
A020601.NET Refresher

.NET is the latest version of the component-based architec-
ture that Microsoft has been developing for a number of
years to support its applications and operating systems. As
the name suggests, .NET provides a range of technologies
specially designed to enable applications to be integrated
across a network, often using XML as the glue between the
different components. In turn, this helps it support many
of the emerging standards for application in development,
including UDDI, SOAP Messaging, WSDL, and other Web
services standards to enable you to build XML Web
services applications.

The .NET Framework consists of the main technology
components and libraries that support .NET application
development. By using .NET, it’s possible to build a
desktop application, a desktop interface to a Web applica-
tion, or a Web application and still use the same toolkits
and libraries. It’s even possible to convert a desktop appli-
cation to a Web-based one and provide both application
types by using the same core code base.

The real benefit of .NET, however, is how it integrates with
other applications and, more importantly, with other
components within the .NET system. Existing application
development models rely on compiling an application
written in one language into a native format directly
executable by the operating system and the underlying
hardware.

With .NET, application components are compiled from
their native language (C++, Java, Perl) to run in the
Common Language Runtime (CLR). This means that a
single application can be made up of components written
in a number of different languages—each component
using the strengths of each language while simultaneously
contributing toward a common goal. Also, because the
.NET components are provided as part of the CLR, it’s



A020601 .NET Refresher
2

possible to write a Web-enabled application in whatever language you want while making use
of all the capabilities provided by the .NET Framework.

Extension Libraries
The .NET Framework includes a wide range of different libraries and extension tools, includ-
ing new versions of the ActiveX Data Objects component (ADO.NET), interface components
consisting of Windows Forms and Web Forms, with the ability to translate between the two,
and the ASP.NET Web application platform.

However, these items are relatively insignificant compared to the core of the .NET
Framework, which provides the real power of the development platform.

Intermediate Language (IL)
Intermediate Language (IL) is the first of a number of solutions used by .NET to provide
better integration and more language independence than commonly available. IL is essen-
tially the same as byte or the assembly language used on a hardware microprocessor within
any computer. It provides the lowest set of instructions, and any language that is supported
by .NET must provide a compiler to compile the source code into IL.

Normally, applications would be developed using a single language or a compiled language
such as C or C++ with some extensions or components written using Perl, Python, or similar
languages that support extension and embedding features. It’s not generally possible (or desir-
able) to mix and match completely different languages within the same application; often
because even when using common standards such as CORBA or XML, the underlying
languages differ enough to make the cooperation difficult.

One of the goals of .NET is to support language integration in such a way that they can be
written in any language, but can interoperate with each other. With .NET, you can mix and
match components from a variety of different languages through a combination of different
systems. First, .NET uses the Common Language Specification (CLS), which defines a number
of basic rules that are required for language integration.

Attached to the CLS is the Common Type System (CTS), which defines the standard set of
data types (and therefore common object base) that should be supported by languages
supporting .NET. All languages supporting the .NET Framework must comply with the CTS
and CLS specifications, which means that any .NET-compliant language can interoperate
with another. The final part of the process is IL. If a compiled C++ component is using the
same data types and is then compiled into IL, the component is compatible with any other
IL compiled and CTS/CLS compliant language component.



Common Language Runtime
The CLR is the underlying component of the .NET infrastructure that makes all the other
components work and is directly comparable to the standard library set supplied with a Unix
operating system. The CLR incorporates all the classes and information required for develop-
ing applications with .NET, the standard C/C++ libraries, interfaces kits, networking, I/O, and
all other components within the .NET Framework.

The CLR is unique in that it supports the same API and facilities irrespective of the language
that is accessing the contents. Unlike typical libraries under Unix that are only supplied in C
or C++ versions, the functions and objects within the CLR are accessible to any language
supported by .NET. For example, once you learn the API for developing a GUI in C++, the
exact same API can be used to build GUIs within Java.

Because the CLR is just the environment, with the CLS, CTS, and IL providing the compati-
bility layer, it’s possible to make your own components that can be shared among other
applications and components that you develop.

Finally, the CLR is ultimately responsible for executing the application in question. It takes
the compiled .NET binary files (consisting of the IL code and any data associated with the
component) and uses the classes in the .NET Framework and other user-derived libraries to
build a final executable, which is in turn translated using a Just-In Time (JIT) compiler to
translate the code into the native code for the platform.

Visual Studio .NET IDE
The Visual Studio .NET IDE is a complete tool for writing, building, testing, and deploying
applications using the .NET Framework. The IDE is fully integrated with other applications
and systems, and uses a consistent environment for any .NET development. For example,
Visual Studio .NET comes with a number of built-in languages—all of which use a common
set of tools and facilities. Any additional languages supporting .NET that you add are auto-
matically available within the Visual Studio .NET environment and gain access to the same
editing, debugging, and deployment facilities.

Supported Languages
Visual Studio .NET supports five primary languages: C++, a new variant called C# based on C
and C++, J# (Java), JScript, and Visual Basic. C++ and Java applications from Unix can be
transferred and modified fairly easily for use within the new operating system. Obviously, the
use of standard libraries and interfaces for communicating with the underlying operating
system, file system, and other elements will improve the rate of migration.

3
Supported Languages



For closer integration with the Windows operating system and in particular the .NET frame-
work that underpins the .NET system, you will need to consider rewriting components to
make use of the CLR and .NET Framework elements. In most cases, you can take quick
advantage of the .NET system by simply wrapping your existing C++ classes into a .NET
component and then building a new wrapper application that makes use of the wrapped
component.

The .NET system supports a wide variety of different languages, enabling developers to
choose the development language they want to use without limiting the availability of
components, libraries, and APIs that are available. Furthermore, the level of integration
within the .NET system means that all supported languages use the same API—learn the
interface API, for example, under C++, and you can use it again within Java.

C++
Visual Studio .NET supports the standard C++ language through the Visual C++ .NET
language. Most C++ applications can be migrated to Visual C++ .NET without modification.
To make the most of .NET though, you will need to use Managed C++ code otherwise known
as C++ with managed extensions. This is basically C++ with new keywords and features that
support the .NET features. Using these extensions, you can write managed objects that run
within the CLR and simultaneously make use of the CLR features within your own compo-
nents and applications.

C#
C# is a new language developed primarily to take advantage of the new object-oriented
features in .NET such as properties, methods, indexers, attributes, versioning, and events. It’s
very similar to both C++ and Java, so you can easily migrate existing skills in these languages
to make use of the C# language.

Java and J#
Visual J# .NET is a development tool for Java-language developers that makes full use of the
.NET Framework. Visual J#.NET is similar to Java and will be familiar to developers of Visual
J++, a separate Java development environment. As well as integrating with the .NET
Framework, Visual J# .NET incorporates tools for migrating existing applications written in
Java to execute on the .NET Framework and to interface to Microsoft ASP.NET, Microsoft
ActiveX Data Objects (ADO).NET, and other .NET extensions.

Visual Basic
Visual Basic .NET is the next generation of the Visual Basic 6.0 development language. Visual
Basic .NET provides a familiar Basic language environment, but with a fully modernized and

A020601 .NET Refresher
4



updated environment. Visual Basic .NET also incorporates Structured Exception Handling,
enabling you to create an exception tree, as you would in C++ or Java, to handle errors. VB
.NET now supports object-based programming and threads, making it a useful alternative for
C++ or Java for very small utility components, as well as larger applications.

JScript (formerly JavaScript)
JScript has been updated in Visual Studio .NET to be a class-based and object-oriented script-
ing language. It is fully backward compatible with previous editions of JScript and supports
many of the facilities offered by other languages in .NET, such as typed variables and class-
based objects. The new version of JScript can also be compiled (instead of interpreted) and
has full support for the CLR and other technologies that support integration with other
languages supported by the .NET Framework.

Alternative Languages
Popular scripting languages such as Perl and Python compile themselves into a native byte-
code during execution. This model is also used by Java and is the same model employed by
the .NET IL. Through the use of IL, it’s possible any language that compiles itself before
execution be modified or adjusted so that it produces IL code instead of its own native byte-
code. Using the existing extension facilities provided by the language, it’s also possible to
provide an interface to the .NET Framework.

Work is already underway to provide these conduits and compilers for some languages. The
ActiveState Corporation, for example, is already working on Perl and Python interfaces to the
.NET framework and is investigating the possibilities of providing compilers to IL for these
and other languages.

Using these conduits and extensions, it will be possible to write .NET applications using these
alternative languages. For example, the existing PerlNET product enables the .NET framework
to make use of components outside the framework written in Perl. The forthcoming Perl for
.NET and Python for .NET products will be completely integrated into the .NET system—even
allowing you to develop, debug, and test your Perl or Python applications using the Visual
Studio .NET environment.

For Web programming, Perl, Python, Ruby, and PHP are all available on the Windows plat-
form, and most applications can be ported directly across from Unix without modification.
To take full advantage of the facilities offered by ASP.NET using Perl, ActiveState is also devel-
oping a Perl for ASP.NET solution to enable developers to write ASP.NET applications using
Perl as the underlying language.

It’s inevitable that other languages will be added in the future—those with familiar Unix
roots and other new languages designed to take full advantage of the .NET environment.

5
Supported Languages


