
The following is an excerpt from Scott Meyers’ new book,
Effective C++, Third Edition: 55 Specific Ways to Improve
Your Programs and Designs.

Item 27: Minimize casting.

The rules of C++ are designed to guarantee that type errors are impos-
sible. In theory, if your program compiles cleanly, it’s not trying to
perform any unsafe or nonsensical operations on any objects. This is
a valuable guarantee. You don’t want to forgo it lightly.

Unfortunately, casts subvert the type system. That can lead to all
kinds of trouble, some easy to recognize, some extraordinarily subtle.
If you’re coming to C++ from C, Java, or C#, take note, because cast-
ing in those languages is more necessary and less dangerous than in
C++. But C++ is not C. It’s not Java. It’s not C#. In this language, cast-
ing is a feature you want to approach with great respect.

Let’s begin with a review of casting syntax, because there are usually
three different ways to write the same cast. C-style casts look like this:

(T) expression // cast expression to be of type T

Function-style casts use this syntax:

T(expression) // cast expression to be of type T

There is no difference in meaning between these forms; it’s purely a
matter of where you put the parentheses. I call these two forms old-
style casts.

C++ also offers four new cast forms (often called new-style or C++-style
casts):

const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each serves a distinct purpose:

■ const_cast is typically used to cast away the constness of objects. It
is the only C++-style cast that can do this.

■ dynamic_cast is primarily used to perform “safe downcasting,” i.e.,
to determine whether an object is of a particular type in an inher-
itance hierarchy. It is the only cast that cannot be performed us-
ing the old-style syntax. It is also the only cast that may have a
significant runtime cost. (I’ll provide details on this a bit later.)

http://www.awprofessional.com/title/0321334876

2 Item 27 Effective C++, Third Edition

■ reinterpret_cast is intended for low-level casts that yield implemen-
tation-dependent (i.e., unportable) results, e.g., casting a pointer
to an int. Such casts should be rare outside low-level code. I use it
only once in this book, and that’s only when discussing how you
might write a debugging allocator for raw memory (see Item 50).

■ static_cast can be used to force implicit conversions (e.g., non-const
object to const object (as in Item 3), int to double, etc.). It can also be
used to perform the reverse of many such conversions (e.g., void*
pointers to typed pointers, pointer-to-base to pointer-to-derived),
though it cannot cast from const to non-const objects. (Only
const_cast can do that.)

The old-style casts continue to be legal, but the new forms are prefer-
able. First, they’re much easier to identify in code (both for humans
and for tools like grep), thus simplifying the process of finding places
in the code where the type system is being subverted. Second, the
more narrowly specified purpose of each cast makes it possible for
compilers to diagnose usage errors. For example, if you try to cast
away constness using a new-style cast other than const_cast, your
code won’t compile.

About the only time I use an old-style cast is when I want to call an ex-
plicit constructor to pass an object to a function. For example:

class Widget {
public:

explicit Widget(int size);
...

};

void doSomeWork(const Widget& w);

doSomeWork(Widget(15)); // create Widget from int
// with function-style cast

doSomeWork(static_cast<Widget>(15)); // create Widget from int
// with C++-style cast

Somehow, deliberate object creation doesn’t “feel” like a cast, so I’d
probably use the function-style cast instead of the static_cast in this
case. Then again, code that leads to a core dump usually feels pretty
reasonable when you write it, so perhaps you’d best ignore feelings
and use new-style casts all the time.

Many programmers believe that casts do nothing but tell compilers to
treat one type as another, but this is mistaken. Type conversions of
any kind (either explicit via casts or implicit by compilers) often lead to
code that is executed at runtime. For example, in this code fragment,

int x, y;
...
double d = static_cast<double>(x)/y; // divide x by y, but use

// floating point division

Effective C++, Third Edition Item 27 3

the cast of the int x to a double almost certainly generates code,
because on most architectures, the underlying representation for an
int is different from that for a double. That’s perhaps not so surprising,
but this example may widen your eyes a bit:

class Base { ... };

class Derived: public Base { ... };

Derived d;

Base *pb = &d; // implicitly convert Derived* ⇒ Base*

Here we’re just creating a base class pointer to a derived class object,
but sometimes, the two pointer values will not be the same. When
that’s the case, an offset is applied at runtime to the Derived* pointer to
get the correct Base* pointer value.

This last example demonstrates that a single object (e.g., an object of
type Derived) might have more than one address (e.g., its address
when pointed to by a Base* pointer and its address when pointed to by
a Derived* pointer). That can’t happen in C. It can’t happen in Java. It
can’t happen in C#. It does happen in C++. In fact, when multiple
inheritance is in use, it happens virtually all the time, but it can hap-
pen under single inheritance, too. Among other things, that means
you should generally avoid making assumptions about how things are
laid out in C++, and you should certainly not perform casts based on
such assumptions. For example, casting object addresses to char*
pointers and then using pointer arithmetic on them almost always
yields undefined behavior.

But note that I said that an offset is “sometimes” required. The way
objects are laid out and the way their addresses are calculated varies
from compiler to compiler. That means that just because your “I know
how things are laid out” casts work on one platform doesn’t mean
they’ll work on others. The world is filled with woeful programmers
who’ve learned this lesson the hard way.

An interesting thing about casts is that it’s easy to write something
that looks right (and might be right in other languages) but is wrong.
Many application frameworks, for example, require that virtual mem-
ber function implementations in derived classes call their base class
counterparts first. Suppose we have a Window base class and a Spe-
cialWindow derived class, both of which define the virtual function
onResize. Further suppose that SpecialWindow’s onResize is expected to
invoke Window’s onResize first. Here’s a way to implement this that
looks like it does the right thing, but doesn’t:

class Window { // base class
public:

virtual void onResize() { ... } // base onResize impl
...

};

4 Item 27 Effective C++, Third Edition

class SpecialWindow: public Window { // derived class
public:

virtual void onResize() { // derived onResize impl;
static_cast<Window>(*this).onResize(); // cast *this to Window,

// then call its onResize;
// this doesn’t work!

... // do SpecialWindow-
} // specific stuff

...

};

I’ve highlighted the cast in the code. (It’s a new-style cast, but using
an old-style cast wouldn’t change anything.) As you would expect, the
code casts *this to a Window. The resulting call to onResize therefore
invokes Window::onResize. What you might not expect is that it does
not invoke that function on the current object! Instead, the cast cre-
ates a new, temporary copy of the base class part of *this, then invokes
onResize on the copy! The above code doesn’t call Window::onResize on
the current object and then perform the SpecialWindow-specific
actions on that object — it calls Window::onResize on a copy of the base
class part of the current object before performing SpecialWindow-spe-
cific actions on the current object. If Window::onResize modifies the
current object (hardly a remote possibility, since onResize is a non-
const member function), the current object won’t be modified. Instead,
a copy of that object will be modified. If SpecialWindow::onResize modi-
fies the current object, however, the current object will be modified,
leading to the prospect that the code will leave the current object in an
invalid state, one where base class modifications have not been made,
but derived class ones have been.

The solution is to eliminate the cast, replacing it with what you really
want to say. You don’t want to trick compilers into treating *this as a
base class object; you want to call the base class version of onResize on
the current object. So say that:

class SpecialWindow: public Window {
public:

virtual void onResize() {
Window::onResize(); // call Window::onResize
... // on *this

}

...

};

Effective C++, Third Edition Item 27 5

This example also demonstrates that if you find yourself wanting to
cast, it’s a sign that you could be approaching things the wrong way.
This is especially the case if your want is for dynamic_cast.

Before delving into the design implications of dynamic_cast, it’s worth
observing that many implementations of dynamic_cast can be quite
slow. For example, at least one common implementation is based in
part on string comparisons of class names. If you’re performing a
dynamic_cast on an object in a single-inheritance hierarchy four levels
deep, each dynamic_cast under such an implementation could cost you
up to four calls to strcmp to compare class names. A deeper hierarchy
or one using multiple inheritance would be more expensive. There are
reasons that some implementations work this way (they have to do
with support for dynamic linking). Nonetheless, in addition to being
leery of casts in general, you should be especially leery of
dynamic_casts in performance-sensitive code.

The need for dynamic_cast generally arises because you want to per-
form derived class operations on what you believe to be a derived class
object, but you have only a pointer- or reference-to-base through
which to manipulate the object. There are two general ways to avoid
this problem.

First, use containers that store pointers (often smart pointers — see
Item 13) to derived class objects directly, thus eliminating the need to
manipulate such objects through base class interfaces. For example,
if, in our Window/SpecialWindow hierarchy, only SpecialWindows sup-
port blinking, instead of doing this:

class Window { ... };

class SpecialWindow: public Window {
public:

void blink();
...

};

typedef // see Item 13 for info
std::vector<std::tr1::shared_ptr<Window> > VPW; // on tr1::shared_ptr

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); // undesirable code:
iter != winPtrs.end(); // uses dynamic_cast
++iter) {

if (SpecialWindow *psw = dynamic_cast<SpecialWindow*>(iter->get()))
psw->blink();

}

6 Item 27 Effective C++, Third Edition

try to do this instead:

typedef std::vector<std::tr1::shared_ptr<SpecialWindow> > VPSW;

VPSW winPtrs;

...

for (VPSW::iterator iter = winPtrs.begin(); // better code: uses
iter != winPtrs.end(); // no dynamic_cast
++iter)

(*iter)->blink();

Of course, this approach won’t allow you to store pointers to all possi-
ble Window derivatives in the same container. To work with different
window types, you might need multiple type-safe containers.

An alternative that will let you manipulate all possible Window deriva-
tives through a base class interface is to provide virtual functions in
the base class that let you do what you need. For example, though
only SpecialWindows can blink, maybe it makes sense to declare the
function in the base class, offering a default implementation that does
nothing:

class Window {
public:

virtual void blink() {} // default impl is no-op;
... // see Item 34 for why

}; // a default impl may be
// a bad idea

class SpecialWindow: public Window {
public:

virtual void blink() { ... }; // in this class, blink
... // does something

};

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs; // container holds
// (ptrs to) all possible

... // Window types

for (VPW::iterator iter = winPtrs.begin();
iter != winPtrs.end();
++iter) // note lack of

(*iter)->blink(); // dynamic_cast

Neither of these approaches — using type-safe containers or moving
virtual functions up the hierarchy — is universally applicable, but in
many cases, they provide a viable alternative to dynamic_casting. When
they do, you should embrace them.

Effective C++, Third Edition Item 27 7

One thing you definitely want to avoid is designs that involve cascad-
ing dynamic_casts, i.e., anything that looks like this:

class Window { ... };

... // derived classes are defined here

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); iter != winPtrs.end(); ++iter)
{

if (SpecialWindow1 *psw1 =
dynamic_cast<SpecialWindow1*>(iter->get())) { ... }

else if (SpecialWindow2 *psw2 =
dynamic_cast<SpecialWindow2*>(iter->get())) { ... }

else if (SpecialWindow3 *psw3 =
dynamic_cast<SpecialWindow3*>(iter->get())) { ... }

...

}

Such C++ generates code that’s big and slow, plus it’s brittle, because
every time the Window class hierarchy changes, all such code has to
be examined to see if it needs to be updated. (For example, if a new
derived class gets added, a new conditional branch probably needs to
be added to the above cascade.) Code that looks like this should
almost always be replaced with something based on virtual function
calls.

Good C++ uses very few casts, but it’s generally not practical to get rid
of all of them. The cast from int to double on page 2, for example, is a
reasonable use of a cast, though it’s not strictly necessary. (The code
could be rewritten to declare a new variable of type double that’s ini-
tialized with x’s value.) Like most suspicious constructs, casts should
be isolated as much as possible, typically hidden inside functions
whose interfaces shield callers from the grubby work being done
inside.

Things to Remember

✦ Avoid casts whenever practical, especially dynamic_casts in perfor-
mance-sensitive code. If a design requires casting, try to develop a
cast-free alternative.

✦ When casting is necessary, try to hide it inside a function. Clients
can then call the function instead of putting casts in their own code.

✦ Prefer C++-style casts to old-style casts. They are easier to see, and
they are more specific about what they do.

