
.NET and COM: The Complete Interoperability Guide

Copyright © 2002 by Sams Publishing

International Standard Book Number: 0-672-32170-X

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in

this book.

When reviewing corrections, always check the print number of your book. Corrections are made to printed books with each
subsequent printing. To determine the printing of your book, view the copyright page. The print number is right-most
number on the line below the "First Printing" line. For example, the following indicates the 4th printing of a title.

First Printing: January 2002

Third Printing with corrections: April 2004

04 4 3

Misprint Correction

Page 234 in code listing line 29

HTMLDocumentEvents_onclick

Page 300 2nd paragraph after bullets; last line

the CCW holds onto

Page 418 first code line towards the end

ClassName”</object>

Page 421 2nd to last paragraph—add line after last sentence:

physical assembly file.

Page 479 middle of page code 4th line

f.BorderStyle = 2

Page 492 2nd paragraph after bullets

shutdown of the CLR, including the finalization of any .NET
objects that have not yet been finalized, and exits the
process with the passed-in error code.

Page 609 in Listing 2nd line

2: <is blank here>

Page 659 last paragraph/last sentence

Even if you reference the Interop Assembly for the OLE
Automation type library defining IDispatch and write a class
that implements this interface, it will be completely
ignored by the CLR and unusable from COM.

HTMLDocumentEvents2_onclick

the RCW holds onto

ClassName”></object>

physical assembly file. You must also ensure that your
machine policy allows managed code to run in the Internet
zone.

f.FormBorderStyle = 2

shutdown of the CLR by calling CoEEShutDownCOM, finalizing
any .NET objects that have not yet been finalized, then
exiting the process with the passed-in error code.

2: Imports System

The only useful thing you can do with a .NET definition of
IDispatch (which can be found as an empty interface in the
PIA for the OLE Automation type library) is make a .NET
class marked with ClassInterfaceType.None�implement it, because
this is the only way to make the type library exporter
create a coclass whose default interface is IDispatch.�(Some
COM clients may care about this.)�At run time, however, the
CLR ignores the fact this dummy� IDispatch interface is
implemented.

that implements this interface, it will be completely
ignored by the CLR and unusable from COM.

Page 677 in listing line 9

Interface IprovideClassInfo

Page 759 first mono listing
using ((IDisposable)FileWriter f = new FileWriter())
{
� foreach(int i in new int[]{1,2,3,4,5,6,7,8,9,10})
�� � f.WriteLine(i.ToString());
}

Page 763 4th paragraph, 2nd line

VB.NET

Page 836 line 17

public struct

Page 841 line 17

public class

Page 934 code lines 93-101

 93:�� � � � � if (pcbRead == NULL)
�94: � � � � � � {
�95:��� � � � � � // User isn't interested in how many bytes were read
�96:�� � � � � � � *pcbRead = originalStream->Read(array, 0, cb);
�97: � � � � � � }
�98: � � � � � � else
�99: � � � � � � {
100:�� � � � � � � originalStream->Read(array, 0, cb);
101: � � � � � � }

IDispatch (which can be found as an empty interface in the
PIA for the OLE Automation type library) is make a .NET
class marked with ClassInterfaceType.None�implement it, because
this is the only way to make the type library exporter
create a coclass whose default interface is IDispatch.�(Some
COM clients may care about this.)�At run time, however, the
CLR ignores the fact this dummy� IDispatch interface is
implemented.

Interface IobjectSafety

using (IDisposable f = (IDisposable)new FileWriter())
{
� foreach(int i in new int[]{1,2,3,4,5,6,7,8,9,10})
��� ((FileWriter)f).WriteLine(i.ToString());
}

VB .NET

internal struct

internal class

93:�� � � � � if (pcbRead == NULL)
�94: � � � � � � {
�95:��� � � � � // User isn't interested in how many bytes were read
�96:�� � � � � � originalStream->Read(array, 0, cb);
�97: � � � � � � }
�98: � � � � � � else
�99: � � � � � � {
100:�� �� � � � *pcbRead = originalStream->Read(array, 0, cb);
101: � � � � � � }

� 98: � � � � � � else
�99: � � � � � � {
100:�� � � � � � � originalStream->Read(array, 0, cb);
101: � � � � � � }

Page 1018 2nd note Digging Deeper- add line after final
sentence

per source interface.

Page 1062 replace figure

Delete existing 22.1

Page 1084 replace both figures

Delete existing 22.5

Delete existing 22.6

Page 1150 figure caption

Three Classes are used

Page 1227 Listing heading- delete mono on Class

The WizardVisualization Class

Page 1252 Last paragraph; last sentence

offset multiplied by the array element size to the pointer
value passed to

�95:��� � � � � // User isn't interested in how many bytes were read
�96:�� � � � � � originalStream->Read(array, 0, cb);
�97: � � � � � � }
�98: � � � � � � else
�99: � � � � � � {
100:�� �� � � � *pcbRead = originalStream->Read(array, 0, cb);
101: � � � � � � }

per source interface. In addition, making this change
satisfies existing COM event sources that depend on there
being a single event sink per source interface.

Page 1253- last lines of all 3 code segments (x3)

largeArray, 10));

Page 1330 Digging Deeper last line

pointers that the CCW holds onto.

Page 1431 first bullet

GD132.DLL

Page 1452 line 18 from the bottom

static extern bool eap32ListNext

Three classes are used

The WizardVisualization Class

offset (a number of bytes) to the pointer value passed

largeArray, 40));

pointers that the RCW holds onto.

GDI32.DLL

static extern bool Heap32ListNext

This errata sheet is intended to provide updated technical information. Spelling and grammar misprints are updated
during the reprint process, but are not listed on this errata sheet.

