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Functions
William Donnelly
University of Waterloo

Chapter 8

In this chapter, we present distance mapping, a technique for adding small-scale dis-
placement mapping to objects in a pixel shader. We treat displacement mapping as a
ray-tracing problem, beginning with texture coordinates on the base surface and calcu-
lating texture coordinates where the viewing ray intersects the displaced surface. For
this purpose, we precompute a three-dimensional distance map, which gives a measure
of the distance between points in space and the displaced surface. This distance map
gives us all the information necessary to quickly intersect a ray with the surface. Our
algorithm significantly increases the perceived geometric complexity of a scene while
maintaining real-time performance.

8.1 Introduction
Cook (1984) introduced displacement mapping as a method for adding small-scale
detail to surfaces. Unlike bump mapping, which affects only the shading of surfaces,
displacement mapping adjusts the positions of surface elements. This leads to effects
not possible with bump mapping, such as surface features that occlude each other and
nonpolygonal silhouettes. Figure 8-1 shows a rendering of a stone surface in which
occlusion between features contributes to the illusion of depth.

The usual implementation of displacement mapping iteratively tessellates a base sur-
face, pushing vertices out along the normal of the base surface, and continuing until
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Figure 8-1. A Displaced Stone Surface
Displacement mapping (top) gives an illusion of depth not possible with bump mapping alone
(bottom).
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the polygons generated are close to the size of a single pixel. Michael Bunnell presents
this approach in Chapter 7 of this book, “Adaptive Tessellation of Subdivision Surfaces
with Displacement Mapping.”

Although it seems most logical to implement displacement mapping in the vertex shad-
ing stage of the pipeline, this is not possible because of the vertex shader’s inability to
generate new vertices. This leads us to consider techniques that rely on the pixel shader.
Using a pixel shader is a good idea for several reasons:

● Current GPUs have more pixel-processing power than they have vertex-processing
power. For example, the GeForce 6800 Ultra has 16 pixel-shading pipelines to its 6
vertex-shading pipelines. In addition, a single pixel pipeline is often able to perform
more operations per clock cycle than a single vertex pipeline.

● Pixel shaders are better equipped to access textures. Many GPUs do not allow tex-
ture access within a vertex shader; and for those that do, the access modes are limited,
and they come with a performance cost.

● The amount of pixel processing scales with distance. The vertex shader always exe-
cutes once for each vertex in the model, but the pixel shader executes only once per
pixel on the screen. This means work is concentrated on nearby objects, where it is
needed most.

A disadvantage of using the pixel shader is that we cannot alter a pixel’s screen coordi-
nate within the shader. This means that unlike an approach based on tessellation, an
approach that uses the pixel shader cannot be used for arbitrarily large displacements.
This is not a severe limitation, however, because displacements are almost always
bounded in practice. 

8.2 Previous Work
Parallax mapping is a simple way to augment bump mapping to include parallax effects
(Kaneko et al. 2001). Parallax mapping uses the information about the height of a sur-
face at a single point to offset the texture coordinates either toward or away from the
viewer. Although this is a crude approximation valid only for smoothly varying height
fields, it gives surprisingly good results, particularly given that it can be implemented
with only three extra shader instructions. Unfortunately, because of the inherent as-
sumptions of the technique, it cannot handle large displacements, high-frequency fea-
tures, or occlusion between features. 

8.2 Previous Work 125
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Relief mapping as presented by Policarpo (2004) uses a root-finding approach on a
height map. It begins by transforming the viewing ray into texture space. It then per-
forms a linear search to locate an intersection with the surface, followed by a binary
search to find a precise intersection point. Unfortunately, linear search requires a fixed
step size. This means that in order to resolve small details, it is necessary to increase the
number of steps, forcing the user to trade accuracy for performance. Our algorithm does
not have this trade-off: it automatically adjusts the step size as necessary to provide fine
detail near the surface, while skipping large areas of empty space away from the surface.

View-dependent displacement mapping (Wang et al. 2003) and its extension, general-
ized displacement mapping (Wang et al. 2004), treat displacement mapping as a ray-
tracing problem. They store the result of all possible ray intersection queries within a
three-dimensional volume in a five-dimensional map indexed by three position coordi-
nates and two angular coordinates. This map is then compressed by singular value de-
composition, and decompressed in a pixel shader at runtime. Because the data is
five-dimensional, it requires a significant amount of preprocessing and storage.

The algorithm for displacement rendering we present here is based on sphere tracing
(Hart 1996), a technique developed to accelerate ray tracing of implicit surfaces. The
concept is the same, but instead of applying the algorithm to ray tracing of implicit
surfaces, we apply it to the rendering of displacement maps on the GPU. 

8.3 The Distance-Mapping Algorithm
Suppose we want to apply a displacement map to a plane. We can think of the surface
as being bounded by an axis-aligned box. The conventional displacement algorithm
would render the bottom face of the box and push vertices upward. Our algorithm
instead renders the top plane of the box. Then within the shader, we find which point
on the displaced surface the viewer would have really seen. 

In a sense, we are computing the inverse problem to conventional displacement map-
ping. Displacement mapping asks, “For this piece of geometry, what pixel in the image
does it map to?” Our algorithm asks, “For this pixel in the image, what piece of geome-
try do we see?” While the first approach is the one used by rasterization algorithms, the
second approach is the one used by ray-tracing algorithms. So we approach distance
mapping as a ray-tracing problem.

A common ray-tracing approach is to sample the height map at uniformly spaced loca-
tions to test whether the viewing ray has intersected the surface. Unfortunately, we
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encounter the following problem: as long as our samples are spaced farther apart than a
single texel, we cannot guarantee that we have not missed an intersection that lies be-
tween our samples. This problem is illustrated in Figure 8-2. These “overshoots” can
cause gaps in the rendered geometry and can result in severe aliasing. Thus we have two
options: either we accept artifacts from undersampling, or we must take a sample for
each texel along the viewing ray. Figure 8-3 shows that our algorithm can render objects
with fine detail without any aliasing or gaps in geometry.

8.3 The Distance-Mapping Algorithm 127

Figure 8-2. A Difficult Case for Displacement Algorithms
An algorithm that takes fixed-size steps misses an important piece of geometry.

Figure 8-3. Rendering Displaced Text
Because of the fine detail, text is a difficult case for some per-pixel displacement algorithms,
particularly those based on uniformly spaced sampling. Note that our algorithm correctly captures
occlusion between letters without aliasing.
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We can draw two conclusions from the preceding example:

1. We cannot simply query the height map at fixed intervals. It either leads to under-
sampling artifacts or results in an intractable algorithm.

2. We need more information at our disposal than just a height field; we need to know
how far apart we can take our samples in any given region without overshooting the
surface.

To solve these problems, we define the distance map of the surface. For any point p in
texture space and a surface S, we define a function dist(p, S ) = min{d(p, q) : q in S}. In
other words, dist(p, S) is the shortest distance from p to the closest point on the surface
S. The distance map for S is then simply a 3D texture that stores, for each point p, the
value of dist(p, S). Figure 8-4 shows a sample one-dimensional height map and its cor-
responding distance map.

This distance map gives us exactly the information we need to choose our sampling
positions. Suppose we have a ray with origin p0 and direction vector d, where d is nor-
malized to unit length. We define a new point p1 = p0 + dist( p0, S) × d. This point has
the important property that if p0 is outside the surface, then p1 is also outside the sur-
face. We then apply the same operation again by defining p2 = p1 + dist(p1, S) × d, and
so on. Each consecutive point is a little bit closer to the surface. Thus, if we take
enough samples, our points converge toward the closest intersection of the ray with the
surface. Figure 8-5 illustrates the effectiveness of this algorithm. 
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Figure 8-4. A Sample Distance Map in Two Dimensions
Left, top: A one-dimensional height map as an array. Left, bottom: The height map visualized in two dimensions.
Right: The corresponding two-dimensional distance map.
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It is worth noting that distance functions do not apply only to height fields. In fact, a
distance map can represent arbitrary voxelized data. This means that it would be possi-
ble to render small-scale detail with complex topology. For example, chain mail could
be rendered in this manner.

8.3.1 Arbitrary Meshes
Up to this point, we have discussed applying distance mapping only to planes. We
would like to apply distance mapping to general meshes. We do so by assuming the
surface is locally planar. Based on this assumption, we can perform the same calcula-
tions as in the planar case, using the local tangent frame of the surface. We use the local
surface tangents to transform the view vector into tangent space, just as we would
transform the light vector for tangent space normal mapping. Once we have trans-
formed the viewing ray into tangent space, the algorithm proceeds exactly as in the
planar case.

Now that we know how to use a distance map for ray tracing, we need to know how to
efficiently compute a distance map for an arbitrary height field.

8.3 The Distance-Mapping Algorithm 129

FFiigguurree  88--55.. Sphere Tracing
A ray begins at point p0. We then determine the distance to the closest point on the surface.
Geometrically we can imagine expanding a sphere S0 around p0 until it intersects the surface.
Point p1 is then the intersection between the ray and the sphere. We repeat this process,
generating points p2..p4. We can see from the diagram that point p4 is effectively the intersection
point with the surface, and so in this case the algorithm has converged in four iterations.
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8.4 Computing the Distance Map
Computing a distance transform is a well-studied problem. Danielsson (1980) has pre-
sented an algorithm that runs in O(n) time, where n is the number of pixels in the map.
The idea is to create a 3D map where each pixel stores a 3D displacement vector to the
nearest point on the surface. The algorithm then performs a small number of sequential
sweeps over the 3D domain, updating each pixel’s displacement vector based on neigh-
boring displacement vectors. Once the displacements have been calculated, the distance
for each pixel is computed as the magnitude of the displacement. An implementation
of this algorithm is on the book’s CD.

When the distance transform algorithm is finished, we have computed the distance
from each pixel in the distance map to the closest point on the surface, measured in
pixels. To make these distances lie in the range [0, 1], we divide each distance by the
depth of the 3D texture in pixels. 

8.5 The Shaders

8.5.1 The Vertex Shader
The vertex shader for distance mapping, shown in Listing 8-1, is remarkably similar to
a vertex shader for tangent-space normal mapping, with two notable differences. The
first is that in addition to transforming the light vector into tangent space, we also
transform the viewing direction into tangent space. This tangent-space eye vector is
used in the vertex shader as the direction of the ray to be traced in texture space. The
second difference is that we incorporate an additional factor inversely proportional to
the perceived depth. This allows us to adjust the scale of the displacements interactively. 

8.5.2 The Fragment Shader
We now have all we need to begin our ray marching: we have a starting point (the base
texture coordinate passed down by the vertex shader) and a direction (the tangent-space
view vector).

The first thing the fragment shader has to do is to normalize the direction vector. Note
that distances stored in the distance map are measured in units proportional to pixels;
the direction vector is measured in units of texture coordinates. Generally, the distance
map is much higher and wider than it is deep, and so these two measures of distance
are quite different. To ensure that our vector is normalized with respect to the measure
of distance used by the distance map, we first normalize the direction vector, and then 
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Listing 8-1. The Vertex Shader

v2fConnector distanceVertex(a2vConnector a2v,

uniform float4x4 modelViewProj,

uniform float3 eyeCoord,

uniform float3 lightCoord,

uniform float invBumpDepth)

{

v2fConnector v2f;

// Project position into screen space 

// and pass through texture coordinate

v2f.projCoord = mul(modelViewProj, float4(a2v.objCoord, 1));

v2f.texCoord = float3(a2v.texCoord, 1);

// Transform the eye vector into tangent space.

// Adjust the slope in tangent space based on bump depth

float3 eyeVec = eyeCoord - a2v.objCoord;

float3 tanEyeVec;

tanEyeVec.x = dot(a2v.objTangent, eyeVec);

tanEyeVec.y = dot(a2v.objBinormal, eyeVec);

tanEyeVec.z = -invBumpDepth * dot(a2v.objNormal, eyeVec);

v2f.tanEyeVec = tanEyeVec;

// Transform the light vector into tangent space.

// We will use this later for tangent-space normal mapping

float3 lightVec = lightCoord - a2v.objCoord;

float3 tanLightVec;

tanLightVec.x = dot(a2v.objTangent, lightVec);

tanLightVec.y = dot(a2v.objBinormal, lightVec);

tanLightVec.z = dot(a2v.objNormal, lightVec);

v2f.tanLightVec = tanLightVec;

return v2f;

}

multiply this normalized vector by an extra “normalization factor” of (depth/width,
depth/height, 1).

We can now proceed to march our ray iteratively. We begin by querying the distance
map, to obtain a conservative estimate of the distance we can march along the ray with-
out intersecting the surface. We can then step our current position forward by that
distance to obtain another point outside the surface. We can proceed in this way to
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generate a sequence of points that converges toward the displaced surface. Finally, once
we have the texture coordinates of the intersection point, we compute normal-mapped
lighting in tangent space. Listing 8-2 shows the fragment shader.

8.5.3 A Note on Filtering
When sampling textures, we must be careful about how to specify derivatives for tex-
ture lookups. In general, the displaced texture coordinates have discontinuities (for
example, due to sections of the texture that are occluded). When mipmapping or
anisotropic filtering is enabled, the GPU needs information about the derivatives of the
texture coordinates. Because the GPU approximates derivatives with finite differences,
these derivatives have incorrect values at discontinuities. This leads to an incorrect
choice of mipmap levels, which in turn leads to visible seams around discontinuities.

Instead of using the derivatives of the displaced texture coordinates, we substitute the
derivatives of the base texture coordinates. This works because displaced texture coordi-
nates are always continuous, and they vary at approximately the same rate as the base
texture coordinates.

Because we do not use the GPU’s mechanism for determining mipmap levels, it is pos-
sible to have texture aliasing. In practice, this is not a big problem, because the deriva-
tives of the base texture coordinates are a good approximation of the derivatives of the
displaced texture coordinates.

Note that the same argument about mipmap levels also applies to lookups into the
distance map. Because the texture coordinates can be discontinuous around feature
edges, the texture unit will access a mipmap level that is too coarse. This in turn results
in incorrect distance values. Our solution is to filter the distance map linearly without
any mipmaps. Because the distance map values are never visualized directly, aliasing
does not result from the lack of mipmapping here.

8.6 Results
We implemented the distance-mapping algorithm in OpenGL and Cg as well as in Sh
(http://www.libsh.org). The images in this chapter were created with the Sh implemen-
tation, which is available on the accompanying CD. Because of the large number of
dependent texture reads and the use of derivative instructions, the implementation
works only on GeForce FX and GeForce 6 Series GPUs. 
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Listing 8-2. The Fragment Shader

f2fConnector distanceFragment(v2fConnector v2f,

uniform sampler2D colorTex,

uniform sampler2D normalTex,

uniform sampler3D distanceTex,

uniform float3 normalizationFactor)

{

f2fConnector f2f;

// Normalize the offset vector in texture space.

// The normalization factor ensures we are normalized with respect

// to a distance which is defined in terms of pixels.

float3 offset = normalize(v2f.tanEyeVec);

offset *= normalizationFactor;

float3 texCoord = v2f.texCoord;

// March a ray

for (int i = 0; i < NUM_ITERATIONS; i++) {

float distance = f1tex3D(distanceTex, texCoord);

texCoord += distance * offset;

}

// Compute derivatives of unperturbed texcoords.

// This is because the offset texcoords will have discontinuities

// which lead to incorrect filtering.

float2 dx = ddx(v2f.texCoord.xy);

float2 dy = ddy(v2f.texCoord.xy);

// Do bump-mapped lighting in tangent space.

// ‘normalTex’ stores tangent-space normals remapped 

// into the range [0, 1].

float3 tanNormal = 2 * f3tex2D(normalTex, texCoord.xy, dx, dy) - 1;

float3 tanLightVec = normalize(v2f.tanLightVec);

float diffuse = dot(tanNormal, tanLightVec);

// Multiply diffuse lighting by texture color

f2f.COL.rgb = diffuse * f3tex2D(colorTex, texCoord.xy, dx, dy);

f2f.COL.a = 1;

return f2f;

}
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In all examples in this chapter, we have used a 3D texture size of 256×256×16, but
this choice may be highly data-dependent. We also experimented with maps up to
512×512×32 for complex data sets. We set the value of NUM_ITERATIONS to 16
iterations for our examples. In most cases, this was more than sufficient, with 8 itera-
tions sufficing for smoother data sets. 

Our fragment shader, assuming 16 iterations, compiles to 48 instructions for the
GeForce FX. Each iteration of the loop takes 2 instructions: a texture lookup followed
by a multiply-add. GeForce FX and GeForce 6 Series GPUs can execute this pair of
operations in a single clock cycle, meaning that each iteration takes only one clock
cycle. It should be noted that each texture lookup depends on the previous one; on
GPUs that limit the number of indirect texture operations, this shader needs to be
broken up into multiple passes.

We tested our distance-mapping implementation on a GeForce FX 5950 Ultra and on
a GeForce 6800 GT with several different data sets. One such data set is pictured in
Figure 8-6. On the GeForce FX 5950 Ultra, we can shade every pixel at 1024×768
resolution at approximately 30 frames per second. If we reduce the number of iterations
to 8, we obtain approximately 75 frames per second at the same resolution. On the
GeForce 6800 GT, we were able to run at a consistent 70 frames per second, even shad-
ing every pixel at 1280×1024 resolution with 16 iterations.

8.7 Conclusion
We have presented distance mapping, a fast iterative technique for displacement map-
ping based on ray tracing of implicit surfaces. We show that the information contained
in a distance function allows us to take larger steps when rays are farther from the sur-
face, while ensuring that we never take a step so large that we create gaps in the rendered
geometry. The resulting implementation is very efficient; it converges in a few iterations,
and each iteration costs only a single cycle on GeForce FX and GeForce 6 Series GPUs.

In the future we would like to use the dynamic branching capabilities of Shader Model 3
GPUs to improve the performance of our technique by taking “early outs” for pixels that
converge quickly. This would allow us to increase the quality of the technique by devot-
ing more computing power to pixels that converge more slowly.

We would also like to adapt our technique to curved surfaces. Although our algorithm
can be used on any model with appropriate tangents, it results in distortion in regions
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of high curvature. In particular, generalized displacement mapping (Wang et al. 2004)
uses a type of tetrahedral projection to account for curved surfaces, and this method
can also be applied to our algorithm. Such a tetrahedral projection can be accomplished
in a vertex shader (Wylie et al. 2002).
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