
365

Chapter 9

9.Texture Mapping

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Understand what texture mapping can add to your scene

• Specify texture images in compressed and uncompressed formats

• Control how a texture image is filtered as it is applied to a fragment

• Create and manage texture images in texture objects and, if available,
control a high-performance working set of those texture objects

• Specify how the color values in the image combine with those of the
fragment to which it’s being applied

• Supply texture coordinates to indicate how the texture image should
be aligned with the objects in your scene

• Generate texture coordinates automatically to produce effects such as
contour maps and environment maps

• Perform complex texture operations in a single pass with
multitexturing (sequential texture units)

• Use texture combiner functions to mathematically operate on texture,
fragment, and constant color values

• After texturing, process fragments with secondary colors

• Perform transformations on texture coordinates using the texture
matrix

• Render shadowed objects, using depth textures

Shreiner_ch09.fm Page 365 Thursday, June 30, 2005 5:41 PM

366 Chapter 9: Texture Mapping

So far, every geometric primitive has been drawn as either a solid color or
smoothly shaded between the colors at its vertices—that is, they’ve been
drawn without texture mapping. If you want to draw a large brick wall
without texture mapping, for example, each brick must be drawn as a
separate polygon. Without texturing, a large flat wall—which is really a
single rectangle—might require thousands of individual bricks, and even
then the bricks may appear too smooth and regular to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained,
perhaps, by scanning in a photograph of a real wall) to a polygon and to
draw the entire wall as a single polygon. Texture mapping ensures that all
the right things happen as the polygon is transformed and rendered. For
example, when the wall is viewed in perspective, the bricks may appear
smaller as the wall gets farther from the viewpoint. Other uses for texture
mapping include depicting vegetation on large polygons representing the
ground in flight simulation; wallpaper patterns; and textures that make
polygons look like natural substances such as marble, wood, and cloth. The
possibilities are endless. Although it’s most natural to think of applying
textures to polygons, textures can be applied to all primitives—points, lines,
polygons, bitmaps, and images. Plates 6, 8, 18–21, and 24–32 all
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large,
complex subject, and you must make several programming choices when
using it. For starters, most people intuitively understand a two-dimensional
texture, but a texture may be one-dimensional or even three-dimensional.
You can map textures to surfaces made of a set of polygons or to curved
surfaces, and you can repeat a texture in one, two, or three directions
(depending on how many dimensions the texture is described in) to cover
the surface. In addition, you can automatically map a texture onto an object
in such a way that the texture indicates contours or other properties of the
item being viewed. Shiny objects can be textured so that they appear to be
in the center of a room or other environment, reflecting the surroundings
from their surfaces. Finally, a texture can be applied to a surface in different
ways. It can be painted on directly (like a decal placed on a surface), used to
modulate the color the surface would have been painted otherwise, or used
to blend a texture color with the surface color. If this is your first exposure
to texture mapping, you might find that the discussion in this chapter
moves fairly quickly. As an additional reference, you might look at the
chapter on texture mapping in 3D Computer Graphics by Alan Watt
(Addison-Wesley, 1999).

Textures are simply rectangular arrays of data—for example, color data,
luminance data, or color and alpha data. The individual values in a texture

Shreiner_ch09.fm Page 366 Thursday, June 30, 2005 5:41 PM

Chapter 9: Texture Mapping 367

array are often called texels. What makes texture mapping tricky is that a
rectangular texture can be mapped to nonrectangular regions, and this
must be done in a reasonable way.

Figure 9-1 illustrates the texture-mapping process. The left side of the figure
represents the entire texture, and the black outline represents a quadrilateral
shape whose corners are mapped to those spots on the texture. When the
quadrilateral is displayed on the screen, it might be distorted by applying
various transformations—rotations, translations, scaling, and projections. The
right side of the figure shows how the texture-mapped quadrilateral might
appear on your screen after these transformations. (Note that this quadrilat-
eral is concave and might not be rendered correctly by OpenGL without
prior tessellation. See Chapter 11 for more information about tessellating
polygons.)

Notice how the texture is distorted to match the distortion of the quadrilat-
eral. In this case, it’s stretched in the x-direction and compressed in the
y-direction; there’s a bit of rotation and shearing going on as well. Depend-
ing on the texture size, the quadrilateral’s distortion, and the size of the
screen image, some of the texels might be mapped to more than one frag-
ment, and some fragments might be covered by multiple texels. Since the
texture is made up of discrete texels (in this case, 256 × 256 of them), filter-
ing operations must be performed to map texels to fragments. For example,
if many texels correspond to a fragment, they’re averaged down to fit; if
texel boundaries fall across fragment boundaries, a weighted average of the
applicable texels is performed. Because of these calculations, texturing is
computationally expensive, which is why many specialized graphics sys-
tems include hardware support for texture mapping.

Figure 9-1 Texture-Mapping Process

Shreiner_ch09.fm Page 367 Thursday, June 30, 2005 5:41 PM

368 Chapter 9: Texture Mapping

An application may establish texture objects, with each texture object rep-
resenting a single texture (and possible associated mipmaps). Some imple-
mentations of OpenGL can support a special working set of texture objects
that have better performance than texture objects outside the working set.
These high-performance texture objects are said to be resident and may have
special hardware and/or software acceleration available. You may use OpenGL
to create and delete texture objects and to determine which textures consti-
tute your working set.

This chapter covers the OpenGL’s texture-mapping facility in the following
major sections.

• “An Overview and an Example” gives a brief, broad look at the steps
required to perform texture mapping. It also presents a relatively
simple example of texture mapping.

• “Specifying the Texture” explains how to specify one-, two-, or three-
dimensional textures. It also discusses how to use a texture’s borders,
how to supply a series of related textures of different sizes, and how
to control the filtering methods used to determine how an applied
texture is mapped to screen coordinates.

• “Filtering” details how textures are either magnified or minified as they
are applied to the pixels of polygons. Minification using special mipmap
textures is also explained.

• “Texture Objects” describes how to put texture images into objects so
that you can control several textures at one time. With texture objects,
you may be able to create a working set of high-performance textures,
which are said to be resident. You may also prioritize texture objects to
increase or decrease the likelihood that a texture object is resident.

• “Texture Functions” discusses the methods used for painting a texture
onto a surface. You can choose to have the texture color values replace
those that would be used if texturing were not in effect, or you can
have the final color be a combination of the two.

• “Assigning Texture Coordinates” describes how to compute and assign
appropriate texture coordinates to the vertices of an object. It also
explains how to control the behavior of coordinates that lie outside the
default range—that is, how to repeat or clamp textures across a surface.

• “Automatic Texture-Coordinate Generation” shows how to have
OpenGL automatically generate texture coordinates so that you can
achieve such effects as contour and environment maps.

Shreiner_ch09.fm Page 368 Thursday, June 30, 2005 5:41 PM

Chapter 9: Texture Mapping 369

• “Multitexturing” details how textures may be applied in a serial pipe-
line of successive texturing operations.

• “Texture Combiner Functions” explains how you can control mathe-
matical operations (multiplication, addition, subtraction, interpolation,
and even dot products) on the RGB and alpha values of textures, con-
stant colors, and incoming fragments. Combiner functions expose
flexible, programmable fragment processing.

• “Applying Secondary Color after Texturing” shows how secondary
colors are applied to fragments after texturing.

• “The Texture Matrix Stack” explains how to manipulate the texture
matrix stack and use the q texture coordinate.

Version 1.1 of OpenGL introduced several texture-mapping operations:

• Additional internal texture image formats

• Texture proxy, to query whether there are enough resources to
accommodate a given texture image

• Texture subimage, to replace all or part of an existing texture
image, rather than completely delete and create a texture to
achieve the same effect

• Specifying texture data from framebuffer memory (as well as from
system memory)

• Texture objects, including resident textures and prioritizing

Version 1.2 added:

• 3D texture images

• A new texture-coordinate wrapping mode, GL_CLAMP_TO_EDGE,
which derives texels from the edge of a texture image, not its
border

• Greater control over mipmapped textures to represent different
levels of detail (LOD)

• Calculating specular highlights (from lighting) after texturing
operations

Version 1.3 granted more texture-mapping operations:

• Compressed textures

• Cube map textures

Shreiner_ch09.fm Page 369 Thursday, June 30, 2005 5:41 PM

370 Chapter 9: Texture Mapping

• Multitexturing, which is applying several textures to render a
single primitive

• Texture-wrapping mode, GL_CLAMP_TO_BORDER

• Texture environment modes: GL_ADD and GL_COMBINE
(including the dot product combination function)

Version 1.4 supplied these texture capabilities:

• Texture-wrapping mode, GL_MIRRORED_REPEAT

• Automatic mipmap generation with GL_GENERATE_MIPMAP

• Texture parameter GL_TEXTURE_LOD_BIAS, which alters selection
of the mipmap level of detail

• Application of a secondary color (specified by
glSecondaryColor*()) after texturing

• During the texture combine environment mode, the ability to use
texture color from different texture units as sources for the texture
combine function

• Use of depth (r coordinate) as an internal texture format and
texturing modes that compare depth texels to decide upon texture
application

Version 1.5 added support for:

• additional texture-comparison modes for use of textures for shadow
mapping

Version 2.0 modified texture capabilities by:

• removing the power-of-two restriction on texture maps

• iterated texture coordinates across point sprites

If you try to use one of these texture-mapping operations and can’t find it,
check the version number of your implementation of OpenGL to see if it
actually supports it. (See “Which Version Am I Using?” in Chapter 14.) In
some implementations, a particular feature may be available only as an
extension.

For example, in OpenGL Version 1.2, multitexturing was approved by the
OpenGL Architecture Review Board (ARB), the governing body for OpenGL,
as an optional extension. An implementation of OpenGL 1.2 supporting
multitexturing would have function and constant names suffixed with
ARB, such as glActiveTextureARB(GL_TEXTURE1_ARB). In OpenGL 1.3,
multitexturing became mandatory, and the ARB suffix was removed.

Shreiner_ch09.fm Page 370 Thursday, June 30, 2005 5:41 PM

An Overview and an Example 371

An Overview and an Example

This section gives an overview of the steps necessary to perform texture
mapping. It also presents a relatively simple texture-mapping program. Of
course, you know that texture mapping can be a very involved process.

Steps in Texture Mapping

To use texture mapping, you perform the following steps:

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture
mapping results in color-index mode are undefined.

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two-dimensional, like most images,
but it can also be one-dimensional or three-dimensional. The data describ-
ing a texture may consist of one, two, three, or four elements per texel and
may represent an (R, G, B, A) quadruple, a modulation constant, or a depth
component.

In Example 9-1, which is very simple, a single texture object is created to
maintain a single uncompressed, two-dimensional texture. This example
does not find out how much memory is available. Since only one texture is
created, there is no attempt to prioritize or otherwise manage a working set
of texture objects. Other advanced techniques, such as texture borders,
mipmaps, or cube maps, are not used in this simple example.

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA
value from the fragment color and the texture image data. One possibility
is simply to use the texture color as the final color; this is the replace mode,
in which the texture is painted on top of the fragment, just as a decal would
be applied. (Example 9-1 uses replace mode.) Another method is to use the
texture to modulate, or scale, the fragment’s color; this technique is useful

Shreiner_ch09.fm Page 371 Thursday, June 30, 2005 5:41 PM

372 Chapter 9: Texture Mapping

for combining the effects of lighting with texturing. Finally, a constant
color can be blended with that of the fragment, based on the texture value.

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is
enabled or disabled using glEnable() or glDisable(), with the symbolic
constant GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or
GL_TEXTURE_CUBE_MAP for one-, two-, three-dimensional, or cube map
texturing, respectively. (If two or all three of the dimensional texturing
modes are enabled, the largest dimension enabled is used. If cube map
textures are enabled, it trumps all the others. For the sake of clean programs,
you should enable only the one you want to use.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the frag-
ments to which it’s to be applied before it’s “glued on.” That is, you need to
specify both texture coordinates and geometric coordinates as you specify
the objects in your scene. For a two-dimensional texture map, for example,
the texture coordinates range from 0.0 to 1.0 in both directions, but the
coordinates of the items being textured can be anything. To apply the brick
texture to a wall, for example, assuming the wall is square and meant to rep-
resent one copy of the texture, the code would probably assign texture coor-
dinates (0, 0), (1, 0), (1, 1), and (0, 1) to the four corners of the wall. If the
wall is large, you might want to paint several copies of the texture map on
it. If you do so, the texture map must be designed so that the bricks at the
left edge match up nicely with the bricks at the right edge, and similarly for
the bricks at the top and bottom.

You must also indicate how texture coordinates outside the range [0.0, 1.0]
should be treated. Do the textures repeat to cover the object, or are they
clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture
mapping is that interesting textures are large. Typically, textures are read
from an image file, since specifying a texture programmatically could take
hundreds of lines of code. In Example 9-1, the texture—which consists of
alternating white and black squares, like a checkerboard—is generated by
the program. The program applies this texture to two squares, which are

Shreiner_ch09.fm Page 372 Thursday, June 30, 2005 5:41 PM

An Overview and an Example 373

then rendered in perspective, one of them facing the viewer squarely and
the other tilting back at 45 degrees, as shown in Figure 9-2. In object
coordinates, both squares are the same size.

Example 9-1 Texture-Mapped Checkerboard: checker.c

/* Create checkerboard texture */
#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];

static GLuint texName;

void makeCheckImage(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 }
 }
}

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 makeCheckImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

Figure 9-2 Texture-Mapped Squares

Shreiner_ch09.fm Page 373 Thursday, June 30, 2005 5:41 PM

374 Chapter 9: Texture Mapping

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_2D, texName);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 checkImage);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glEnable(GL_TEXTURE_2D);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
 glBindTexture(GL_TEXTURE_2D, texName);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
 glEnd();
 glFlush();
 glDisable(GL_TEXTURE_2D);
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -3.6);
}
/* keyboard() and main() deleted to reduce printing */

Shreiner_ch09.fm Page 374 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 375

The checkerboard texture is generated in the routine makeCheckImage(),
and all the texture-mapping initialization occurs in the routine init().
glGenTextures() and glBindTexture() name and create a texture object
for a texture image. (See “Texture Objects” on page 409.) The single, full-
resolution texture map is specified by glTexImage2D(), whose parameters
indicate the size, type, location, and other properties of the texture image.
(See “Specifying the Texture” below for more information about
glTexImage2D().)

The four calls to glTexParameter*() specify how the texture is to be wrapped
and how the colors are to be filtered if there isn’t an exact match between
texels in the texture and pixels on the screen. (See “Filtering” on page 406
and “Repeating and Clamping Textures” on page 423.)

In display(), glEnable() turns on texturing. glTexEnv*() sets the drawing
mode to GL_REPLACE so that the textured polygons are drawn using the
colors from the texture map (rather than taking into account the color in
which the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified
along with vertex coordinates. The glTexCoord*() command behaves simi-
larly to the glNormal() command. glTexCoord*() sets the current texture
coordinates; any subsequent vertex command has those texture coordinates
associated with it until glTexCoord*() is called again.

Note: The checkerboard image on the tilted polygon might look wrong
when you compile and run it on your machine—for example, it
might look like two triangles with different projections of the
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running
the example again. To do this, use glHint().

Specifying the Texture

The command glTexImage2D() defines a two-dimensional texture. It takes
several arguments, which are described briefly here and in more detail in
the subsections that follow. The related commands for one- and three-
dimensional textures, glTexImage1D() and glTexImage3D(), are described
in “One-Dimensional Textures” and “Three-Dimensional Textures,”
respectively.

Shreiner_ch09.fm Page 375 Thursday, June 30, 2005 5:41 PM

376 Chapter 9: Texture Mapping

void glTexImage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *texels);

Defines a two-dimensional texture. The target parameter is set to one of
the constants: GL_TEXTURE_2D, GL_PROXY_TEXTURE_2D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_
CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_
CUBE_MAP. (See “Cube Map Textures” for information about use of the
GL_*CUBE_MAP* constants with glTexImage2D and related functions.)
You use the level parameter if you’re supplying multiple resolutions of the
texture map; with only one resolution, level should be 0. (See “Mipmaps:
Multiple Levels of Detail” for more information about using multiple
resolutions.)

 The next parameter, internalFormat, indicates which components (RGBA,
depth, luminance, or intensity) are selected for the texels of an image. The
value of internalFormat is an integer from 1 to 4, or one of the following
symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
GL_ALPHA16, GL_COMPRESSED_ALPHA, GL_COMPRESSED_
LUMINANCE, GL_COMPRESSED_LUMINANCE_ALPHA,
GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24,
GL_DEPTH_COMPONENT32, GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCE8, GL_LUMINANCE12,GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_
LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8,GL_
LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12, GL_
LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_
INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_
B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_
A2, GL_RGBA12, or GL_RGBA16. (See “Texture Functions” for a
discussion of how these selected components are applied, and see
“Compressed Texture Images” for a discussion of how compressed
textures are handled.)

The internalFormat may request a specific resolution of components. For
example, if internalFormat is GL_R3_G3_B2, you are asking that texels be
3 bits of red, 3 bits of green, and 2 bits of blue. But OpenGL is not

Shreiner_ch09.fm Page 376 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 377

The internal format of a texture image may affect the performance of texture
operations. For example, some implementations perform texturing with
GL_RGBA faster than with GL_RGB, because the color components align to
processor memory better. Since this varies, you should check specific infor-
mation about your implementation of OpenGL.

guaranteed to deliver this; OpenGL is only obligated to choose an internal
representation that closely approximates what is requested, but not
necessarily an exact match. By definition, GL_LUMINANCE, GL_
LUMINANCE_ALPHA, GL_DEPTH_COMPONENT, GL_RGB, and GL_
RGBA are lenient, because they do not ask for a specific resolution. (For
compatibility with the OpenGL release 1.0, the numeric values 1, 2, 3,
and 4 for internalFormat are equivalent to the symbolic constants GL_
LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA,
respectively.)

The width and height parameters give the dimensions of the texture image;
border indicates the width of the border, which is either 0 (no border) or 1.
Both width and height must have the form 2m + 2b, where m is a non-
negative integer (which can have a different value for width than for height)
and b is the value of border. The maximum size of a texture map depends
on the implementation of OpenGL, but it must be at least 64 × 64 (or
66 × 66 with borders).

The format and type parameters describe the format and data type of
the texture image data. They have the same meaning as they do for
glDrawPixels(). (See “Imaging Pipeline” in Chapter 8.) In fact, texture
data is in the same format as the data used by glDrawPixels(), so the
settings of glPixelStore*() and glPixelTransfer*() are applied. (In
Example 9-1, the call

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

is made because the data in the example isn’t padded at the end of each
texel row.) The format parameter can be GL_COLOR_INDEX, GL_DEPTH_
COMPONENT, GL_RGB, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA—that is,
the same formats available for glDrawPixels() with the exception of
GL_STENCIL_INDEX.

Similarly, the type parameter can be GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, GL_BITMAP, or one of the packed pixel data types.

Finally, texels contains the texture image data. This data describes the
texture image itself as well as its border.

Shreiner_ch09.fm Page 377 Thursday, June 30, 2005 5:41 PM

378 Chapter 9: Texture Mapping

The internal format of a texture image also may control how much
memory a texture image consumes. For example, a texture of internal
format GL_RGBA8 uses 32 bits per texel, while a texture of internal format
GL_R3_G3_B2 uses only 8 bits per texel. Of course, there is a corresponding
trade-off between memory consumption and color resolution.

A GL_DEPTH_COMPONENT texture often stores and then utilizes fragment
depth information. In “Depth Textures” on page 452, you’ll see how a
depth texture can be used to render shadows.

Although texture mapping results in color-index mode are undefined, you
can still specify a texture with a GL_COLOR_INDEX image. In that case,
pixel-transfer operations are applied to convert the indices to RGBA values
by table lookup before they’re used to form the texture image.

If your OpenGL implementation supports the Imaging Subset and any of its
features are enabled, the texture image will be affected by those features. For
example, if the two-dimensional convolution filter is enabled, then the
convolution will be performed on the texture image. (The convolution may
change the image’s width and/or height.)

The number of texels for both the width and height of a texture image, not
including the optional border, must be a power of 2. If your original image
does not have dimensions that fit that limitation, you can use the OpenGL
Utility Library routine gluScaleImage() to alter the sizes of your textures.

Note: In GLU 1.3, gluScaleImage() supports packed pixel formats (and
their related data types).

int gluScaleImage(GLenum format, GLint widthin, GLint heightin,
GLenum typein, const void *datain, GLint widthout,
GLint heightout, GLenum typeout, void *dataout);

Scales an image using the appropriate pixel-storage modes to unpack the
data from datain. The format, typein, and typeout parameters can refer to
any of the formats or data types supported by glDrawPixels(). The image
is scaled using linear interpolation and box filtering (from the size
indicated by widthin and heightin to widthout and heightout), and the
resulting image is written to dataout, using the pixel GL_PACK* storage
modes. The caller of gluScaleImage() must allocate sufficient space for
the output buffer. A value of 0 is returned on success, and a GLU error
code is returned on failure.

Shreiner_ch09.fm Page 378 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 379

The framebuffer itself can also be used as a source for texture data.
glCopyTexImage2D() reads a rectangle of pixels from the framebuffer and
uses that rectangle as texels for a new texture.

The next sections give more detail about texturing, including the use of
the target, border, and level parameters. The target parameter can be used
to query accurately the size of a texture (by creating a texture proxy with
glTexImage*D()) and whether a texture possibly can be used within the
texture resources of an OpenGL implementation. Redefining a portion of
a texture is described in “Replacing All or Part of a Texture Image” on
page 382. One- and three-dimensional textures are discussed in “One-
Dimensional Textures” on page 385 and “Three-Dimensional Textures” on
page 387, respectively. The texture border, which has its size controlled by
the border parameter, is detailed in “Compressed Texture Images” on
page 392. The level parameter is used to specify textures of different
resolutions and is incorporated into the special technique of mipmapping,

void glCopyTexImage2D(GLenum target, GLint level,
GLint internalFormat,
GLint x, GLint y, GLsizei width, GLsizei height,
GLint border);

Creates a two-dimensional texture, using framebuffer data to define the
texels. The pixels are read from the current GL_READ_BUFFER and are
processed exactly as if glCopyPixels() had been called, but instead of
going to the framebuffer, the pixels are placed into texture memory. The
settings of glPixelTransfer*() and other pixel-transfer operations are
applied.

The target parameter must be one of the constants GL_TEXTURE_2D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_
CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z. (See “Cube Map Textures” on
page 436 for information about use of the *CUBE_MAP* constants.) The
level, internalFormat, and border parameters have the same effects that they
have for glTexImage2D(). The texture array is taken from a screen-aligned
pixel rectangle with the lower left corner at coordinates specified by the
(x, y) parameters. The width and height parameters specify the size of this
pixel rectangle. Both width and height must have the form 2m+2b, where
m is a non-negative integer (which can have a different value for width
than for height) and b is the value of border.

Shreiner_ch09.fm Page 379 Thursday, June 30, 2005 5:41 PM

380 Chapter 9: Texture Mapping

which is explained in “Mipmaps: Multiple Levels of Detail” on page 395.
Mipmapping requires understanding how to filter textures as they’re
applied; filtering is covered on page 406.

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture
resources are typically limited, and texture format restrictions vary among
OpenGL implementations. There is a special texture proxy target to evalu-
ate whether your OpenGL implementation is capable of supporting a par-
ticular texture format at a particular texture size.

glGetIntegerv(GL_MAX_TEXTURE_SIZE,...) tells you a lower bound on the
largest width or height (without borders) of a texture image; typically, the
size of the largest square texture supported. For 3D textures, GL_MAX_3D_
TEXTURE_SIZE may be used to query the largest allowable dimension (width,
height, or depth, without borders) of a 3D texture image. For cube map
textures, GL_MAX_CUBE_MAP_TEXTURE_SIZE is similarly used.

However, use of any of the GL_MAX*TEXTURE_SIZE queries does not
consider the effect of the internal format or other factors. A texture image
that stores texels using the GL_RGBA16 internal format may be using 64
bits per texel, so its image may have to be 16 times smaller than an image
with the GL_LUMINANCE4 internal format. Textures requiring borders or
mipmaps further reduce the amount of available memory.

A special placeholder, or proxy, for a texture image allows the program to
query more accurately whether OpenGL can accommodate a texture of a
desired internal format.

For instance, to find out whether there are enough resources available for
a standard 2D texture, call glTexImage2D() with a target parameter of
GL_PROXY_TEXTURE_2D and the given level, internalFormat, width, height,
border, format, and type. For a proxy, you should pass NULL as the pointer
for the texels array. (For a cube map, use glTexImage2D() with the target
GL_PROXY_TEXTURE_CUBE_MAP. For one- or three-dimensional textures,
use corresponding 1D or 3D routines and symbolic constants.)

After the texture proxy has been created, query the texture state variables
with glGetTexLevelParameter*(). If there aren’t enough resources to
accommodate the texture proxy, the texture state variables for width,
height, border width, and component resolutions are set to 0.

Shreiner_ch09.fm Page 380 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 381

Example 9-2 demonstrates how to use the texture proxy to find out if there
are enough resources to create a 64 × 64 texel texture with RGBA components
with 8 bits of resolution. If this succeeds, then glGetTexLevelParameteriv()
stores the internal format (in this case, GL_RGBA8) into the variable format.

Example 9-2 Querying Texture Resources with a Texture Proxy

 GLint width;

 glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
 64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
 glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
 GL_TEXTURE_WIDTH, &width);

Note: There is one major limitation with texture proxies: the texture proxy
answers the question of whether a texture is capable of being loaded
into texture memory. The texture proxy provides the same answer,
regardless of how texture resources are currently being used. If other
textures are using resources, then the texture proxy query may respond
affirmatively, but there may not be enough resources to make your
texture resident (that is, part of a possibly high-performance working
set of textures). The texture proxy does not answer the question of
whether there is sufficient capacity to handle the requested texture.
(See “Texture Objects” for more information about managing resident
textures.)

void glGetTexLevelParameter{if}v(GLenum target, GLint level,
GLenum pname, TYPE *params);

Returns in params texture parameter values for a specific level of detail,
specified as level. target defines the target texture and is GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_
CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_
NEGATIVE_Z, GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_3D, or GL_PROXY_TEXTURE_CUBE_MAP. (GL_
TEXTURE_CUBE_MAP is not valid, because it does not specify a particular
face of a cube map.) Accepted values for pname are GL_TEXTURE_WIDTH,
GL_TEXTURE_HEIGHT, GL_TEXTURE_DEPTH, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE, GL_
TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_
ALPHA_SIZE, GL_TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_
INTENSITY_SIZE.

Shreiner_ch09.fm Page 381 Thursday, June 30, 2005 5:41 PM

382 Chapter 9: Texture Mapping

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying
an existing one. Often it is better to replace all or part of a texture image with
new information, rather than create a new one. This can be helpful for certain
applications, such as using real-time, captured video images as texture
images. For that application, it makes sense to create a single texture and use
glTexSubImage2D() to replace repeatedly the texture data with new video
images. Also, there are no size restrictions for glTexSubImage2D() that force
the height or width to be a power of 2. (This is helpful for processing video
images, which generally do not have sizes that are powers of 2. However, you
must load the video images into an initial, larger image that must have 2n tex-
els for each dimension, and adjust texture coordinates for the subimages.)

In Example 9-3, some of the code from Example 9-1 has been modified
so that pressing the ‘s’ key drops a smaller checkered subimage into the
existing image. (The resulting texture is shown in Figure 9-3.) Pressing
the ‘r’ key restores the original image. Example 9-3 shows the two routines,

void glTexSubImage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *texels);

Defines a two-dimensional texture image that replaces all or part of
a contiguous subregion (in 2D, it’s simply a rectangle) of the current,
existing two-dimensional texture image. The target parameter must be set
to one of the same options that are available for glCopyTexImage2D.

The level, format, and type parameters are similar to the ones used for
glTexImage2D(). level is the mipmap level-of-detail number. It is not
an error to specify a width or height of 0, but the subimage will have no
effect. format and type describe the format and data type of the texture
image data. The subimage is also affected by modes set by glPixelStore*()
and glPixelTransfer*() and other pixel-transfer operations.

texels contains the texture data for the subimage. width and height are the
dimensions of the subregion that is replacing all or part of the current
texture image. xoffset and yoffset specify the texel offset in the x- and
y-directions—with (0, 0) at the lower left corner of the texture—and
specify where in the existing texture array the subimage should be placed.
This region may not include any texels outside the range of the originally
defined texture array.

Shreiner_ch09.fm Page 382 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 383

makeCheckImages() and keyboard(), that have been substantially changed.
(See “Texture Objects” for more information about glBindTexture().)

Example 9-3 Replacing a Texture Subimage: texsub.c

/* Create checkerboard textures */
#define checkImageWidth 64
#define checkImageHeight 64
#define subImageWidth 16
#define subImageHeight 16
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte subImage[subImageHeight][subImageWidth][4];

void makeCheckImages(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = (((i&0x8)==0) ^ ((j&0x8)==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 }
 }
 for (i = 0; i < subImageHeight; i++) {
 for (j = 0; j < subImageWidth; j++) {
 c = (((i&0x4)==0) ^ ((j&0x4)==0))*255;
 subImage[i][j][0] = (GLubyte) c;
 subImage[i][j][1] = (GLubyte) 0;
 subImage[i][j][2] = (GLubyte) 0;
 subImage[i][j][3] = (GLubyte) 255;
 }
 }
}

Figure 9-3 Texture with Subimage Added

Shreiner_ch09.fm Page 383 Thursday, June 30, 2005 5:41 PM

384 Chapter 9: Texture Mapping

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘s’:
 case ‘S’:
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 12, 44,
 subImageWidth, subImageHeight, GL_RGBA,
 GL_UNSIGNED_BYTE, subImage);
 glutPostRedisplay();
 break;
 case ‘r’:
 case ‘R’:
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
 checkImageWidth, checkImageHeight, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, checkImage);
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

Once again, the framebuffer itself can be used as a source for texture data—
this time, a texture subimage. glCopyTexSubImage2D() reads a rectangle
of pixels from the framebuffer and replaces a portion of an existing texture
array. (glCopyTexSubImage2D() is something of a cross between
glCopyTexImage2D() and glTexSubImage2D().)

void glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint x, GLint y,
GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace all or part of a contiguous
subregion of the current, existing two-dimensional texture image. The
pixels are read from the current GL_READ_BUFFER and are processed
exactly as if glCopyPixels() had been called, but instead of going to the
framebuffer, the pixels are placed into texture memory. The settings of
glPixelTransfer*() and other pixel-transfer operations are applied.

Shreiner_ch09.fm Page 384 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 385

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient—for example, if you’re
drawing textured bands where all the variation is in one direction. A one-
dimensional texture behaves as a two-dimensional one with height = 1, and
without borders along the top and bottom. All the two-dimensional texture
and subtexture definition routines have corresponding one-dimensional
routines. To create a simple one-dimensional texture, use glTexImage1D().

For a sample program that uses a one-dimensional texture map, see
Example 9-8.

If your OpenGL implementation supports the Imaging Subset and if the one-
dimensional convolution filter is enabled (GL_CONVOLUTION_1D), then
the convolution is performed on the texture image. (The convolution may
change the width of the texture image.) Other pixel operations may also be
applied.

To replace all or some of the texels of a one-dimensional texture, use
glTexSubImage1D().

The target parameter must be set to one of the same options that are avail-
able for glCopyTexImage2D. level is the mipmap level-of-detail number.
xoffset and yoffset specify the texel offset in the x- and y-directions—with
(0, 0) at the lower left corner of the texture—and specify where in the
existing texture array the subimage should be placed. The subimage tex-
ture array is taken from a screen-aligned pixel rectangle with the lower left
corner at coordinates specified by the (x, y) parameters. The width and
height parameters specify the size of this subimage rectangle.

void glTexImage1D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLint border, GLenum format,
GLenum type, const GLvoid *texels);

Defines a one-dimensional texture. All the parameters have the same
meanings as for glTexImage2D(), except that texels is now a one-
dimensional array. As before, the value of width is 2m (or 2m + 2, if there’s
a border), where m is a non-negative integer. You can supply mipmaps
and proxies (set target to GL_PROXY_TEXTURE_1D), and the same
filtering options are available as well.

Shreiner_ch09.fm Page 385 Thursday, June 30, 2005 5:41 PM

386 Chapter 9: Texture Mapping

To use the framebuffer as the source of a new one-dimensional texture or a
replacement for an old one-dimensional texture, use either
glCopyTexImage1D() or glCopyTexSubImage1D().

void glTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLenum type, const GLvoid *texels);

Defines a one-dimensional texture array that replaces all or part of a
contiguous subregion (in 1D, a row) of the current, existing one-
dimensional texture image. The target parameter must be set to GL_
TEXTURE_1D.

The level, format, and type parameters are similar to the ones used for
glTexImage1D(). level is the mipmap level-of-detail number. format and
type describe the format and data type of the texture image data. The
subimage is also affected by modes set by glPixelStore*(),
glPixelTransfer*(), or other pixel-transfer operations.

texels contains the texture data for the subimage. width is the number of
texels that replace part or all of the current texture image. xoffset specifies
the texel offset in the existing texture array where the subimage should be
placed.

void glCopyTexImage1D(GLenum target, GLint level,
GLint internalFormat, GLivnt x, GLint y,
GLsizei width, GLint border);

Creates a one-dimensional texture using framebuffer data to define the
texels. The pixels are read from the current GL_READ_BUFFER and are
processed exactly as if glCopyPixels() had been called, but instead of
going to the framebuffer, the pixels are placed into texture memory. The
settings of glPixelStore*() and glPixelTransfer*() are applied.

The target parameter must be set to the constant GL_TEXTURE_1D. The
level, internalFormat, and border parameters have the same effects that they
have for glCopyTexImage2D(). The texture array is taken from a row of
pixels with the lower left corner at coordinates specified by the (x, y)
parameters. The width parameter specifies the number of pixels in this
row. The value of width is 2m (or 2m + 2 if there’s a border), where m is a
non-negative integer.

Shreiner_ch09.fm Page 386 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 387

Three-Dimensional Textures

Advanced

Three-dimensional textures are most often used for rendering in medical
and geoscience applications. In a medical application, a three-dimensional
texture may represent a series of layered computed tomography (CT) or
magnetic resonance imaging (MRI) images. To an oil and gas researcher,
a three-dimensional texture may model rock strata. (Three-dimensional
texturing is part of an overall category of applications, called volume
rendering. Some advanced volume rendering applications deal with voxels,
which represent data as volume-based entities.)

Due to their size, three-dimensional textures may consume a lot of texture
resources. Even a relatively coarse three-dimensional texture may use 16 or
32 times the amount of texture memory that a single two-dimensional tex-
ture uses. (Most of the two-dimensional texture and subtexture definition
routines have corresponding three-dimensional routines.)

A three-dimensional texture image can be thought of as layers of two-
dimensional subimage rectangles. In memory, the rectangles are arranged
in a sequence. To create a simple three-dimensional texture, use
glTexImage3D().

void glCopyTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLint x, GLint y, GLsizei width);

Uses image data from the framebuffer to replace all or part of a contiguous
subregion of the current, existing one-dimensional texture image. The
pixels are read from the current GL_READ_BUFFER and are processed
exactly as if glCopyPixels() had been called, but instead of going to the
framebuffer, the pixels are placed into texture memory. The settings of
glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be set to GL_TEXTURE_1D. level is the mipmap
level-of-detail number. xoffset specifies the texel offset and where to put
the subimage within the existing texture array. The subimage texture
array is taken from a row of pixels with the lower left corner at coordinates
specified by the (x, y) parameters. The width parameter specifies the
number of pixels in this row.

Advanced

Shreiner_ch09.fm Page 387 Thursday, June 30, 2005 5:41 PM

388 Chapter 9: Texture Mapping

Note: There are no three-dimensional convolutions in the Imaging Subset.
However, 2D convolution filters may be used to affect three-
dimensional texture images.

For a portion of a program that uses a three-dimensional texture map, see
Example 9-4.

Example 9-4 Three-Dimensional Texturing: texture3d.c
#define iWidth 16
#define iHeight 16
#define iDepth 16

static GLubyte image [iDepth][iHeight][iWidth][3];
static GLuint texName;

/* Create a 16x16x16x3 array with different color values in
 * each array element [r, g, b]. Values range from 0 to 255.
 */
void makeImage(void)
{
 int s, t, r;

 for (s = 0 ; s < 16 ; s++)
 for (t = 0 ; t < 16 ; t++)
 for (r = 0 ; r < 16 ; r++) {
 image[r][t][s][0] = s * 17;
 image[r][t][s][1] = t * 17;
 image[r][t][s][2] = r * 17;
 }
}

/* Initialize state: the 3D texture object and its image
 */

void glTexImage3D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLint border, GLenum format, GLenum type,
const GLvoid *texels);

Defines a three-dimensional texture. All the parameters have the same
meanings as for glTexImage2D(), except that texels is now a three-
dimensional array, and the parameter depth has been added. The value
of depth is 2m (or 2m + 2, if there’s a border), where m is a non-negative
integer. You can supply mipmaps and proxies (set target to GL_PROXY_
TEXTURE_3D), and the same filtering options are available as well.

Shreiner_ch09.fm Page 388 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 389

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);

 makeImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_3D, texName);

 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP);

 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, iWidth, iHeight,
 iDepth, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
}

To replace all or some of the texels of a three-dimensional texture, use
glTexSubImage3D().

texels contains the texture data for the subimage. width, height, and depth
specify the size of the subimage in texels. xoffset, yoffset, and zoffset specify
the texel offset indicating where to put the subimage within the existing
texture array.

void glTexSubImage3D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth, GLenum format,
GLenum type, const GLvoid *texels);

Defines a three-dimensional texture array that replaces all or part of a
contiguous subregion of the current, existing three-dimensional texture
image. The target parameter must be set to GL_TEXTURE_3D.

The level, format, and type parameters are similar to the ones used for
glTexImage3D(). level is the mipmap level-of-detail number. format and
type describe the format and data type of the texture image data. The
subimage is also affected by modes set by glPixelStore*(),
glPixelTransfer*(), and other pixel-transfer operations.

Shreiner_ch09.fm Page 389 Thursday, June 30, 2005 5:41 PM

390 Chapter 9: Texture Mapping

To use the framebuffer as the source of replacement for a portion of an
existing three-dimensional texture, use glCopyTexSubImage3D().

Pixel-Storage Modes for Three-Dimensional Textures

Pixel-storage values control the row-to-row spacing of each layer (in other
words, of one 2D rectangle). glPixelStore*() sets pixel-storage modes, with
parameters such as *ROW_LENGTH, *ALIGNMENT, *SKIP_PIXELS, and
*SKIP_ROWS (where * is either GL_UNPACK_ or GL_PACK_), which control
referencing of a subrectangle of an entire rectangle of pixel or texel data.
(These modes were previously described in “Controlling Pixel-Storage
Modes” on page 325.)

The aforementioned pixel-storage modes remain useful for describing two
of the three dimensions, but additional pixel-storage modes are needed
to support referencing of subvolumes of three-dimensional texture image
data. New parameters, *IMAGE_HEIGHT and *SKIP_IMAGES, allow the
routines glTexImage3D(), glTexSubImage3D(), and glGetTexImage()
to delimit and access any desired subvolume.

If the three-dimensional texture in memory is larger than the subvolume
that is defined, you need to specify the height of a single subimage with the

void glCopyTexSubImage3D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLint x,
GLint y, GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace part of a contiguous
subregion of the current, existing three-dimensional texture image. The
pixels are read from the current GL_READ_BUFFER and are processed
exactly as if glCopyPixels() had been called, but instead of going to the
framebuffer, the pixels are placed into texture memory. The settings of
glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be set to GL_TEXTURE_3D. level is the mipmap
level-of-detail number. The subimage texture array is taken from a screen-
aligned pixel rectangle with the lower left corner at coordinates specified
by the (x, y) parameters. The width and height parameters specify the size
of this subimage rectangle. xoffset, yoffset, and zoffset specify the texel
offset indicating where to put the subimage within the existing texture
array. Since the subimage is a two-dimensional rectangle, only a single
slice of the three-dimensional texture (the slice at zoffset) is replaced.

Shreiner_ch09.fm Page 390 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 391

*IMAGE_HEIGHT parameter. Also, if the subvolume does not start with the
very first layer, the *SKIP_IMAGES parameter needs to be set.

*IMAGE_HEIGHT is a pixel-storage parameter that defines the height (num-
ber of rows) of a single layer of a three-dimensional texture image. If the
*IMAGE_HEIGHT value is zero (a negative number is invalid), then the
number of rows in each two-dimensional rectangle is the value of height,
which is the parameter passed to glTexImage3D() or glTexSubImage3D().
(This is commonplace because *IMAGE_HEIGHT is zero, by default.) Other-
wise, the height of a single layer is the *IMAGE_HEIGHT value.

Figure 9-4 shows how *IMAGE_HEIGHT determines the height of an image
(when the parameter height determines only the height of the subimage.)
This figure shows a three-dimensional texture with only two layers.

*SKIP_IMAGES defines how many layers to bypass before accessing the first
data of the subvolume. If the *SKIP_IMAGES value is a positive integer (call
the value n), then the pointer in the texture image data is advanced that
many layers (n * the size of one layer of texels). The resulting subvolume starts
at layer n and is several layers deep—how many layers deep is determined by
the depth parameter passed to glTexImage3D() or glTexSubImage3D(). If the
*SKIP_IMAGES value is zero (the default), then accessing the texel data begins
with the very first layer described in the texel array.

Layer 1

Subimage
in Layer 1

*SKIP_PIXELS

*ROW_LENGTH

*SKIP_ROWS

Height

Layer 0

Subimage
in Layer 0

*SKIP_PIXELS

*ROW_LENGTH

*SKIP_ROWS

Height

*IMAGE_HEIGHT

Figure 9-4 *IMAGE_HEIGHT Pixel-Storage Mode

Shreiner_ch09.fm Page 391 Thursday, June 30, 2005 5:41 PM

392 Chapter 9: Texture Mapping

Figure 9-5 shows how the *SKIP_IMAGES parameter can bypass several
layers to get to where the subvolume is actually located. In this example,
*SKIP_IMAGES == 3, and the subvolume begins at layer 3.

Compressed Texture Images

Texture maps can be stored internally in a compressed format to possibly
reduce the amount of texture memory used. A texture image can either be
compressed as it is being loaded or loaded directly in its compressed form.

Compressing a Texture Image While Loading

To have OpenGL compress a texture image while it’s being downloaded,
specify one of the GL_COMPRESSED_* enumerants for the internalformat
parameter. The image will automatically be compressed after the texels have
been processed by any active pixel-store (See “Controlling Pixel-Storage
Modes”) or pixel-transfer modes (See “Pixel-Transfer Operations”).

Once the image has been loaded, you can determine if it was compressed,
and into which format, using the following:

Layer 4Subimage
in Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Subimage
in Layer 3

*SKIP_IMAGES

Figure 9-5 *SKIP_IMAGES Pixel-Storage Mode

Shreiner_ch09.fm Page 392 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 393

GLboolean compressed;
GLenum textureFormat;
GLsizei imageSize;

glGetTexLevelParameteriv(GL_TEXTURE_2D, GL_TEXTURE_COMPRESSED,
&compressed);

if (compressed == GL_TRUE) {
glGetTexLevelParameteriv(GL_TEXTURE_2D,

GL_TEXTURE_INTERNAL_FORMAT, &textureFormat);
glGetTexLevelParameteriv(GL_TEXTURE_2D,

GL_TEXTURE_COMPRESSED_IMAGE_SIZE, &imageSize);
}

Loading a Compressed Texture Images

OpenGL doesn’t specify the internal format that should be used for
compressed textures; each OpenGL implementation is allowed to specify a
set of OpenGL extensions that implement a particular texture compression
format. For compressed textures that are to be loaded directly, it’s important
to know their storage format and to verify that the texture’s format is
available in your OpenGL implementation.

To load a texture stored in a compressed format, use the
glCompressedTexImage*D() calls.

void glCompressedTexImage1D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLint border, GLsizei imageSize,
GLvoid *texels);

void glCompressedTexImage2D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLsizei height, GLint border,
GLsizei imageSize, GLvoid *texels);

void glCompressedTexImage3D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLsizei height, GLsizei depth,
GLint border, GLsizei imageSize,
GLvoid *texels);

Defines a one-, two-, or three-dimensional texture from a previously
compressed texture image.

Use the level parameter if you’re supplying multiple resolutions of
the texture map; with only one resolution, level should be 0. (See

Shreiner_ch09.fm Page 393 Wednesday, July 6, 2005 1:02 PM

394 Chapter 9: Texture Mapping

Additionally, compressed textures can be used, just like uncompressed
texture images, to replace all or part of an already loaded texture. Use the
glCompressedTexSubImage*D() calls.

“Mipmaps: Multiple Levels of Detail” for more information about using
multiple resolutions.)

internalformat specifies the format of the compressed texture image. It
must be a supported compression format of the implementation loading
the texture, otherwise a GL_INVALID_ENUM error is specified. To deter-
mine supported compressed texture formats, see Appendix B for details.

width, height, and depth represent the dimensions of the texture image for
one-, two-, and three-dimensional texture images, respectively. As with
uncompressed textures, border indicates the width of the border, which is
either 0 (no border) or 1. Each value must have the form 2m + 2b, where m
is a non-negative integer and b is the value of border

void glCompressedTexSubImage1D(GLenum target, GLint level,
GLint xoffset, GLsizei width,
GLenum format,
GLsizei imageSize, GLvoid *texels);

void glCompressedTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffet,
GLsizei width, GLsizei height,
GLsizei imageSize, GLvoid *texels);

void glCompressedTexSubImage3D(GLenum target, GLint level,
GLint xoffset GLint yoffset,
GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth,
GLsizei imageSize, GLvoid *texels);

Defines a one-, two-, or three-dimensional texture from a previously
compressed texture image.

The xoffset, yoffset, and zoffset parameters specify the pixel offsets for the
respective texture dimension where to place the new image inside of the
texture array.

width, height, and depth specify the size of the one-, two-, or three-
dimensional texture image to be used to update the texture image.

imageSize specifies the number of bytes stored in the texels array.

Shreiner_ch09.fm Page 394 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 395

Using a Texture’s Borders

Advanced

If you need to apply a larger texture map than your implementation of
OpenGL allows, you can, with a little care, effectively make larger textures
by tiling with several different textures. For example, if you need a texture
twice as large as the maximum allowed size mapped to a square, draw the
square as four subsquares, and load a different texture before drawing each
piece.

Since only a single texture map is available at one time, this approach might
lead to problems at the edges of the textures, especially if some form of
linear filtering is enabled. The texture value to be used for pixels at the edges
must be averaged with something beyond the edge, which, ideally, should
come from the adjacent texture map. If you define a border for each texture
whose texel values are equal to the values of the texels at the edge of the
adjacent texture map, then the correct behavior results when linear filtering
takes place.

To do this correctly, notice that each map can have eight neighbors—one
adjacent to each edge and one touching each corner. The values of the
texels in the corner of the border need to correspond with the texels in the
texture maps that touch the corners. If your texture is an edge or corner of
the whole tiling, you need to decide what values would be reasonable to put
in the borders. The easiest reasonable thing to do is to copy the value of the
adjacent texel in the texture map with glTexSubImage2D().

A texture’s border color is also used if the texture is applied in such a way
that it only partially covers a primitive. (See “Repeating and Clamping
Textures” on page 423 for more information about this situation.)

Mipmaps: Multiple Levels of Detail

Advanced

Textured objects can be viewed, like any other objects in a scene, at different
distances from the viewpoint. In a dynamic scene, as a textured object
moves farther from the viewpoint, the texture map must decrease in size
along with the size of the projected image. To accomplish this, OpenGL has
to filter the texture map down to an appropriate size for mapping onto the
object, without introducing visually disturbing artifacts, such as shimmer-
ing, flashing, and scintillation. For example, to render a brick wall, you may

Advanced

Advanced

Shreiner_ch09.fm Page 395 Thursday, June 30, 2005 5:41 PM

396 Chapter 9: Texture Mapping

use a large texture image (say 128 × 128 texels) when the wall is close to the
viewer. But if the wall is moved farther away from the viewer until it appears
on the screen as a single pixel, then the filtered textures may appear to
change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps
of decreasing resolutions, called mipmaps, as shown in Figure 9-6. The term
mipmap was coined by Lance Williams, when he introduced the idea in his
paper “Pyramidal Parametrics” (SIGGRAPH 1983 Proceedings). Mip stands
for the Latin multum in parvo, meaning “many things in a small place.”
Mipmapping uses some clever methods to pack image data into memory.

Original texture

Prefiltered images

1/4

1/16 1/64

etc

1 pixel

Figure 9-6 Mipmaps

Shreiner_ch09.fm Page 396 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 397

Note: To acquire a full understanding of mipmaps, you need to understand
minification filters, which are described in “Filtering” on page 406.

When using mipmapping, OpenGL automatically determines which tex-
ture map to use based on the size (in pixels) of the object being mapped.
With this approach, the level of detail in the texture map is appropriate for
the image that’s drawn on the screen—as the image of the object gets
smaller, the size of the texture map decreases. Mipmapping requires some
extra computation and texture storage area; however, when it’s not used,
textures that are mapped onto smaller objects might shimmer and flash as
the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of
2 between the largest size and a 1 × 1 map. For example, if your highest-
resolution map is 64 × 16, you must also provide maps of size 32 × 8, 16 × 4,
8 × 2, 4 × 1, 2 × 1, and 1 × 1. The smaller maps are typically filtered and
averaged-down versions of the largest map in which each texel in a smaller
texture is an average of the corresponding 4 texels in the higher-resolution
texture. (Since OpenGL doesn’t require any particular method for calculat-
ing the lower-resolution maps, the differently sized textures could be totally
unrelated. In practice, unrelated textures would make the transitions
between mipmaps extremely noticeable, as in Plate 20.)

To specify these textures, call glTexImage2D() once for each resolution of
the texture map, with different values for the level, width, height, and image
parameters. Starting with zero, level identifies which texture in the series is
specified; with the previous example, the highest-resolution texture of size
64 × 16 would be declared with level = 0, the 32 × 8 texture with level = 1,
and so on. In addition, for the mipmapped textures to take effect, you need
to choose one of the appropriate filtering methods described in “Filtering”
on page 406.

Note: This description of OpenGL mipmapping avoids detailed discussion
of the scale factor (known as λ) between texel size and polygon size.
This description also assumes default values for parameters related to
mipmapping. To see an explanation of λ and the effects of mipmap-
ping parameters, see “Calculating the Mipmap Level” on page 400
and “Mipmap Level of Detail Control” on page 401.

Example 9-5 illustrates the use of a series of six texture maps decreasing in
size from 32 × 32 to 1 × 1. This program draws a rectangle that extends from
the foreground far back in the distance, eventually disappearing at a point,
as shown in Plate 20. Note that the texture coordinates range from 0.0 to

Shreiner_ch09.fm Page 397 Thursday, June 30, 2005 5:41 PM

398 Chapter 9: Texture Mapping

8.0, so 64 copies of the texture map are required to tile the rectangle—eight
in each direction. To illustrate how one texture map succeeds another, each
map has a different color.

Example 9-5 Mipmap Textures: mipmap.c

GLubyte mipmapImage32[32][32][4];
GLubyte mipmapImage16[16][16][4];
GLubyte mipmapImage8[8][8][4];
GLubyte mipmapImage4[4][4][4];
GLubyte mipmapImage2[2][2][4];
GLubyte mipmapImage1[1][1][4];

static GLuint texName;

void makeImages(void)
{
 int i, j;

 for (i = 0; i < 32; i++) {
 for (j = 0; j < 32; j++) {
 mipmapImage32[i][j][0] = 255;
 mipmapImage32[i][j][1] = 255;
 mipmapImage32[i][j][2] = 0;
 mipmapImage32[i][j][3] = 255;
 }
 }
 for (i = 0; i < 16; i++) {
 for (j = 0; j < 16; j++) {
 mipmapImage16[i][j][0] = 255;
 mipmapImage16[i][j][1] = 0;
 mipmapImage16[i][j][2] = 255;
 mipmapImage16[i][j][3] = 255;
 }
 }
 for (i = 0; i < 8; i++) {
 for (j = 0; j < 8; j++) {
 mipmapImage8[i][j][0] = 255;
 mipmapImage8[i][j][1] = 0;
 mipmapImage8[i][j][2] = 0;
 mipmapImage8[i][j][3] = 255;
 }
 }
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 mipmapImage4[i][j][0] = 0;
 mipmapImage4[i][j][1] = 255;

Shreiner_ch09.fm Page 398 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 399

 mipmapImage4[i][j][2] = 0;
 mipmapImage4[i][j][3] = 255;
 }
 }
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 2; j++) {
 mipmapImage2[i][j][0] = 0;
 mipmapImage2[i][j][1] = 0;
 mipmapImage2[i][j][2] = 255;
 mipmapImage2[i][j][3] = 255;
 }
 }
 mipmapImage1[0][0][0] = 255;
 mipmapImage1[0][0][1] = 255;
 mipmapImage1[0][0][2] = 255;
 mipmapImage1[0][0][3] = 255;
}

void init(void)
{
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);

 glTranslatef(0.0, 0.0, -3.6);
 makeImages();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage32);
 glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, 16, 16, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage16);
 glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage8);
 glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage4);
 glTexImage2D(GL_TEXTURE_2D, 4, GL_RGBA, 2, 2, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage2);
 glTexImage2D(GL_TEXTURE_2D, 5, GL_RGBA, 1, 1, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage1);

Shreiner_ch09.fm Page 399 Thursday, June 30, 2005 5:41 PM

400 Chapter 9: Texture Mapping

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
 glEnable(GL_TEXTURE_2D);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glBindTexture(GL_TEXTURE_2D, texName);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 8.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(8.0, 8.0); glVertex3f(2000.0, 1.0, -6000.0);
 glTexCoord2f(8.0, 0.0); glVertex3f(2000.0, -1.0, -6000.0);
 glEnd();
 glFlush();
}

Example 9-5 illustrates mipmapping by making each mipmap a different
color so that it’s obvious when one map is replaced by another. In a real
situation, you define mipmaps such that the transition is as smooth as
possible. Thus, the maps of lower resolution are usually filtered versions
of an original, high-resolution texture map.

The construction of a series of such mipmaps is a software process, and thus
isn’t part of OpenGL, which is simply a rendering library. Since mipmap
construction is such an important operation, the OpenGL Utility Library
contains routines that aid in the manipulation of images to be used as
mipmapped textures, as described in “Automated Mipmap Generation.”

Calculating the Mipmap Level

Computing which level of mipmap to texture a particular polygon depends
on the scale factor between the texture image and the size of the polygon
to be textured (in pixels). Let’s call this scale factor ρ and also define a sec-
ond value, λ, where λ = log2 ρ + lodbias. (Since texture images can be multi-
dimensional, it is important to clarify that ρ is the maximum scale factor of
all dimensions.)

lodbias is the level-of-detail bias, a constant value set by glTexEnv*() to
adjust λ. (For information about how to use glTexEnv*() to set level-of-
detail bias, see “Texture Functions” on page 416.) By default, lodbias = 0.0,
which has no effect. It’s best to start with this default value and adjust in
small amounts, if needed.

Shreiner_ch09.fm Page 400 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 401

If λ ≤ 0.0, then the texture is smaller than the polygon, so a magnification
filter is used. If λ > 0.0, then a minification filter is used. If the minification
filter selected uses mipmapping, then λ indicates the mipmap level. (The
minification-to-magnification switchover point is usually at λ = 0.0, but not
always. The choice of mipmapping filter may shift the switchover point.)

For example, if the texture image is 64 × 64 texels and the polygon size is
32 × 32 pixels, then ρ = 2.0 (not 4.0), and therefore λ = 1.0. If the texture
image is 64 × 32 texels and the polygon size is 8 × 16 pixels, then ρ = 8.0
(x scales by 8.0, y by 2.0; use the maximum value) and therefore λ = 3.0.

Mipmap Level of Detail Control

By default, you must provide a mipmap for every level of resolution, down
to 1 texel in every dimension. For some techniques, you want to avoid rep-
resenting your data with very small mipmaps. For instance, you might use
a technique called mosaicing, where several smaller images are combined on
a single texture. One example of mosaicing is shown in Figure 9-7, where
many characters are on a single texture, which may be more efficient than
creating a texture image for each character. To map only a single letter from
the texture, you make smart use of texture coordinates to isolate the letter
you want.

If you have to supply very small mipmaps, the lower-resolution mipmaps of
the mosaic crush together detail from many different letters. Therefore, you
may want to set restrictions on how low your resolution can go. Generally,
you want the capability to add or remove levels of mipmaps as needed.

Another visible mipmapping problem is popping—the sudden transition
from using one mipmap to using a radically higher- or lower-resolution
mipmap, as a mipmapped polygon becomes larger or smaller.

A B C D E F G H
I J K L M N O P
Q R S T U V W X
Y Z 1 2 3 4 5 6
7 8 9 0 ! @ # $
% ^ & * () - +
[] { } | / \ ?
< > ; : . , ~ “

Texture

Polygon

T

Figure 9-7 Using a Mosaic Texture

Shreiner_ch09.fm Page 401 Thursday, June 30, 2005 5:41 PM

402 Chapter 9: Texture Mapping

Note: Many mipmapping features were introduced in later versions of
OpenGL. Check the version of your implementation to see if a
particular feature is supported. In some versions, a particular feature
may be available as an extension.

To control mipmapping levels, the constants GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MIN_LOD, and GL_TEXTURE_
MAX_LOD are passed to glTexParameter*(). The first two constants (for
brevity, shortened to BASE_LEVEL and MAX_LEVEL in the remainder of this
section) control which mipmap levels are used and therefore which levels
need to be specified. The other two constants (shortened to MIN_LOD and
MAX_LOD) control the active range of the aforementioned scale factor λ.

These texture parameters address several of the previously described prob-
lems. Effective use of BASE_LEVEL and MAX_LEVEL may reduce the num-
ber of mipmaps that need to be specified and thereby streamline texture
resource usage. Selective use of MAX_LOD may preserve the legibility of a
mosaic texture, and MIN_LOD may reduce the popping effect with higher-
resolution textures.

BASE_LEVEL and MAX_LEVEL are used to set the boundaries for which
mipmap levels are used. BASE_LEVEL is the level of the highest-resolution
(largest texture) mipmap level that is used. The default value for BASE_
LEVEL is 0. However, you may later change the value for BASE_LEVEL, so
that you add additional higher-resolution textures “on the fly.” Similarly,
MAX_LEVEL limits the lowest-resolution mipmap to be used. The default
value for MAX_LEVEL is 1000, which almost always means that the
smallest-resolution texture is 1 texel.

To set the base and maximum mipmap levels, use glTexParameter*()
with the first argument set to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_
TEXTURE_3D, or GL_TEXTURE_CUBE_MAP, depending on your textures.
The second argument is one of the parameters described in Table 9-1. The
third argument denotes the value for the parameter.

Parameter Description Values

GL_TEXTURE_BASE_
LEVEL

level for highest-resolution texture
(lowest numbered mipmap level) in use

any non-
negative integer

GL_TEXTURE_MAX_
LEVEL

level for smallest-resolution texture
(highest numbered mipmap level) in use

any non-
negative integer

Table 9-1 Mipmapping Level Parameter Controls

Shreiner_ch09.fm Page 402 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 403

The code in Example 9-6 sets the base and maximum mipmap levels to 2
and 5, respectively. Since the image at the base level (level 2) has a 64 × 32
texel resolution, the mipmaps at levels 3, 4, and 5 must have the
appropriate lower resolution.

Example 9-6 Setting Base and Maximum Mipmap Levels

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 2);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5);
glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 64, 32, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, image1);
glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 32, 16, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, image2);
glTexImage2D(GL_TEXTURE_2D, 4, GL_RGBA, 16, 8, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, image3);
glTexImage2D(GL_TEXTURE_2D, 5, GL_RGBA, 8, 4, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, image4);

Later on, you may decide to add additional higher-or lower-resolution
mipmaps. For example, you may add a 128 × 64 texel texture to this set
of mipmaps at level 1, but you must remember to reset BASE_LEVEL.

Note: For mipmapping to work, all mipmaps between BASE_LEVEL and the
largest possible level, inclusive, must be loaded. The largest possible
level is the smaller of either the value for MAX_LEVEL or the level
at which the size of the mipmap is only 1 texel (either 1, 1 × 1, or
1 × 1 × 1). If you fail to load a necessary mipmap level, then texturing
may be mysteriously disabled. If you are mipmapping and texturing
does not appear, ensure that each required mipmap level has been
loaded with a legal texture.

As with BASE_LEVEL and MAX_LEVEL, glTexParameter*() sets MIN_LOD
and MAX_LOD. Table 9-2 lists possible values.

Parameter Description Values

GL_TEXTURE_MIN_LOD minimum value for λ (scale
factor of texture image versus
polygon size)

any value

GL_TEXTURE_MAX_LOD maximum value for λ any value

Table 9-2 Mipmapping Level-of-Detail Parameter Controls

Shreiner_ch09.fm Page 403 Thursday, June 30, 2005 5:41 PM

404 Chapter 9: Texture Mapping

The following code is an example of using glTexParameter*() to specify the
level-of-detail parameters:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_LOD, 2.5);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, 4.5);

MIN_LOD and MAX_LOD provide minimum and maximum values for λ
(the scale factor from texture image to polygon) for mipmapped minification,
which indirectly specifies which mipmap levels are used.

If you have a 64 × 64 pixel polygon and MIN_LOD is the default value of
0.0, then a level 0 64 × 64 texel texture map may be used for minification
(provided BASE_LEVEL = 0; as a rule, BASE_LEVEL ≤ MIN_LOD). However,
if MIN_LOD is set to 2.0, then the largest texture map that may be used for
minification is 16 × 16 texels, which corresponds to λ = 2.0.

MAX_LOD has influence only if it is less than the maximum λ (which is
either MAX_LEVEL or where the mipmap is reduced to 1 texel). In the case
of a 64 × 64 texel texture map, λ = 6.0 corresponds to a 1 × 1 texel mipmap.
In the same case, if MAX_LOD is 4.0, then no mipmap smaller than 4 × 4
texels will be used for minification.

You may find that a MIN_LOD that is fractionally greater than BASE_LEVEL
or a MAX_LOD that is fractionally less than MAX_LEVEL is best for reducing
visual effects (such as popping) related to transitions between mipmaps.

Automated Mipmap Generation

Assuming you have constructed the level 0, or highest-resolution,
map, the routines gluBuild1DMipmaps(), gluBuild2DMipmaps(), or
gluBuild3DMipmaps() construct and define the pyramid of mipmaps
down to a resolution of 1 × 1 (or 1, for one-dimensional, or 1 × 1 × 1, for
three-dimensional). If your original image has dimensions that are not
exact powers of 2, gluBuild*DMipmaps() helpfully scales the image to the
nearest power of 2. Also, if your texture is too large, gluBuild*DMipmaps()
reduces the size of the image until it fits (as measured by the GL_PROXY_
TEXTURE mechanism).

Shreiner_ch09.fm Page 404 Thursday, June 30, 2005 5:41 PM

Specifying the Texture 405

With increased control over level of detail (using BASE_LEVEL, MAX_
LEVEL, MIN_LOD, and MAX_LOD), you may need to create only a subset
of the mipmaps defined by gluBuild*DMipmaps(). For example, you may
want to stop at a 4 × 4 texel image, rather than go all the way to the smallest
1 × 1 texel image. To calculate and load a subset of mipmap levels, you may
call gluBuild*DMipmapLevels().

int gluBuild1DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLenum format, GLenum type,
void *texels);

int gluBuild2DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLint height, GLenum format,
GLenum type, void *texels);

int gluBuild3DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type, void *texels);

Constructs a series of mipmaps and calls glTexImage*D() to load the
images. The parameters for target, internalFormat, width, height, depth,
format, type, and texels are exactly the same as those for glTexImage1D(),
glTexImage2D(), and glTexImage3D(). A value of 0 is returned if all the
mipmaps are constructed successfully; otherwise, a GLU error code is
returned.

int gluBuild1DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLenum format,
GLenum type, GLint level, GLint base,
GLint max, void *texels);

int gluBuild2DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLint height, GLenum format,
GLenum type, GLint level, GLint base,
GLint max, void *texels);

int gluBuild3DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type,
GLint level, GLint base, GLint max,
void *texels);

Shreiner_ch09.fm Page 405 Thursday, June 30, 2005 5:41 PM

406 Chapter 9: Texture Mapping

If you expect that any texels in a mipmapped texture image will change,
you will have to replace the complete set of related mipmaps. If you use
glTexParameter*() to set GL_GENERATE_MIPMAP to GL_TRUE, then any
change to the texels (interior or border) of a BASE_LEVEL mipmap will
automatically cause all the textures at all mipmap levels from BASE_
LEVEL+1 to MAX_LEVEL to be recomputed and replaced. Textures at all
other mipmap levels, including at BASE_LEVEL, remain unchanged.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon
or surface and transformed into screen coordinates, the individual texels of
a texture rarely correspond to individual pixels of the final screen image.
Depending on the transformations used and the texture mapping applied,
a single pixel on the screen can correspond to anything from a tiny portion
of a texel (magnification) to a large collection of texels (minification), as
shown in Figure 9-8. In either case, it’s unclear exactly which texel values
should be used and how they should be averaged or interpolated. Conse-
quently, OpenGL allows you to specify any of several filtering options to
determine these calculations. The options provide different trade-offs
between speed and image quality. Also, you can specify independently
the filtering methods for magnification and minification.

In some cases, it isn’t obvious whether magnification or minification is
called for. If the texture map needs to be stretched (or shrunk) in both the
x- and y- directions, then magnification (or minification) is needed. If the
texture map needs to be stretched in one direction and shrunk in the other,
OpenGL makes a choice between magnification and minification that in
most cases gives the best result possible. It’s best to try to avoid these situa-
tions by using texture coordinates that map without such distortion. (See
“Computing Appropriate Texture Coordinates” on page 422.)

Constructs a series of mipmaps and calls glTexImage*D() to load the
images. level indicates the mipmap level of the texels image. base and max
determine which mipmap levels will be derived from texels. Otherwise,
the parameters for target, internalFormat, width, height, depth, format, type, and
texels are exactly the same as those for glTexImage1D(), glTexImage2D(),
and glTexImage3D(). A value of 0 is returned if all the mipmaps are
constructed successfully; otherwise, a GLU error code is returned.

Shreiner_ch09.fm Page 406 Thursday, June 30, 2005 5:41 PM

Filtering 407

The following lines are examples of how to use glTexParameter*() to
specify the magnification and minification filtering methods:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

The first argument to glTexParameter*() is GL_TEXTURE_1D, GL_
TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP, whichever
is appropriate. For the purposes of this discussion, the second argument is
either GL_TEXTURE_MAG_FILTER, or GL_TEXTURE_MIN_FILTER, to indi-
cate whether you’re specifying the filtering method for magnification or
minification. The third argument specifies the filtering method; Table 9-3
lists the possible values.

If you choose GL_NEAREST, the texel with coordinates nearest the center of
the pixel is used for both magnification and minification. This can result in
aliasing artifacts (sometimes severe). If you choose GL_LINEAR, a weighted
linear average of the 2 × 2 array of texels that lie nearest to the center of the

Parameter Values

GL_TEXTURE_MAG_FILTER GL_NEAREST or GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

Table 9-3 Filtering Methods for Magnification and Minification

Magnification

Texture

Polygon
Polygon

Minification

PixelsTexel

Figure 9-8 Texture Magnification and Minification

Shreiner_ch09.fm Page 407 Thursday, June 30, 2005 5:41 PM

408 Chapter 9: Texture Mapping

pixel is used, again for both magnification and minification. (For three-
dimensional textures, it’s a 2 × 2 × 2 array; for one-dimensional, it’s an
average of 2 texels.) When the texture coordinates are near the edge of the
texture map, the nearest 2 × 2 array of texels might include some that are
outside the texture map. In these cases, the texel values used depend on
which wrapping mode is in effect and whether you’ve assigned a border
for the texture. (See “Repeating and Clamping Textures” on page 423.)
GL_NEAREST requires less computation than GL_LINEAR and therefore
might execute more quickly, but GL_LINEAR provides smoother results.

With magnification, even if you’ve supplied mipmaps, only the base level
texture map is used. With minification, you can choose a filtering method
that uses the most appropriate one or two mipmaps, as described in the next
paragraph. (If GL_NEAREST or GL_LINEAR is specified with minification,
only the base level texture map is used.)

As shown in Table 9-3, four additional filtering options are available when
minifying with mipmaps. Within an individual mipmap, you can choose
the nearest texel value with GL_NEAREST_MIPMAP_NEAREST, or you can
interpolate linearly by specifying GL_LINEAR_MIPMAP_NEAREST. Using
the nearest texels is faster but yields less desirable results. The particular
mipmap chosen is a function of the amount of minification required, and
there’s a cutoff point from the use of one particular mipmap to the next.
To avoid a sudden transition, use GL_NEAREST_MIPMAP_LINEAR or
GL_LINEAR_MIPMAP_LINEAR for linear interpolation of texel values from
the two nearest best choices of mipmaps. GL_NEAREST_MIPMAP_LINEAR
selects the nearest texel in each of the two maps and then interpolates
linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses
linear interpolation to compute the value in each of two maps and then
interpolates linearly between these two values. As you might expect, GL_
LINEAR_MIPMAP_LINEAR generally produces the highest-quality results,
but it requires the most computation and therefore might be the slowest.

Caution: If you request a mipmapped texture filter, but you have not
supplied a full and consistent set of mipmaps (all correct-sized
texture images between GL_TEXTURE_BASE_LEVEL and
GL_TEXTURE_MAX_LEVEL), OpenGL will, without any error,
implicitly disable texturing. If you are trying to use mipmaps and
no texturing appears at all, check the texture images at all your
mipmap levels.

Some of these texture filters are known by more popular names. GL_NEAREST
is often called point sampling. GL_LINEAR is known as bilinear sampling,
because for two-dimensional textures, a 2 × 2 array of texels is sampled.

Shreiner_ch09.fm Page 408 Thursday, June 30, 2005 5:41 PM

Texture Objects 409

GL_LINEAR_MIPMAP_LINEAR is sometimes known as trilinear sampling,
because it is a linear average between two bilinearly sampled mipmaps.

Note: The minification-to-magnification switchover point is usually at
λ = 0.0, but is affected by the type of minification filter you choose.
If the current magnification filter is GL_LINEAR and the minification
filter is GL_NEAREST_MIPMAP_NEAREST or GL_NEAREST_MIPMAP_

LINEAR, then the switch between filters occurs at λ = 0.5. This pre-
vents the minified texture from looking sharper than its magnified
counterpart.

Nate Robins’ Texture Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, now run
the texture tutorial. (For information on how and where to download these
programs, see “Nate Robins’ OpenGL Tutors” on page xxiv.) With this
tutorial, you can experiment with the texture-mapping filtering method,
switching between GL_NEAREST and GL_LINEAR.

Texture Objects

A texture object stores texture data and makes it readily available. You may
control many textures and go back to textures that have been previously
loaded into your texture resources. Using texture objects is usually the
fastest way to apply textures, resulting in big performance gains, because it
is almost always much faster to bind (reuse) an existing texture object than
it is to reload a texture image using glTexImage*D().

Also, some implementations support a limited working set of high-
performance textures. You can use texture objects to load your most
often used textures into this limited area.

To use texture objects for your texture data, take these steps:

1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the
image arrays and texture properties.

3. If your implementation supports a working set of high-performance
textures, see if you have enough space for all your texture objects. If
there isn’t enough space, you may wish to establish priorities for each
texture object so that more often used textures stay in the working set.

4. Bind and rebind texture objects, making their data currently available
for rendering textured models.

Shreiner_ch09.fm Page 409 Thursday, June 30, 2005 5:41 PM

410 Chapter 9: Texture Mapping

Naming a Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid
accidentally reusing names, consistently use glGenTextures() to provide
unused texture names.

glIsTexture() determines if a texture name is actually in use. If a texture
name was returned by glGenTextures() but has not yet been bound (calling
glBindTexture() with the name at least once), then glIsTexture() returns
GL_FALSE.

Creating and Using Texture Objects

The same routine, glBindTexture(), both creates and uses texture objects.
When a texture name is initially bound (used with glBindTexture()), a new
texture object is created with default values for the texture image and tex-
ture properties. Subsequent calls to glTexImage*(), glTexSubImage*(),
glCopyTexImage*(), glCopyTexSubImage*(), glTexParameter*(), and
glPrioritizeTextures() store data in the texture object. The texture object
may contain a texture image and associated mipmap images (if any),
including associated data such as width, height, border width, internal
format, resolution of components, and texture properties. Saved texture

void glGenTextures(GLsizei n, GLuint *textureNames);

Returns n currently unused names for texture objects in the array
textureNames. The names returned in textureNames do not have to be a
contiguous set of integers.

The names in textureNames are marked as used, but they acquire texture
state and dimensionality (1D, 2D, or 3D) only when they are first bound.

Zero is a reserved texture name and is never returned as a texture name by
glGenTextures().

GLboolean glIsTexture(GLuint textureName);

Returns GL_TRUE if textureName is the name of a texture that has been
bound and has not been subsequently deleted, and returns GL_FALSE if
textureName is zero or textureName is a nonzero value that is not the name
of an existing texture.

Shreiner_ch09.fm Page 410 Thursday, June 30, 2005 5:41 PM

Texture Objects 411

properties include minification and magnification filters, wrapping modes,
border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes
the current texture state. (The state of the previously bound texture is
replaced.)

In Example 9-7, two texture objects are created in init(). In display(), each
texture object is used to render a different four-sided polygon.

Example 9-7 Binding Texture Objects: texbind.c

#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte otherImage[checkImageHeight][checkImageWidth][4];

static GLuint texName[2];

void makeCheckImages(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = (((i&0x8)==0)^((j&0x8)==0))*255;

void glBindTexture(GLenum target, GLuint textureName);

glBindTexture() does three things. When using the textureName of an
unsigned integer other than zero for the first time, a new texture object is
created and assigned that name. When binding to a previously created
texture object, that texture object becomes active. When binding to a
textureName value of zero, OpenGL stops using texture objects and returns
to the unnamed default texture.

When a texture object is initially bound (that is, created), it assumes the
dimensionality of target, which is GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP. Immediately on its
initial binding, the state of the texture object is equivalent to the state of
the default target dimensionality at the initialization of OpenGL. In this
initial state, texture properties such as minification and magnification
filters, wrapping modes, border color, and texture priority are set to their
default values.

Shreiner_ch09.fm Page 411 Thursday, June 30, 2005 5:41 PM

412 Chapter 9: Texture Mapping

 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 c = (((i&0x10)==0)^((j&0x10)==0))*255;
 otherImage[i][j][0] = (GLubyte) c;
 otherImage[i][j][1] = (GLubyte) 0;
 otherImage[i][j][2] = (GLubyte) 0;
 otherImage[i][j][3] = (GLubyte) 255;
 }
 }
}

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);

 makeCheckImages();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(2, texName);
 glBindTexture(GL_TEXTURE_2D, texName[0]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 checkImage);

 glBindTexture(GL_TEXTURE_2D, texName[1]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 otherImage);
 glEnable(GL_TEXTURE_2D);
}

Shreiner_ch09.fm Page 412 Thursday, June 30, 2005 5:41 PM

Texture Objects 413

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glBindTexture(GL_TEXTURE_2D, texName[0]);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);
 glEnd();
 glBindTexture(GL_TEXTURE_2D, texName[1]);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
 glEnd();
 glFlush();
}

Whenever a texture object is bound once again, you may edit the contents
of the bound texture object. Any commands you call that change the
texture image or other properties change the contents of the currently
bound texture object as well as the current texture state.

In Example 9-7, after completion of display(), you are still bound to the
texture named by the contents of texName[1]. Be careful that you don’t call
a spurious texture routine that changes the data in that texture object.

When mipmaps are used, all related mipmaps of a single texture image must
be put into a single texture object. In Example 9-5, levels 0–5 of a mip-
mapped texture image are put into a single texture object named texName.

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around some-
where among your texture resources. If texture resources are limited, deleting
textures may be one way to free up resources.

void glDeleteTextures(GLsizei n, const GLuint *textureNames);

Deletes n texture objects, named by elements in the array textureNames.
The freed texture names may now be reused (for example, by
glGenTextures()).

Shreiner_ch09.fm Page 413 Thursday, June 30, 2005 5:41 PM

414 Chapter 9: Texture Mapping

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance
textures, which are said to be resident. Typically, these implementations
have specialized hardware to perform texture operations and a limited
hardware cache to store texture images. In this case, using texture objects is
recommended, because you are able to load many textures into the working
set and then control them.

If all the textures required by the application exceed the size of the cache,
some textures cannot be resident. If you want to find out if a single texture
is currently resident, bind its object, and then call glGetTexParameter*v()
to determine the value associated with the
GL_TEXTURE_RESIDENT state. If you want to know about the texture
residence status of many textures, use glAreTexturesResident().

Note that glAreTexturesResident() returns the current residence status.
Texture resources are very dynamic, and texture residence status may
change at any time. Some implementations cache textures when they are
first used. It may be necessary to draw with the texture before checking
residency.

If a texture that is currently bound is deleted, the binding reverts to the
default texture, as if glBindTexture() were called with zero for the value
of textureName. Attempts to delete nonexistent texture names or the
texture name of zero are ignored without generating an error.

GLboolean glAreTexturesResident(GLsizei n,
const GLuint *textureNames,
GLboolean *residences);

Queries the texture residence status of the n texture objects, named in
the array textureNames. residences is an array in which texture residence
status is returned for the corresponding texture objects in the array
textureNames. If all the named textures in textureNames are resident, the
glAreTexturesResident() function returns GL_TRUE, and the contents
of the array residences are undisturbed. If any texture in textureNames is
not resident, then glAreTexturesResident() returns GL_FALSE, and the
elements in residences, which correspond to nonresident texture objects
in textureNames, are also set to GL_FALSE.

Shreiner_ch09.fm Page 414 Thursday, June 30, 2005 5:41 PM

Texture Objects 415

If your OpenGL implementation does not establish a working set of high-
performance textures, then the texture objects are always considered
resident. In that case, glAreTexturesResident() always returns GL_TRUE
and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture
performance possible, you really have to know the specifics of your imple-
mentation and application. For example, with a visual simulation or video
game, you have to maintain performance in all situations. In that case, you
should never access a nonresident texture. For these applications, you want
to load up all your textures on initialization and make them all resident. If
you don’t have enough texture memory available, you may need to reduce
the size, resolution, and levels of mipmaps for your texture images, or you
may use glTexSubImage*() to repeatedly reuse the same texture memory.

Note: If you have several short-lived textures of the same size, you can use
glTexSubImage*() to reload existing texture objects with different
images. This technique may be more efficient than deleting textures
and reestablishing new textures from scratch.

For applications that create textures “on the fly,” nonresident textures
may be unavoidable. If some textures are used more frequently than others,
you may assign a higher priority to those texture objects to increase their
likelihood of being resident. Deleting texture objects also frees up space.
Short of that, assigning a lower priority to a texture object may make it first
in line for being moved out of the working set, as resources dwindle.
glPrioritizeTextures() is used to assign priorities to texture objects.

void glPrioritizeTextures(GLsizei n, const GLuint *textureNames,
const GLclampf *priorities);

Assigns the n texture objects, named in the array textureNames, the texture
residence priorities in the corresponding elements of the array priorities.
The priority values in the array priorities are clamped to the range [0.0, 1.0]
before being assigned. Zero indicates the lowest priority (textures least
likely to be resident), and 1 indicates the highest priority.

glPrioritizeTextures() does not require that any of the textures in
textureNames be bound. However, the priority might not have any effect
on a texture object until it is initially bound.

Shreiner_ch09.fm Page 415 Thursday, June 30, 2005 5:41 PM

416 Chapter 9: Texture Mapping

glTexParameter*() also may be used to set a single texture’s priority, but
only if the texture is currently bound. In fact, use of glTexParameter*() is
the only way to set the priority of a default texture.

If texture objects have equal priority, typical implementations of OpenGL
apply a least recently used (LRU) strategy to decide which texture objects to
move out of the working set. If you know that your OpenGL implementa-
tion uses this algorithm, then having equal priorities for all texture objects
creates a reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture
objects of equal priority (or if you don’t know how it decides), you can
implement your own LRU strategy by carefully maintaining the texture
object priorities. When a texture is used (bound), you can maximize its
priority, which reflects its recent use. Then, at regular (time) intervals, you
can degrade the priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if
you’re deleting and creating numerous new textures. Although it
may be possible to load all the texture objects into a working set by
binding them in one sequence, binding them in a different sequence
may leave some textures nonresident.

Texture Functions

In each of the examples presented so far in this chapter, the values in the
texture map have been used directly as colors to be painted on the surface
being rendered. You can also use the values in the texture map to modulate
the color in which the surface would be rendered without texturing or to
combine the color in the texture map with the original color of the surface.
You choose texturing functions by supplying the appropriate arguments to
glTexEnv*().

void glTexEnv{if}(GLenum target, GLenum pname, TYPE param);
void glTexEnv{if}v(GLenum target, GLenum pname, TYPE *param);

Sets the current texturing function. target must be either GL_TEXTURE_
FILTER_CONTROL or GL_TEXTURE_ENV.

If target is GL_TEXTURE_FILTER_CONTROL, then pname must be
GL_TEXTURE_LOD_BIAS, and param is a single, floating-point value used
to bias the mipmapping level-of-detail parameter.

Shreiner_ch09.fm Page 416 Thursday, June 30, 2005 5:41 PM

Texture Functions 417

Note: This is only a partial list of acceptable values for glTexEnv*(),
excluding texture combiner functions. For complete details about
GL_COMBINE and a complete list of options for pname and param
for glTexEnv*(), see “Texture Combiner Functions” on page 444 and
Table 9-8.

The combination of the texturing function and the base internal format
determines how the textures are applied for each component of the texture.
The texturing function operates on selected components of the texture
and the color values that would be used with no texturing. (Note that the
selection is performed after the pixel-transfer function has been applied.)
Recall that when you specify your texture map with glTexImage*D(), the
third argument is the internal format to be selected for each texel.

There are six base internal formats: GL_ALPHA, GL_LUMINANCE, GL_
LUMINANCE_ALPHA, GL_INTENSITY, GL_RGB, and GL_RGBA. Other
internal formats (such as GL_LUMINANCE6_ALPHA2 or GL_R3_G3_B2)
specify desired resolutions of the texture components and can be matched
to one of these six base internal formats.

Texturing calculations are ultimately in RGBA, but some internal formats
are not in RGB. Table 9-4 shows how the RGBA color values are derived
from different texture formats, including the less obvious derivations.

If target is GL_TEXTURE_ENV and if pname is GL_TEXTURE_ENV_MODE,
then param is one of GL_DECAL, GL_REPLACE, GL_MODULATE,
GL_BLEND, GL_ADD, or GL_COMBINE, which specifies how texture
values are combined with the color values of the fragment being processed.
If pname is GL_TEXTURE_ENV_COLOR, then param is an array of 4
floating-point numbers (R, G, B, A) which denotes a color to be used
for GL_BLEND operations.

If target is GL_POINT_SPRITE and if pname is GL_COORD_REPLACE, then
setting param to GL_TRUE will enable the iteration of texture coordinates
across a point sprite. Texture coordinates will remain constant across the
primitive if param is set to GL_FALSE.

Base Internal Format Derived Source Color (R, G, B, A)

GL_ALPHA (0, 0, 0, A)

GL_LUMINANCE (L, L, L, 1)

GL_LUMINANCE_ALPHA (L, L, L, A)

Table 9-4 Deriving Color Values from Different Texture Formats

Shreiner_ch09.fm Page 417 Thursday, June 30, 2005 5:41 PM

418 Chapter 9: Texture Mapping

Table 9-5 and Table 9-6 show how a texturing function (except for GL_
COMBINE) and base internal format determine the texturing application
formula used for each component of the texture.

In Table 9-5 and Table 9-6, note the following use of subscripts:

• s indicates a texture source color, as determined in Table 9-4

• f indicates an incoming fragment value

• c indicates values assigned with GL_TEXTURE_ENV_COLOR

• no subscript indicates a final, computed value

In these tables, multiplication of a color triple by a scalar means multiplying
each of the R, G, and B components by the scalar; multiplying (or adding)
two color triples means multiplying (or adding) each component of the
second by (or to) the corresponding component of the first.

GL_INTENSITY (I, I, I, I)

GL_RGB (R, G, B, 1)

GL_RGBA (R, G, B, A)

Base Internal Format GL_REPLACE
Function

GL_MODULATE
Function

GL_DECAL
Function

GL_ALPHA C = Cf
A = As

C = Cf
A = Af As

undefined

GL_LUMINANCE C = Cs
A = Af

C = Cf Cs
A = Af

undefined

GL_LUMINANCE_ALPHA C = Cs
A = As

C = Cf Cs
A = Af As

undefined

GL_INTENSITY C = Cs
A = Cs

C = Cf Cs
A = Af Cs

undefined

GL_RGB C = Cs
A = Af

C = Cf Cs
A = Af

C = Cs
A = Af

GL_RGBA C = Cs
A = As

C = Cf Cs
A = Af As

C = Cf (1 − As) + Cs As
A = Af

Table 9-5 Replace, Modulate, and Decal Texture Functions

Base Internal Format Derived Source Color (R, G, B, A)

Table 9-4 (continued) Deriving Color Values from Different Texture Formats

Shreiner_ch09.fm Page 418 Wednesday, July 6, 2005 1:35 PM

Texture Functions 419

The replacement texture function simply takes the color that would have
been painted in the absence of any texture mapping (the fragment’s color),
tosses it away, and replaces it with the texture color. You use the replace-
ment texture function in situations where you want to apply an opaque
texture to an object—such as, for example, if you were drawing a soup can
with an opaque label.

The decal texture function is similar to replacement, except that it works for
only the RGB and RGBA internal formats and it processes alpha differently.
With the RGBA internal format, the fragment’s color is blended with the
texture color in a ratio determined by the texture alpha, and the fragment’s
alpha is unchanged. The decal texture function may be used to apply an
alpha blended texture, such as an insignia on an airplane wing.

For modulation, the fragment’s color is modulated by the contents of
the texture map. If the base internal format is GL_LUMINANCE, GL_
LUMINANCE_ALPHA, or GL_INTENSITY, the color values are multiplied by
the same value, so the texture map modulates between the fragment’s color
(if the luminance or intensity is 1) to black (if it’s 0). For the GL_RGB and
GL_RGBA internal formats, each of the incoming color components is
multiplied by a corresponding (possibly different) value in the texture. If
there’s an alpha value, it’s multiplied by the fragment’s alpha. Modulation
is a good texture function for use with lighting, since the lit polygon color
can be used to attenuate the texture color. Most of the texture-mapping
examples in the color plates use modulation for this reason. White, specular

Base Internal Format GL_BLEND Function GL_ADD Function

GL_ALPHA C = Cf
A = Af As

C = Cf
A = Af As

GL_LUMINANCE C = Cf (1 − Cs) + Cc Cs
A = Af

C = Cf + Cs
A = Af

GL_LUMINANCE_ALPHA C = Cf (1 − Cs) + Cc Cs
A = Af As

C = Cf + Cs
A = Af As

GL_INTENSITY C = Cf (1 − Cs) + Cc Cs
A = Af (1 − As) + Ac As

C = Cf + Cs
A = Af + As

GL_RGB C = Cf (1 − Cs) + Cc Cs
A = Af

C = Cf + Cs
A = Af

GL_RGBA C = Cf (1 − Cs) + Cc Cs
A = Af As

C = Cf + Cs
A = Af As

Table 9-6 Blend and Add Texture Functions

Shreiner_ch09.fm Page 419 Thursday, June 30, 2005 5:41 PM

420 Chapter 9: Texture Mapping

polygons are often used to render lit, textured objects, and the texture
image provides the diffuse color.

The additive texture function simply adds the texture color to the fragment
color. If there’s an alpha value, it’s multiplied by the fragment alpha, except
for the GL_INTENSITY format, where the texture’s intensity is added to
the fragment alpha. Unless the texture and fragment colors are carefully
chosen, the additive texture function easily results in oversaturated or
clamped colors.

The blending texture function is the only function that uses the color
specified by GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color
value is used somewhat like an alpha value to blend the fragment’s color
with the GL_TEXTURE_ENV_COLOR. (See “Sample Uses of Blending” in
Chapter 6 for the billboarding example, which uses a blended texture.)

Nate Robins’ Texture Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, run the
texture tutorial. Change the texture-mapping environment attribute and
see the effects of several texture functions. If you use GL_MODULATE, note
the effect of the color specified by glColor4f(). If you choose GL_BLEND,
see what happens if you change the color specified by the env_color array.

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object
coordinates and texture coordinates for each vertex. After transformation,
the object’s coordinates determine where on the screen that particular
vertex is rendered. The texture coordinates determine which texel in the
texture map is assigned to that vertex. In exactly the same way that colors
are interpolated between two vertices of shaded polygons and lines, texture
coordinates are interpolated between vertices. (Remember that textures are
rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates.
They’re usually referred to as the s-, t-, r-, and q-coordinates to distinguish
them from object coordinates (x, y, z, and w) and from evaluator coordi-
nates (u and v; see Chapter 12). For one-dimensional textures, you use the
s-coordinate; for two-dimensional textures, you use s and t; and for three-
dimensional textures, you use s, t, and r. The q-coordinate, like w, is typically
given the value 1 and can be used to create homogeneous coordinates; it’s

Shreiner_ch09.fm Page 420 Thursday, June 30, 2005 5:41 PM

Assigning Texture Coordinates 421

described as an advanced feature in “The q-Coordinate.” The command
to specify texture coordinates, glTexCoord*(), is similar to glVertex*(),
glColor*(), and glNormal*()—it comes in similar variations and is used the
same way between glBegin() and glEnd() pairs. Usually, texture-
coordinate values range from 0 to 1; values can be assigned outside this
range, however, with the results described in “Repeating and Clamping
Textures.”

The next subsection discusses how to calculate appropriate texture coordi-
nates. Instead of explicitly assigning them yourself, you can choose to have
texture coordinates calculated automatically by OpenGL as a function of
the vertex coordinates. (See “Automatic Texture-Coordinate Generation”
on page 429.)

Nate Robins’ Texture Tutorial

If you have Nate Robins’ texture tutorial, run it, and experiment with the
parameters of glTexCoord2f() for the four different vertices. See how you
can map from a portion of the entire texture. (What happens if you make a
texture coordinate less than 0 or greater than 1?)

void glTexCoord{1234}{sifd}(TYPE coords);
void glTexCoord{1234}{sifd}v(TYPE *coords);

Sets the current texture coordinates (s, t, r, q). Subsequent calls to
glVertex*() result in those vertices being assigned the current texture
coordinates. With glTexCoord1*(), the s-coordinate is set to the specified
value, t and r are set to 0, and q is set to 1. Using glTexCoord2*() allows
you to specify s and t; r and q are set to 0 and 1, respectively. With
glTexCoord3*(), q is set to 1 and the other coordinates are set as specified.
You can specify all coordinates with glTexCoord4*(). Use the appropriate
suffix (s, i, f, or d) and the corresponding value for TYPE (GLshort, GLint,
GLfloat, or GLdouble) to specify the coordinates’ data type. You can
supply the coordinates individually, or you can use the vector version of
the command to supply them in a single array. Texture coordinates are
multiplied by the 4 × 4 texture matrix before any texture mapping occurs.
(See “The Texture Matrix Stack” on page 451.) Note that integer texture
coordinates are interpreted directly, rather than being mapped to the
range [−1, 1] as normal coordinates are.

Shreiner_ch09.fm Page 421 Thursday, June 30, 2005 5:41 PM

422 Chapter 9: Texture Mapping

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically
mapped to the polygons that make up a polygonal model. In the simplest
case, you’re mapping a rectangular texture onto a model that’s also rectan-
gular—for example, your texture is a scanned image of a brick wall, and
your rectangle represents a brick wall of a building. Suppose the brick wall
is square and the texture is square, and you want to map the whole texture
to the whole wall. The texture coordinates of the texture square are (0, 0),
(1, 0), (1, 1), and (0, 1) in counterclockwise order. When you’re drawing the
wall, just give those four coordinate sets as the texture coordinates as you
specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the
texture is again square. To avoid distorting the texture, you need to map the
wall to a portion of the texture map so that the aspect ratio of the texture
is preserved. Suppose that you decide to use the lower two-thirds of the
texture map to texture the wall. In this case, use texture coordinates of
(0, 0), (1, 0), (1, 2/3), and (0, 2/3) for the texture coordinates, as the wall
vertices are traversed in a counterclockwise order.

As a slightly more complicated example, suppose you’d like to display a tin
can with a label wrapped around it on the screen. To obtain the texture, you
purchase a can, remove the label, and scan it in. Suppose the label is 4 units
tall and 12 units around, which yields an aspect ratio of 3 to 1. Since tex-
tures must have aspect ratios of 2n to 1, you can either simply not use the
top third of the texture, or you can cut and paste the texture until it has the
necessary aspect ratio. Suppose you decide not to use the top third. Now
suppose the tin can is a cylinder approximated by 30 polygons of length 4
units (the height of the can) and width 12/30 (1/30 of the circumference of
the can). You can use the following texture coordinates for each of the 30
approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)

2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

. . .

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a
flat surface without geodesic distortion. Any other shape requires some

Shreiner_ch09.fm Page 422 Thursday, June 30, 2005 5:41 PM

Assigning Texture Coordinates 423

distortion. In general, the higher the curvature of the surface, the more
distortion of the texture is required.

If you don’t care about texture distortion, it’s often quite easy to find a rea-
sonable mapping. For example, consider a sphere whose surface coordinates
are given by (cos θ cos φ, cos θ sin φ, sin θ), where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.
The θ-φ rectangle can be mapped directly to a rectangular texture map, but
the closer you get to the poles, the more distorted the texture is. The entire
top edge of the texture map is mapped to the north pole, and the entire
bottom edge to the south pole. For other surfaces, such as that of a torus
(doughnut) with a large hole, the natural surface coordinates map to the
texture coordinates in a way that produces only a little distortion, so it
might be suitable for many applications. Figure 9-9 shows two toruses, one
with a small hole (and therefore a lot of distortion near the center) and one
with a large hole (and only a little distortion).

If you’re texturing spline surfaces generated with evaluators (see Chapter 12),
the u and v parameters for the surface can sometimes be used as texture
coordinates. In general, however, there’s a large artistic component to
successful mapping of textures to polygonal approximations of curved
surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0, 1] and have them
either clamp or repeat in the texture map. With repeating textures, if you
have a large plane with texture coordinates running from 0.0 to 10.0 in
both directions, for example, you’ll get 100 copies of the texture tiled
together on the screen. During repeating, the integer parts of texture coor-
dinates are ignored, and copies of the texture map tile the surface. For most

Figure 9-9 Texture-Map Distortion

Shreiner_ch09.fm Page 423 Thursday, June 30, 2005 5:41 PM

424 Chapter 9: Texture Mapping

applications in which the texture is to be repeated, the texels at the top of
the texture should match those at the bottom, and similarly for the left and
right edges.

A “mirrored” repeat is available, where the surface tiles “flip-flop.” For
instance, within texture coordinate range [0, 1], a texture may appear
oriented from left-to-right (or top-to-bottom or near-to-far), but the “mir-
rored” repeat wrapping reorients the texture from right-to-left for texture
coordinate range [1, 2], then back again to left-to-right for coordinates
[2, 3], and so on.

Another possibility is to clamp the texture coordinates: any values greater
than 1.0 are set to 1.0, and any values less than 0.0 are set to 0.0. Clamping
is useful for applications in which you want a single copy of the texture to
appear on a large surface. If the texture coordinates of the surface range
from 0.0 to 10.0 in both directions, one copy of the texture appears in the
lower left corner of the surface.

If you are using textures with borders or have specified a texture border
color, both the wrapping mode and the filtering method (see “Filtering” on
page 406) influence whether and how the border information is used.

If you’re using the filtering method GL_NEAREST, the closest texel in the
texture is used. For most wrapping modes, the border (or border color) is
ignored. However, if the texture coordinate is outside the range [0, 1] and
the wrapping mode is GL_CLAMP_TO_BORDER, then the nearest border
texel is chosen. (If no border is present, the constant border color is used.)

If you’ve chosen GL_LINEAR as the filtering method, a weighted combina-
tion in a 2 × 2 array (for two-dimensional textures) of color data is used for
texture application. If there is a border or border color, the texture and bor-
der colors are used together, as follows:

• For the wrapping mode GL_REPEAT, the border is always ignored. The
2 × 2 array of weighted texels wraps to the opposite edge of the texture.
Thus, texels at the right edge are averaged with those at the left edge,
and top and bottom texels are also averaged.

• For the wrapping mode GL_CLAMP, the texel from the border (or
GL_TEXTURE_BORDER_COLOR) is used in the 2 × 2 array of weighted
texels.

• For the wrapping mode GL_CLAMP_TO_EDGE, the border is always
ignored. Texels at or near the edge of the texture are used for texturing
calculations, but not the border.

• For the wrapping mode GL_CLAMP_TO_BORDER, if the texture coor-
dinate is outside the range [0, 1], then only border texels (or if no

Shreiner_ch09.fm Page 424 Thursday, June 30, 2005 5:41 PM

Assigning Texture Coordinates 425

border is present, the constant border color) are used for texture appli-
cation. Near the edge of texture coordinates, texels from both the bor-
der and the interior texture may be sampled in a 2 × 2 array.

If you are using clamping, you can avoid having the rest of the surface
affected by the texture. To do this, use alpha values of 0 for the edges (or
borders, if they are specified) of the texture. The decal texture function
directly uses the texture’s alpha value in its calculations. If you are using one
of the other texture functions, you may also need to enable blending with
good source and destination factors. (See “Blending” in Chapter 6.)

To see the effects of wrapping, you must have texture coordinates that
venture beyond [0.0, 1.0]. Start with Example 9-1, and modify the texture
coordinates for the squares by mapping the texture coordinates from 0.0 to
4.0, as follows:

glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 4.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(4.0, 4.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(4.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 4.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(4.0, 4.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(4.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
glEnd();

With GL_REPEAT wrapping, the result is as shown in Figure 9-10.

In this case, the texture is repeated in both the s- and t- directions, since the
following calls are made to glTexParameter*():

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

Figure 9-10 Repeating a Texture

Shreiner_ch09.fm Page 425 Thursday, June 30, 2005 5:41 PM

426 Chapter 9: Texture Mapping

Some OpenGL implementations support GL_MIRRORED_REPEAT
wrapping, which reverses orientation at every integer texture coordinate
boundary. Figure 9-11 shows the contrast between ordinary repeat
wrapping (left) and the mirrored repeat (right).

In Figure 9-12, GL_CLAMP is used for each direction. Where the texture
coordinate s or t is greater than one, the texel used is from where each
texture coordinate is exactly one.

Wrapping modes are independent for each direction. You can also clamp in
one direction and repeat in the other, as shown in Figure 9-13.

You’ve now seen several arguments for glTexParameter*(), which is
summarized as follows.

Figure 9-11 Comparing GL_REPEAT to GL_MIRRORED_REPEAT

Figure 9-12 Clamping a Texture

Figure 9-13 Repeating and Clamping a Texture

Shreiner_ch09.fm Page 426 Thursday, June 30, 2005 5:41 PM

Assigning Texture Coordinates 427

void glTexParameter{if}(GLenum target, GLenum pname, TYPE param);
void glTexParameter{if}v(GLenum target, GLenum pname,

TYPE *param);

Sets various parameters that control how a texture is treated as it’s applied
to a fragment or stored in a texture object. The target parameter is GL_
TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_
CUBE_MAP to match the intended texture. The possible values for pname
and param are shown in Table 9-7. You can use the vector version of the
command to supply an array of values for GL_TEXTURE_BORDER_
COLOR, or you can supply individual values for other parameters using
the nonvector version. If these values are supplied as integers, they’re
converted to floating-point numbers according to Table 4-1; they’re also
clamped to the range [0, 1].

Parameter Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_REPEAT,
GL_MIRRORED_REPEAT

GL_TEXTURE_WRAP_T GL_CLAMP, GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_REPEAT,
GL_MIRRORED_REPEAT

GL_TEXTURE_WRAP_R GL_CLAMP, GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_REPEAT,
GL_MIRRORED_REPEAT

GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0]

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

GL_TEXTURE_MIN_LOD any floating-point value

GL_TEXTURE_MAX_LOD any floating-point value

Table 9-7 glTexParameter*() Parameters

Shreiner_ch09.fm Page 427 Thursday, June 30, 2005 5:41 PM

428 Chapter 9: Texture Mapping

Try This

Figures 9-12 and 9-13 are drawn using GL_NEAREST for the minification and
magnification filters. What happens if you change the filter values to GL_
LINEAR? The resulting image should look more blurred.

Border information may be used while calculating texturing. For the
simplest demonstration of this, set GL_TEXTURE_BORDER_COLOR to a
noticeable color. With the filters set to GL_NEAREST and the wrapping
mode set to GL_CLAMP_TO_BORDER, the border color affects the textured
object (for texture coordinates beyond the range [0, 1]). The border also
affects the texturing with the filters set to GL_LINEAR and the wrapping
mode set to GL_CLAMP.

What happens if you switch the wrapping mode to GL_CLAMP_TO_EDGE
or GL_REPEAT? In both cases, the border color is ignored.

Nate Robins’ Texture Tutorial

Run the Nate Robins’ texture tutorial and see the effects of the wrapping
parameters GL_REPEAT and GL_CLAMP. You will need to make the texture
coordinates at the vertices (parameters to glTexCoord2f()) less than 0
and/or greater than 1 to see any repeating or clamping effect.

GL_TEXTURE_BASE_LEVEL any non-negative integer

GL_TEXTURE_MAX_LEVEL any non-negative integer

GL_TEXTURE_LOD_BIAS any floating-point value

GL_DEPTH_TEXTURE_MODE GL_LUMINANCE, GL_INTENSITY, GL_ALPHA

GL_TEXTURE_COMPARE_MODE GL_NONE, GL_COMPARE_R_TO_TEXTURE

GL_TEXTURE_COMPARE_FUNC GL_LEQUAL, GL_GEQUAL, GL_LESS,
GL_GREATER, GL_EQUAL, GL_NOTEQUAL,
GL_ALWAYS, GL_NEVER

GL_GENERATE_MIPMAP GL_TRUE, GL_FALSE

Parameter Values

Table 9-7 (continued) glTexParameter*() Parameters

Try This

Shreiner_ch09.fm Page 428 Wednesday, July 6, 2005 1:50 PM

Automatic Texture-Coordinate Generation 429

Automatic Texture-Coordinate Generation

You can use texture mapping to make contours on your models or to simu-
late the reflections from an arbitrary environment on a shiny model. To
achieve these effects, let OpenGL automatically generate the texture coordi-
nates for you, rather than explicitly assign them with glTexCoord*(). To gen-
erate texture coordinates automatically, use the command glTexGen().

The different methods of texture-coordinate generation have different uses.
Specifying the reference plane in object coordinates is best when a texture
image remains fixed to a moving object. Thus, GL_OBJECT_LINEAR would
be used for putting a wood grain on a tabletop. Specifying the reference
plane in eye coordinates (GL_EYE_LINEAR) is best for producing dynamic
contour lines on moving objects. GL_EYE_LINEAR may be used by special-
ists in the geosciences who are drilling for oil or gas. As the drill goes deeper
into the ground, the drill may be rendered with different colors to repre-
sent the layers of rock at increasing depths. GL_SPHERE_MAP and GL_
REFLECTION_MAP are used mainly for spherical environment mapping,
and GL_NORMAL_MAP is used for cube maps. (See “Sphere Map” on
page 434 and “Cube Map Textures” on page 436.)

void glTexGen{ifd}(GLenum coord, GLenum pname, TYPE param);
void glTexGen{ifd}v(GLenum coord, GLenum pname, TYPE *param);

Specifies the functions for automatically generating texture coordinates.
The first parameter, coord, must be GL_S, GL_T, GL_R, or GL_Q to indicate
whether texture coordinate s, t, r, or q is to be generated. The pname
parameter is GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_
EYE_PLANE. If it’s GL_TEXTURE_GEN_MODE, param is an integer (or, in
the vector version of the command, points to an integer) that is one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP, GL_
REFLECTION_MAP, or GL_NORMAL_MAP. These symbolic constants
determine which function is used to generate the texture coordinate.
With either of the other possible values for pname, param is a pointer to
an array of values (for the vector version) specifying parameters for the
texture-generation function.

Shreiner_ch09.fm Page 429 Thursday, June 30, 2005 5:41 PM

430 Chapter 9: Texture Mapping

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified,
the generation function is a linear combination of the object coordinates of
the vertex (xo, yo, zo, wo):

generated coordinate = p1 x0 + p2y0 + p3z0 + p4w0

The p1, ..., p4 values are supplied as the param argument to glTexGen*v(),
with pname set to GL_OBJECT_PLANE. With p1, ..., p4 correctly normalized,
this function gives the distance from the vertex to a plane. For example, if
p2 = p3 = p4 = 0 and p1 = 1, the function gives the distance between the vertex
and the plane x = 0. The distance is positive on one side of the plane, nega-
tive on the other, and zero if the vertex lies on the plane.

Initially, in Example 9-8, equally spaced contour lines are drawn on a teapot;
the lines indicate the distance from the plane x = 0. The coefficients for the
plane x = 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a
one-dimensional texture map suffices. The texture map is a constant green
color, except that at equally spaced intervals it includes a red mark. Since
the teapot is sitting on the xy-plane, the contours are all perpendicular to its
base. Plate 18 shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the
reference plane to

static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};

The contour stripes are parallel to the plane x + y + z = 0, slicing across the
teapot at an angle, as shown in Plate 18. To restore the reference plane to its
initial value, x = 0, press the ‘x’ key.

Example 9-8 Automatic Texture-Coordinate Generation: texgen.c

#define stripeImageWidth 32
GLubyte stripeImage[4*stripeImageWidth];

static GLuint texName;

void makeStripeImage(void)
{
 int j;

Shreiner_ch09.fm Page 430 Thursday, June 30, 2005 5:41 PM

Automatic Texture-Coordinate Generation 431

 for (j = 0; j < stripeImageWidth; j++) {
 stripeImage[4*j] = (GLubyte) ((j<=4) ? 255 : 0);
 stripeImage[4*j+1] = (GLubyte) ((j>4) ? 255 : 0);
 stripeImage[4*j+2] = (GLubyte) 0;
 stripeImage[4*j+3] = (GLubyte) 255;
 }
}

/* planes for texture-coordinate generation */
static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};
static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static GLfloat *currentCoeff;
static GLenum currentPlane;
static GLint currentGenMode;

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);

 makeStripeImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_1D, texName);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
 glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, stripeImageWidth, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, stripeImage);

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 currentCoeff = xequalzero;
 currentGenMode = GL_OBJECT_LINEAR;
 currentPlane = GL_OBJECT_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);

 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_1D);
 glEnable(GL_CULL_FACE);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_AUTO_NORMAL);

Shreiner_ch09.fm Page 431 Thursday, June 30, 2005 5:41 PM

432 Chapter 9: Texture Mapping

 glEnable(GL_NORMALIZE);
 glFrontFace(GL_CW);
 glCullFace(GL_BACK);
 glMaterialf(GL_FRONT, GL_SHININESS, 64.0);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glRotatef(45.0, 0.0, 0.0, 1.0);
 glBindTexture(GL_TEXTURE_1D, texName);
 glutSolidTeapot(2.0);
 glPopMatrix();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho(-3.5, 3.5, -3.5*(GLfloat)h/(GLfloat)w,
 3.5*(GLfloat)h/(GLfloat)w, -3.5, 3.5);
 else
 glOrtho(-3.5*(GLfloat)w/(GLfloat)h,
 3.5*(GLfloat)w/(GLfloat)h, -3.5, 3.5, -3.5, 3.5);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘e’:
 case ‘E’:
 currentGenMode = GL_EYE_LINEAR;
 currentPlane = GL_EYE_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘o’:
 case ‘O’:

Shreiner_ch09.fm Page 432 Thursday, June 30, 2005 5:41 PM

Automatic Texture-Coordinate Generation 433

 currentGenMode = GL_OBJECT_LINEAR;
 currentPlane = GL_OBJECT_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘s’:
 case ‘S’:
 currentCoeff = slanted;
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘x’:
 case ‘X’:
 currentCoeff = xequalzero;
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(256, 256);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

You enable texture-coordinate generation for the s-coordinate by passing
GL_TEXTURE_GEN_S to glEnable(). To generate other coordinates, enable
them with GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_
GEN_Q. Use glDisable() with the appropriate constant to disable coordi-
nate generation. Also note the use of GL_REPEAT to cause the contour lines
to be repeated across the teapot.

Shreiner_ch09.fm Page 433 Thursday, June 30, 2005 5:41 PM

434 Chapter 9: Texture Mapping

The GL_OBJECT_LINEAR function calculates the texture coordinates in
the model’s coordinate system. Initially, in Example 9-8, the GL_OBJECT_
LINEAR function is used, so the contour lines remain perpendicular to the
base of the teapot, no matter how the teapot is rotated or viewed. However,
if you press the ‘e’ key, the texture-generation mode is changed from
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calcu-
lated relative to the eye coordinate system. (Pressing the ‘o’ key restores
GL_OBJECT_LINEAR as the texture-generation mode.) If the reference plane
is x = 0, the result is a teapot with red stripes parallel to the yz-plane from
the eye’s point of view, as shown in Plate 18. Mathematically, you are mul-
tiplying the vector (p1 p2 p3 p4) by the inverse of the modelview matrix to
obtain the values used to calculate the distance to the plane. The texture
coordinate is generated with the following function:

generated coordinate = p1’xe + p2’ye + p3’ze + p4’we

where (p1’ p2’ p3’ p4’) = (p1 p2 p3 p4)M−1

In this case, (xe, ye, ze, we) are the eye coordinates of the vertex, and p1, ...,
p4 are supplied as the param argument to glTexGen*(), with pname set to
GL_EYE_PLANE. The primed values are calculated only at the time they’re
specified, so this operation isn’t as computationally expensive as it looks.

In all these examples, a single texture coordinate is used to generate con-
tours. s, t, and (if needed) r texture coordinates can be generated indepen-
dently, however, to indicate the distances to two or three different planes.
With a properly constructed two- or three-dimensional texture map, the
resulting two or three sets of contours can be viewed simultaneously. For an
added level of complexity, you can mix generation functions. For example,
you can calculate the s-coordinate using GL_OBJECT_LINEAR, and the
t-coordinate using GL_EYE_LINEAR.

Sphere Map

Advanced

The goal of environment mapping is to render an object as if it were
perfectly reflective, so that the colors on its surface are those reflected to
the eye from its surroundings. In other words, if you look at a perfectly
polished, perfectly reflective silver object in a room, you see the reflections
of the walls, floor, and other items in the room from the object. (A classic
example of using environment mapping is the evil, morphing cyborg in the
film Terminator 2.) The objects whose reflections you see depend on the
position of your eye and on the position and surface angles of the silver

Advanced

Shreiner_ch09.fm Page 434 Thursday, June 30, 2005 5:41 PM

Automatic Texture-Coordinate Generation 435

object. To perform environment mapping, all you have to do is create an
appropriate texture map and then have OpenGL generate the texture
coordinates for you.

Environment mapping is an approximation based on the assumption that
the items in the environment are far away in comparison with the surfaces
of the shiny object—that is, it’s a small object in a large room. With this
assumption, to find the color of a point on the surface, take the ray from
the eye to the surface, and reflect the ray off the surface. The direction of
the reflected ray completely determines the color to be painted there.
Encoding a color for each direction on a flat texture map is equivalent to
putting a polished perfect sphere in the middle of the environment and
taking a picture of it with a camera that has a lens with a very long focal
length placed far away. Mathematically, the lens has an infinite focal length
and the camera is infinitely far away. The encoding therefore covers a
circular region of the texture map, tangent to the top, bottom, left, and
right edges of the map. The texture values outside the circle make no
difference, because they are never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain a
large silvered sphere, take a photograph of it in some environment with
a camera located an infinite distance away and with a lens that has an infi-
nite focal length, and scan in the photograph. To approximate this result,
you can use a scanned-in photograph of an environment taken with an
extremely wide-angle (or fish-eye) lens. Plate 21 shows a photograph taken
with such a lens and the results when that image is used as an environment
map.

Once you’ve created a texture designed for environment mapping, you
need to invoke OpenGL’s environment-mapping algorithm. This algorithm
finds the point on the surface of the sphere with the same tangent surface
as that of the point on the object being rendered, and it paints the object’s
point with the color visible on the sphere at the corresponding point.

To generate automatically the texture coordinates to support environment
mapping, use this code in your program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for
the environment mapping. As shown, you need to specify it for both the
s- and t-directions. However, you don’t have to specify any parameters for
the texture-coordinate generation function.

Shreiner_ch09.fm Page 435 Thursday, June 30, 2005 5:41 PM

436 Chapter 9: Texture Mapping

The GL_SPHERE_MAP texture function generates texture coordinates using
the following mathematical steps:

1. u is the unit vector pointing from the origin to the vertex (in eye
coordinates).

2. n’ is the current normal vector, after transformation to eye
coordinates.

3. r is the reflection vector, (rx ry rz)
T, which is calculated by u – 2n’n’Tu.

4. An interim value, m, is calculated by

5. Finally, the s and t texture coordinates are calculated by

and

.

Cube Map Textures

Advanced

Cube map textures are a special technique that uses a set of six two-
dimensional texture images to form a texture cube centered at the origin.
For each fragment, the texture coordinates (s, t, r) are treated as a direction
vector, with each texel representing what on the texture cube is “seen” from
the origin. Cube maps are ideal for environment, reflection, and lighting
effects. Cube maps can also wrap a spherical object with textures,
distributing texels relatively evenly on all its sides.

The cube map textures are supplied by calling glTexImage2D() six times,
with the target argument indicating the face of the cube (+X, −X, +Y, −Y, +Z,
or −Z). As the name implies, each cube map texture must have the same
dimensions so that a cube is formed with the same number of texels on each
side, as shown in this code, where imageSize has been set to a power of 2:

m = 2 r2 + r2 + (rz + 1) 2

 x y

s = r /m + 1

x 2

t = r /m + 1

y 2

Advanced

Shreiner_ch09.fm Page 436 Thursday, June 30, 2005 5:41 PM

Automatic Texture-Coordinate Generation 437

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image1);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image4);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image2);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image5);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image3);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image6);

Useful cube map texture images may be generated by setting up a (real or
synthetic) camera at the origin of a scene and taking six “snapshots” with
90-degree field-of-view, oriented along the positive and negative axes. The
“snapshots” break up the entire 3D space into six frustums, which intersect
at the origin.

Cube map functionality is orthogonal to many other texturing operations,
so cube maps work with standard texturing features, such as texture
borders, mipmaps, copying images, subimages, and multitexturing. There is
a special proxy texture target for cube maps (GL_PROXY_TEXTURE_CUBE_
MAP) because a cube map generally uses six times as much memory as an
ordinary 2D texture. Texture parameters and texture objects should be
established for the entire cube map as a whole, not for the six individual
cube faces. The following code is an example of setting wrapping and
filtering methods with the target GL_TEXTURE_CUBE_MAP:

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,
 GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,
 GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R,
 GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

To determine which texture (and texels) to use for a given fragment, the
current texture coordinates (s, t, r) first select one of the six textures, based
upon which of s, t, and r has the largest absolute value (major axis) and
its sign (orientation). The remaining two coordinates are divided by the
coordinate with the largest value to determine a new (s’, t’), which is used to
look up the corresponding texel(s) in the selected texture of the cube map.

Shreiner_ch09.fm Page 437 Thursday, June 30, 2005 5:41 PM

438 Chapter 9: Texture Mapping

Although you can calculate and specify the texture coordinates explicitly,
this is generally laborious and unnecessary. Almost always, you’ll want to
use glTexGen*() to automatically generate cube map texture coordinates,
using one of the two special texture coordinate generation modes:
GL_REFLECTION_MAP or GL_NORMAL_MAP.

GL_REFLECTION_MAP uses the same calculations (until step 3 of the
sphere-mapping coordinate computation described in “Sphere Map” on
page 434) as the GL_SPHERE_MAP texture coordinate generation to
determine (rx ry rz) for use as (s, t, r). The reflection map mode is well-suited
for environment mapping as an alternative to sphere mapping.

GL_NORMAL_MAP is particularly useful for rendering scenes with infinite
(or distant local) light sources and diffuse reflection. GL_NORMAL_MAP
uses the model-view matrix to transform the vertex’s normal into eye
coordinates. The resulting (nx ny nz) becomes texture coordinates (s, t, r).
In Example 9-9, the normal map mode is used for texture generation and
cube map texturing is also enabled:

Example 9-9 Generating Cube Map Texture Coordinates: cubemap.c

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
/* turn on cube map texturing */
glEnable(GL_TEXTURE_CUBE_MAP);

Multitexturing

During standard texturing, a single texture image is applied once to a poly-
gon. Multitexturing allows several textures to be applied, one by one in a
pipeline of texture operations, to the same polygon. There is a series of tex-
ture units, where each texture unit performs a single texturing operation and
successively passes its result onto the next texture unit, until all defined
units are completed. Figure 9-14 shows how a fragment might undergo four
texturing operations—one for each of four texture units.

Multitexturing enables advanced rendering techniques, such as lighting
effects, decals, compositing, and detail textures.

Shreiner_ch09.fm Page 438 Thursday, June 30, 2005 5:41 PM

Multitexturing 439

Steps in Multitexturing

To write code that uses multitexturing, perform the following steps:

Note: In feedback mode, multitexturing is undefined beyond the first
texture unit.

1. For each texturing unit, establish the texturing state, including texture
image, filter, environment, coordinate generation, and matrix. Use
glActiveTexture() to change the current texture unit. This is discussed
further in the next subsection, “Establishing Texture Units.” You may
also call glGetIntegerv(GL_MAX_TEXTURE_UNITS,...) to see how
many texturing units are available on your implementation. In a
worst-case scenario, there are at least two texture units.

2. During vertex specification, use glMultiTexCoord*() to specify more
than one texture coordinate per vertex. A different texture coordinate
may be used for each texturing unit. Each texture coordinate will be
used during a different texturing pass. Automatic texture-coordinate
generation and specification of texture coordinates in vertex arrays are
special cases of this situation. The special cases are described in “Other
Methods of Texture-Coordinate Specification” on page 443.

Texture

unit 0

Texture

image 0 Texture

unit 1

Texture

image 1 Texture

unit 2

Texture

image 2 Texture

unit 3

Texture

image 3

Fragment

color in
put

to texturing

Fragment

color output

after te
xturing

Figure 9-14 Multitexture Processing Pipeline

Shreiner_ch09.fm Page 439 Thursday, June 30, 2005 5:41 PM

440 Chapter 9: Texture Mapping

Establishing Texture Units

Multitexturing introduces multiple texture units, which are additional
texture application passes. Each texture unit has identical capabilities and
houses its own texturing state, including the following:

• Texture image

• Filtering parameters

• Environment application

• Texture matrix stack

• Automatic texture-coordinate generation

• Vertex-array specification (if needed)

Each texture unit combines the previous fragment color with its texture
image, according to its texture state. The resulting fragment color is passed
onto the next texture unit, if it is active.

To assign texture information to each texture unit, the routine
glActiveTexture() selects the current texture unit to be modified. After that,
calls to glTexImage*(), glTexParameter*(), glTexEnv*(), glTexGen*(), and
glBindTexture() affect only the current texture unit. Queries of these tex-
ture states also apply to the current texture unit, as well as queries of the cur-
rent texture coordinates and current raster texture
coordinates.

If you use texture objects, you can bind a texture to the current texture unit.
The current texture unit has the values of the texture state contained within
the texture object (including the texture image).

The following code fragment, Example 9-10, has two distinct parts. In the
first part, two ordinary texture objects are created (assume the arrays texels0
and texels1 define texture images). In the second part, the two texture
objects are used to set up two texture units.

void glActiveTexture(GLenum texUnit);

Selects the texture unit that is currently modified by texturing routines.
texUnit is a symbolic constant of the form GL_TEXTUREi, where i is in the
range from 0 to k − 1, and k is the maximum number of texture units.

Shreiner_ch09.fm Page 440 Thursday, June 30, 2005 5:41 PM

Multitexturing 441

Example 9-10 Initializing Texture Units for Multitexturing: multitex.c

/* Two ordinary texture objects are created */
GLuint texNames[2];
glGenTextures(2, texNames);
glBindTexture(GL_TEXTURE_2D, texNames[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, texels0);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(GL_TEXTURE_2D, texNames[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, texels1);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
/* Use the two texture objects to define two texture units
 * for use in multitexturing. */
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texNames[0]);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
 glLoadIdentity();
 glTranslatef(0.5f, 0.5f, 0.0f);
 glRotatef(45.0f, 0.0f, 0.0f, 1.0f);
 glTranslatef(-0.5f, -0.5f, 0.0f);
glMatrixMode(GL_MODELVIEW);
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texNames[1]);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

When a textured polygon is now rendered, it is rendered with two texturing
units. In the first unit, the texels0 texture image is applied with nearest texel
filtering, repeat wrapping, replacement texture environment, and a texture
matrix that rotates the texture image. After the first unit is completed, the
newly textured polygon is sent onto the second texture unit (GL_TEXTURE1),
where it is processed with the texels1 texture image with linear filtering,
edge clamping, modulation texture environment, and the default identity
texture matrix.

Shreiner_ch09.fm Page 441 Thursday, June 30, 2005 5:41 PM

442 Chapter 9: Texture Mapping

Note: Operations to a texture attribute group (using glPushAttrib(),
glPushClientAttrib(), glPopAttrib(), or glPopClientAttrib()) save or
restore the texture state of all texture units (except for the texture
matrix stack).

Specifying Vertices and Their Texture Coordinates

With multitexturing, it isn’t enough to have one set of texture coordinates
per vertex. You need to have one set for each texture unit for each vertex.
Instead of using glTexCoord*(), you must use glMultiTexCoord*(), which
specifies the texture unit, as well as the texture coordinates.

In Example 9-11, a triangle is given the two sets of texture coordinates
necessary for multitexturing with two active texture units.

Example 9-11 Specifying Vertices for Multitexturing

 glBegin(GL_TRIANGLES);
 glMultiTexCoord2f(GL_TEXTURE0, 0.0, 0.0);
 glMultiTexCoord2f(GL_TEXTURE1, 1.0, 0.0);
 glVertex2f(0.0, 0.0);
 glMultiTexCoord2f(GL_TEXTURE0, 0.5, 1.0);
 glMultiTexCoord2f(GL_TEXTURE1, 0.5, 0.0);
 glVertex2f(50.0, 100.0);
 glMultiTexCoord2f(GL_TEXTURE0, 1.0, 0.0);
 glMultiTexCoord2f(GL_TEXTURE1, 1.0, 1.0);
 glVertex2f(100.0, 0.0);
 glEnd();

Note: If you are multitexturing and you use glTexCoord*(), you are setting
the texture coordinates for the first texture unit. In other words,
using glTexCoord*() is equivalent to using glMultiTexCoord*(GL_
TEXTURE0,...).

In the rare case that you are multitexturing a bitmap or image rectangle, you
need to associate several texture coordinates with each raster position.
Therefore, you must call glMultiTexCoord*() several times, once for each
active texture unit, for each glRasterPos*() or glWindowPos*() call. (Since

void glMultiTexCoord{1234}{sifd}(GLenum texUnit, TYPE coords);
void glMultiTexCoord{1234}{sifd}v(GLenum texUnit, TYPE *coords);

Sets the texture-coordinate data (s, t, r, q) in coords for use with the texture
unit texUnit. The enumerated values for texUnit are the same as for
glActiveTexture().

Shreiner_ch09.fm Page 442 Thursday, June 30, 2005 5:41 PM

Multitexturing 443

there is only one current raster position for the entire bitmap or image
rectangle, there is only one corresponding texture coordinate per unit, so
the aesthetic possibilities are extremely limited.)

Other Methods of Texture-Coordinate Specification

Explicitly calling glMultiTexCoord*() is only one of three ways to specify
texture coordinates when multitexturing. The other two ways are to use
automatic texture-coordinate generation (with glTexGen*()) or vertex
arrays (with glTexCoordPointer()).

If you are multitexturing and using automatic texture-coordinate genera-
tion, then glActiveTexture() directs which texture unit is affected by the
following automatic texture-coordinate generation routines:

• glTexGen*(...)

• glEnable(GL_TEXTURE_GEN_*)

• glDisable(GL_TEXTURE_GEN_*)

If you are multitexturing and specifying texture coordinates in vertex
arrays, then glClientActiveTexture() directs the texture unit for which
glTexCoordPointer() specifies its texture-coordinate data.

Reverting to a Single Texture Unit

If you are using multitexturing and want to return to a single texture unit,
then you need to disable texturing for all units, except for texture unit 0,
with code as shown in Example 9-12.

Example 9-12 Reverting to Texture Unit 0

 /* disable texturing for other texture units */
 glActiveTexture (GL_TEXTURE1);
 glDisable (GL_TEXTURE_2D);
 glActiveTexture (GL_TEXTURE2);
 glDisable (GL_TEXTURE_2D);
 /* make texture unit 0 current */
 glActiveTexture (GL_TEXTURE0);

void glClientActiveTexture(GLenum texUnit);

Selects the current texture unit for specifying texture-coordinate data with
vertex arrays. texUnit is a symbolic constant of the form GL_TEXTUREi,
with the same values that are used for glActiveTexture().

Shreiner_ch09.fm Page 443 Thursday, June 30, 2005 5:41 PM

444 Chapter 9: Texture Mapping

Texture Combiner Functions

Advanced

OpenGL has evolved from its early focus on vertex processing (transforma-
tion, clipping) toward more concern with rasterization and fragment oper-
ations. Texturing functionality is increasingly exposed to the programmer
to improve fragment processing.

In addition to multipass texture techniques, flexible texture combiner func-
tions provide the programmer with finer control over mixing fragments
with texture or other color values. Texture combiner functions support
high-quality texture effects, such as bump mapping, more realistic specular
lighting, and texture fade effects (such as interpolating between two tex-
tures). A combiner function takes color and alpha data from up to three
sources and processes them, generating RGBA values as output for subse-
quent operations.

glTexEnv*() is used extensively to configure combiner functions. In
“Texture Functions,” you encountered an abbreviated description of
glTexEnv*(), and now here’s the complete description:

void glTexEnv{if}(GLenum target, GLenum pname, TYPE param);
void glTexEnv{if}v(GLenum target, GLenum pname, TYPE *param);

Sets the current texturing function. target must be either GL_TEXTURE_
FILTER_CONTROL or GL_TEXTURE_ENV.

If target is GL_TEXTURE_FILTER_CONTROL, then pname must be
GL_TEXTURE_LOD_BIAS, and param is a single, floating-point value
used to bias the mipmapping level-of-detail parameter.

If target is GL_TEXTURE_ENV, acceptable values for the second and
third arguments (pname and param) are listed in Table 9-8. If pname is
GL_TEXTURE_ENV_MODE, param specifies how texture values are com-
bined with the color values of the fragment being processed. Several envi-
ronment modes (GL_BLEND, GL_COMBINE, GL_COMBINE_RGB, and
GL_COMBINE_ALPHA) determine whether other environment modes are
useful.

If the texture environment mode is GL_BLEND, then the GL_TEXTURE_
ENV_COLOR setting is used.

Advanced

Shreiner_ch09.fm Page 444 Thursday, June 30, 2005 5:41 PM

Texture Combiner Functions 445

Here are the steps for using combiner functions. If you are multitexturing,
you may use a different combiner function for every texture unit and thus
repeat these steps for each unit.

• To use any combiner function, you must call

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

If the texture environment mode is GL_COMBINE, then the GL_COMBINE_
RGB, GL_COMBINE_ALPHA, GL_RGB_SCALE, or GL_ALPHA_SCALE
parameters are also used. For the GL_COMBINE_RGB function, the
GL_SOURCEi_RGB and GL_OPERANDi_RGB parameters (where i is 0, 1,
or 2) also may be specified. Similarly for the GL_COMBINE_ALPHA
function, GL_SOURCEi_ALPHA and GL_OPERANDi_ALPHA may be
specified.

glTexEnv pname glTexEnv param

GL_TEXTURE_ENV_MODE GL_DECAL, GL_REPLACE, GL_MODULATE,
GL_BLEND, GL_ADD, or GL_COMBINE

GL_TEXTURE_ENV_COLOR array of 4 floating-point numbers: (R, G, B, A)

GL_COMBINE_RGB GL_REPLACE, GL_MODULATE, GL_ADD,
GL_ADD_SIGNED, GL_INTERPOLATE,
GL_SUBTRACT, GL_DOT3_RGB, or GL_DOT3_RGBA

GL_COMBINE_ALPHA GL_REPLACE, GL_MODULATE, GL_ADD,
GL_ADD_SIGNED, GL_INTERPOLATE, or
GL_SUBTRACT

GL_SRCi_RGB or
GL_SRCi_ALPHA
(where i is 0, 1, or 2)

GL_TEXTURE, GL_TEXTUREn (where n denotes
the nth texture unit and multitexturing is enabled),
GL_CONSTANT, GL_PRIMARY_COLOR, or
GL_PREVIOUS

GL_OPERANDi_RGB
(where i is 0, 1, or 2)

GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA

GL_OPERANDi_ALPHA
(where i is 0, 1, or 2)

GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA

GL_RGB_SCALE floating-point color scaling factor

GL_ALPHA_SCALE floating-point alpha scaling factor

Table 9-8 Texture Environment Parameters If target Is GL_TEXTURE_ENV

Shreiner_ch09.fm Page 445 Thursday, June 30, 2005 5:41 PM

446 Chapter 9: Texture Mapping

• You should specify how you want RGB or alpha values to be combined
(see Table 9-9). For instance, Example 9-13 directs the current texture
unit to subtract RGB and alpha values of one source from another
source.

Example 9-13 Setting the Programmable Combiner Functions

glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_SUBTRACT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_SUBTRACT);

Note: GL_DOT3_RGB and GL_DOT3_RGBA are used only for
GL_COMBINE_RGB and not used for GL_COMBINE_ALPHA.

The GL_DOT3_RGB and GL_DOT3_RGBA modes differ subtly. With
GL_DOT3_RGB, the same dot product is placed into all three (R, G, B)
values. For GL_DOT3_RGBA, the result is placed into all four (R, G, B, A).

• Specify the source for the ith argument of the combiner function with
the constant GL_SOURCEi_RGB. The number of arguments (up to three)
depends upon the type of function chosen. As shown in Table 9-9,
GL_SUBTRACT requires two arguments, which may be set with the
following code:

Example 9-14 Setting the Combiner Function Sources

glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS);

glTexEnv param Combiner Function

GL_REPLACE Arg0

GL_MODULATE (default) Arg0 * Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 – 0.5

GL_INTERPOLATE Arg0 * Arg2 + Arg1 * (1 – Arg2)

GL_SUBTRACT Arg0 – Arg1

GL_DOT3_RGB
GL_DOT3_RGBA

4 * ((Arg0r – 0.5) * (Arg1r – 0.5) +
(Arg0g – 0.5) * (Arg1g – 0.5) +
(Arg0b – 0.5) * (Arg1b – 0.5))

Table 9-9 GL_COMBINE_RGB and GL_COMBINE_ALPHA Functions

Shreiner_ch09.fm Page 446 Thursday, June 30, 2005 5:41 PM

Texture Combiner Functions 447

When pname is GL_SOURCEi_RGB, these are your options for param along
with how the source is determined:

– GL_TEXTURE—the source for the ith argument is the texture of the
current texture unit

– GL_TEXTUREn—the texture associated with texture unit n. (If you
use this source, texture unit n must be enabled and valid, or the
result will be undefined.)

– GL_CONSTANT—the constant color set with GL_TEXTURE_
ENV_COLOR

– GL_PRIMARY_COLOR—the incoming fragment to texture unit 0,
which is the fragment color, prior to texturing

– GL_PREVIOUS—the incoming fragment from the previous texture
unit (for texture unit 0, this is the same as GL_PRIMARY_COLOR)

If you suppose that the GL_SUBTRACT combiner code in Example 9-14 is
set for texture unit 2, then the output from texture unit 1 (GL_PREVIOUS,
Arg1) is subtracted from texture unit 2 (GL_TEXTURE, Arg0).

• Specify which values (RGB or alpha) of the sources are used and how
they are used:

– GL_OPERANDi_RGB matches the corresponding GL_SOURCEi_RGB
and determines the color values for the current GL_COMBINE_
RGB function. If GL_OPERANDi_RGB is pname, then param must
be one of GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA.

– Similarly, GL_OPERANDi_ALPHA matches the corresponding
GL_SOURCEi_ALPHA and determines the alpha values for the
current GL_COMBINE_ALPHA function. However, param is limited
to either GL_SRC_ALPHA or GL_ONE_MINUS_SRC_ALPHA.

When GL_SRC_ALPHA is used for the GL_COMBINE_RGB function, the
alpha values for the combiner source are interpreted as R, G, B values. In
Example 9-15, the three R, G, B components for Arg2 are (0.4, 0.4, 0.4).

Example 9-15 Using an Alpha Value for RGB Combiner Operations

static GLfloat constColor[4] = {0.1, 0.2, 0.3, 0.4};
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constColor);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC2_RGB, GL_CONSTANT);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);

Shreiner_ch09.fm Page 447 Thursday, June 30, 2005 5:41 PM

448 Chapter 9: Texture Mapping

In Example 9-15, if the operand had instead been GL_SRC_COLOR, the
RGB components would be (0.1, 0.2, 0.3). For GL_ONE_MINUS* modes,
a value’s complement (either 1–color or 1–alpha) is used for combiner
calculations. In Example 9-15, if the operand is GL_ONE_MINUS_SRC_
COLOR, the RGB components are (0.9, 0.8, 0.7). For GL_ONE_MINUS_
SRC_ALPHA, the result is (0.6, 0.6, 0.6).

• Optionally choose RGB or alpha scaling factors. The defaults are

glTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE, 1.0);
glTexEnvf(GL_TEXTURE_ENV, GL_ALPHA_SCALE, 1.0);

• Finally draw the geometry, ensuring vertices have associated texture
coordinates.

The Interpolation Combiner Function

The interpolation function helps illustrate texture combiners, because it
uses the maximum number of arguments and several source and operand
modes. Example 9-16 is a portion of the sample program combiner.c.

Example 9-16 Interpolation Combiner Function: combiner.c

/* for use as constant texture color */
static GLfloat constColor[4] = {0.0, 0.0, 0.0, 0.0};

constColor[3] = 0.2;
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constColor);
glBindTexture(GL_TEXTURE_2D, texName[0]);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC2_RGB, GL_CONSTANT);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);

/* geometry is now rendered */

In Example 9-16, there is only one active texture unit. Since GL_
INTERPOLATE is the combiner function, there are three arguments, and
they are combined with the following formula: (Arg0 * Arg2) + (Arg1 *
(1 – Arg2)). The three arguments are as follows:

Shreiner_ch09.fm Page 448 Thursday, June 30, 2005 5:41 PM

Texture Combiner Functions 449

• Arg0, GL_TEXTURE, the texture image associated with the
currently bound texture object (texName[0])

• Arg1, GL_PREVIOUS, the result of the previous texture unit, but
since this is texture unit 0, GL_PREVIOUS is the fragment prior to
texturing

• Arg2, GL_CONSTANT, a constant color; currently (0.0, 0.0, 0.0, 0.2)

The interpolated result you get is a weighted blending of the texture image
and the untextured fragment. Because GL_SRC_ALPHA is specified for GL_
OPERAND2_RGB, the alpha value of the constant color (Arg2) serves as the
weighting.

If you run the sample program combiner.c, you’ll see 20 percent of the
texture blended with 80 percent of a smooth-shaded polygon. combiner.c
also varies the alpha value of the constant color, so you’ll see the results of
different weightings.

Examining the interpolation function explains why several of the OpenGL
default values were chosen. The third argument for interpolation is
intended as weight for the two other sources. Since interpolation is the only
combiner function to use three arguments, it’s safe to make GL_CONSTANT
the default for Arg2. At first glance, it may seem odd that the default value
for GL_OPERAND2_RGB is GL_SRC_ALPHA. But the interpolation weight is
usually the same for all three color components, so using a single value
makes sense, and taking it from the alpha value of the constant is
convenient.

glTexEnv pname Initial Value for param

GL_SRC0_RGB GL_TEXTURE

GL_SRC1_RGB GL_PREVIOUS

GL_SRC2_RGB GL_CONSTANT

GL_OPERAND0_RGB GL_SRC_COLOR

GL_OPERAND1_RGB GL_SRC_COLOR

GL_OPERAND2_RGB GL_SRC_ALPHA

Table 9-10 Default Values for Some Texture Environment Modes

Shreiner_ch09.fm Page 449 Thursday, June 30, 2005 5:41 PM

450 Chapter 9: Texture Mapping

Applying Secondary Color after Texturing

While applying a texture to a typical fragment, only a primary color is
combined with the texel colors. The primary color may be the result of
lighting calculations or glColor*().

After texturing, but before fog calculations, sometimes a secondary color is
also applied to a fragment. Application of a secondary color may result in a
more realistic highlight on a textured object.

Secondary Color When Lighting Is Disabled

If lighting is not enabled and the color sum mode is enabled (by
glEnable(GL_COLOR_SUM)), then the current secondary color (set by
glSecondaryColor*()) is added to the post-texturing fragment color.

glSecondaryColor*() accepts the same data types and interprets values the
same way that glColor*() does. (See Table 4-1 on page 178.) Secondary
colors may also be specified in vertex arrays.

Secondary Specular Color When Lighting Is Enabled

Texturing operations are applied after lighting, but blending specular
highlights with a texture’s colors usually lessens the effect of lighting. As
discussed earlier (in “Selecting a Lighting Model” on page 207), you can cal-
culate two colors per vertex: a primary color, which consists of all nonspec-
ular contributions, and a secondary color, which is a sum of all specular
contributions. If specular color is separated, the secondary (specular) color
is added to the fragment after the texturing calculation.

void glSecondaryColor3{b s i f d ub us ui}(TYPE r, TYPE g, TYPE b);
void glSecondaryColor3{b s i f d ub us ui}v(const TYPE *values);

Sets the red, green, and blue values for the current secondary color. The
first suffix indicates the data type for parameters: byte, short, integer,
float, double, unsigned byte, unsigned short, or unsigned integer. If there
is a second suffix, v, then values is a pointer to an array of values of the
given data type.

Shreiner_ch09.fm Page 450 Thursday, June 30, 2005 5:41 PM

The Texture Matrix Stack 451

Note: If lighting is enabled, the secondary specular color is applied,
regardless of the GL_COLOR_SUM mode, and any secondary color
set by glSecondaryColor*() is ignored.

The Texture Matrix Stack

Advanced

Just as your model coordinates are transformed by a matrix before being
rendered, texture coordinates are multiplied by a 4 × 4 matrix before any
texture mapping occurs. By default, the texture matrix is the identity, so the
texture coordinates you explicitly assign or those that are automatically
generated remain unchanged. By modifying the texture matrix while
redrawing an object, however, you can make the texture slide over the
surface, rotate around it, stretch and shrink, or any combination of the
three. In fact, since the texture matrix is a completely general 4 × 4 matrix,
effects such as perspective can be achieved.

The texture matrix is actually the top matrix on a stack, which must have a
stack depth of at least two matrices. All the standard matrix-manipulation
commands such as glPushMatrix(), glPopMatrix(), glMultMatrix(), and
glRotate*() can be applied to the texture matrix. To modify the current
texture matrix, you need to set the matrix mode to GL_TEXTURE, as
follows:

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */
glRotated(...);
/* ... other matrix manipulations ... */
glMatrixMode(GL_MODELVIEW); /* back to modelview mode */

The q-Coordinate

The mathematics of the fourth texture coordinate, q, are similar to the
w-coordinate of the (x, y, z, w) object coordinates. When the four texture
coordinates (s, t, r, q) are multiplied by the texture matrix, the resulting
vector (s’, t’, r’, q’) is interpreted as homogeneous texture coordinates. In
other words, the texture map is indexed by s’/q’, t’/q’, and r’/q’.

You can make use of q in cases where more than one projection or perspec-
tive transformation is needed. For example, suppose you want to model a
spotlight that has some nonuniform pattern—brighter in the center, per-
haps, or noncircular, because of flaps or lenses that modify the shape of the

Advanced

Shreiner_ch09.fm Page 451 Thursday, June 30, 2005 5:41 PM

452 Chapter 9: Texture Mapping

beam. You can emulate shining such a light onto a flat surface by making a
texture map that corresponds to the shape and intensity of a light, and then
projecting it onto the surface in question using projection transformations.
Projecting the cone of light onto surfaces in the scene requires a perspective
transformation (q ≠ 1), since the lights might shine on surfaces that aren’t
perpendicular to them. A second perspective transformation occurs because
the viewer sees the scene from a different (but perspective) point of view.
(See Plate 28 for an example; and see “Fast Shadows and Lighting Effects
Using Texture Mapping” by Mark Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran, and Paul Haeberli, SIGGRAPH 1992 Proceedings [Computer
Graphics, 26:2, July 1992, pp. 249–252] for more details.)

Another example might arise if the texture map to be applied comes from a
photograph that itself was taken in perspective. As with spotlights, the final
view depends on the combination of two perspective transformations.

Nate Robins’ Texture Tutorial

In Nate Robins’ texture tutorial, you can use the popup menu to view the
4 × 4 texture matrix, make changes in matrix values, and then see their
effects.

Depth Textures

Advanced

After lighting a surface (see Chapter 5), you’ll soon notice that OpenGL
light sources don’t cast shadows. The color at each vertex is calculated
without regard to any other objects in the scene. To have shadows, you need
to determine and record which surfaces (or portions of the surfaces) are
occluded from a direct path to a light source.

A multi-pass technique using depth textures provides a solution to render-
ing shadows. If you temporarily move the viewpoint to the light source
position, you notice that everything you see is lit—there are no shadows
from that perspective. A depth texture provides the mechanism to save the
depth values for all “unshadowed” fragments in a shadow map. As you ren-
der your scene, if you compare each incoming fragment to the correspond-
ing depth value in the shadow map, you can choose what to render,
depending upon whether it is or isn’t shadowed. The idea is similar to the
depth test, except that it’s done from the point of view of the light source.

Advanced

Shreiner_ch09.fm Page 452 Thursday, June 30, 2005 5:41 PM

Depth Textures 453

The condensed description is as follows:

1. Render the scene from the point of view of the light source. It doesn’t
matter how the scene looks; you only want the depth values. Create a
shadow map by capturing the depth buffer values and storing them in
a texture map (shadow map).

2. Generate texture coordinates with (s, t) coordinates referencing loca-
tions within the shadow map, with the third texture coordinate (r), as
the distance from the light source. Then draw the scene a second time,
comparing the r value with the corresponding depth texture value to
determine whether the fragment is lit or in shadow.

The following sections provide a more detailed discussion, along with
sample code illustrating each of the steps.

Creating a Shadow Map

The first step is to create a texture map of depth values. You create this by
rendering the scene with the viewpoint positioned at the light source’s
position. Example 9-17 calls glGetLightfv() to obtain the current light
source position, calculates an up-vector, and then uses it as the viewing
transformation.

Example 9-17 begins by setting the viewport size to match that of the
texture map. It then sets up the appropriate projection and viewing
matrices. The objects for the scene are rendered, and the resulting depth
image is copied into texture memory for use as a shadow map. Finally, the
viewport is reset to it’s original size and position.

Note a few more points:

• The projection matrix controls the shape of the light’s “lampshade.”
The variables lightFovy and lightAspect in the gluPerspective() control
the size of the lampshade. A small lightFovy value will be more like a
spotlight, and a larger value will be more like a floodlight.

• The near and far clipping planes for the light (lightNearPlane and
lightFarPlane) are used to control the precision of the depth values.
Try to keep the separation between the near and far planes as small
as possible to maximize the precision of the values.

• After the depth values have been established in the depth buffer, you
want to capture them and put them into a GL_DEPTH_COMPONENT
format texture map. Example 9-17 uses glCopyTexImage2D() to make

Shreiner_ch09.fm Page 453 Thursday, June 30, 2005 5:41 PM

454 Chapter 9: Texture Mapping

a texture image from the depth buffer contents. As with any texture,
ensure that the image width and height are powers of two.

Example 9-17 Rendering Scene with Viewpoint at Light Source: shadowmap.c

GLint viewport[4];
GLfloat lightPos[4];

glGetLightfv(GL_LIGHT0, GL_POSITION, lightPos);
glGetIntegerv(GL_VIEWPORT, viewport);

glViewport(0, 0, SHADOW_MAP_WIDTH, SHADOW_MAP_HEIGHT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPerspective(lightFovy, lightAspect, lightNearPlane,
 lightFarPlane);
glMatrixMode(GL_MODELVIEW);

glPushMatrix();
glLoadIdentity();
gluLookAt(lightPos[0], lightPos[1], lightPos[2],
 lookat[0], lookat[1], lookat[2],
 up[0], up[1], up[2]);
drawObjects();
glPopMatrix();

glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);

glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 0, 0,
 SHADOW_MAP_WIDTH, SHADOW_MAP_HEIGHT, 0);

glViewport(viewport[0], viewport[1],
 viewport[2], viewport[3]);

Generating Texture Coordinates and Rendering

Now use glTexGen*() to automatically generate texture coordinates that
compute the eye-space distance from the light source position. The value of
the r coordinate should correspond to the distance from the primitives to

Shreiner_ch09.fm Page 454 Thursday, June 30, 2005 5:41 PM

Depth Textures 455

the light source. You can do this by using the same projection and viewing
transformations that you used to create the shadow map. Example 9-18 uses
the GL_MODELVIEW matrix stack to do all the matrix computations.

Note that the generated (s, t, r, q) texture coordinates and the depth values
in the shadow map are not similarly scaled. The texture coordinates are
generated in eye coordinates, so they fall in the range [−1, 1]. The depth
values in the texels are within [0, 1]. Therefore, an initial translation and
scaling maps the texture coordinates into the same range of values as the
shadow map.

Example 9-18 Calculating Texture Coordinates: shadowmap.c

GLfloat tmpMatrix[16];

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glTranslatef(0.5, 0.5, 0.0);
glScalef(0.5, 0.5, 1.0);
gluPerspective(lightFovy, lightAspect,
 lightNearPlane, lightFarPlane);
gluLookAt(lightPos[0], lightPos[1], lightPos[2],
 lookat[0], lookat[1], lookat[2],
 up[0], up[1], up[2]);
glGetFloatv(GL_MODELVIEW_MATRIX, tmpMatrix);
glPopMatrix();

transposeMatrix(tmpMatrix);

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGenfv(GL_S, GL_OBJECT_PLANE, &tmpMatrix[0]);
glTexGenfv(GL_T, GL_OBJECT_PLANE, &tmpMatrix[4]);
glTexGenfv(GL_R, GL_OBJECT_PLANE, &tmpMatrix[8]);
glTexGenfv(GL_Q, GL_OBJECT_PLANE, &tmpMatrix[12]);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

In Example 9-19, before the scene is rendered for the second and final time,
the texture comparison mode GL_COMPARE_R_TO_TEXTURE instructs

Shreiner_ch09.fm Page 455 Thursday, June 30, 2005 5:41 PM

456 Chapter 9: Texture Mapping

OpenGL to compare the fragment’s r-coordiate with the texel value. If the
r distance is less than or equal to (the comparison function GL_LEQUAL)
the texel value, there is nothing between this fragment and the light source,
and it is effectively treated as having a luminance value of one. If the com-
parison fails, then there is another primitive between this fragment and the
light source, so this fragment is shadowed and has an effective luminance
of zero.

Example 9-19 Rendering Scene Comparing r Coordinate: shadowmap.c

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,
 GL_LEQUAL);
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE,
 GL_LUMINANCE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
 GL_COMPARE_R_TO_TEXTURE);
glEnable(GL_TEXTURE_2D);

This technique can produce some unintended visual artifacts:

• Self-shadowing, whereby an object incorrectly casts a shadow upon
itself, is a common problem.

• Aliasing of the projected texture, particularly in the regions farthest
from the light sources, can occur. Using higher resolution shadow
maps can help reduce the aliasing.

• GL_MODULATE mode, when used with depth texturing, may cause
sharp transitions between shadowed and unshadowed regions.

Unfortunately, there are no steadfast rules for overcoming these issues.
Some experimentation may be required to produce the best-looking image.

Shreiner_ch09.fm Page 456 Thursday, June 30, 2005 5:41 PM

