
IN THIS CHAPTER
4.1 XPath 46

4.2 XPointer 51

CHAPTER

4
XPath and XPointer

45

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 45

The XPath Recommendation describes a language for specifying sets of elements in an XML
document. The XPath Recommendation provides the foundation for the XPointer Recom-
mendation, XML Pointer Language (XPointer), which extends the XPath language to allow for
specifying any part of an XML document. XPointers specifically support incorporating frag-
ment identifiers into URI references. The XPointer Recommendation can be found at
http://www.w3.org/TR/xptr/.

XML schemas use a subset of the XPath location paths for identity constraints. The XPaths
specified by identity constraints (see Chapter 13) serve to locate nodes (specifically elements
and attributes) within a corresponding XML instance. An XML validator examines the values
of these elements and attributes to ensure uniqueness or referential integrity.

An XPointer provides the location of an entire XML schema document or merely a set of
schema components. An XML validator nominally assembles an entire XML schema from a
collection of XML schema documents. In fact, any XML schema document may assemble
individual components from a variety of XML documents (although they do not have to be
XML schema documents) by using XPointers. Specifically, an XPointer can point to a set of
schema components embedded in a non-schema XML document.

This chapter is not a comprehensive tutorial on XPath or XPointer. The respective Recom-
mendations provide lots of detail and many examples. The book presents a more complete
XPath tutorial—restricted to XPath usage in identity constraints—in Chapter 13. Section 4.2
presents a number of representative examples that demonstrate locating elements that represent
schema components.

4.1 XPath
Fundamentally, an XPath is an expression. Evaluating an XPath expression results in one of the
following:

• A node set

• A Boolean

• A floating-point number

• A string of Unicode characters

The scope of XPath is far more extensive than the constructs covered in this section. For exam-
ple, many constructs are designed to support XSLT. This section covers only those portions of
XPath pertinent to XML schemas. Specifically, identity constraints require the resultant node
set to contain only elements or attributes. Fragment identifiers (see Section 4.2) further restrict
the resultant node set to contain only elements. Therefore, the Boolean, floating-point number,
and string values are mostly not relevant in the context of XML schemas (see Section 4.1.4 for
a discussion of the exceptions).

XPath and XPointer

CHAPTER 4
46

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 46

4.1 XPath

CHAPTER 4

Because the remainder of this chapter primarily discusses node set results, subsequent discus-
sion focuses on the subset of an expression known as a location path. A location path always
identifies a node set.

4.1.1 XPath Location Paths
Location paths nominally provide the grammar for typical XPath expressions for XML
schemas. In an XML schema, all location paths are either relative to an enclosing component
(for identity constraints) or relative to an entire XML document (for locating schema compo-
nents). One of the general features of a location path is the ability to navigate along a number
of axes. An axis specifies a direction of movement in the node tree. For example, you might
specify a child node, an attribute node, an ancestor node, or a descendant node.

The XPath Recommendation defines 13 axes. An identity constraint is limited to containing
only the axes child, attribute, and descendant-or-self. Furthermore, an identity constraint can
only use the shortcut notation for these axes. Table 4.1 portrays these shortcuts (Table 4.3 con-
tains the entire list of axes).

One schema document can locate another (or even parts of another) with an XPointer. An
XPointer may specify any of the 13 axes in a predicate (see Sections 4.1.2 and 4.2 for more
detail). Although technically feasible, not all the axes are particularly valuable with respect to
schema document locations. Table 4.3 illuminates the axes with dubious merit.

4.1.2 Predicates
Predicates are very powerful, but slightly confusing when first encountered. A predicate is
strictly a filter. A predicate filters out desired nodes from a node set.

The easiest way to demonstrate a predicate is to discuss two similar expressions along multiple
axes. For demonstration purposes, consider a catalog consisting of several parts:

<catalog>
<partNumber SKU=”S1234”>P1234</partNumber>
<partNumber>P2222</partNumber>
<partNumber SKU=”Sabcd”>Pabcd</partNumber>
</catalog>

47

4

X
P

A
TH

A
N

D
X

P
O

IN
TER

In an XML schema, an XPath expression always results in a node set. An expression with
a predicate also results in a node set. Specifically, an expression with a predicate results in
a subset of the node set that corresponds to the same expression without the predicate.

TIP

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 47

The ensuing example returns a node set that contains all partNumber elements in a document:

//partNumber

The corresponding node set contains the partNumber elements whose values are ‘P1234’,
‘P2222’, and ‘Pabcd’.

An addition to the location path along an attribute axis results in a node set that contains all
SKU attributes of partNumber elements:

//partNumber/@SKU

The corresponding node set contains the SKU attributes whose values are ‘S1234’ and ‘Sabcd’.

The predicate in the next example, on the other hand, results in a subset of the //partNumber
node set. In particular, the subsequent example returns partNumber elements that have SKU

attributes, not the attributes as in the previous example.

//partNumber[@SKU]

The corresponding node set contains the partNumber elements whose values are ‘P1234’ and
‘Pabcd’. The partNumber element whose value is ‘P2222’ is not included, because this element
has no SKU attribute.

An XPath expression, in general, can return any node set, a Boolean value, a string, or a
floating-point number. In an XML schema, the results of an XPath expression (in an identity
constraint), as well as the results of an XPointer expression (in a schemaLocation attribute
value), must result in a node set. Because of this, this chapter does not go into detail describing
the other result types. However, a predicate can refine a node set in an XPointer expression.
Therefore, Table 4.4, which appears later in this chapter, provides a few examples of XPointers
that contain predicates that return values that are not node sets. Because very few schemas con-
tain XPointers, and even fewer contain complex XPointers, this chapter does not provide a
comprehensive tutorial on predicates.

4.1.3 Node IDs
An XPath expression may include any number of “functions” that either extract information from
an XML document or help to restrict the resultant node set (via a predicate). Identity constraints

XPath and XPointer

CHAPTER 4
48

The Schema Recommendation does not support the use of predicates within identity
constraints. Within an XML schema, predicates are valid only as part of an XPointer
expression, which can be used only in conjunction with schema document (and part-
of-document) locations.

TIP

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 48

4.1 XPath

CHAPTER 4

may not contain functions. In practice, XPath pointers to (parts of) schema documents rarely
contain functions. Therefore, this chapter does not include a tutorial on the XPath functions or
the corresponding return types. There is one function, however, supported—and even promoted
by the XPointer Recommendation—in an XPointer location path expression: the id function.

The XPath id function is a great way to locate a specific node, assuming that a node specifies
an ID. Note that the XPointer Recommendation surmises that IDs are “most likely to survive
document change.” The thought is that the structure of the XML document might change: Ele-
ments might “move” relative to one another. Consequently, a location path may no longer find
the desired element, whereas the ID of the node is much more likely to be stable.

To demonstrate the use of the id function, the following URI locates the
catalogEntryDescriptionType complex type (whose ID is
‘catalogEntryDescriptionType.catalog.cType’) in the thematic catalog schema:

http://www.XMLSchemaReference.com/theme/catalog.xsd#xpointer
(id(“catalogEntryDescriptionType.catalog.cType”))

To encourage the use of IDs, the XPointer Recommendation permits an XPointer to consist of
a shortcut, which is just the bare name of the ID:

http://www.XMLSchemaReference.com/theme/
catalog.xsd#catalogEntryDescriptionType.catalog.cType

4.1.4 Using XPath with Identity Constraints
An identity constraint may reference only three of the axes specified by the XPath Recommen-
dation: child, attribute, and descendant-or-self. Furthermore, an identity constraint may refer to
these axes only via a shortcut. Table 4.1 lists all the shortcuts available (the three axes and a
wildcard) in an identity constraint.

Table 4.2 provides a few examples that demonstrate how to locate elements in an XML docu-
ment. Chapter 13, “Identity Constraints,” provides a much more complete discussion.

Listing 13.3 covers the complete grammar for location paths, as pertains to identity constraints.
Likewise, Table 13.2 provides a number of detailed XPath examples.

49

4

X
P

A
TH

A
N

D
X

P
O

IN
TER

The id function is part of the XPath Recommendation, which is why the discussion
about this function appears in Section 4.1. With respect to XML schemas, however, an
XPointer (in a schemaLocation value) is the only expression that can access this func-
tion. The id function cannot express any part of an identity constraint.

NOTE

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 49

TABLE 4.1 Identity Constraint Shortcuts

Shortcut Meaning Example

(No axis following ‘/’) Implied child axis /a/b

Selects a b that is a subelement of
an a, which is a subelement of the
document root.

@ attribute axis a/@b

The b attribute of the a subelement
element of the current node.

// descendant-or-self axis a//b

Any b element that is a descendant
of a.

* A wildcard representing a/*/b

all immediate subelements Any b that is a subelement of any
immediate subelement of a.

TABLE 4.2 Identity Constraint Examples

Example Meaning

//bulked This expression locates all bulkID elements along
the descendant-or-self axis of the root element.
Therefore, this locates all bulkID elements in the
entire document.

//bulkID/description The expression locates all description elements
along the child axis of the previous example.
Therefore, this locates all description elements
that are immediate descendants of any bulkID
element.

/catalog/*/partNumber This expression locates all partNumber elements
that are direct descendants of any (hence the ‘*’)
direct descendant of catalog. Note that each
element reference is along the child axis.

/catalog//partNumber This expression locates all partNumber elements
that are descendants (but not necessarily
immediate descendants) of catalog.

/catalog//@employeeAuthorization This expression selects all employeeAuthorization
attributes of any descendant of the catalog
element.

XPath and XPointer

CHAPTER 4
50

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 50

4.2 XPointer

CHAPTER 4

4.2 XPointer
XML schema documents use schemaLocation attributes to locate other schema documents and
parts of schema documents. The value of a schemaLocation is always a URI, which may
include an XPointer. The schemaLocation attribute type of schema, import, and include are
examples of where an XPointer might locate a schema document location.

An XPointer is nominally an extension of an XPath. The XPointer Recommendation permits—
even encourages—the use of the XPath id function. There are also several XPointer specific
extensions to XPath.

The XPointer Recommendation specifies expressions for returning portions of an XML docu-
ment. The expression may evaluate to a node, a set of nodes, a portion of a node, or a portion
of an XML document that spans nodes. Just as XML Schema limits the use of XPath expres-
sions, it also limits the use of XPointer expressions. In particular, an XML schema may only
import individual components (nodes) or sets of components (node sets). Because a component
corresponds to an entire XML element—as opposed to a portion thereof—this section covers
only XPointer constructs pertinent to extracting complete nodes.

4.2.1 Location Sets
The previous section mentions that an XPointer expression may evaluate to a node, a set of
nodes, a portion of a node, or a portion of an XML document that spans nodes. Unlike an
XPath expression, which must evaluate to a node set, an XPointer expression may theoretically
return results that do not conform to a node. Therefore, the XPointer infrastructure requires an
XPointer to return a location set.

A location set is an extension of a node set that an XPath normally returns. Each location in a
location set is either a point or a range. A point consists of a node and an index. The index is a
character offset into the node. A range consists of two points. The concepts of both point and
range exist because of the XPointer requirement that an expression might return a subset of a
node or possibly a set of characters that spans nodes.

Because an XML schema can only make use of an entire node or set of nodes, the remainder
of this chapter covers only the subset of location information (and location sets) specified by
nodes (and node sets). The terms ‘node set’ and ‘location set’ have similar meanings in the
context of XML Schema.

4.2.2 Namespaces
The XPointer notation permits the identification of one or more namespaces. An XPointer
expression specifies a namespace with the xmlns function. The argument to this function
resembles a namespace attribute applicable to any XML element:

51

4

X
P

A
TH

A
N

D
X

P
O

IN
TER

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 51

xmlns(xsd=”http://www.w3.org/2001/XMLSchema”)

The following XPointer locates the catalogEntryDescriptionType complex type by name.
Namespace declarations always precede the locating expression:

http://www.XMLSchemaReference.com/theme/catalog.xsd#
xmlns(xsd=”http://www.w3.org/2001/XMLSchema”)
xpointer(

xsd:schema/xsd:element[@name=”catalogEntryDescriptionType”]
)

In general, an XPointer may specify any number of namespaces. The previous example suffices
for locating most schema components. An XPointer reference in a schemaLocation may
require multiple namespaces when an XML document that is not a schema document has
embedded Schema elements.

4.2.3 Subelement Sequences
Subelement sequences are notations that provide a shortcut to elements in an XML document.
A subelement sequence has the following grammar:

bareName? (‘/’ [1-9] [0-9]*)+

where the optional bareName is replaced by the ID name of an element, as discussed in Section
4.2.2. The numerals represent the Nth subelement (counting from 1) at each level.

The following example locates the fourth subelement of the third subelement of the document
root:

../some.xsd#/1/3/4

Similarly, the following example locates the fourth subelement of the third subelement of the
element whose ID is ‘yadayada’:

../some.xsd#yadayada/3/4

XPath and XPointer

CHAPTER 4
52

Subelement sequences provide an extremely compact and convenient short notation.
Unfortunately, this supported notation is highly susceptible to failure. In particular,
the structure of the expected XML document (in this case, most likely an XML schema
document) must be extremely stable. Any change in the element structure of the doc-
ument can provide surprising results.

WARNING

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 52

4.2 XPointer

CHAPTER 4

4.2.4 XPointer Extensions to XPath
This section covers only those XPointer extensions applicable to XML schemas. In fact, only
one extension—the range-to function—has any applicability with respect to XML schemas.
The use of this function is not common.

The XPointer Recommendation adds the range-to function as an option for an XPath step. A
step is an axis and a node. A convenient use of the range-to function is to locate a set of
nodes to incorporate into a schema. The range-to function is likely to appear in conjunction
with the XPath id function. The following example locates four schema components that
appear in sequence in pricing.xsd: fullPriceType, freePriceType, salePriceType, and
clearancePriceType.

http://www.XMLSchemaReference.com/theme/pricing.xsd#
xpointer(id(“fullPriceType.pricing.cType”)/

range-to(id(“clearancePriceType.pricing.cType”)))

4.2.5 Using XPointer and XPath to Locate Schemas
This section describes the portions of the XPath Recommendation that apply to XPointers. An
XPointer may reference any of the XPath axes touched on in Section 4.1.1. Table 4.3 lists all
the axes supported by the XPath Recommendation and notes where each axis applies with
respect to schema document locations. Such an XPointer might contain a reference to any axis;
however, validations of many of these axes are likely to fail. Table 4.3 duly notes these likely
failures in the Caveats column. A ‘✓’ indicates that an XPointer can reference the correspond-
ing axis and expect positive results.

An XPath expression, in general, can return any node set, a Boolean value, a string, or a
floating-point number. In an XML schema, the results of an XPath expression (in an identity
constraint), as well as the results of an XPointer expression (in a schemaLocation value), must
result in a node set. Because both expressions return a node set, this chapter does not go into
detail describing the other result types (Boolean, string, and number). However, a predicate can
refine a node set in an XPointer expression. Therefore, Table 4.4 provides a few examples of
XPointers that contain predicates, which return values that are not node sets. This chapter does
not provide a comprehensive tutorial on the full XPath expression options that may appear in a
predicate. Note that each example is only the XPointer part of a URI. An entire URI that
includes an XPointer has the following form:

http://www.example.com/some.xml#xpointer(exampleXPointer)

See Sections 4.1.3 or 4.2.4 for examples of complete URIs. The cells in the Example column
of Table 4.4 provide a substitution for exampleXPointer in the previous code excerpt.

Table 4.4 provides a nice illustration of the power of XPointer expressions enhanced by XPath
predicates. For a complete tutorial on predicates, refer to the XPath Recommendation.

53

4

X
P

A
TH

A
N

D
X

P
O

IN
TER

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 53

XPath and XPointer

CHAPTER 4
54

TABLE 4.3 XPath Axes Potentially Used in schemaDocument References

Axis Meaning Caveats

child All subelements of the context node ✓

descendant Element descendants of the context ✓
node

parent The parent of the context node ✓

ancestor Element ancestors of the context An XPointer referencing this
node axis is technically okay, but the

schema is probably bizarre at
best.

following-sibling All siblings of the context node Not recommended, as this
that appear after the context node will include attribute and name-

space nodes (that is, undesirable
nodes that are just portions of
an element). Use the following
axis instead.

preceding-sibling All siblings of the context node Not recommended, as this
that appear before the context node will include attribute and name-

space nodes (that is, undesirable
nodes that are just portions of
an element). Use the preceding
axis instead.

following Element siblings of the context node ✓
that appear after the context node

preceding Element siblings of the context node ✓
that appear before the context node

attribute Attributes of the context node Not recommended: If the
XPointer returns anything, the
validation will fail.

namespace Namespace nodes of the context Not recommended: If the
node XPointer returns anything, the

validation will fail.

self The context node Why bother in an XPointer?

descendant-or-self Descendant or self axes ✓

ancestor-or-self Ancestor or self axes ✓

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 54

4.2 XPointer

CHAPTER 4
55

4

X
P

A
TH

A
N

D
X

P
O

IN
TER

TABLE 4.4 XPointer Examples

Example Meaning

id(“foo”) The element whose ID is ‘foo’ (see Section 4.1.3 for a
detailed example).

id(“foo”)/range-to(id(“bar”)) The elements whose IDs are ‘foo’ and ‘bar’, as well as all
elements in between.

X[position()=1] The first x.

or

x[1]

X[position()>1] All x elements except the first one.

X[5] The fifth x.

X[last()] The last x.

./x The x elements that are subelements of the parent of the
current context.

X[y=“hello”] The x elements that have a subelement y whose value is
‘hello’.

X[@y and @z] The x elements that have both y and z attributes.

X[@y or @z] The x elements that have either a y or z attribute.

X[@y < “10”] The x elements that have a y attribute whose value is less
than ‘10’. Note that XPath supports ‘=’, ‘!=’, ‘<’, ‘<=’, ‘>’,
and ‘>=’. Escape these as necessary with the standard XML
entity reference, such as ‘<’ for the less-than character.

X[starts_with(y,“abc”)] The x elements that contain a y subelement whose value
starts with ‘abc’.

X[sum(y) > 50] The x elements that contain one or more y subelements, the
sum of whose values is greater than 50.

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 55

5241 ch04_0045-0056.qxd 28/08/02 5.29 pm Page 56

