Sams Teach Yourself ASP.NET in 24 Hours
Copyright © 2003 by Sams Publishing

International Standard Book Number: 0672325624
Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an "as is" basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

When reviewing corrections, always check the print number of your book. Corrections are
made to printed books with each subsequent printing. To determine the printing of your
book, view the copyright page. The print number is right-most number on the line below the
“First Printing” line. For example, the following indicates the 4" printing of a title.

First Printing: June 2003

06 05 04 03 10 9 8 7 6 5 4

Misprint Correction
Page 26, last paragraph: For this example, the For this example, the buildfile echoes
buildfile echoes the phrase, 'Ant is working the phrase, 'Ant is working properly' to
correctly' to the terminal from which Ant is the terminal from which Ant is running.
running.
Page 34, next to last sentence in second In Listing 2.8, the property dirs.source
paragraph: In Listing 2.8, the property is created to specify the absolute
dirs.source is created to specify the absolute pathname the directory.
pathnames of that directory's.




Page 38, second sentence in "Story" sidebar: The
only problem with this target is that it leaves
the backup on each developer's local machine.

The one problem with this target is that
it leaves the backup on each developer's
local machine.

Page 83, third bullet: Forking will allow the Forking will allow the build to take
JVM to take advantage of a multiprocessor advantage of a multiprocessor platform.
platform.

Page 137, caption for Figure 5.3: This This JunitReport output is formatted
JunitReport output is formatted with frames with frames.

format.

Page 140, first sentence of first paragraph CrusieControl is more than a platform-
after "Story" sidebar: CrusieControl is more independent cron for build processes.

than a platform-independent cron job for build
processes.

Page 219, first sentence of last paragraph: An
example of the resulting instrumenting code is
shown in Listing 7.13.

An example of the resulting instrumented
code is shown in Listing 7.13.

Page 230, last bullet: Automated processes will
be more consistent than a group of developers.

Automated processes will be more
consistent than manual processes.

Page 287, last sentence of next to last
paragraph: In creating this custom task, we had
a chance to see how to use the Regular
Expression mapper available in Ant, and how to
deal with multiple <filesets> that need to be
uniquely identified.

In creating this custom task, we had a
chance to see how to use the Regular
Expression mapper available in Ant,

how to deal with multiple <filesetss>
that need to be uniquely identified

within a custom task.

and

Page 374, last paragraph: What FileSet will the
execute method see?

What FileSet will the execute() method
see?




New Appendix C

The Future of Ant

Keeping Your Build Processes Up to Date

At one point, a radical departure from the implementation and features of Ant 1 had been
proposed for Ant 2. As of the time this book was written, future Ant development is not
expected to be taking radical steps, but an incremental, evolutionary approach.

It is worth considering how to create Ant buildfiles that will stand up over time as new
versions of Ant are released. While no one can predict exactly what Ant will look like at
some point in the future, there are principles of good design that can be applied that
will help to insulate a development team from the changes that are bound to occur. Let's
consider some of these principles:

Study the new release and keep up with the intent of the new release. It's possible
to have buildfiles that work, but use archaic techniques. For example, certain
tasks may accept a <fileset> where it didn’t before. Modify your build files to use
more up-to-date techniques.

Refactor your buildfiles on a regular basis. If you find, for example, that several
targets have been added that are minor cut-and-paste variations of one another,
take the time to refactor it. This is true of good object-oriented design practices
in code, and the same principle applies here.

Remove deprecated tasks in your buildfiles, because these are guaranteed to
eventually disappear in future versions of Ant.

Keep files clean and well-formatted. Even though it's not mandatory to indent XML
files, doing so will make the buildfile easier to read and maintain. It will also
make potential problem areas stand out, such as the use of deprecated tasks or
obsolete syntax.

When a new version of Ant is released, read the release notes to assess impact.
Also, check the manual for deprecated tasks, and avoid using them in new
buildfiles.



. Set aside time to go back and modify existing buildfiles to remove deprecated
tasks.

° Make sure you're currently using a recent version of Java. For Ant 1.6, you'll need
to use Java 1.2 or above.

° Make sure you're currently a recent version of JAXP. For Ant 1.6, you'll need to
use JAXP 1.1 or above.

° Regularly perform spike tests with new versions of Ant when they become available.
This includes minor releases. Even if you stay with your current version of Ant for
a while, doing this will provide additional insight into what to do in your current
Ant buildfiles to minimize the impact of transitioning to a newer version of Ant.

By keeping current with Java and JAXP upgrades, the transition to newer versions of Ant
will be easier. You won’'t be simultaneously faced with the Java and JAXP upgrade issues,
along with Ant upgrade issues.

Also, strive to keep up with the changes in new Ant releases. This doesn't mean that you
have to immediately adopt each new release, but someone on your team should be assessing
the changes and what affect they will have on your overall build and deployment process.
As with any product upgrade, the longer you wait to adopt a newer version (or to even
assess the impact), the more painful the upgrade will become.

Other areas that might be impacted by a new version of Ant are the custom components you
have written. This includes custom tasks, loggers, listeners, filters, data types, and so
on. Here are some suggestions for keeping custom components up to date with the latest
version of Ant.

. We suggest first that you maintain a separate build environment for building and
packaging custom components. This will use the same version of Ant that all of your
other build processes use. Use this Ant buildfile to compile and package your
custom components into a jar file.

. Create and maintain unit tests for your custom components.



. Make use of what's already available in Ant. For example, in this book, we have a
custom task that uses Ant's regular expression engine. We could have instantiated
our own, but why introduce unnecessary complexity? This leads to code that requires
more work to retrofit and is difficult to maintain. By using the features already
available in Ant, you will make the task of upgrading to newer versions of Ant
easier.

. When a new version of Ant becomes available, use your existing version of Ant to
run your suite of unit tests against the new Ant jar files, and verify that
everything works as expected.

. Consider donating custom tasks to the Ant project if they might be of use to
others.
. As we recommended earlier in this book, with the XP approach to Test First Design,

write your unit tests first, and then the code for your custom components. You'll
write better code, and you'll also develop a suite of unit tests that will help in
maintaining your code in the future.

If you make use of BSF scripting, remember to test any buildfiles that have scripting code
in them to verify that they will run as well.

Perhaps the most important thing to remember with writing Ant tasks is to focus on the
concepts rather than the syntax. A developer who gains a solid grasp of object-oriented
design techniques will find it easy to transition between C++ and Java. In a similar
fashion, a developer who has a grasp of the design of build and deployment processes,
especially in an XP methodology, will be able to easily transition their build processes
to newer versions of Ant.

This errata sheet is intended to provide updated technical information. Spelling and
grammar misprints are updated during the reprint process, but are not listed on this
errata sheet.



