
151

Chapter 5
Integer Security

Everything good is the transmutation of something evil:
every god has a devil for a father.

—Friedrich Nietzsche. Sämtliche Werke: Kritische
Studienausgabe, vol. 10, selection 5[1], number 68

Integers represent a growing and underestimated source of vulnerabilities in C
and C++ programs. This is primarily because boundary conditions for integers,
unlike other boundary conditions in software engineering, have been inten-
tionally ignored. Most programmers emerging from colleges and universities
understand that integers have fixed limits, but because these limits were either
deemed sufficient, or because testing the results of each arithmetic operation
was considered prohibitively expensive, violating integer boundary conditions
has gone almost entirely unchecked in commercial software.

Security changes everything. It is no longer acceptable to assume a pro-
gram will operate normally given a range of expected inputs when an attacker
is looking for input values that produce an abnormal effect. Digital integer rep-
resentations are, of course, imperfect. A software vulnerability may result when a
program evaluates an integer to an unexpected value (that is, a value other
than the one obtained with pencil and paper) and then uses the value as an
array index, size, or loop counter.

Because integer range checking has not been systematically applied in the
development of most C and C++ software systems, security flaws involving

Seacord_book.fm Page 151 Thursday, August 11, 2005 3:10 PM

152 Integer Security

integers are certain to exist, and some portion of these are likely to be vulnera-
bilities.

Figure 5–1 contains an example of a vulnerable program. The vulnerability
results from a failure in how integer operations are managed. If you are unsure
of why this program is vulnerable or how this vulnerability can be exploited to
run arbitrary code, you should read the remainder of this chapter. Because
integer vulnerabilities result from limitations in how they’re represented, inte-
ger representation is examined first.

■ 5.1 Integers

This section describes integer representations, types, and ranges. If you are
already familiar with machine-level representation and manipulation of integer
values, you can ignore this section and proceed to Section 5.2.

Integer Representation
The major consideration in the digital representation of integers is negative
integers. Representation methods include signed-magnitude, one’s complement,
and two’s complement [Shiflet 02].

Signed-magnitude representation uses the high-order bit to indicate the
sign: 0 for positive, 1 for negative. The remaining low-order bits indicate the
magnitude of the value. For example, the binary value 0010 1001 shown in
Figure 5–2 represents +41 when the most significant bit is cleared and –41
when it is set.

One’s complement representation replaced signed magnitude because the
circuitry required to implement signed-magnitude arithmetic was too compli-
cated. Negative numbers are represented in one’s complement form by comple-

1. int main(int argc, char *const *argv) {
2. unsigned short int total;
3. total = strlen(argv[1])+strlen(argv[2])+1;
4. char *buff = (char *)malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. }

Figure 5–1. Vulnerable program

Seacord_book.fm Page 152 Thursday, August 11, 2005 3:10 PM

5.1 Integers 153

menting (taking the opposite value of) each bit, as shown in Figure 5–3 (a).
Each 1 is replaced with a 0 and each 0 is replaced with a 1. Even the sign bit is
reversed.

Both signed-magnitude and one’s complement representations have two rep-
resentations for zero, which makes programming awkward: tests are required for
+0 and –0.

Two’s complement representation is the dominant representation and is
used almost universally in modern computers. The two’s complement form of
a negative integer is created by adding one to the one’s complement representa-
tion, as shown in Figure 5–3 (b). Two’s complement representation has a single
(positive) value for zero. The sign is still represented by the most significant
bit, and the notation for positive integers is identical to their signed-magnitude
representations.

Integer Types
C and C++ provide a variety of integer types to allow a close correspondence
with the underlying machine architecture. The integer types categories are
shown in Table 5–1.

There are two broad categories of integer types: standard and extended. The
standard integer types include all the well-known integer types that have
existed from the early days of K&R C. Extended integer types are defined in
the C99 standard to specify integer types with fixed constraints.

Figure 5–2. Signed-magnitude representation of +41 and –41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 1

41

+

 32 + 8 1

41–

++

Figure 5–3. Integer representations

0 0 1 0 1 0 0 1

0 0 01 1 1 1 1

(a) One’s complement representation

0 0 1 0 1 0 0 1

0 0 11 1 1 1 1

(b) Two’s complement representation

+ 1 =

Seacord_book.fm Page 153 Thursday, August 11, 2005 3:10 PM

154 Integer Security

Signed and Unsigned Types. Integers in C and C++ are either signed or
unsigned. Both standard and extended integer types include signed and
unsigned types; for each signed type there is an equivalent unsigned type.
Signed integers are used to represent positive and negative values, the range of
which depends on the number of bits allocated to the type and the encoding
technique. On a computer using two’s complement arithmetic, a signed inte-
ger ranges from –2n–1 through 2n–1 – 1. When one’s complement or sign-mag-
nitude representations are used, the lower bound is –2n–1 + 1, while the upper
bound remains the same.

Figure 5–4 shows the two’s complement representation for 4-bit signed
integers. Note that incrementing a signed integer at its maximum value (7)
results in the minimum value for that type (–8).

Unsigned integer values range from zero to a maximum that depends on
the size of the type. This maximum value can be calculated as 2n – 1, where n is

Table 5–1. Integer Types

Standard Extended

Signed Standard signed integer types Extended signed integer types

Unsigned Standard unsigned integer types Extended unsigned integer types

Figure 5–4. Signed integer representation (4-bit, two’s complement)

0

–8

1

2

3

4

5

6

7

–1

–2

–3

–4

–5

–6

–7

4-Bit
two’s complement

signed integer
representation

0000 0001

0010

0011

0100

0101

0110

0111
1000

1111

1110

1101

1100

1011

1010

1001

Seacord_book.fm Page 154 Thursday, August 11, 2005 3:10 PM

5.1 Integers 155

the number of bits used to represent the unsigned type. For each signed inte-
ger type, there is a corresponding unsigned integer type.

Figure 5–5 shows the two’s complement representation for 4-bit unsigned
integers. Again, note that incrementing a signed integer at its maximum value
(15) results in the minimum value for that type (0).

Standard and Extended Types. Standard integers include the following
types, in increasing length order (for example, long long int cannot be shorter
than long int):

■ signed char

■ short int

■ int

■ long int

■ long long int

Extended integer types are implementation defined and include the fol-
lowing types:

■ int#_t, uint#_t, where # represents an exact width (for example,
int8_t, uint24_t)

■ int_least#_t, uint_least#_t, where # represents a width of at least
that value (for example, int_least32_t, uint_least16_t)

Figure 5–5. Unsigned integer representation (4-bit, two’s complement)

0

8

1

2

3

4

5

6

7

15

14

13

12

11

10

9

4-Bit two’s
complement

unsigned integer
representation

0000 0001

0010

0011

0100

0101

0110

0111
1000

1111

1110

1101

1100

1011

1010

1001

Seacord_book.fm Page 155 Thursday, August 11, 2005 3:10 PM

156 Integer Security

■ int_fast#_t, uint_fast#_t, where # represents a width of at least that
value for fastest integer types (for example, int_fast16_t,
uint_fast64_t)

■ intptr_t, uintptr_t are integer types wide enough to hold pointers to
objects

■ intmax_t, uintmax_t are integer types with the greatest width

Compilers that adhere to the C99 standard support all standard types and
most extended types.

Other Standard Integer Types. In addition to the standard and extended
integer types, the C99 specification also defines a number of standard types
that are used for special purposes. For example, the following types are defined
in the standard header <stddef.h>:

■ ptrdiff_t is the signed integer type of the result of subtracting two
pointers

■ size_t is the unsigned integer type of the result of the sizeof operator

■ wchar_t is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified
among the supported locales

You should use these types where appropriate, but understand how they
are defined, particularly when combined in operations with differently typed
integers.

Platform-Specific Integer Types. In addition to the integer types defined in
the C99 standard types, vendors often define platform-specific integer types.
The Microsoft Windows API defines a large number of integer types, includ-
ing: __int8, __int16, __int32, __int64, ATOM, BOOLEAN, BOOL, BYTE, CHAR,
DWORD, DWORDLONG, DWORD32, DWORD64, WORD, INT, INT32, INT64, LONG, LONGLONG,
LONG32, LONG64, and so forth.1

As a Windows programmer you will frequently come across these types.
Again, it is okay to use these types, but you should understand how they are
defined.

1. See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/
_langref_Data_Type_Ranges.asp and http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/winprog/winprog/windows_data_types.asp for more information on these
data types.

Seacord_book.fm Page 156 Thursday, August 11, 2005 3:10 PM

5.1 Integers 157

Integer Ranges
The minimum and maximum values for an integer type depend on the type’s
representation, signedness, and number of allocated bits. Figure 5–6 shows the
ranges of some integers that use two’s complement representation.

The C99 standard sets minimum requirements for these ranges. Table 5–2
shows the maximum and minimum extents of integer types as required by C99
and as implemented by the Visual C++ .NET and gcc compilers on IA-32. Inte-
ger ranges are compiler dependent but greatly influenced by the target machine
architecture, as demonstrated by the use of a single column in Table 5–2 to rep-
resent integer sizes for both compilers.

Compiler- and platform-specific integral limits are documented in the
limits.h header file. Familiarize yourself with these limits, but remember that
these values are platform specific. For portability, use the named constants and
not the actual values in your code.

Comair
A good example of a software failure resulting from integer limits came on Sat-
urday, December 25, 2004, when Comair halted all operations and grounded
1,100 flights after a crash of its flight crew scheduling software.

The software failure was due to a 16-bit counter that limits the number
of changes to 32,768 in any given month. Storms earlier in the month
caused many crew reassignments, and the 16-bit value was exceeded.

Figure 5–6. Integer ranges (not to scale)

Signed char

0 127–128

0 255

Unsigned char

0 32767

Short

–32768

0 65535

Unsigned short

Seacord_book.fm Page 157 Thursday, August 11, 2005 3:10 PM

158

Table 5–2. Maximum and Minimum Extents of Integer Types

Constant C99 minimum value
Visual C++ .NET and
GNU CC on Intel x86 Description

CHAR_BIT 8 8 Number of bits for smallest
object that is not a bit-field
(byte)

SCHAR_MIN –127 // -(27 – 1) –128 Minimum value for an object
of type signed char

SCHAR_MAX +127 // 27 – 1 +127 Maximum value for an object
of type signed char

UCHAR_MAX 255 // 28 – 1 255 Maximum value for an object
of type unsigned char

SHRT_MIN –32,767 // –(215 – 1) –32,768 Minimum value for an object
of type short int

SHRT_MAX +32,767 // 215 – 1 +32,767 Maximum value for an object
of type short int

USHRT_MAX 65,535 // 216 – 1 65,535 Maximum value for an object
of type unsigned short int

INT_MIN –32,767 // –(215 – 1) –2,147,483,648 Minimum value for an object
of type int

INT_MAX +32,767 // 215 – 1 +2,147,483,647 Maximum value for an object
of type int

UINT_MAX 65,535 // 216 – 1 4,294,967,295 Maximum value for an object
of type unsigned int

LONG_MIN –2147483647 // –(231 – 1) –2,147,483,648 Minimum value for an object
of type long int

LONG_MAX +2,147,483,647 // 231 – 1 +2,147,483,647 Maximum value for an object
of type long int

ULONG_MAX 4,294,967,295 // 232 – 1 4,294,967,295 Maximum value for an object
of type unsigned long int

LLONG_MINa

a. The default constant for gcc is LONG_LONG_MIN. For Visual C++ it is I64_MIN.

–9223372036854775807
// – (263 – 1)

–9223372036854775808 Minimum value for an object
of type long long int

LLONG_MAXb

b. The default constant for gcc is LONG_LONG_MAX. For Visual C++ it is I64_MAX.

+9223372036854775807
// 263 – 1

+9223372036854775807 Maximum value for an object
of type long long int

ULLONG_MAXc 18446744073709551615
// 264 – 1

18446744073709551615 Maximum value for an object of
type unsigned long long int

c. The default constant for gcc is ULONG_LONG_MAX. For Visual C++ it is _UI64_MAX.

Seacord_book.fm Page 158 Thursday, August 11, 2005 3:10 PM

5.2 Integer Conversions 159

■ 5.2 Integer Conversions

Type conversions occur explicitly in C and C++ as the result of a cast or implic-
itly as required by an operation. While conversions are generally required for
the correct execution of a program, they can also lead to lost or misinterpreted
data. This section describes how and when conversions are performed and
identifies their pitfalls.

Implicit conversions are, in part, a consequence of the C language ability
to perform operations on mixed types. For example, most C programmers
would not think twice before adding an unsigned char to a signed char and
storing the result in a short int. This is because the C compiler generates the
code required to perform the required conversions implicitly.

The C99 standard rules define how C compilers handle conversions. These
rules, which are described in the following sections, include integer promotions,
integer conversion rank, and usual arithmetic conversions.

Integer Promotions
Integer types smaller than int are promoted when an operation is performed on
them. If all values of the original type can be represented as an int, the value of
the smaller type is converted to an int; otherwise, it is converted to an
unsigned int.

Integer promotions are applied as part of the usual arithmetic conversions
(discussed later in this section) to certain argument expressions, operands of
the unary +, –, and ~ operators, and operands of the shift operators. The fol-
lowing code fragment illustrates the use of integer promotions:

char c1, c2;
c1 = c1 + c2;

Integer promotions require the promotion value of each variable (c1 and
c2) to int size. The two ints are added and the sum truncated to fit into the
char type.

Integer promotions are performed to avoid arithmetic errors resulting from
the overflow of intermediate values. On line 5 of Figure 5–7, the value of c1 is
added to the value of c2. The sum of these values is then added to the value of
c3 (according to operator precedence rules). The addition of c1 and c2 would
result in an overflow of the signed char type because the result of the opera-
tion exceeds the maximum size of signed char. Because of integer promotions,
however, c1, c2, and c3 are each converted to integers and the overall expres-
sion is successfully evaluated. The resulting value is then truncated and stored

Seacord_book.fm Page 159 Thursday, August 11, 2005 3:10 PM

160 Integer Security

in cresult. Because the result is in the range of the signed char type, the trun-
cation does not result in lost data.

Integer Conversion Rank
Every integer type has an integer conversion rank that determines how conver-
sions are performed. The following rules for determining integer conversion
rank are defined in C99.

■ No two different signed integer types have the same rank, even if they
have the same representation.

■ The rank of a signed integer type is greater than the rank of any signed
integer type with less precision.

■ The rank of long long int is greater than the rank of long int, which
is greater than the rank of int, which is greater than the rank of short
int, which is greater than the rank of signed char.

■ The rank of any unsigned integer type is equal to the rank of the corre-
sponding signed integer type, if any.

■ The rank of any standard integer type is greater than the rank of any
extended integer type with the same width.

■ The rank of char is equal to the rank of signed char and unsigned
char.

■ The rank of any extended signed integer type relative to another
extended signed integer type with the same precision is implementa-
tion defined but still subject to the other rules for determining the inte-
ger conversion rank.

■ For all integer types T1, T2, and T3, if T1 has greater rank than T2 and
T2 has greater rank than T3, then T1 has greater rank than T3.

1. char cresult, c1, c2, c3;
2. c1 = 100;
3. c2 = 90;
4. c3 = –120;
5. cresult = c1 + c2 + c3;

Figure 5–7. Preventing arithmetic errors with implicit conversions

Seacord_book.fm Page 160 Thursday, August 11, 2005 3:10 PM

5.2 Integer Conversions 161

The integer conversion rank is used in the usual arithmetic conversions to
determine what conversions need to take place to support an operation on
mixed integer types.

Conversions from Unsigned Integer Types
Conversions occur between signed and unsigned integer types of any size and
can result in lost or misinterpreted data when a value cannot be represented in
the new type.

Conversions of smaller unsigned integer types to larger unsigned integer
types are always safe and typically accomplished by zero-extending the value.

When a large unsigned integer is converted to a smaller unsigned integer
type, the larger value is truncated and the low-order bits are preserved. When a
large unsigned integer is converted to a smaller signed integer type, the value
is also truncated, and the high-order bit becomes the sign bit. In both cases,
data may be lost if the value cannot be represented in the new type.

When unsigned integer types are converted to the corresponding signed
integer type (for example, an unsigned char to a char), the bit pattern is pre-
served, so no data is lost. The high-order bit, however, becomes the sign bit. If
the sign bit is set, both the sign and magnitude of the value changes.

Table 5–3 summarizes conversions from unsigned integer types. Conver-
sions that can result in lost data are light gray, and ones that can result in the
incorrect interpretation of data are dark gray.

Conversions from Signed Integer Types
When a signed integer is converted to an unsigned integer of equal or greater
size and the value of the signed integer is not negative, the value is unchanged.
The conversion is typically made by sign-extending the signed integer. A
signed integer is converted to a shorter signed integer by truncating the high-
order bits.

When signed integer types are converted to unsigned, there is no lost data
because the bit pattern is preserved. However, the high-order bit loses its func-
tion as a sign bit. If the value of the signed integer is not negative, the value is
unchanged. If the value is negative, the resulting unsigned value is evaluated as
a large, signed integer. In line 3 of Figure 5–8, the value of c is compared to the
value of l. Because of integer promotions, c is converted to an unsigned inte-
ger with a value of 0xFFFFFFFF or 4,294,967,295.

Table 5–4 summarizes conversions from signed integer types. Conversions
that can result in lost data are light gray, and ones that can result in the incor-
rect interpretation of data are dark gray.

Seacord_book.fm Page 161 Thursday, August 11, 2005 3:10 PM

162 Integer Security

Signed or Unsigned Characters
An additional complication in C and C++ conversion is that the character type
char can be signed or unsigned (depending on the compiler and machine).
When a signed char with its high-bit set is saved in an integer, the result is a
negative number. In some cases this can lead to an exploitable vulnerability, so
in general it is best to use unsigned char instead of char or signed char for

Table 5–3. Conversions from Unsigned Integer Types

From To Method

unsigned char char Preserve bit pattern; high-order bit becomes sign bit

unsigned char short Zero-extend

unsigned char long Zero-extend

unsigned char unsigned short Zero-extend

unsigned char unsigned long Zero-extend

unsigned short char Preserve low-order byte

unsigned short short Preserve bit pattern; high-order bit becomes sign bit

unsigned short long Zero-extend

unsigned short unsigned char Preserve low-order byte

unsigned long char Preserve low-order byte

unsigned long short Preserve low-order word

unsigned long long Preserve bit pattern; high-order bit becomes sign bit

unsigned long unsigned char Preserve low-order byte

unsigned long unsigned short Preserve low-order word

1. unsigned int l = ULONG_MAX;
2. char c = -1;

3. if (c == l) {
4. printf("Why is -1 = 4,294,967,295???\n");
5. }

Figure 5–8. Integer promotion error

Seacord_book.fm Page 162 Thursday, August 11, 2005 3:10 PM

5.2 Integer Conversions 163

buffers, pointers, and casts when dealing with character data that may have
values greater than 127 (0x7f). For example, when processing e-mail messages,
certain versions of sendmail create tokens from address elements (user, host,
domain). The code that performs this function (prescan() in parseaddr.c)
contains logic to check that the tokens are not malformed or overly long. In
certain cases, a variable in prescan() is set to the special control value –1,
which may alter the program logic to skip the length checks. Using an e-mail
message with a specially crafted address containing 0xFF, an attacker can
bypass the length checks and overwrite the saved instruction pointer on the
stack. When prescan() evaluates a character with the value 0xFF as an int,
the value is interpreted as –1, causing the length checks to be skipped. This
vulnerability is described in VU#897604 and elsewhere.2

2. See http://www.kb.cert.org/vuls/id/897604.

Table 5–4. Conversions from Signed Integer Types

From To Method

char short Sign-extend

char long Sign-extend

char unsigned char Preserve pattern; high-order bit loses function as sign bit

char unsigned short Sign-extend to short; convert short to unsigned short

char unsigned long Sign-extend to long; convert long to unsigned long

short char Preserve low-order byte

short long Sign-extend

short unsigned char Preserve low-order byte

short unsigned short Preserve bit pattern; high-order bit loses function as sign bit

short unsigned long Sign-extend to long; convert long to unsigned long

long char Preserve low-order byte

long short Preserve low-order word

long unsigned char Preserve low-order byte

long unsigned short Preserve low-order word

long unsigned long Preserve bit pattern; high-order bit loses function as sign bit

Seacord_book.fm Page 163 Thursday, August 11, 2005 3:10 PM

164 Integer Security

Usual Arithmetic Conversions
Many operators that accept arithmetic operands perform conversions using the
usual arithmetic conversions. After integer promotions are performed on both
operands, the following rules are applied to the promoted operands.

1. If both operands have the same type, no further conversion is needed.

2. If both operands are of the same integer type (signed or unsigned), the
operand with the type of lesser integer conversion rank is converted to
the type of the operand with greater rank.

3. If the operand that has unsigned integer type has rank greater than or
equal to the rank of the type of the other operand, the operand with
signed integer type is converted to the type of the operand with
unsigned integer type.

4. If the type of the operand with signed integer type can represent all of
the values of the type of the operand with unsigned integer type, the
operand with unsigned integer type is converted to the type of the
operand with signed integer type.

5. Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

Specific operations can add to or modify the semantics of the usual arith-
metic operations.

■ 5.3 Integer Error Conditions

Integer operations can resolve to unexpected values as a result of an overflow
condition, sign error, or truncation error. This section explains what these condi-
tions are and how they occur.

Integer Overflow
An integer overflow occurs when an integer is increased beyond its maximum
value or decreased beyond its minimum value.3 Integer overflows are closely
related to the underlying representation.

3. Decreasing an integer beyond its minimum value is often referred to as an integer
underflow, although technically this term refers to a floating point condition.

Seacord_book.fm Page 164 Thursday, August 11, 2005 3:10 PM

5.3 Integer Error Conditions 165

Overflows can be signed or unsigned. A signed overflow occurs when a
value is carried over to the sign bit. An unsigned overflow occurs when the
underlying representation can no longer represent a value. It is impossible to
determine whether an overflow represents an error condition without under-
standing the context. For example, a signed overflow condition is not an error
when adding two unsigned numbers.

Integer promotion rules dictate that integers smaller than size int are pro-
moted to int or unsigned int before being operated on. This means that inte-
gers smaller than int are unlikely to overflow because the actual operations
are performed on the promoted values. However, these operations may result
in a truncation error if the value is assigned to a variable of the size of the orig-
inal operands.

Figure 5–9 shows the consequences of overflows on signed and unsigned
integers. The signed integer i is assigned its maximum value on line 3 of
2,147,483,647 and incremented on line 4. This operation results in an integer
overflow, and i is assigned the value –2,147,483,648 (the minimum value for
an int). The result of the operation (2,147,483,647 + 1 = –2,147,483,648) is
clearly an arithmetic error. Integer overflows also occur when incrementing an
unsigned integer already at its maximum value (lines 6–8), decrementing a
signed integer already at its minimum value (lines 9–11), or decrementing an
unsigned integer already at its minimum value (lines 12–14).

 1. int i;
 2. unsigned int j;

 3. i = INT_MAX; // 2,147,483,647
 4. i++;
 5. printf("i = %d\n", i); /* i = -2,147,483,648 */

 6. j = UINT_MAX; // 4,294,967,295;
 7. j++;
 8. printf("j = %u\n", j); /* j = 0 */

 9. i = INT_MIN; // -2,147,483,648;
10. i--;
11. printf("i = %d\n", i); /* i = 2,147,483,647 */

12. j = 0;
13. j--;
14. printf("j = %u\n", j); /* j = 4,294,967,295 */

Figure 5–9. Signed and unsigned integer overflows

Seacord_book.fm Page 165 Thursday, August 11, 2005 3:10 PM

166 Integer Security

Although unsigned integer overflows appear to be an error condition, there
is some debate about this. The following excerpt is from the C99 standard:

A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned
integer type is reduced modulo to the number that is one greater than
the largest value that can be represented by the resulting type.

This is a good example of why C is considered a low-level language (that
is, one that maps closely to the underlying hardware). Unfortunately, modulo
behavior is nonintuitive and can lead to vulnerabilities. Because modulo
behavior is sanctioned by the C99 specification, compiler developers are typi-
cally disinterested in generating code that detects unsigned integer overflows.4

Sign Errors
Sign errors occur when converting from signed to unsigned integer types.
When a signed integer is converted to an unsigned integer of equal size, the bit
pattern of the original integer is preserved. When a signed integer is converted
to an unsigned integer of greater size, the value is first sign-extended and then
converted. In both cases, the high-order bit loses its function as a sign bit. If
the value of the signed integer is not negative, the value is unchanged. How-
ever, when the value of the signed integer is negative, the result is typically a
large positive value as shown in Figure 5–10.

4. The ISO/IEC 10967-1 standard for language-independent arithmetic (LIA-1) allows for
the detection of signed integer overflows. However, an implementation that defines signed
integer types as also being modulo does not need to detect integer overflow. It only needs
to detect integer divide-by-zeros.

1. int i = -3;
2. unsigned short u;

3. u = i;
4. printf("u = %hu\n", u); /* u = 65533 */

Figure 5–10. Sign error

Seacord_book.fm Page 166 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 167

Truncation Errors
Truncation errors occur when an integer is converted to a smaller integer type
and the value of the original integer is outside the range of the smaller type.
Normally, the low-order bits of the original value are preserved and the high-
order bits are lost. When an unsigned value is converted to a signed value of
the same length, the bit pattern is preserved. This causes the high-order bit to
become a sign bit. As a result, values above the maximum value for the signed
integer type are converted to negative numbers, as shown in Figure 5–11. This
is a truncation error and not a sign error because the signed type has one less
bit to represent the result.

■ 5.4 Integer Operations

Integer operations can result in exceptional conditions in which the result of
the operation is not the expected value. Unexpected integer values can cause
unexpected programmatic behavior and, ultimately, security vulnerabilities.

Why Are So Many Integers Signed?
Historically, most integer variables in C code are declared as signed rather
than unsigned integers. On the surface, this seems odd. Most integer vari-
ables are used as sizes, counters, or indices that only require non-negative
values. So why not declare them as unsigned integers that have greater range
of positive values?

One possible explanation is the lack of an exception handling mecha-
nism in C. As a result, C programmers have developed various mechanisms
for returning status from application program interface (API) functions.
Although C programmers could return status in a “call by reference” argu-
ment, the preferred mechanism is for the return value of the function to pro-
vide status. This allows a user of the function to test the return status directly
in an if-else statement rather than by allocating a variable for the return
status. This works fine when the function does not normally return a value,
but what if the function already returns a value?

A common solution is to identify an invalid return value and use this to
represent an error condition. As already noted, most applications of integers
produce values in the non-negative range, so it is thereby possible to repre-
sent error conditions in a return value as a negative number. To store these
values, however, a programmer must declare these values as signed instead
of unsigned—possibly adding to the profusion of signed integers.

Seacord_book.fm Page 167 Thursday, August 11, 2005 3:10 PM

168 Integer Security

Providing a detailed analysis of all integer operations is outside the scope
of this book, so we will examine a few—addition, subtraction, multiplication,
and division—in detail and provide references for other integer operations. It
is generally safe to say that most integer operations can result in exceptional
conditions, including all those listed here.

In this section, we describe the high-level semantics of integer opera-
tions (as defined by the C99 specification) and identify exceptional condi-
tions that can result in vulnerabilities. We also examine precondition, error
detection, and postcondition techniques for detecting or preventing excep-
tional conditions.

Preconditions can be used to determine that an error will occur before per-
forming an operation. For example, a divide-by-zero error has the precondi-
tion that the divisor is equal to zero. As a result, these errors can be easily
prevented by testing for the precondition.

The error detection technique requires determining if an error occurred
performing an operation. Integer errors that result from limitations in how the
machine represents integers are typically detected by the processor, which also
provides the mechanisms for reporting these errors. The operating system and
compiler, in turn, provide the mechanisms for C and C++ application-specific
handling.

The postcondition technique performs the operation and then tests the
resulting value to determine if it is within valid limits. This approach is ineffec-
tive if an exceptional condition can result in an apparently valid value.

In this section, we examine the mechanisms used by IA-32 to report inte-
ger errors and the mechanisms provided by Windows/Visual C++ and Linux/
GCC to support application-specific handling.

1. unsigned short int u = 32768;
2. short int i;

3. i = u;
4. printf("i = %d\n", i); /* i = -32768 */

5. u = 65535;
6. i = u;
7. printf("i = %d\n", i); /* i = -1 */

Figure 5–11. Integer truncation error

Seacord_book.fm Page 168 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 169

Addition
Addition can be used to add two arithmetic operands or a pointer and an inte-
ger. If both operands are of the arithmetic type, the usual arithmetic conver-
sions are performed on them. The result of the binary + operator is the sum of
the operands. Incrementing is equivalent to adding one. When an expression
that has integer type is added to a pointer, the result is a pointer.

Integer addition can result in an overflow if the resulting value cannot be
represented in the number of bits allocated to the representation of the integer.
The actual number of bits allocated depends on the machine architecture and
the operand types. For example, assume two operands of char type are added
on a machine architecture in which a char is represented using 8 bits, a short
with 16 bits, an int with 32 bits, and a long long with 64 bits. Because of inte-
ger promotions, both operands are converted from signed char to the signed
int type before the addition is performed, but no overflow occurs because
SCHAR_MAX + SCHAR_MAX is always less than INT_MAX and SCHAR_MIN +
SCHAR_MIN is always greater than INT_MIN. However, no such guarantee exists
if the two values being added are int or long long type because the integer
promotions are not performed.

It is possible that SCHAR_MAX + SCHAR_MAX will exceed the size of a signed
char, resulting in a truncation error during the assignment operation. However,
no overflow occurs during the addition operation.

Error Detection. Signed and unsigned overflow conditions resulting from an
addition operation are detected and reported on IA-32. The instruction set
includes an add instruction that takes the form add destination,source. This
instruction adds the first (destination) operand to the second (source) operand
and stores the result in the destination operand. The destination operand can be

Machine-Level Integer Arithmetic
The C programming language is often described as a systems programming
language because it is a relatively low-level language that deals with
machine-level constructs such as characters, numbers, and addresses. Devel-
opers often joke that C is a structured assembly language. This is not true,
but C would probably be more secure if it were. In practice, C programmers
are often unaware of C semantics and how C source code is implemented in
assembly language. There are many examples of compilers generating signif-
icantly different machine code for the same machine architecture. Examining
the assembly language instructions generated for integer operations in C and
C++ is useful in understanding what can go wrong, how these problems can
be avoided, and the pros and cons of different avoidance strategies.

Seacord_book.fm Page 169 Thursday, August 11, 2005 3:10 PM

170 Integer Security

a register or memory location, and the source operand can be an immediate,
register, or memory location. For example, add ax, bx adds the 16-bit bx register
to the 16-bit ax register and leaves the sum in the ax register.

IA-32 instructions, including the add instruction, set flags in the flags register
as shown in Figure 5–12. Flags related to integer overflow include the following:

■ An overflow flag that indicates a signed arithmetic overflow

■ A carry flag that indicates an unsigned arithmetic overflow

There are no distinctions between the addition of signed and unsigned
integers at the machine level except the interpretation of the overflow and
carry flags. Each addition operation can identify signed and unsigned overflow,
as well as overflow of the low-order nibble.

Figure 5–13 shows the assembly language instructions generated by the
Visual C++ .NET compiler for various addition operations. Lines 1–3 show the
addition of two signed characters and lines 4–6 show the addition of two
unsigned characters. Both operands in each case are moved into 32-bit regis-
ters (eax or ecx), which results in their promotion to 32 bit (the size of an
int). The signed char values are sign extended to preserve the sign, while the
unsigned char values are zero extended to avoid changing the magnitude.

Lines 7–8 show the addition of two unsigned int values. These are 32-bit
values (hence the doubleword pointers). The exact same code is generated for
signed integer values.

Lines 9–12 show the code generated for adding two signed long long inte-
ger operands. This operation needs to be performed with two separate addition

Figure 5–12. Layout of the flags register [Intel 04]

15 0

Interrupt

Sign
Zero

Auxiliary carry

Parity

Carry

Overflow
Direction

Seacord_book.fm Page 170 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 171

instructions on IA-32. The add instruction adds the low-order 32 bits. The adc
instruction adds the high-order 32 bits and the value of the carry bit. As noted
earlier, the carry flag denotes an unsigned arithmetic overflow. However, for
both 64-bit signed and unsigned integers, all the bits in the low-order double-
word are included in the magnitude. Therefore, if the carry bit is set, the value
must be carried over to the high-order 32 doubleword.

Unsigned overflows can be detected using either the jc instruction (jump
if carry) or the jnc instruction (jump if not carry). These conditional jump
instructions are placed after the add instruction in the 32-bit case or adc
instruction in the 64-bit case. Similarly, signed overflows can be detected using
either the jo instruction (jump if overflow) or the jno instruction (jump if not
overflow) after execution of the add instruction (32-bit case) or adc instruc-
tion (64-bit case).

Precondition. Addition of unsigned integers can result in an integer overflow
if the sum of the left-hand side (LHS) and right-hand side (RHS) of an addition
operation is greater than UINT_MAX for addition of int type and ULLONG_MAX for
addition of unsigned long long type.

sc1 + sc2
 1. movsx eax, byte ptr [sc1]
 2. movsx ecx, byte ptr [sc2]
 3. add eax, ecx

uc1 + uc2
 4. movzx eax, byte ptr [uc1]
 5. movzx ecx, byte ptr [uc2]
 6. add eax, ecx

ui1 + ui2
 7. mov eax, dword ptr [ui1]
 8. add eax, dword ptr [ui2]

sll1 + sll2
 9. mov eax, dword ptr [sll1]
10. add eax, dword ptr [sll2]
11. mov ecx, dword ptr [ebp-98h]
12. adc ecx, dword ptr [ebp-0A8h]

Figure 5–13. Assembly code generated by Visual C++ for addition

Seacord_book.fm Page 171 Thursday, August 11, 2005 3:10 PM

172 Integer Security

Addition of signed integers is more complicated, as shown in Table 5–5.
As you test for these preconditions, make sure that the test itself does not

overflow. The tests in Table 5–5 are guaranteed not to overflow for appropri-
ately signed values.

Postcondition. Another solution to detecting integer overflow is to perform
the addition and then evaluate the results of the operation. For example, to test
for overflow of signed integers, let sum = lhs + rhs. If lhs is non-negative and
sum < rhs, an overflow has occurred. Similarly, if lhs is negative and sum > rhs,
an overflow has occurred. In all other cases, the addition operation succeeds
without overflow. For unsigned integers, if the sum is smaller than either oper-
and, an overflow has occurred.

Subtraction
Subtraction is another additive operation. For subtraction, both operands must
have arithmetic type or be pointers to compatible object types. It is also possi-
ble to subtract an integer type from a pointer to an object type. Decrementing
is equivalent to subtracting one.

Error Detection. The IA-32 instruction set includes sub (subtract) and sbb
(subtract with borrow). The sub instruction subtracts the second operand
(source operand) from the first operand (destination operand) and stores the
result in the destination operand. The destination operand can be a register or
memory location, and the source operand can be an immediate, register, or
memory location.

The sbb instruction is usually executed as part of a multi-byte or multi-
word subtraction in which a sub instruction is followed by an sbb instruction.
The sbb instruction adds the source operand (second operand) and the carry
flag and subtracts the result from the destination operand (first operand). The

Table 5–5. Addition of Signed Integers of Type int

LHS RHS Exceptional condition

Positive Positive Overflow if INT_MAX – LHS < RHS

Positive Negative None possible

Negative Positive None possible

Negative Negative Overflow if LHS < INT_MIN – RHS

Seacord_book.fm Page 172 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 173

result of the subtraction is stored in the destination operand. The carry flag
represents a borrow from a previous subtraction.

The sub and sbb instructions set the overflow and carry flags to indicate an
overflow in the signed or unsigned result.

The IA-32 instruction generated by the Visual C++ compiler for subtrac-
tion follows the same patterns as addition. Figure 5–14 shows the use of the
sub and sbb instructions in the subtraction of signed long long integers sll2
from signed long long integer sll1.

Precondition. To test for overflow for unsigned integers, make sure that the
LHS < RHS.

For signed integers of the same sign, exceptional conditions cannot occur.
For signed integers of mixed signs, the following applies:

■ If LHS is positive and RHS is negative, check that the lhs > INT_MAX +
rhs for signed int type.

■ If LHS is non-negative and RHS is negative, check that lhs < INT_MAX +
rhs.

For example, 0 – INT_MIN causes an overflow condition because the result
of the operation is one greater than the maximum representation possible.

Postcondition. To test for overflow of signed integers, let difference = lhs -
rhs and apply the following:

■ If rhs is non-negative and difference > lhs, an overflow has occurred.

■ If rhs is negative and difference < lhs, an overflow has occurred.

■ In all other cases, no overflow occurs.

■ For unsigned integers, an overflow occurs if difference is greater than
lhs.

sll1 - sll2
1. mov eax, dword ptr [sll1]
2. sub eax, dword ptr [sll2]
3. mov ecx, dword ptr [ebp-0E0h]
4. sbb ecx, dword ptr [ebp-0F0h]

Figure 5–14. Assembly code generated by Visual C++ for subtraction

Seacord_book.fm Page 173 Thursday, August 11, 2005 3:10 PM

174 Integer Security

Multiplication
Multiplication is prone to overflow errors because relatively small operands,
when multiplied, can overflow a given integer type.

One solution, which is used by the IA-32 mul instruction, is to allocate stor-
age for the product that is twice the size of the larger of the two operands. For
example, the product of two 8-bit operands can always be represented by 16 bits,
and the product of two 16-bit operands can always be represented by 32 bits.

Each operand of the binary * operator has arithmetic type. The usual
arithmetic conversions are performed on the operands.

Error Detection. The IA-32 instruction set includes both a mul (unsigned
multiply) and imul (signed multiply) instruction. The mul instruction performs
an unsigned multiplication of the first (destination) operand and the second
operand (source) operand and stores the result in the destination operand.

The mul instruction is shown in Figure 5–15 in C-style pseudocode. The
mul instruction accepts 8-, 16-, and 32-bit operands and stores the results in
16-, 32-, and 64-bit destination registers, respectively. If the high-order bits are
required to represent the product of the two operands, the carry and overflow
flags are set. If the high-order bits are not required (that is, they are equal to
zero), the carry and overflow flags are cleared.

The IA-32 instruction set also includes imul, a signed form of the mul
instruction with one-, two-, and three-operand forms [Intel 04]. The carry and
overflow flags are set when significant bits (including the sign bit) are carried
into the upper half of the result and cleared when they do not.

The three forms of the imul instruction are similar to the mul instruction
in that the length of the product is calculated as twice the length of the oper-

 1. if (OperandSize == 8) {
 2. AX = AL * SRC;
 3. else {
 4. if (OperandSize == 16) {
 5. DX:AX = AX * SRC;
 6. }
 7. else { // OperandSize == 32
 8. EDX:EAX = EAX * SRC;
 9. }
10. }

Figure 5–15. IA-32 unsigned multiplication [Intel 04]

Seacord_book.fm Page 174 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 175

ands. With the one-operand form, the product is stored exactly in the destina-
tion. With the two- and three-operand forms, however, the result is truncated
to the length of the destination before it is stored in the destination register.
Because of this truncation, the carry or overflow flag must be tested to ensure
that no significant bits are lost.

The two- and three-operand forms can also be used with unsigned oper-
ands because the lower half of the product is the same regardless of whether
the operands are signed or unsigned. The carry and overflow flags, however,
cannot be used to determine whether the upper half of the result is nonzero.

Figure 5–16 shows the assembly instructions generated by the Visual C++
.NET compiler for signed char, unsigned char, and unsigned int multiplica-
tion. The assembly instructions generated for signed integer multiplication are
not shown but are identical to those generated in the unsigned integer case. In
all four cases, the two-operand form of the imul instruction is used. As previ-
ously noted, this form of the imul instruction can be used with both signed
and unsigned numbers. Signed integers smaller than int size are sign extended
to 32 bits and unsigned integers are zero extended—accomplishing the integer
promotions.

Figure 5–17 shows the assembly code generated by g++ for the same multi-
plication operations. Unlike the Visual C++ compiler, g++ uses the byte form of
the mul instruction for integers of type char, regardless of whether the type is

sc_product = sc1 * sc2;
 1. movsx eax, byte ptr [sc1]
 2. movsx ecx, byte ptr [sc2]
 3. imul eax, ecx
 4. mov byte ptr [sc_product], al

uc_product = uc1 * uc2;
 5. movzx eax, byte ptr [uc1]
 6. movzx ecx, byte ptr [uc2]
 7. imul eax, ecx
 8. mov byte ptr [uc_product], al

si_product = si1 * si2;
ui_product = ui1 * ui2;
 9. mov eax, dword ptr [ui1]
10. imul eax, dword ptr [ui2]
11. mov dword ptr [ui_product], eax

Figure 5–16. Assembly code generated by Visual C++

Seacord_book.fm Page 175 Thursday, August 11, 2005 3:10 PM

176 Integer Security

signed or unsigned, and the imul instruction for word-length integers, again
regardless of whether the type is signed or unsigned.

Precondition. To prevent an overflow when multiplying unsigned integers,
check that A > MAX_INT/B (that is, A * B > MAX_INT).

Another approach that doesn’t involve division (and can be more efficient)
is to cast both operands to the next larger size and then multiply. As we have
already pointed out, the result of the multiplication will always fit in 2*n bits,
where n is the number of bits in the larger of the two operands. Integers of 32
bits should be cast to 64 bits, and smaller integers can be cast to 32 bits.

For unsigned integers, you can check high-order bits in the next larger
integer and, if any are set, throw an error.

For signed integers, an overflow has not occured if the high-order bits and
the sign bit on the lower half of the product are all zeros or ones. This means
that for a 64-bit product, for example, the upper 33 bits would need to be all
zeros or ones.

Multiplying 64 bits is more difficult because these values cannot be easily
extended to larger integers. For details, review the source code to David
LeBlanc’s SafeInt class [LeBlanc 04].

Postcondition. The postcondition approach can also be used to test for mul-
tiplication overflow, although the approach is more complicated than it is for
addition because the product can require twice the number of bits required by
the larger operand.

For 16-bit (word-length) signed integers, checking for overflow is simpli-
fied by casting both the LHS and RHS operands to 32-bit values and storing

sc_product = sc1 * sc2;
uc_product = uc1 * uc2;
 1. movb -10(%ebp), %al
 2. mulb -9(%ebp)
 3. movb %al, -11(%ebp)

si_product = si1 * si2;
ui_product = ui1 * ui2;
 4. movl -20(%ebp), %eax
 5. imull -24(%ebp), %eax
 6. movl %eax, -28(%ebp)

Figure 5–17. Assembly code generated by g++

Seacord_book.fm Page 176 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 177

their product in a 32-bit destination field. An overflow can be detected when
the product right-shifted by 16 bits is not the same as the product right-shifted
by 15 bits.

For positive results, this test detects whether the magnitude has over-
flowed into the sign bit of the low-order 16 bits. For negative results, this test
detects whether the magnitude has overflowed into the high-order bits.

Division
Integer division overflows are not obvious—you expect the quotient to be less
than the dividend. However, an integer overflow condition occurs when the
MIN_INT value for a 32- or 64-bit signed integer is divided by –1. For example,
in the 32-bit case, –2,147,483,648/–1 should be equal to 2,147,483,648.
Because 2,147,483,648 cannot be represented as a signed 32-bit integer, the
resulting value is –2,147,483,648/–1 = –2,147,483,648.

Division is also prone to problems when mixed sign and type integers are
involved. For example, a reasonable expectation is that –1/4294967295 would
equal zero. If the denominator is an unsigned int and the numerator is signed
and 32 bits or less, both inputs are cast to an unsigned int and then the division
is performed. The result is that –1/4294967295 is equal to one and not zero.

Error Detection. The IA-32 instruction set includes the following division
instructions: div, divpd, divps, divsd, divss, fdiv, fdivp, fidiv, and idiv. The
div instruction divides the (unsigned) integer value in the ax, dx:ax, or edx:eax
registers (dividend) by the source operand (divisor) and stores the quotient in
the ax (ah:al), dx:ax, or edx:eax registers. The idiv instruction performs the
same operations on (signed) values. The results of the div/idiv instructions
depends on the operand size (dividend/divisor), as shown in Table 5–6. The
quotient range shown is for the signed (idiv) instruction.

Nonintegral results are truncated toward zero. The remainder is always
less than the divisor in magnitude. Overflow is indicated by the divide error
exception rather than with the carry flag.

Table 5–6. The idiv Instruction

Operand size Dividend Divisor Quotient Rem. Quotient range

Word/byte ax r/m8 al ah –128 to +127

Doubleword/word dx:ax r/m16 ax dx –32,768 to
+32,767

Quadword/doubleword edx:eax r/m32 eax edx –231 to 232 –1

Seacord_book.fm Page 177 Thursday, August 11, 2005 3:10 PM

178 Integer Security

Figure 5–18 shows the Intel assembly instructions generated by the Visual
C++ compiler for signed and unsigned division. As expected, signed division
uses the idiv instruction and unsigned division uses the div instruction.
Because the divisor in both the signed and unsigned case is a 32-bit value, the
dividend is interpreted as a quadword. In the signed case, this is handled by
doubling the size of the si_dividend in register eax by means of sign exten-
sion and storing the result in registers edx:eax. In the unsigned case, the edx
register is cleared using the xor instruction before calling the div instruction
to make sure that there is no residual value in this register.

Unlike the add, mul, and imul instructions, the Intel division instructions
div and idiv do not set the overflow flag; they generate a division error if the
source operand (divisor) is zero or if the quotient is too large for the desig-
nated register. A divide error results in a fault on interrupt vector 0. A fault is
an exception that can generally be corrected and that, once corrected, allows
the program to restart with no loss of continuity. When a fault is reported, the
processor restores the machine state to the state before the beginning of execu-
tion of the faulting instruction. The return address (saved contents of the cs
and eip registers) for the fault handler points to the faulting instruction, rather
than the instruction following the faulting instruction [Intel 04].

Precondition. Integer division overflows can be prevented by checking to see
whether the numerator is the minimum value for the integer type and the
denominator is –1. Division by zero can be prevented, of course, by ensuring
that the divisor is nonzero.

si_quotient = si_dividend / si_divisor;
 1. mov eax, dword ptr [si_dividend]
 2. cdq
 3. idiv eax, dword ptr [si_divisor]
 4. mov dword ptr [si_quotient], eax

ui_quotient = ui1_dividend / ui_divisor;
 5. mov eax, dword ptr [ui_dividend]
 6. xor edx, edx
 7. div eax, dword ptr [ui_divisor]
 8. mov dword ptr [ui_quotient], eax

Figure 5–18. Assembly code generated by Visual C++

Seacord_book.fm Page 178 Thursday, August 11, 2005 3:10 PM

5.4 Integer Operations 179

Postcondition. Normal C++ exception handling does not allow an applica-
tion to recover from a hardware exception or fault such as an access violation
or divide by zero [Richter 99]. Microsoft does provide a facility called struc-
tured exception handling (SEH) for dealing with hardware and other exceptions.
Structured exception handling is an operating system facility that is distinct
from C++ exception handling. Microsoft provides a set of extensions to the C
language that enable C programs to handle Win32 structured exceptions.

Figure 5–19 shows how Win32 structured exception handling can be used
in a C program to recover from divide-by-zero and overflow faults resulting
from division operations. The same figure also shows how SEH cannot be used
to detect overflow errors resulting from addition or other operations

Lines 5–9 contain a __try block containing code that will cause a divide-
by-zero fault when executed. Lines 10–15 contain an __except block that
catches and handles the fault. Similarly, lines 16–25 contain code that will
cause an integer overflow fault at runtime and corresponding exception han-
dler to recover from the fault. Lines 26–36 contain an important counter
example. The code in the __try block results in an integer overflow condition.
However, the same exception handler that caught the overflow exception after
the division fault will not detect this overflow because the addition operation
does not generate a hardware fault.

Figure 5–20 shows the implementation of the / operator in C++ that uses
structured exception handling to detect division error. The division is nested
in a __try block. If a division error occurs, the logic in the __except block is
executed. In this example, a C++ exception is thrown. This is possible because
C++ exceptions in Visual C++ are implemented using structured exceptions.
This also makes it possible to implement this same / operator using C++ excep-
tions, as shown in Figure 5–21.

In the Linux environment, hardware exceptions such as division errors are
managed using signals. In particular, if the source operand (divisor) is zero or
if the quotient is too large for the designated register, a SIGFPE (floating point
exception) is generated. To prevent abnormal termination of the program, a
signal handler can be installed using the signal() call as follows:

signal(SIGFPE, Sint::divide_error);

The signal() call accepts two parameters: the signal number and the sig-
nal handler’s address. But because a division error is a fault, the return address
points to the faulting instruction. If the signal handler simply returns, the
instruction and the signal handler will be alternately called in an infinite loop.
To solve this problem, the signal handler shown in Figure 5–22 throws a C++
exception that can then be caught by the calling function.

Seacord_book.fm Page 179 Thursday, August 11, 2005 3:10 PM

180 Integer Security

 1. #include <windows.h>
 2. #include <limits.h>

 3. int main(int argc, char* argv[]) {
 4. int x, y;

 5. __try {
 6. x = 5;
 7. y = 0;
 8. x = x / y;
 9. }
10. __except (GetExceptionCode() == 11.
 EXCEPTION_INT_DIVIDE_BY_ZERO ?
12. EXCEPTION_EXECUTE_HANDLER : 13.
 EXCEPTION_CONTINUE_SEARCH){
14. printf("Divide by zero error.\n");
15. }

16. __try {
17. x = INT_MIN;
18. y = -1;
19. x = x / y;
20. }
21. __except (GetExceptionCode() == 22.
 EXCEPTION_INT_OVERFLOW ?
23. EXCEPTION_EXECUTE_HANDLER :
 EXCEPTION_CONTINUE_SEARCH) {
24. printf("Integer overflow during division.\n");
25. }

26. __try {
27. x = INT_MAX;
28. x++;
29. printf("x = %d.\n", x);
30. }
31. __except (GetExceptionCode() == 32.
 EXCEPTION_INT_OVERFLOW ?
33. EXCEPTION_EXECUTE_HANDLER : 34.
 EXCEPTION_CONTINUE_SEARCH) {
35. printf("Integer overflow during increment.\n");
36. }

37. return 0;
38. }

Figure 5–19. Structured exception handling in C

Seacord_book.fm Page 180 Thursday, August 11, 2005 3:10 PM

5.5 Vulnerabilities 181

■ 5.5 Vulnerabilities

A vulnerability is a set of conditions that allows violation of an explicit or
implicit security policy. Security flaws can result from hardware-level integer
error conditions or from faulty logic involving integers. These security flaws
can, when combined with other conditions, contribute to a vulnerability. This
section describes examples of situations where integer error conditions or
faulty logic involving integers can lead to vulnerabilities.

1. Sint operator /(signed int divisor) {
2. __try {
3. return si / divisor;
4. }
5. __except(EXCEPTION_EXECUTE_HANDLER) {
6. throw SintException(ARITHMETIC_OVERFLOW);
7. }
8. }

Figure 5–20. Structured exception handling

1. Sint operator /(unsigned int divisor) {
2. try {
3. return ui / divisor;
4. }
5. catch (...) {
6. throw SintException(ARITHMETIC_OVERFLOW);
7. }
8. }

Figure 5–21. C++ exception handling

1. static void divide_error(int val) {
2. throw SintException(ARITHMETIC_OVERFLOW);
3. }

Figure 5–22. Signal handler

Seacord_book.fm Page 181 Thursday, August 11, 2005 3:10 PM

182 Integer Security

Integer Overflow
Figure 5–23 shows an example of an integer overflow based on a real-world vul-
nerability in the handling of the comment field in JPEG files [Solar Designer 00].

JPEG files contain a comment field that includes a two-byte length field.
The length field indicates the length of the comment, including the two-byte
length field. To determine the length of the comment string alone (for memory
allocation), the function reads the value in the length field and subtracts two
(line 3). The function then allocates the length of the comment plus one byte
for the terminating null byte (line 4). There is no error checking to ensure that
the length field is valid, which makes it possible to cause an overflow by creat-
ing an image with a comment length field containing the value 1. The memory
allocation call of zero bytes (1 minus 2 [length field] plus 1 [null termination])
succeeds. The size variable is declared as an unsigned int (line 2), resulting
in a large positive value of 0xffffffff (from 1 minus 2).

Another real-world example of integer overflow appears in memory alloca-
tion. Integer overflow can occur in calloc() and other memory allocation
functions when computing the size of a memory region. As a result, a buffer
smaller than the requested size is returned, possibly resulting in a subsequent
buffer overflow.5

The following code fragments may lead to vulnerabilities:

C: pointer = calloc(sizeof(element_t), count);
C++: pointer = new ElementType[count];

5. See http://cert.uni-stuttgart.de/advisories/calloc.php.

 1. void getComment(unsigned int len, char *src) {
 2. unsigned int size;

 3. size = len - 2;
 4. char *comment = (char *)malloc(size + 1);
 5. memcpy(comment, src, size);
 6. return;
 7. }

 8. int _tmain(int argc, _TCHAR* argv[]) {
 9. getComment(1, "Comment ");
10. return 0;
11. }

Figure 5–23. Integer overflow vulnerability

Seacord_book.fm Page 182 Thursday, August 11, 2005 3:10 PM

5.5 Vulnerabilities 183

The calloc() library call accepts two arguments: the storage size of the
element type and the number of elements. The element type size is not speci-
fied explicitly in the case of new operator in C++. To compute the size of the
memory required, the storage size is multiplied by the number of elements. If
the result cannot be represented in a signed integer, the allocation routine can
appear to succeed but allocate an area that is too small. As a result, the applica-
tion can write beyond the end of the allocated buffer resulting in a heap-based
buffer overflow.

Sign Errors
Figure 5–24 shows a program that is susceptible to a sign error exploit [Horo-
vitz 02]. The program accepts two parameters (the length of data to copy and
the actual data) and is flawed because a signed integer is converted to an
unsigned integer of equal size. That is, len is declared as a signed integer on
line 3, which makes it possible to assign a negative value to the variable on
line 5. A negative value bypasses the check on line 6 because it is less than the
buffer size. In the resulting call to memcpy() on line 7, the signed integer value
is treated as an unsigned value of type size_t.6 This results in a sign error
because the negative length is now interpreted as a large, positive integer with
the resulting buffer overflow.

6. The size_t type specifies the maximum number of bytes that a pointer references. It is
used for a count that must span the full range of a pointer.

 1. #define BUFF_SIZE 10

 2. int main(int argc, char* argv[]){
 3. int len;
 4. char buf[BUFF_SIZE];
 5. len = atoi(argv[1]);
 6. if (len < BUFF_SIZE){
 7. memcpy(buf, argv[2], len);
 8. }
 9. else
10. printf("Too much data\n");
11. }

Figure 5–24. Implementation containing a sign error

Seacord_book.fm Page 183 Thursday, August 11, 2005 3:10 PM

184 Integer Security

This vulnerability can be prevented by restricting the integer len to a valid
value. This could be accomplished with a more effective range check on line 6
that guarantees len greater than 0 but less than BUFF_SIZE. It could also be
accomplished by declaring len as an unsigned integer on line 3—eliminating
the conversion from a signed to unsigned type in the call to memcpy() and pre-
venting the sign error from occurring.

A real-world example was documented in NetBSD Security Advisory 2000-
002.7 NetBSD 1.4.2 and prior versions used integer range checks of the follow-
ing form:

if (off > len - sizeof(type-name))
 goto error;

where both off and len are signed integers. Because the sizeof operator, as
defined by the C99 standard, returns an unsigned integer type (size_t), the
integer promotion rules require that len - sizeof(type-name) be computed as
an unsigned value. If len is less than the value returned by the sizeof opera-
tor, the subtraction operation underflows and yields a large positive value,
which allows the integer range check to be bypassed.

An alternative form of the integer range check that eliminates the problem
in this case is as follows:

if ((off + sizeof(type-name)) > len) {
 goto error;

The programmer still must ensure that the addition operation does not
result in an overflow by guaranteeing that the value of off is within a defined
range.

Truncation Errors
Figure 5–25 duplicates the vulnerable program shown in Figure 5–1 in the
introduction to this chapter. The program accepts two string arguments and
calculates their combined length (plus an extra byte for the terminating null
character) on line 3. The program allocates enough memory on line 4 to store
both strings. The first argument is copied into the buffer on line 5 and the sec-
ond argument is concatenated to the end of the first argument on line 6.

At first glance, you wouldn’t expect a vulnerability to exist because the
memory is dynamically allocated as required to contain the two strings. How-

7. See ftp://ftp.netbsd.org/pub/NetBSD/misc/security/advisories/NetBSD-SA2000-002.txt.asc.

Seacord_book.fm Page 184 Thursday, August 11, 2005 3:10 PM

5.5 Vulnerabilities 185

ever, an attacker can supply arguments such that the sum of the lengths of these
strings cannot be represented by the unsigned short integer total. As a result,
the value is reduced modulo the number that is one greater than the largest value
that can be represented by the resulting type. For example, if the first argument
is 65,500 characters and the second argument is 36 characters, the sum of the
two lengths + 1 will be 65,537. The strlen() function is specified to return a
result of type size_t, which is typically an unsigned long integer. As both
65,500 and 36 are unsigned long integers, the sum of the three values is also an
unsigned long integer. For an unsigned long integer value to be assigned to the
variable total, an unsigned short integer, a demotion is required.

Assuming 16-bit short integers, the result is (65500 + 37) % 65536 = 1.
The malloc() call successfully allocates the requested byte and the strcpy()
and strcat() invocations create a buffer overflow condition.

Figure 5–26 contains another example of a how a truncation error may
lead to a vulnerability [Howard 03a]. The formal parameter cbBuf is declared

1. int main(int argc, char *const *argv) {
2. unsigned short int total;
3. total = strlen(argv[1])+strlen(argv[2])+1;
4. char *buff = (char *) malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. }

Figure 5–25. Truncation error involving the sum of two lengths

 1. bool func(char *name, long cbBuf) {
 2. unsigned short bufSize = cbBuf;
 3. char *buf = (char *)malloc(bufSize);
 4. if (buf) {
 5. memcpy(buf, name, cbBuf);
 6. if (buf) free(buf);
 7. return true;
 8. }
 9. return false;
10. }

Figure 5–26. Implementation vulnerable to a truncation error exploit

Seacord_book.fm Page 185 Thursday, August 11, 2005 3:10 PM

186 Integer Security

as a long and used as the size in the memcpy() operation on line 5. The cbBuf
parameter is also used to initialize bufSize on line 2, which, in turn, is used to
allocate memory for buf on line 3.

At first glance, this function appears to be immune from a buffer overflow
because the size of the destination buffer for memcpy() is dynamically allo-
cated. But the problem is that cbBuf is temporarily stored in the unsigned
short bufSize. The maximum size of an unsigned short for both GCC and
the Visual C++ compiler on IA-32 is 65,535. The maximum value for a signed
long on the same platform is 2,147,483,647. Therefore, a truncation error will
occur on line 2 for any values of cbBuf between 65,535 and 2,147,483,647.
This would only be an error and not a vulnerability if bufSize were used for
both the calls to malloc() and memcpy(). However, because bufSize is used to
allocate the size of the buffer and cbBuf is used as the size on the call to mem-
cpy(), it is possible to overflow buf by anywhere from 1 to 2,147,418,112
(2,147,483,647 – 65,535) bytes.8

■ 5.6 Nonexceptional Integer Logic Errors

Many exploitable software flaws do not require an exceptional condition to
occur but are simply a result of poorly written code.

Figure 5–27 shows a vulnerability caused by using a signed integer as an
index variable. The insert_in_table() function inserts value at position pos
in an array of integers. Storage for the array is allocated on the heap on line 4
the first time the function is called. Lines 6–8 ensure that pos is not greater
than 99. The value is inserted into the array at the specified position on line 9.

Although no exceptional condition can occur, there is a vulnerability result-
ing from the lack of range checking of pos. Because pos is declared as a signed
integer, both positive and negative values can be passed to the function. An out-
of-range positive value would be caught on line 6, but a negative value would not.

The following assignment statement from line 9:

 table[pos] = value;

is equivalent to

 *(table + (pos * sizeof(int))) = value;

8. Compiling this example with the /W3 or /W4 option of Visual C++ results in a “possible
loss of data” warning.

Seacord_book.fm Page 186 Thursday, August 11, 2005 3:10 PM

5.7 Mitigation Strategies 187

The sizeof(int) resolves to 4 when using Visual C++ on IA-32. If a nega-
tive pos value is passed as an argument, value would be written to a location
pos x 4 bytes before the start of the actual buffer. This flaw could be eliminated
two ways: by declaring the formal argument pos as an unsigned integer or by
checking upper and lower bounds on line 6.

■ 5.7 Mitigation Strategies

All integer vulnerabilities result from integer type range errors. For example,
integer overflows occur when integer operations generate a value that is out of
range for a particular integer type. Truncation errors occur when a value is
stored in a type that is too small to represent the result. Sign errors occur when
a negative value is saved in a signed type that cannot accommodate the value’s
range. Even the logic errors described in this chapter are the result of improper
range checking.

Because all integer vulnerabilities are type range errors, type range check-
ing—if properly applied—can eliminate all integer vulnerabilities. Languages
such as Pascal and Ada allow range restrictions to be applied to any scalar type
to form subtypes. Ada, for example, allows range restrictions to be declared on
derived types using the range keyword:

type day is new INTEGER range 1..31;

 1. int *table = NULL;

 2. int insert_in_table(int pos, int value){
 3. if (!table) {
 4. table = (int *)malloc(sizeof(int) * 100);
 5. }
 6. if (pos > 99) {
 7. return -1;
 8. }
 9. table[pos] = value;
10. return 0;
11. }

Figure 5–27. Negative indices

Seacord_book.fm Page 187 Thursday, August 11, 2005 3:10 PM

188 Integer Security

The range restrictions are then enforced by the language runtime. C and
C++, on the other hand, are not nearly as good at enforcing type safety. Fortu-
nately, there are some avoidance strategies that can be used to reduce or elimi-
nate the risk from integer-type range errors.

Range Checking
As you may have expected, the burden for integer range checking in C and C++
is placed squarely on the programmer’s shoulders. Sometimes it’s relatively easy,
sometimes it’s not. It’s relatively easy, for example, to check an integer value to
make sure it is within the proper range before using it to index an array.

The sign-error exploit in Figure 5–24, for example, showed how an out-of-
range value (a negative integer) could be used to bypass a check on the upper
bounds of an array and cause a buffer overflow. Figure 5–28 shows a version of
this program that has improved implicit type checking and explicit range
checks. Changes from less secure versions are shown in bold. The implicit type
check results from the declaration, on line 3, of len as an unsigned integer. In
general, it is a good idea to use unsigned types for indices, sizes, and loop
counters that should never have negative values. The memcpy() call on line 7 is
also protected by an explicit range check on line 6 that tests both the upper
and lower bounds.

Declaring len to be an unsigned integer is insufficient for range restriction
because it only restricts the range from 0..MAX_INT. The range check on line 6
is sufficient to ensure that no out-of-range values are passed to memcpy() as
long as both the upper and lower bounds are checked. Using both the implicit

 1. #define BUFF_SIZE 10

 2. int main(int argc, char* argv[]){
 3. unsigned int len;
 4. char buf[BUFF_SIZE];
 5. len = atoi(argv[1]);
 6. if ((0 < len) && (len < BUFF_SIZE)){
 7. memcpy(buf, argv[2], len);
 8. }
 9. else
10. printf("Too much data\n");
11. }

Figure 5–28. Implementation with implicit type and explicit range checking

Seacord_book.fm Page 188 Thursday, August 11, 2005 3:10 PM

5.7 Mitigation Strategies 189

and explicit checks may be redundant, but we recommend this practice as
“healthy paranoia.”

In other cases, type range checking is more complicated. For example, if x
is assigned the product of a, b, and c, it is necessary to limit the range of a, b,
and c so that the value of x cannot exceed the range of values for whichever
integer type x is declared. As integer variables are operated on multiple times
in combination with other integer values, it becomes increasingly difficult to
ensure that an integer type range error does not occur.

While this problem is difficult to solve, there are valid software engineer-
ing techniques that can help. First, all external inputs should be evaluated to
determine whether there are identifiable upper and lower bounds. If so, these
limits should be enforced by the interface. Anything that can be done to limit
the input of excessively large or small integers should help prevent overflow
and other type range errors. Furthermore, it is easier to find and correct input
problems than it is to trace internal errors back to faulty inputs.

Second, typographic conventions can be used in the code to distinguish
constants from variables. They can even be used to distinguish externally
influenced variables from locally used variables with well-defined ranges.

Third, strong typing should be used so that the compiler can be more
effective in identifying range problems.

Strong Typing
One way to provide better type checking is to provide better types. Using an
unsigned type, for example, can guarantee that a variable does not contain a
negative value. However, this solution does not prevent overflow or solve the
general case.

Data abstractions can support data ranges in a way that standard and
extended integer types cannot. Data abstractions are possible in both C and
C++, although C++ provides more support. For example, if an integer was
required to store the temperature of water in liquid form using the Fahrenheit
scale, we could declare a variable as follows:

unsigned char waterTemperature;

Using waterTemperature to represent an unsigned 8-bit value from 1–255,
is sufficient: water ranges from 32 degrees Fahrenheit (freezing) to 212 degrees
Fahrenheit (the boiling point). However, this type does not prevent overflow
and also allows for invalid values (that is, 1–31 and 213–255).

One solution is to create an abstract type in which waterTemperature is
private and cannot be directly accessed by the user. A user of this data

Seacord_book.fm Page 189 Thursday, August 11, 2005 3:10 PM

190 Integer Security

abstraction can only access, update, or operate on this value through public
method calls. These methods must provide type safety by ensuring that the
value of the waterTemperature does not leave the valid range. If this is done
properly, there is no possibility of an integer type range error occurring.

This data abstraction is easy to write in C++ and C. A C programmer could
specify create() and destroy() methods instead of constructors and destruc-
tors but would not be able to redefine operators. Inheritance and other features
of C++ are not required to create usable data abstractions.

Compiler-Generated Runtime Checks

In a perfect world, C and C++ compilers would flag exceptional conditions as
code is generated and provide a mechanism (such as an exception, trap, or sig-
nal handler) for applications to handle these events. Unfortunately, the world
we live in is far from perfect. A brief description of some of the capabilities that
exist today follows.

Visual C++. Visual C++ .NET 2003 includes native runtime checks that catch
truncation errors as integers are assigned to shorter variables that result in lost
data. For example, the /RTCc compiler flag catches those errors and creates a
report. Visual C++ also includes a runtime_checks pragma that disables or
restores the /RTC settings, but does not include flags for catching other run-
time errors such as overflows.

Although this seems like a useful feature, runtime error checks are not
valid in a release (optimized) build, presumably for performance reasons.9

GCC. The gcc and g++ compilers include an -ftrapv compiler option that
provides limited support for detecting integer exceptions at runtime. Accord-
ing to the gcc man page, this option “generates traps for signed overflow on
addition, subtraction, multiplication operations.” In practice, this means that
the gcc compiler generates calls to existing library functions rather than gener-
ating assembler instructions to perform these arithmetic operations on signed
integers. If you use this feature, make sure you are using gcc version 3.4 or
later because the checks implemented by the runtime system before this ver-
sion do not adequately detect all overflows and should not be trusted.10

9. See Visual C++ Compiler Options, /RTC (Run-Time Error Checks), Visual Studio .NET
help system.
10. See VU#540517 “libgcc contains multiple flaws that allow integer type range vulnera-
bilities to occur at runtime” at http://www.kb.cert.org/vuls/id/540517.

Seacord_book.fm Page 190 Thursday, August 11, 2005 3:10 PM

5.7 Mitigation Strategies 191

Safe Integer Operations
Integer operations can result in error conditions and possible lost data, partic-
ularly when inputs to these operations can be manipulated by a potentially
malicious user.

The first line of defense against integer vulnerabilities should be range
checking, either explicitly or through strong typing. However, it is difficult to
guarantee that multiple input variables cannot be manipulated to cause an
error to occur in some operation somewhere in a program.

An alternative or ancillary approach is to protect each operation. However,
because of the large number of integer operations that are susceptible to these
problems and the number of checks required to prevent or detect exceptional
conditions, this approach can be prohibitively labor intensive and expensive to
implement.

A more economical solution to this problem is to use a safe integer library
for all operations on integers where one or more of the inputs could be influ-
enced by an untrusted source. Figure 5–29 shows examples of when to use safe
integer operations.

The first example shows a function that accepts two parameters specifying
the size of a given structure and the number of structures to allocate that can be
manipulated by untrusted sources. These two values are then multiplied to
determine what size memory to allocate. Of course, the multiplication operation

Use Safe Integer Operations
 void* CreateStructs(int StructSize, int HowMany) {
 SafeInt<unsigned long> s(StructSize);

 s *= HowMany;
 return malloc(s.Value());
 }

Don’t Use Safe Integer Operations
 void foo() {
 int i;

 for (i = 0; i < INT_MAX; i++)

 }

Figure 5–29. Checking for overflow when adding two signed integers

Seacord_book.fm Page 191 Thursday, August 11, 2005 3:10 PM

192 Integer Security

could easily overflow the integer variable and provide an opportunity to exploit a
buffer overflow.

The second example shows when not to use safe integer operations. The
integer i is used in a tightly controlled loop and is not subject to manipulation
by an untrusted source, so using safe integers would add unnecessary perfor-
mance overhead.

Safe integer libraries use different implementation strategies. The gcc library
uses postconditions to detect integer errors. SafeInt C++ class tests preconditions
to prevent integer errors. The RCSint Class and a library by Michael Howard
take advantage of machine-specific mechanisms to detect integer errors. We
compare and contrast these four approaches in the remainder of this section.

GCC. The gcc runtime system generates traps for signed overflow on addi-
tion, subtraction, and multiplication operations for programs compiled with
the -ftrapv flag. To accomplish this, calls are made to existing, portable library
functions that test an operation’s postconditions and call the C library abort()
function when results indicate that an integer error has occurred.

Figure 5–30 shows a function from the gcc runtime system that is used to
detect overflows resulting from the addition of signed 16-bit integers. The
addition operation is performed on line 2 and the results are compared to the
operands to determine whether an overflow condition has occurred. For
_addvsi3(), if b is non-negative and w < a, an overflow has occurred and
abort() is called. Similarly, abort() is also called if b is negative and w > a.

C Language Compatible Library. Michael Howard has written parts of a safe
integer library that detects integer overflow conditions using architecture-spe-
cific mechanisms [Howard 03b].

Figure 5–31 shows a function that performs unsigned addition. Figure 5–32
shows a version of the vulnerable program from Figure 5–25 that has been

1. Wtype __addvsi3 (Wtype a, Wtype b) {
2. const Wtype w = a + b;

3. if (b >= 0 ? w < a : w > a)
4. abort ();
5. return w;
6. }

Figure 5–30. Checking for overflow when adding two signed integers

Seacord_book.fm Page 192 Thursday, August 11, 2005 3:10 PM

5.7 Mitigation Strategies 193

modified (shown in bold) to use the Howard library. The calculation of the
total length of the two strings is performed using the UAdd() call on lines 3–4
with appropriate checks for error conditions. Even adding one to the sum can
result in an overflow and needs to be protected.

Advantages of the Howard approach are that it can be used in both C and
C++ programs and it is efficient: assembly language instructions are the same as
those generated by a compiler except that they integrate checks for carry and

 1. in bool UAdd(size_t a, size_t b, size_t *r) {
 2. __asm {
 3. mov eax, dword ptr [a]
 4. add eax, dword ptr [b]
 5. mov ecx, dword ptr [r]
 6. mov dword ptr [ecx], eax
 7. jc short j1
 8. mov al, 1 // 1 is success
 9. jmp short j2
10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }

Figure 5–31. Unsigned integer addition and multiplication operations

 1. int main(int argc, char *const *argv) {
 2. unsigned int total;
 3. if (UAdd(strlen(argv[1]), 1, &total) &&
 UAdd(total, strlen(argv[2]), &total)) {
 4. char *buff = (char *)malloc(total);
 5. strcpy(buff, argv[1]);
 6. strcat(buff, argv[2]);
 7. } else {
 8. abort();
 9. }
10. }

Figure 5–32. C language compatible library solution

Seacord_book.fm Page 193 Thursday, August 11, 2005 3:10 PM

194 Integer Security

other conditions that indicate exceptions and set a return code. Drawbacks are
usability (an awkward API) and portability: the use of embedded Intel assembly
instructions prevents porting to other architectures.

SafeInt Class. SafeInt is a C++ template class written by David LeBlanc
[LeBlanc 04]. SafeInt generally implements the precondition approach and tests
the values of operands before performing an operation to determine whether
errors might occur. The class is declared as a template, so it can be used with
any integer type. Nearly every relevant operator has been overridden.

Figure 5–33 shows a section of code from the SafeInt class that checks for
overflow in signed integer addition. Figure 5–34 shows a version of the vulner-
able program from Figure 5–25 that has been modified (boldface type) to use
the SafeInt library. Lines 1–4 show the implementation for the SafeInt + opera-
tor, which is invoked twice on line 9 of the main routine. The variables s1 and
s2 are declared as SafeInt types on lines 7 and 8. In both cases, the SafeInt class
is instantiated as an unsigned long type. When the + operator is invoked
(twice) on line 9, it uses the safe version of the operator implemented as part
of the SafeInt class. The safe version of the operator guarantees that an excep-
tion is generated if the result is invalid.

 1. if (!((rhs ^ lhs) < 0)) { //test for +/- combo
 2. //either two negatives, or 2 positives
 3. if (rhs < 0) {
 4. //two negatives
 5. if (lhs < MinInt() - rhs) { //remember rhs < 0
 6. throw ERROR_ARITHMETIC_UNDERFLOW;
 7. }
 8. //ok
 9. }
10. else {
11. //two positives
12. if (MaxInt() - lhs < rhs) {
13. throw ERROR_ARITHMETIC_OVERFLOW;
14. }
15. //OK
16. }
17. }
18. //else overflow not possible
19. return lhs + rhs;

Figure 5–33. Checking for overflow when adding two signed integers

Seacord_book.fm Page 194 Thursday, August 11, 2005 3:10 PM

5.7 Mitigation Strategies 195

The SafeInt library has several advantages over the Howard approach.
Because it is written entirely in C++, it is more portable than safe arithmetic
operations that depend on assembly language instructions. It is also more usable:
arithmetic operators can be used in normal inline expressions, and SafeInt uses
C++ exception handling instead of C-style return code checking. One disadvan-
tage is that SafeInt is larger and slower than the Howard approach.

The precondition approach could also be implemented in C-compatible
libraries, although the advantages derived from C++ would not be realized.

RCSint Class. RCSint combines the usability of the SafeInt template class
with the performance of the Howard approach. It stands for “reliable, conve-
nient, and secure integers.”

Figure 5–35 shows the si_multiply() method from the RCSint class. The
method multiplies two signed integers of type int. The multiplication opera-
tion is implemented in embedded assembly language code. If the multiplica-
tion succeeds, the method simply returns with the result in the eax register. If
an overflow condition occurs, the program throws the ERROR_ARITHMETIC_
OVERFLOW exception.

The RCSint approach supports a C++ interface (including operators) for
ease of use and uses Intel assembly instructions for speed. Like the Howard
approach, it cannot be easily ported to other hardware architectures.

 1. //addition
 2.SafeInt<T> operator +(SafeInt<T> rhs) {
 3. return SafeInt<T>(addition(m_int,rhs.Value()));
 4.}

 5. int main(int argc, char *const *argv) {
 6. try{
 7. SafeInt<unsigned long> s1(strlen(argv[1]));
 8. SafeInt<unsigned long> s2(strlen(argv[2]));
 9. char *buff = (char *) malloc(s1 + s2 + 1);
10. strcpy(buff, argv[1]);
11. strcat(buff, argv[2]);
12. }
13. catch(SafeIntException err) {
14. abort();
15. }
16. }

Figure 5–34. SafeInt solution

Seacord_book.fm Page 195 Thursday, August 11, 2005 3:10 PM

196 Integer Security

Arbitrary Precision Arithmetic
There are many arbitrary precision arithmetic packages available, primarily for
scientific computing. However, these can also solve the problem of integer type
range errors, which result from a lack of precision in the representation.

GNU Multiple Precision Arithmetic Library (GMP). GMP is a portable library
written in C for arbitrary precision arithmetic on integers, rational numbers,
and floating-point numbers. It was designed to provide the fastest possible
arithmetic for applications that require higher precision than what is directly
supported by the basic C types.

GMP emphasizes speed over simplicity or elegance. It uses sophisticated
algorithms, full words as the basic arithmetic type, and carefully optimized
assembly code.

Java BigInteger. Newer versions of the Java JDK contain a BigInteger class
in the java.math package. It provides arbitrary-precision integers as well as
analogs to all of Java’s primitive integer operators. While this does little for C
and C++ programmers, it does illustrate that the concept is not entirely foreign
to language designers.

Testing
Checking the input values of integers is a good start, but it does not guarantee
that subsequent operations on these integers will not result in an overflow or

 1. int si_multiply(int si1, int si2) {

 2. __asm {
 3. mov eax, dword ptr [si1]
 4. mov ecx, dword ptr [si2]
 5. imul ecx
 6. jno nof
 7. };

 8. throw SintException(ERROR_ARITHMETIC_OVERFLOW);
 9. nof:
10. return;
11. }

Figure 5–35. Checking for overflow when multiplying two signed integers

Seacord_book.fm Page 196 Thursday, August 11, 2005 3:10 PM

5.8 Notable Vulnerabilities 197

other error condition. Unfortunately, testing does not provide any guarantees
either; it is impossible to cover all ranges of possible inputs on anything but
the most trivial programs.

If applied correctly, testing can increase confidence that the code is secure.
For example, integer vulnerability tests should include boundary conditions
for all integer variables. If type-range checks are inserted in the code, test that
they function correctly for upper and lower bounds. If boundary tests have not
been included, test for minimum and maximum integer values for the various
integer sizes used. Use white box testing to determine the types of these inte-
ger variables or, in cases where source code is not available, run tests with the
various maximum and minimum values for each type.

Source Code Audit
Source code should be audited or inspected for possible integer range errors.
When auditing, check for the following.

■ Integer type ranges are properly checked.

■ Input values are restricted to a valid range based on their intended use.

■ Integers that cannot assume negative values (for example, ones used
for indices, sizes, or loop counters) are declared as unsigned and prop-
erly range-checked for upper and lower bounds.

■ All operations on integers originating from untrusted sources are per-
formed using a safe integer library.

Also, make sure that your “safe” integer library is really safe and protects
against all error conditions identified or referenced in this chapter.

■ 5.8 Notable Vulnerabilities

This section describes notable vulnerabilities resulting from the incorrect han-
dling of integers in C and C++.

XDR Library
There is an integer overflow present in the xdr_array() function distributed
as part of the Sun Microsystems XDR (external data representation) library.
This overflow has been shown to lead to remotely exploitable buffer overflows
in multiple applications, leading to the execution of arbitrary code. Although
the library was originally distributed by Sun Microsystems, multiple vendors

Seacord_book.fm Page 197 Thursday, August 11, 2005 3:10 PM

198 Integer Security

have included the vulnerable code in their own implementations. The initial
vulnerability research and demonstration was performed by Internet Security
Systems (ISS) and has been described in

■ SunRPC xdr_array buffer overflow

http://www.iss.net/security_center/static/9170.php

■ Sun Alert Notification ID: 46122

http://sunsolve.sun.com/search/document.do?assetkey=1-26-46122-1

■ CERT Advisory CA-2002-25

http://www.cert.org/advisories/CA-2002-25.html

■ CERT Vulnerability Note VU#192995

http://www.kb.cert.org/vuls/id/192995

The XDR libraries are used to provide platform-independent methods for
sending data from one system process to another, typically over a network
connection. Such routines are commonly used in remote procedure call (RPC)
implementations to provide transparency to application programmers who need
to use common interfaces to interact with many different types of systems. The
xdr_array() function in the XDR library provided by Sun Microsystems con-
tains an integer overflow that can lead to improperly sized dynamic memory
allocation. Subsequent problems such as buffer overflows can result, depending
on how and where the vulnerable xdr_array() function is used.

Windows DirectX MIDI Library
The Microsoft Windows DirectX library, quartz.dll, contains an integer over-
flow vulnerability that allows an attacker to execute arbitrary code or crash any
application using the library, causing a denial of service. This vulnerability has
been described in:

■ eEye Digital Security advisory AD20030723

http://www.eeye.com/html/Research/Advisories/AD20030723.html

■ Microsoft Advisory MS03-030

http://www.microsoft.com/technet/security/bulletin/ms03-030.mspx

■ CERT Advisory CA-2003-18

http://www.cert.org/advisories/CA-2003-18.html

Seacord_book.fm Page 198 Thursday, August 11, 2005 3:10 PM

5.8 Notable Vulnerabilities 199

■ CERT Vulnerability Note VU#561284

http://www.kb.cert.org/vuls/id/561284

Windows operating systems include multimedia technologies called DirectX
and DirectShow. According to Microsoft Advisory MS03-030,

DirectX consists of a set of low-level Application Programming Inter-
faces (APIs) that are used by Windows programs for multimedia sup-
port. Within DirectX, the DirectShow technology performs client-side
audio and video sourcing, manipulation, and rendering.

DirectShow support for MIDI files is implemented in a library called
quartz.dll. Because this library does not adequately validate the tracks value
in the MThd section of MIDI files, a specially crafted MIDI file could cause an
integer overflow, leading to heap memory corruption.

Any application that uses DirectX or DirectShow to process MIDI files
could be affected by this vulnerability. Of particular concern, Internet Explorer
(IE) loads the vulnerable library to process MIDI files embedded in HTML
documents. An attacker could therefore exploit this vulnerability by convinc-
ing a victim to view an HTML document (for example, Web page, HTML e-mail
message) containing an embedded MIDI file. Note that a number of applica-
tions (for example, Outlook, Outlook Express, Eudora, AOL, Lotus Notes,
Adobe PhotoDeluxe) use the IE HTML rendering engine (WebBrowser ActiveX
control) to interpret HTML documents.

Bash
The GNU Project’s Bourne Again Shell (bash) is a drop-in replacement for the
UNIX Bourne shell (/bin/sh). It has the same syntax as the standard shell but
provides additional functionality such as job control, command-line editing,
and history.

Although bash can be compiled and installed on almost any UNIX plat-
form, its most prevalent use is on Linux, where it has been installed as the
default shell for most applications. The bash source code is freely available
from many sites on the Internet.

A vulnerability exists in bash versions 1.14.6 and earlier where bash can
be tricked into executing arbitrary commands. This vulnerability is described
in CERT Advisory CA-1996-22.11

11. See http://www.cert.org/advisories/CA-1996-22.html.

Seacord_book.fm Page 199 Thursday, August 11, 2005 3:10 PM

200 Integer Security

There is a variable declaration error in the yy_string_get() function in
the parse.y module of the bash source code. This function is responsible for
parsing the user-provided command line into separate tokens. The error
involves the variable string, which has been declared to be of type char *.

The string variable is used to traverse the character string containing the
command line to be parsed. As characters are retrieved from this pointer, they
are stored in a variable of type int. For compilers in which the char type
defaults to signed char, this value is sign-extended when assigned to the int
variable. For character code 255 decimal (–1 in two’s complement form), this
sign extension results in the value –1 being assigned to the integer.

However, –1 is used in other parts of the parser to indicate the end of a
command. Thus, the character code 255 decimal (377 octal) serves as an unin-
tended command separator for commands given to bash via the -c option. For
example,

bash -c 'ls\377who

(where \377 represents the single character with value 255 decimal) will exe-
cute two commands, ls and who.

■ 5.9 Summary

Integer vulnerabilities result from lost or misrepresented data. The key to pre-
venting these vulnerabilities is to understand the nuances of integer behavior
in digital systems and carefully apply this knowledge in the design and imple-
mentation of your systems.

Limiting integer inputs to a valid range can prevent the introduction of
arbitrarily large or small numbers that can be used to overflow integer types.
Many integer inputs have well-defined ranges (for example, an integer repre-
senting a date or month). Other integers have reasonable upper and lower
bounds. For example, because Jeanne Calment, believed by some to be the
world’s longest living person, died at age 122, it should be reasonable to limit
an integer input representing someone’s age from 0–150. For some integers it
can be difficult to establish an upper limit. Usability advocates would argue
against imposing arbitrary limits, introducing a trade-off between security and
usability. However, if you accept arbitrarily large integers, you must ensure that
operations on these values do not cause integer errors that then result in inte-
ger vulnerabilities.

Ensuring that operations on integers do not result in integer errors
requires considerable care. Programming languages such as Ada do a good job

Seacord_book.fm Page 200 Thursday, August 11, 2005 3:10 PM

5.10 Further Reading 201

of enforcing integer type ranges, but if you are reading this book, you are prob-
ably not programming in Ada. Ideally, C and C++ compilers will one day pro-
vide options to generate code to check for overflow conditions. But until that
day, it is a good idea to use one of the safe integer libraries discussed in this
chapter as a safety net.

As always, it makes sense to apply available tools, processes, and tech-
niques in the discovery and prevention of integer vulnerabilities. Static analy-
sis and source code auditing are useful for finding errors. Source code audits
also provide a forum for developers to discuss what does and does not consti-
tute a security flaw and to consider possible solutions. Dynamic analysis tools,
combined with testing, can be used as part of a quality assurance process, par-
ticularly if boundary conditions are properly evaluated.

If integer type range checking is properly applied and safe integer opera-
tions are used for values that can pass out of range (particularly due to external
manipulation), it is possible to prevent vulnerabilities resulting from integer
range errors.

■ 5.10 Further Reading

David LeBlanc covers some additional problem areas with integers such as
comparison operators [LeBlanc 04]. Blexim discusses integer overflows and
signedness bugs, as well as giving some real-world examples [blexim 02].

Seacord_book.fm Page 201 Thursday, August 11, 2005 3:10 PM

