
4
In-Process Data Access

W H E T H E R Y O U A C C E S S data from the client, middle tier, or server,
when you’re using SQL Server and the .NET Framework, you use

the SqlClient data provider. Your data access code is similar regardless
of its location, but the .NET Framework 2.0 version of SqlClient contains
code to encapsulate differences when you’re programming inside SQL
Server and optimize the in-server programming environment.

Programming with SqlClient

Accessing data from outside SQL Server entails connecting to SQL Server
through a network library and a client library. When you use the .NET
Framework with SQL Server, you use System.Data.dll as the client library
and the ADO.NET programming model. ADO.NET is a provider-based
model, similar in concept to ODBC, OLE DB, and JDBC. The model uses a
common API (or a set of classes) to encapsulate data access; each database
product has its own provider. ADO.NET providers are known as data
providers, and the data provider for SQL Server is SqlClient. The latest
release of SqlClient, installed with .NET Framework 2.0, includes new
client-side functionality to take advantage of new features in SQL Server
2005. In addition, SqlClient contains extensions to allow ADO.NET code
to be used inside the database itself. Though T-SQL is usually preferred
when a stored procedure, user-defined function, or trigger accesses data-
base data, you can also use ADO.NET when writing procedural code in the

111

dotNET_C04 4/6/06 11:51 AM Page 111

.NET Framework. The programming model when using SqlClient in

.NET Framework stored procedures is similar to client-side code but
in-database access is optimized because no network libraries are needed.
Let’s start by writing some simple client database code and then convert
it to run on the server.

Simple data access code is very similar regardless of the programming
model used. To summarize, using ADO.NET and SqlClient as an example:

1. Connect to the database by instantiating a SqlConnection class
and calling its Open method.

2. Create an instance of a SqlCommand class. This instance contains
a SQL statement or procedure name as its CommandText property.
The SqlCommand is associated with the SqlConnection.

3. Execute the SqlCommand, and return either a set of columns and
rows called SqlDataReader or possibly only a count of rows
affected by the statement.

4. Use the SqlDataReader to read the results, and close it when finished.

5. Dispose of the SqlCommand and SqlConnection to free the associ-
ated memory, network, and server resources.

The ADO.NET code to accomplish inserting a row into a SQL Server
table would look like Listing 4-1.

Listing 4-1: Inserting a row using SqlClient from the client

// Code to insert data from client

// See chapter 14 for an implementation of

// the GetConnectionStringFromConfigFile method.

string connStr = GetConnectionStringFromConfigFile();

SqlConnection conn = new SqlConnection(connStr);

conn.Open();

SqlCommand cmd = conn.CreateCommand();

cmd.CommandText = "insert into test values ('testdata')";

int rows_affected = cmd.ExecuteNonQuery();

cmd.Dispose();

conn.Dispose();

The previous ADO.NET code ignored the fact that an exception might
cause the execution of cmd.Dispose or conn.Dispose to be skipped. The
preferred and simple way to prevent this from happening is to use the using

Chapter 4: In-Process Data Access112

dotNET_C04 4/6/06 11:51 AM Page 112

syntax in C#. One or more object instance declarations are followed by a
block of code. The Dispose method is called automatically at the end of the
code block. We’ll be using the using construct a lot in the code in this book.
Rewritten using this syntax, the code above would look like Listing 4-2.

Listing 4-2: Inserting a row using SqlClient from the client, C# using construct

//code to insert data from client

string connStr = GetConnectionStringFromConfigFile();

using (SqlConnection conn = new SqlConnection(connStr))

using (SqlCommand cmd =

new SqlCommand("insert into test values ('testdata')", conn))

{

conn.Open();

int rows_affected = cmd.ExecuteNonQuery();

} // Dispose called on cmd and conn here

Other classes in a typical ADO.NET data provider include a transaction
class (SqlTransaction) to tie Connections and Commands to a database
transaction, a parameter collection (SqlParameterCollection) of param-
eters (SqlParameter) to use with parameterized SQL queries or stored
procedures, and specialized Exception and Error classes (SqlException,
SqlErrorCollection, SqlError) to represent processing errors. SqlClient
includes all the typical classes; Figure 4-1 shows the object model.

The same basic model is used inside the server to access data in .NET
Framework stored procedures. It’s familiar to ADO.NET programmers,
and using it inside the server makes it easy for programmers to use their

Programming with SqlClient 113

Figure 4-1: The SqlClient provider object model
(major classes only)

SqlCommand

SqlParameter

SqlParameter

SqlParameter

Parameters

CommandText

SqlConnection

ConnectionString

executeSqlException

SqlError

scalar value

SqlDataReader

dotNET_C04 4/6/06 11:51 AM Page 113

existing skills to write procedures. The big difference is that when you’re
writing a .NET Framework procedure, you’re already inside the database.
No explicit connection is needed. Although there is no network connection
to the database, there is a SqlConnection instance. The difference is in the
connection string. Outside the database, the connection string should be
read from a configuration file and contains items like the SQL Server
instance to connect to (server keyword), the SQL Server login (either User
ID and Password keywords or Integrated Security=true), and the ini-
tial database (database keyword). The connection string that indicates to
SqlClient that we’re already inside the database and the provider should
just use the existing database context contains only the keyword "context
connection=true". When you specify "context connection=true", no
other connection string keyword can be used. Listing 4-3 is the same code
as above but executing inside a .NET Framework stored procedure.

Listing 4-3: Inserting a row using SqlClient in a SQLCLR stored procedure

//code to insert data in a stored procedure

public static void InsertRowOfTestData()

{

string connStr = "context connection=true";

using (SqlConnection conn = new SqlConnection(connStr))

using (SqlCommand cmd =

new SqlCommand("insert into test values ('testdata')", conn))

{

conn.Open();

int rows_affected = cmd.ExecuteNonQuery();

}

}

Note that this code is provided as a stored procedure only to explain how
to access data on the server. Not only is the code faster as a Transact-SQL
(T-SQL) stored procedure but also SQL Server will check the SQL statements
for syntactic correctness at CREATE PROCEDURE time. This is not the case with
the .NET Framework stored procedure above. When you execute SQL state-
ments by using SqlCommand, it’s the equivalent of using sp_executesql
(a system-supplied store procedure for dynamic string execution of commands)
inside a T-SQLstored procedure. There is the same potential for SQLinjection as
with sp_executesql, so don’t execute commands whose CommandText prop-
erty is calculated by using input parameters passed in by the procedure user.

Chapter 4: In-Process Data Access114

dotNET_C04 4/6/06 11:51 AM Page 114

This code is so similar to the previous client-side code that if we knew
whether the code was executing in a stored procedure on the server or on
the client, we could use the same code, changing only the connection string.
But a few constructs exist only if you are writing server-side code. Enter the
SqlContext class.

Context: The SqlContext Class

The SqlContext class is one of the new classes that are available only if you’re
running inside the server. When a procedure or function is executed, it is exe-
cuted as part of the user’s connection. Whether that user connection comes
from ODBC, ADO.NET, or T-SQLdoesn’t really matter. You are in a connection
that has specific properties, environment variables, and so on, and you are exe-
cuting within that connection; you are in the context of the user’s connection.

A command is executed within the context of the connection, but it also
has an execution context, which consists of data related to the command.
The same goes for triggers, which are executed within a trigger context.

Prior to SQL Server 2005, the closest we came to being able to write code
in another language that executed within the process space of SQL Server
was writing extended stored procedures. An extended stored procedure is a C
or C++ DLL that has been catalogued in SQL Server and therefore can be
executed in the same manner as a “normal” SQL Server stored procedure.
The extended stored procedure is executed in process with SQL Server and
on the same Windows thread1 as the user’s connection.

Note, however, that if you need to do any kind of database access—even
within the database to which the user is connected—from the extended
stored procedure, you still need to connect to the database explicitly through
ODBC, OLE DB, or even DBLib exactly as you would do from a client, as
Figure 4-2 illustrates. Furthermore, when you have created the connection
from the procedure, you may want to share a common transaction lock space
with the client. Because you now have a separate connection, you need to

Context: The SqlContext Class 115

1. Strictly speaking, thread or fiber, depending on the setting in the server. See Chapter 2
for information about fiber mode.

dotNET_C04 4/6/06 11:51 AM Page 115

ensure explicitly that you share the transaction lock space by using the
srv_getbindtoken call and the stored procedure sp_bindsession.

In SQL Server 2005, when you use the .NET Framework to write proce-
dures, functions, and triggers, the SqlContext is available. The original
program can now be rewritten in Listing 4-4 so that the same code works
either on the client/middle tier or in the server if it’s called as part of a
stored procedure using the SqlContext static IsAvailable property.

Listing 4-4: Using IsAvailable to determine whether the code is running on the server

// other using statements elided for clarity

using System.Data.SqlClient;

using Microsoft.SqlServer.Server; // for SqlContext

public static void InsertRowOfTestData2()

{

string connStr;

if (SqlContext.IsAvailable)

connStr = "context connection=true";

else

connStr = GetConnectionStringFromConfigFile();

// the rest of the code is identical

using (SqlConnection conn = new SqlConnection(connStr))

using (SqlCommand cmd =

new SqlCommand("insert into test values ('testdata')", conn))

{

conn.Open();

// The value of i is the number of rows affected

int i = cmd.ExecuteNonQuery();

}

}

Chapter 4: In-Process Data Access116

Figure 4-2: Connections from extended stored procedures

xsp_UpdateInvoice

SQL Server

connection

connection

OLE DB
OLE DB

client

dotNET_C04 4/6/06 11:51 AM Page 116

You can see the SqlContext as a helper class; static read-only properties
that allow you to access the class encapsulate functionality that exists only
on the server. These properties are shown in Table 4-1.

Using SqlContext is the only way to get an instance of the classes in
Table 4-1; you cannot create them by using a constructor (New in Visual
Basic .NET). You can create the other classes that are part of the SqlClient
provider in the same way that you normally would create them if used
from an ADO.NET client. Some of the classes and methods in SqlClient
act a little differently if you use them on the server, however.

SQLCLR stored procedures can do data access by default, but this is not the
case with a SQLCLR user-defined function. As was discussed in the previous
chapter, unless DataAccessKindor SystemDataAccessKind is set to DataAc-
cessKind.Read/SystemDataAccessKind.Read, any attempt to do data
access using the SqlClient provider will fail. Even if DataAccessKind is set
to DataAccessKind.None (the default), however, SqlContext.Is-Available
returns true. SqlContext.IsAvailable is an indication of whether you’re run-
ning in the server, rather than whether data access is permitted.

By now, you may be wondering: If some of the managed classes are call-
ing into SQL Server, does that mean that the internals of SQL Server are
managed as well, and if not, are interoperability calls between managed
and native code space happening? The answers are no and yes. No, the
internals of SQL Server are not managed; Microsoft did not rewrite the
whole of SQL Server in managed code. And yes, interoperability calls happen.
The managed classes are making Platform Invoke (PInvoke) calls against
the executable of SQL Server, sqlservr.exe, as shown in Figure 4-3, which
exposes a couple dozen methods for the CLR to call into.

Context: The SqlContext Class 117

Property Return Value

IsAvailable Boolean

WindowsIdentity System.Security.Principal.WindowsIdentity

Pipe Microsoft.SqlServer.Server.SqlPipe

TriggerContext Microsoft.SqlServer.Server.SqlTriggerContext

Table 4-1: SqlContext Static Properties

dotNET_C04 4/6/06 11:51 AM Page 117

When you read this about interop, you may become concerned about
performance. Theoretically, a performance hit is possible, but because SQL
Server hosts the CLR (as discussed in Chapter 2), and the SqlClient
provider runs in process with SQL Server, the hit is minimal. In the last sen-
tence, notice that we said theoretically. Remember that when you execute
CLR code, you will run machine-compiled code, which is not the case when
you run T-SQL. Therefore, for some code executing in the CLR, the result
may be a performance improvement compared with pure T-SQL code.

Now that we have discussed the SqlContext class, let’s see how we go
about using it.

Connections

As already mentioned, when you are at server side and a client executes,
you are part of that client’s connection context, which in SQL Server 2005
is exposed by using a special connection string. The SqlConnection object
exposes the public methods, properties, and events listed in Table 4-2. (Note
that the table doesn’t show members inherited from System.Object.)

You can create only one SqlConnection at a time with the special
"context connection=true" string. Attempting to create a second
SqlConnection instance will fail, but you can create an “internal” SqlCon-
nection and another external SqlConnection back to the same instance
using an ordinary connection string. Opening this additional SqlConnection

Chapter 4: In-Process Data Access118

Figure 4-3: Interop between .NET frame-
work and SQL Server code in process

sqlservr.exe

managed code

unmanaged code

PInvoke()
“SELECT ...”

row row row ...

SqlDataReader

dotNET_C04 4/6/06 11:51 AM Page 118

Connections 119

Name Return Value/Type Member Type

Constructor Constructor

Constructor(String) Constructor

BeginTransaction() SqlTransaction Method

BeginTransaction SqlTransaction Method
(IsolationLevel)

BeginTransaction SqlTransaction Method
(IsolationLevel, String)

BeginTransaction(String) SqlTransaction Method

ChangeDatabase(String) void Method

ChangePassword void Static Method
(String, String)

ClearAllPools void Static Method

Close() void Method

CreateCommand() SqlCommand Method

EnlistDistributedTransaction void Method
(ITransaction)

EnlistTransaction void Method
(Transaction)

GetSchema() DataTable Method

GetSchema(String) DataTable Method

GetSchema(String, String[]) DataTable Method

Open() void Method

ResetStatistics void Method

RetrieveStatistics Hashtable Method

ConnectionString String Property

Table 4-2: Public Members of SqlConnection

(Continued)

dotNET_C04 4/6/06 11:51 AM Page 119

will start a distributed transaction, however,2 because you have multiple
SPIDs (SQL Server sessions) possibly attempting to update the same data.
There is no way to knit the two sessions together through the ADO.NET
API into a single local transaction, however, as you can in an extended
stored procedure with sp_bindtoken. You can call the SqlConnection’s
Close() method and reopen it, if you like, although it’s unlikely that you
ever actually need to do this. Keeping the SqlConnection open doesn’t
use any additional resources after you originally refer to it in code.

Although the same System.Data.SqlClient.SqlConnection class is
used for both client and server code, some of the features and methods will
not work inside the server:

• ChangePassword method

• GetSchema method

Chapter 4: In-Process Data Access120

2. Technically, you can avoid a distributed transaction by using "enlist=false" in the
connection string of the new SqlConnection. In this case, the second session does not
take part in the context connection’s transaction.

Name Return Value/Type Member Type

ConnectionTimeout Int32 Property

Database String Property

DataSource String Property

FireInfoMessageOnUserErrors Boolean Property

PacketSize Int32 Property

ServerVersion String Property

State String Property

StatisticsEnabled Boolean Property

WorkStationId String Property

InfoMessage SqlInfoMessage Event
EventHandler

Table 4-2: Public Members of SqlConnection (Continued)

dotNET_C04 4/6/06 11:51 AM Page 120

• Connection pooling and associated parameters and methods

• Transparent failover when database mirroring is used

• Client statistics

• PacketSize, WorkstationID, and other client information

Commands: Making Things Happen

The SqlClient provider implements the SqlCommand class to execute
action statements and submit queries to the database. When you have cre-
ated your connection, you can get the command object from the Create-
Command method on your connection, as the code in Listing 4-5 shows.

Listing 4-5: Create a command from the connection object

//get a command through CreateCommand

SqlConnection conn = new SqlConnection("context connection=true");

SqlCommand cmd = conn.CreateCommand();

Another way of getting to the command is to use one of the SqlCom-
mand’s constructors, which Listing 4-6 shows.

Listing 4-6: Using SqlCommand’s constructor

//use constructor that takes a CommandText and Connection

string cmdStatement = "select * from authors";

SqlConnection conn = new SqlConnection("context connection=true");

SqlCommand cmd = new SqlCommand(cmdStatement, conn);

We have seen how a SqlCommand is created; now let’s look at what we can
do with the command. Table 4-3 lists the public methods, properties, and events.
(The table doesn’t show public members inherited from System.Object or the
extra asynchronous versions of the execute-related methods.)

For those of you who are used to the SqlClient provider, most of the
members are recognizable, but as with the connection object when used
inside SQL Server, there are some differences:

• The new asynchronous execution methods are not available when
running on the server.

• You can have multiple SqlCommands associated with the special con-
text connection, but cannot have multiple active SqlDataReaders at

Commands: Making Things Happen 121

dotNET_C04 4/6/06 11:51 AM Page 121

Chapter 4: In-Process Data Access122

Name Return Value/Type Member Type

Constructor() Constructor

Constructor(String) Constructor

Constructor(String, Constructor
SqlConnection)

Constructor(String, Constructor
SqlConnection,
SqlTransaction)

Cancel() void Method

CreateParameter() SqlParameter Method

Dispose() void Method

ExecuteNonQuery() int Method

ExecuteReader() SqlDataReader Method

ExecuteReader SqlDataReader Method
(CommandBehavior)

ExecuteScalar() Object Method

ExecuteXmlReader() XmlReader Method

Prepare() void Method

ResetCommandTimeout void Method

CommandText String Property

CommandTimeout int Property

CommandType CommandType Property

Connection SqlConnection Property

Notification SqlNotificationRequest Property

NotificationAutoEnlist Boolean Property

Parameters SqlParameterCollection Property

Table 4-3: Public Members of SqlCommand

(Continued)

dotNET_C04 4/6/06 11:51 AM Page 122

the same time on this connection. This functionality, known as multiple
active resultsets (MARS), is available only when using the data
provider from a client.

• You cannot cancel a SqlCommand inside a stored procedure using the
SqlCommand’s Cancel method.

• SqlNotificationRequest and SqlDependency do not work with
commands issued inside SQL Server.

When you execute parameterized queries or stored procedures, you
specify the parameter values through the Parameters property of the Sql-
Command class. This property can contain a SqlParameterCollection that
is a collection of SqlParameter instances. The SqlParameter instance con-
tains a description of the parameter and also the parameter value. Properties
of the SqlParameter class include parameter name, data type (including
precision and scale for decimal parameters), parameter length, and param-
eter direction. The SqlClient provider uses named parameters rather than
positional parameters. Use of named parameters means the following:

• The parameter name is significant; the correct name must be specified.

• The parameter name is used as a parameter marker in parameter-
ized SELECT statements, rather than the ODBC/OLE DB question-
mark parameter marker.

• The order of the parameters in the collection is not significant.

• Stored procedure parameters with default values may be omitted
from the collection; if they are omitted, the default value will be used.

• Parameter direction must be specified as a value of the
ParameterDirection enumeration.

Commands: Making Things Happen 123

Name Return Value/Type Member Type

Transaction SqlTransaction Property

UpdatedRowSource UpdateRowSource Property

StatementCompleted StatementCompleted Event
EventHandler

Table 4-3: Public Members of SqlCommand (Continued)

dotNET_C04 4/6/06 11:51 AM Page 123

This enumeration contains the values Input, Output, InputOutput,
and ReturnCode. Although Chapter 3 mentioned that in T-SQL, all param-
eters defined as OUTPUT can also be used for input, the SqlClient provider
(and ADO.NET is general) is more precise. Attempting to use the wrong
parameter direction will cause an error, and if you specify ParameterDi-
rection.Output, input values will be ignored. If you need to pass in a
value to a T-SQL procedure that declares it as OUTPUT, you must use Param-
eterDirection.InputOutput. Listing 4-7 shows an example of executing
a parameterized T-SQL statement.

Listing 4-7: Using a parameterized SQL statement

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

SqlCommand cmd = conn.CreateCommand();

// set the command text

// use names as parameter markers

cmd.CommandText =

"insert into jobs values(@job_desc, @min_lvl, @max_lvl)";

// names must agree with markers

// length of the VarChar parameter is deduced from the input value

cmd.Parameters.Add("@job_desc", SqlDbType.VarChar);

cmd.Parameters.Add("@min_lvl", SqlDbType.TinyInt);

cmd.Parameters.Add("@max_lvl", SqlDbType.TinyInt);

// set values

cmd.Parameters[0].Value = "A new job description";

cmd.Parameters[1].Value = 10;

cmd.Parameters[2].Value = 20;

// execute the command

// should return 1 row affected

int rows_affected = cmd.ExecuteNonQuery();

Obtaining Results

Execution of SQL commands can return the following:

• A numeric return code

• A count of rows affected by the command

• A single scalar value

Chapter 4: In-Process Data Access124

dotNET_C04 4/6/06 11:51 AM Page 124

• One or more multirow results using SQL Server’s default (cursorless)
behavior

• A stream of XML

Some commands, such as a command that executes a stored procedure,
can return more than one of these items—for example, a return code, a
count of rows affected, and many multirow results. You tell the provider
which of these output items you want by using the appropriate method of
SqlCommand, as shown in Table 4-4.

When you return data from a SELECT statement, it is a good idea to use
the lowest-overhead choice. Because of the amount of internal processing
and the number of object allocations needed, ExecuteScalar may be
faster than ExecuteReader. You need to consider the shape of the data
that is returned, of course. Using ExecuteReader to return a forward-
only, read-only cursorless set of results is always preferred over using a
server cursor. Listing 4-8 shows an example of when to use each results-
returning method.

Listing 4-8: Returning rows with SqlClient

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

SqlCommand cmd = conn.CreateCommand();

// 1. this is a user-defined function

// returning a single value (authorname) as VARCHAR

cmd.CommandText = "GetFullAuthorNameById";

// required from procedure or UDF

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.AddWithValue("@id", "172-32-1176");

String fullname = (String)cmd.ExecuteScalar();

// use fullname

cmd.Parameters.Clear();

// 2. returns one row

cmd.CommandText = "GetAuthorInfoById";

// required from procedure or UDF

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.AddWithValue("@id", "172-32-1176");

SqlDataReader rdr1 = cmd.ExecuteReader();

// use fields in SqlDataReader

Obtaining Results 125

dotNET_C04 4/6/06 11:51 AM Page 125

rdr1.Close();

cmd.Parameters.Clear();

// 3. returns multiple rows

cmd.CommandText = "select * from authors";

cmd.CommandType = CommandType.Text;

SqlDataReader rdr2 = cmd.ExecuteReader();

while (rdr2.Read())

// process rows in SqlDataReader

{ }

rdr2.Close();

SqlDataReader encapsulates multiple rows that can be read in a
forward-only manner. You move to the next row in the set by using the
SqlDataReader’s Read() method, as shown in Listing 4-8. After you call
ExecuteReader, the resultant SqlDataReader is positioned before the first
row in the set, and an initial Readpositions it at the first row. The Readmethod
returns false when there are no more rows in the set. If more than one rowset
is available, you move to the next rowset by calling SqlDataReader’s
NextResult method. While you are positioned on a row, the IDataRecord
interface can be used to read data. You can use loosely typed ordinals or
names to read the data in single columns. Using ordinals or names is a syn-
tactic shortcut to using IDataRecord.GetValue(n). This returns the value as
a .NET Framework System.Object, which must be cast to the correct type.

Chapter 4: In-Process Data Access126

Result Desired Mechanism to Obtain It

Return code Parameter with ParameterDirection of ReturnCode

Count of rows affected Returned value from SqlCommand.ExecuteNonQuery
or
Use SqlCommand.ExecuteReader and
SqlDataReader.RecordsAffected

Scalar value Use SqlCommand.ExecuteScalar

Cursorless mode results Use SqlCommand.ExecuteReader

XML stream Use SqlCommand.ExecuteXmlReader

Table 4-4: How to Obtain Different Result Types

dotNET_C04 4/6/06 11:51 AM Page 126

If you know the data type of the value, you can use more strongly
typed column accessors. Both SQL Server providers have two kinds of
strongly typed accessors. IDataReader.GetDecimal(n) is an example; this
returns the value of the first column of the current row as a .NET Frame-
work System.Decimal data type. If you want full SQL Server type fidelity,
it is better to use SqlDataReader’s SQL Server–specific accessors, such as
IDataReader.GetSqlDecimal(n); these return instances of structures from
the System.Data.SqlTypes namespace. These types are isomorphic with
SQL Server data types; examples of their use and reasons why they are prefer-
able to the .NET Framework base data types when used inside the server are
covered in Chapter 3. Listing 4-9 shows an example of using each type.

Listing 4-9: Getting column values from a SqlDataReader

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

SqlCommand cmd = conn.CreateCommand();

cmd.CommandText = "select * from authors";

cmd.CommandType = CommandType.Text;

SqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read() == true)

{

string s;

// 1. Use ordinals or names

// explicit casting, if you know the right type

s = (string)rdr[0];

s = (string)rdr["au_id"];

// 2. Use GetValue (must cast)

s = (string)rdr.GetValue(0);

// 3. Strong typed accessors

s = rdr.GetString(0);

// 4. Accessors for SqlTypes

SqlString s2 = rdr.GetSqlString(0);

}

Although you can process results obtained inside .NET Framework pro-
cedural code, you can also pass these items back to the client. This is accom-
plished through the SqlPipe class, which is described later in the chapter.
Note that each of the classes returns rows, which must be processed
sequentially; these results cannot be updated in place.

Obtaining Results 127

dotNET_C04 4/6/06 11:51 AM Page 127

Transactions

Multiple SQL operations within a stored procedure or user-defined func-
tion can be executed individually or composed within a single transaction.
Composing multistatement procedural code inside a transaction ensures
that a set of operations has ACID properties. ACID is an acronym for the
following:

• Atomicity—All the operations in a transaction will succeed, or none
of them will.

• Consistency—The transaction transforms the database from one
consistent state to another.

• Isolation—Each transaction has its own view of the database state.

• Durability—These behaviors are guaranteed even if the database
or host operating system fails—for example, because of a power
failure.

You can use transactions in two general ways within the SqlClient
managed provider: by starting a transaction by using the SqlConnection’s
BeginTransaction method or by using declarative transactions using
System.Transaction.TransactionScope. The TransactionScope is
part of a new library in .NET Framework 2.0: the System.Transactions
library. Listing 4-10 shows a simple example of each method.

Listing 4-10: SqlClient can use two different coding styles for transactions

// Example 1: start transaction using the API

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

SqlTransaction tx = conn.BeginTransaction();

// do some work

tx.Commit();

conn.Dispose();

// Example 2: start transaction using Transaction Scope

using System.Data.SqlClient;

using System.Transactions;

using (TransactionScope ts = new TransactionScope())

{

SqlConnection conn = new SqlConnection("context connection=true");

// connection auto-enlisted in transaction on Open()

Chapter 4: In-Process Data Access128

dotNET_C04 4/6/06 11:51 AM Page 128

conn.Open();

// transactional commands here

conn.Close();

ts.Complete();

} // transaction commits when TransactionScope.Dispose called implicitly

If you’ve done any ADO.NET coding before, you’ve probably run into
the BeginTransactionmethod. This method encapsulates issuing a BEGIN
TRANSACTION statement in T-SQL. The TransactionScope requires a bit
more explanation.

The System.Transactions library is meant to provide a representation
of the concept of a transaction in the managed world. It is also a lightweight
way to access MSDTC, the distributed transaction coordinator. It can be
used as a replacement for the automatic transaction functionality in COM+
exposed by the System.EnterpriseServices library, but it does not
require the components that use it to be registered in the COM+ catalog.
System.EnterpriseServices cannot be used in .NET Framework proce-
dural code that runs in SQL Server. To use automatic transactions with
System.Transactions, simply instantiate a TransactionScope object
with a using statement, and any connections that are opened inside the
using block will be enlisted in the transaction automatically. The trans-
action will be committed or rolled back when you exit the using block and
the TransactionScope’s Dispose method is called. Notice that the default
behavior when Dispose is called is to roll back the transaction. To commit the
transaction, you need to call the TransactionScope’s Complete method.

In SQL Server 2005, using the TransactionScope starts a local, not a
distributed, transaction. This is the behavior whether TransactionScope
is used with client-side code or SQLCLR procedures unless there is already
a transaction started when the SQLCLR procedure is invoked. This phe-
nomenon is illustrated below:

-- Calling a SQLCLR procedure that uses TransactionScope

EXECUTE MySQLCLRProcThatUsesTransactionScope -- local transaction

GO

BEGIN TRANSACTION

-- other T-SQL statements

EXECUTE MySQLCLRProcThatUsesTransactionScope -- distributed transaction

COMMIT

GO

Transactions 129

dotNET_C04 4/6/06 11:51 AM Page 129

The transaction actually begins when Open is called on the SqlConnec-
tion, not when the TransactionScope instance is created. If more than one
SqlConnection is opened inside a TransactionScope, both connections
are enlisted in a distributed transaction when the second connection is
opened. The transaction on the first connection actually changes from a local
transaction to a distributed transaction. Recall that you can have only a single
instance of the context connection, so opening a second connection really
means opening a connection using SqlClient and a network library. Most
often, you’ll be doing this specifically to start a distributed transaction with
another database. Because of the network traffic involved and the nature of
the two-phase commit protocol used by distributed transactions, a distrib-
uted transaction will be much higher overhead than a local transaction.

BeginTransaction and TransactionScope work identically in the
simple case. But some database programmers like to make each procedure
usable and transactional when used stand-alone or when called when a
transaction already exists. To accomplish this, you would put transaction
code in each procedure. When one procedure with transaction code calls
another procedure with transaction code, this is called composing transac-
tions. SQL Server supports nesting of transactions and named savepoints,
but not autonomous (true nested) transactions. So using a T-SQL procedure
X as an example,

CREATE PROCEDURE X

AS

BEGIN TRAN

-- work here

COMMIT

calling it stand-alone (EXECUTE X) means that the work is in a transaction.
Calling it from procedure Y

CREATE PROCEDURE Y

AS

BEGIN TRANSACTION

-- other work here

EXECUTE X

COMMIT

doesn’t start an autonomous transaction (a second transaction with a differ-
ent scope); the BEGIN TRANSACTION in X merely increases a T-SQL variable

Chapter 4: In-Process Data Access130

dotNET_C04 4/6/06 11:51 AM Page 130

@@TRANCOUNT by one. Two error messages are produced when you roll back
in procedure X while it’s being called by procedure Y:

Msg 266, Level 16, State 2, Procedure Y, Line 0

Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK

TRANSACTION statement is missing. Previous count = 1, current count = 0.

Msg 3902, Level 16, State 1, Procedure X, Line 5

The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION.

I’d like to emulate this behavior in SQLCLR—that is, have a procedure
that acts like X and that can be used stand-alone or composed. I can do some-
thing akin to T-SQL (and get the interesting rollback behavior with a slightly
different error number) using the BeginTransaction method on the con-
text SqlConnection. Using a TransactionScope has a different behavior,
however. If I have a SQLCLR proc that looks like this (condensed version),

public static void X {

using (TransactionScope ts = new TransactionScope())

using (

SqlConnection conn = new SqlConnection("Context connection=true"))

{

conn.Open();

ts.Complete();

}

}

and if SQLCLR X is used stand-alone, all is well, and the TransactionScope
code gets a local transaction. If SQLCLR X is called from procedure Y (above),
SqlConnection’s Open starts a distributed transaction. Apparently, it has to
be this way, at least for now, because of how TransactionScope works.
Local transactions don’t expose the events that TransactionScope needs to
compose transactions.

If you want a distributed transaction composed with your outer trans-
action (your SqlConnection is calling to another instance, for example),
use TransactionScope; if you don’t want one, use SqlConnection’s
BeginTransaction. It won’t act any different from T-SQL (except you do
get a different error number) if you roll back inside an “inner” transaction.
But you get a nesting local transaction with BeginTransaction.

Listing 4-11 shows an example of using a distributed transaction with
TransactionScope.

Transactions 131

dotNET_C04 4/6/06 11:51 AM Page 131

Listing 4-11: A distributed transaction using TransactionScope

public static void DoDistributed() {

string ConnStr =

"server=server2;integrated security=sspi;database=pubs";

using (TransactionScope ts = new TransactionScope())

using (SqlConnection conn1 =

new SqlConnection("Context connection=true"))

using (SqlConnection conn2 =

new SqlConnection(ConnStr))

{

conn1.Open();

conn2.Open();

// do work on connection 1

// do work on connection 2

// ask to commit the distributed transaction

ts.Complete();

}

}

TransactionScope Exotica
You can use options of the TransactionScope class to compose multi-
ple transactions in interesting ways. You can start multiple transactions,
for example (but not on the context connection), by using a different
TransactionScopeOption. Listing 4-12 will begin a local transaction
using the context connection and then begin an autonomous transaction
using a connection to the same server.

Listing 4-12: Producing the equivalent of an autonomous transaction

public static void DoPseudoAutonomous() {

string ConnStr =

"server=sameserver;integrated security=sspi;database=samedb";

using (TransactionScope ts1 = new TransactionScope())

using (SqlConnection conn1 =

new SqlConnection("context connection=true"))

{

conn1.Open();

// do work on connection 1, then

{

using (TransactionScope ts2 =

new TransactionScope(TransactionScopeOption.RequiresNew))

using (SqlConnection conn2 = new SqlConnection(ConnStr))

{

Chapter 4: In-Process Data Access132

dotNET_C04 4/6/06 11:51 AM Page 132

conn2.Open();

// do work on connection 2

ts2.Complete();

}

// ask to commit transaction1

ts1.Complete();

}

}

This code works because it uses a second connection to the same server to
start a second transaction. This second connection is separate from the first one,
not an autonomous transaction on the same connection. The result is the same
as you would get from an autonomous transaction; you just need two connec-
tions (the context connection and a second connection) to accomplish it.

Attempting to use any TransactionScopeOption other than the
default TransactionRequired fails if there already is an existing transac-
tion (as we saw before, when BEGIN TRANSACTION was called in T-SQL
before EXECUTE on the SQLCLR procedure) and you attempt to use context
connection, as shown in Listing 4-13. You’ll get a message saying "no
autonomous transaction".

Listing 4-13: Attempting to use autonomous transactions on a single connection fails

-- Calling a SQLCLR procedure that uses TransactionScope

-- with an option other than TransactionRequired

EXECUTE DoPseudoAutonomous -- works

GO

BEGIN TRANSACTION

-- other T-SQL statements

EXECUTE DoPseudoAutonomous -- fails, "no autonomous transaction"

COMMIT

GO

This is because SQL Server doesn’t support autonomous transactions on
a single connection.

Best Practices
With all these options and different behaviors, what’s the best and easier
thing to do to ensure that your local transactions always work correctly in
SQLCLR procedures? At this point, because SQL Server 2005 doesn’t support

Transactions 133

dotNET_C04 4/6/06 11:51 AM Page 133

autonomous transactions on the same connection, SqlConnection’s
BeginTransaction method is the best choice for local transactions. In
addition, you need to use the Transaction.Current static properties in
System.Transactions.dll to determine whether a transaction already
exists—that is, whether the caller has already started a transaction. Listing 4-14
shows a strategy that works well whether or not you compose transactions.

Listing 4-14: A generalized strategy for nesting transactions

// Works whether caller has transaction or not

public static int ComposeTx()

{

int returnCode = 0;

// determine if we have transaction

bool noCallerTx = (Transaction.Current == null);

SqlTransaction tx = null;

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

if (noCallerTx)

tx = conn.BeginTransaction();

try {

// do the procedure's work here

SqlCommand workcmd = new SqlCommand(

"INSERT jobs VALUES('New job', 10, 10)", conn);

if (tx != null)

workcmd.Transaction = tx;

int rowsAffected = workcmd.ExecuteNonQuery();

if (noCallerTx)

tx.Commit();

}

catch (Exception ex) {

if (noCallerTx) {

tx.Rollback();

// raise error - covered later in chapter

}

else {

// signal an error to the caller with return code

returnCode = 50010;

}

}

conn.Dispose();

return returnCode;

}

Chapter 4: In-Process Data Access134

dotNET_C04 4/6/06 11:51 AM Page 134

For distributed transactions as well as the pseudoautonomous transac-
tions described earlier, you must use TransactionScope or a separate
second connection back to the server using SqlClient. If you don’t mind
the behavior that nesting transactions with TransactionScope force a dis-
tributed transaction and the extra overhead caused by MSDTC, you can use
TransactionScope all the time. Finally, if you know your procedure won’t
be called with an existing transaction, you can use either BeginTransaction
or TransactionScope. Refraining from nesting transactions inside nested
procedures may be a good strategy until this gets sorted out.

Pipe

In the section on results earlier in this chapter, we mentioned that you have
a choice of processing results in your procedural code as part of its logic or
returning the results to the caller. Consuming SqlDataReaders or the
stream of XML in procedural code makes them unavailable to the caller;
you cannot process a cursorless mode result more than once. The code for
in-process consumption of a SqlDataReader is identical to SqlClient;
you call Read() until no more rows remain. To pass a resultset back to the
client, you need to use a special class, SqlPipe.

The SqlPipe class represents a channel back to the client; this is a
TDS (Tabular Data Stream) output stream if the TDS protocol is used for
client communication. You obtain a SqlPipeby using the static SqlContext.
Pipe property. Rowsets, single rows, and messages can be written to
the pipe. Although you can get a SqlDataReader and return it to the
client through the SqlPipe, this is less efficient than just using a new
special method for the SqlPipe class: ExecuteAndSend. This method
executes a SqlCommand and points it directly to the SqlPipe. Listing 4-15
shows an example.

Listing 4-15: Using SqlPipe to return rows to the client

public static void getAuthorsByState(SqlString state)

{

SqlConnection conn = new SqlConnection("context connection=true");

conn.Open();

SqlCommand cmd = conn.CreateCommand();

cmd.CommandText = "select * from authors where state = @state";

cmd.Parameters.Add("@state", SqlDbType.VarChar);

Pipe 135

dotNET_C04 4/6/06 11:51 AM Page 135

cmd.Parameters[0].Value = state;

SqlPipe pipe = SqlContext.Pipe;

pipe.ExecuteAndSend(cmd);

}

In addition to returning an entire set of results through the pipe,
SqlPipe’s Send method lets you send an instance of the SqlDataRecord
class. You can also batch the send operations however you like. An inter-
esting feature of using SqlPipe is that the result is streamed to the caller
immediately, as fast as you are able to send it, taking into consideration that
the client stack may do row buffering. This may improve performance at
the client because you can process rows as fast as they are sent out the pipe.
Note that you can combine executing a command and sending the results
back through SqlPipe in a single operation with the ExecuteAndSend con-
venience method, using a SqlCommand as a method input parameter.

SqlPipe also contains methods for sending scalar values as messages
and affects how errors are exposed. We’ll talk about error handling practices
next. The entire set of methods exposed by SqlPipe is shown in Table 4-5.

There is also a boolean property on the SqlPipe class, IsSendingRe-
sults, that enables you to find out whether the SqlPipe is busy. Because
multiple active resultsets are not supported when you’re inside SQL Server,

Chapter 4: In-Process Data Access136

Method What It Does

ExecuteAndSend(SqlCommand) Executes command, returns results through
SqlPipe

Send(String) Sends a message as a string

Send(SqlDataReader) Sends results through SqlDataReader

Send(SqlDataRecord) Sends results through SqlDataRecord

SendResultsStart Starts sending results
(SqlDataRecord)

SendResultsRow Sends a single row after calling
(SqlDataRecord) SendResultsStart

SendResultsEnd() Indicates finished sending rows

Table 4-5: Methods of the SqlPipe Class

dotNET_C04 4/6/06 11:51 AM Page 136

attempting to execute another method that uses the pipe while it’s busy will
procedure an error. The only exception to this rule is that SendResultsStart,
SendResultsRow, and SendResultsEnd are used together to send results one
row at a time.

SqlPipe is available for use only inside a SQLCLR stored procedure.
Attempting to get the SqlContext.Pipe value inside a user-defined
function returns a null instance. This is because sending rowsets is not per-
mitted in a user-defined function. Within a stored procedure, however, you
can not only send rowsets through the SqlPipe by executing a command
that returns a rowset, but also synthesize your own. Synthesizing rowsets
involves the use of two server-specific classes we haven’t seen before:
SqlDataRecord and SqlMetaData.

Creating and Sending New Rowsets

(chapter continues...)

Creating and Sending New Rowsets

137

dotNET_C04 4/6/06 11:51 AM Page 137

