picklist to a particular category in a view.

The following example illustrates using a custom picklist to display only
one column in the specified view:

List:=@PickList([custom];”123456C1:09876512”; “Lookup”; “Contacts”;
➥“Select a contact”; 2; “Hot”);

191

06 8770 CH04 10/30/00 2:30 PM Page 191

CH A P T E R 4 Coding Formulas

UNDERSTANDING NEW AND ENHANCED
@COMMANDS

R5 includes two new or enhanced @Commands, shown in the Table 4.8.
Each is explained in the subsequent sections.

TABLE 4.8

NE W A N D EN H A N C E D @CO M M A N D S

Command Type

@Command([CalendarFormat]) Enhanced

@Command([RefreshParentNote]) New

@Command([CalendarFormat])
In R5, the @Command([CalendarFormat]) command has been changed to
allow one of five calendar formats, based on the parameter supplied. The
syntax of the command is shown in the following example. Table 4.9
then illustrates each of the five valid parameters and their effect on the
calendar format.

@Command([CalendarFormat];number);

TABLE 4.9

@Command([CalendarFormat]) PA R A M E T E R VA L U E S

Value Effect

1 Displays one day in the calendar. This value is newly supported in R5.

2 Displays two days in the calendar.

7 Displays one week (7 days) in the calendar.

14 Displays two weeks (14 days) in the calendar.

30 Displays one month in the calendar.

365 Displays a year in the calendar. For Web based calendar displays only.

192

06 8770 CH04 10/30/00 2:30 PM Page 192

Troub leshoot ing Formulas

The following example opens the calendar with one day displaying:
@Command([CalendarFormat];1);

@Command([RefreshParentNote])
The @Command([RefreshParentNote]) command updates the parent docu-
ment with any values entered through a dialog box. This enables a
designer to update the parent document and close the dialog box with-
out pressing the OK button on the dialog box. Remember that this com-
mand works only in dialog boxes. The following example shows the
syntax of this command:

@Command(RefreshParentNote]);

TROUBLESHOOTING FORMULAS

There are two basic ways to debug formulas. You can add statements to
your formula (@Prompt) to follow its execution and display the value of
variables, or you can use the very handy (but undocumented) formula
debugger. Each is explained here.

The first method is fairly simple. Add @Prompt statements to stop the exe-
cution of the formula at certain points and to examine variables. The fol-
lowing example demonstrates this technique:

@Prompt([OK]; “Debug1”; “Before total calculation”);
Total := nValue * nRate;
@Prompt([OK]; “Debug2”; “Total = “ + @Text(Total))

Although this is very useful in most cases, for agents that run in the back-
ground (such as scheduled agents or mail paste agents) @Prompt does not
work. Be sure to remove the debug statements after the code works as
expected.

The second method relies on an undocumented (but very cool) feature
that very few people know about: the “formula debugger.” To activate
the formula debugger, hold down the Ctrl+Shift keys and select File,
Tools, Debug LotusScript from the menu. The formula debugger is
shown in Figure 4.5

193

06 8770 CH04 10/30/00 2:30 PM Page 193

CH A P T E R 4 Coding Formulas

F I G U R E 4 . 5
The undocumented formula debugger.

After the formula debugger has been enabled, it works in much the same
way as the LotusScript debugger. It enables you to step through the
code line by line and view the values of variables and fields so that you
can figure out what the code is doing. When you are finished using the
forumla debugger, just repeat the same steps you used to enable it. Keep
in mind that this is an undocumented and unsupported feature at this
point and may not be as reliable and stable as you might hope.

194

06 8770 CH04 10/30/00 2:30 PM Page 194

What I s Impor tant to Know

WHAT IS IMPORTANT TO KNOW

The following bullet points summarize the chapter and accentuate the key
concepts to know for the exam.

l R5 has several new and enhanced @Functions and @Commands.

l Formula syntax is very important and can trip you up.

l The @DbLookup and @DbColumn formulas have not changed, but are very
important and very useful.

l Know the difference between Computed, Computer When Composed,
Computed for Display, and Editable fields.

l Framesets are a powerful new tool that make building Web apps with
Domino much easier and more efficient.

l Know the difference between a view selection and a view column
formula.

l Know how to add formulas to the various design elements that support
them.

195

06 8770 CH04 10/30/00 2:30 PM Page 195

