
Kenan-150003 book September 22, 2005 19:8 17

Chapter 2
Securing Databases
with Cryptography

This chapter discusses how cryptography can address the concerns raised in the previous
chapter. After explaining what cryptography is and providing a general idea of how it
works, we dig into the various types of cryptographic algorithms and see where the
strengths and weaknesses of each lie.

Finally, we look at where database cryptography sits in an organization’s security
portfolio. With respect to threats against confidentiality and integrity, we examine how
cryptography can help with security. We also look at the common pitfalls and difficulties
encountered in implementing a cryptographic system. Not only does a poorly
implemented system not provide the needed protection, it can actually weaken overall
security. We spend time looking at what kinds of risks a poor cryptographic
system introduces.

2.1 A Brief Database Refresher
For the most part, this book assumes knowledge of databases, but we’ll quickly go over
the fundamentals in case you’ve been away from the topic for some time. A relational
database stores information in tables consisting of rows and columns. A field or cell is
the intersection of a row and column.

Tables are related to each other through primary and foreign keys (these keys are quite
different from cryptographic keys, which are discussed later). A primary key is a subset of
the information in a row that uniquely identifies that row from all the other rows in the

17



Kenan-150003 book September 22, 2005 19:8 18

Chapter 2—Securing Databases with Cryptography

table. A foreign key links a row in one table to a row in another table by referencing
the latter table’s primary key.

Indexes allow for quick searching through a table. By specifying an index on a
column, the database creates a special data structure that allows it to rapidly find
any information stored in that column. Primary key columns are typically indexed.

A standard language, structured query language (SQL), is used to manage data.
Database objects, such as tables and indexes, are created, modified, and destroyed
using a subset of SQL known as data definition language (DDL). Information is
entered, viewed, altered, and deleted from a database using another subset of SQL
called data manipulation language (DML).

The most common interaction with a database is the select statement, which
is an element of DML. The select statement allows an operator to dig though one
or more database tables and display just the data that meets specific criteria. A
basic select statement contains three clauses. The select clause specifies which
columns should be displayed. The from clause specifies which tables should be
included in the search. The where clause details the criteria a row must meet to be
selected.

The where clause frequently contains join statements, which tell the database
how to include multiple tables in the query. Typically, a join follows the link
established by a foreign key.

Other frequently used statements include insert, for inserting new data into
a table; update, for modifying existing data in a table; and delete for removing
rows. All of these statements also include from and where clauses.

Programs typically interact with databases by building and passing these
statements to the database. For instance, when a customer wishes to see the
items she added to her shopping cart last week, the application passes a select
statement to the database to select all of the items in that customer’s cart. Then,
when the customer adds an item, the application might pass an insert to
the database.

Stored procedures offer another avenue for an application to interact with a
database. A stored procedure is a program that is loaded into the database itself.
Then, instead of the application building an insert statement to add a new item
to the customer’s cart, the application would call the add item to cart stored
procedure and pass the item and quantity as arguments.

Databases are much more complex and feature-rich than what we’ve described
here, but this overview should provide enough context to help you make sense of
the database terminology used in this book. The code examples at the end of the
book contain many examples of SQL statements. See Chapter 21, “The System at
Work,” for example.

18



Kenan-150003 book September 22, 2005 19:8 19

2.2 What Is Cryptography?

2.2 What Is Cryptography?
Cryptography is the art of “extreme information security.” It is extreme in the
sense that once treated with a cryptographic algorithm, a message (or a database
field) is expected to remain secure even if the adversary has full access to the
treated message. The adversary may even know which algorithm was used. If the
cryptography is good, the message will remain secure.

This is in contrast to most information security techniques, which are designed
to keep adversaries away from the information. Most security mechanisms prevent
access and often have complicated procedures to allow access to only authorized
users. Cryptography assumes that the adversary has full access to the message and
still provides unbroken security. That is extreme security.

A more popular conception of cryptography characterizes it as the science of
“scrambling” data. Cryptographers invent algorithms that take input data, called
plaintext, and produce scrambled output. Scrambling, used in this sense, is much
more than just moving letters around or exchanging some letters for others. After a
proper cryptographic scrambling, the output is typically indistinguishable from a
random string of data. For instance, a cryptographic function might turn “Hello,
whirled!” into 0x397B3AF517B6892C.

While simply turning a message into a random sequence of bits may not seem
useful, you’ll soon see that cryptographic hashes, as such functions are known, are
very important to modern computer security. Cryptography, though, offers
much more.

Many cryptographic algorithms, but not all, are easily reversible if you
know a particular secret. Armed with that secret, a recipient could turn
0x397B3AF517B6892C back into “Hello, whirled!” Anyone who did not know the
secret would not be able to recover the original data. Such reversible algorithms are
known as ciphers, and the scrambled output of a cipher is ciphertext. The secret
used to unscramble ciphertext is called a key. Generally, the key is used for both
scrambling, called encryption, and unscrambling, called decryption.

A fundamental principle in cryptography, Kerckhoffs’ Principle, states that
the security of a cipher should depend only on keeping the key secret. Even if
everything else about the cipher is known, so long as the key remains secret,
the plaintext should not be recoverable from the ciphertext.

The opposite of Kerckhoffs’ Principle is security through obscurity. Any
cryptographic system where the cipher is kept secret depends on security through

19



Kenan-150003 book September 22, 2005 19:8 20

Chapter 2—Securing Databases with Cryptography

obscurity.1 Given the difficulty that even professional cryptographers have in
designing robust and efficient encryption systems, the likelihood of a secret cipher
providing better security than any of the well-known and tested ciphers is
vanishingly small. Plus, modern decompilers, disassemblers, debuggers, and other
reverse-engineering tools ensure that any secret cipher likely won’t remain secret
for long.

Cryptographic algorithms can be broadly grouped into three categories:
symmetric cryptography, asymmetric (or public-key) cryptography, and
cryptographic hashing. Each of these types has a part to play in most cryptographic
systems, and we next consider each of them in turn.

2.2.1 Symmetric Cryptography
Symmetric key cryptography is so named because the cipher uses the same key for
both encryption and decryption. Two famous ciphers, Data Encryption Standard
(DES) and Advanced Encryption Standard (AES), both use symmetric keys.
Because symmetric key ciphers are generally much faster than public-key ciphers,
they are suitable for encrypting small and large data items.

Modern symmetric ciphers come in two flavors. Block ciphers encrypt a chunk of
several bits all at once, while stream ciphers generally encrypt one bit at a time as the
data stream flows past. When a block cipher must encrypt data longer than the
block size, the data is first broken into blocks of the appropriate size, and then the
encryption algorithm is applied to each. Several modes exist that specify how each
block is handled. The modes enable an algorithm to be used securely in a variety of
situations. By selecting an appropriate mode, for instance, a block cipher can even
be used as stream cipher.

The chief advantage of a stream cipher for database cryptography is that the
need for padding is avoided. Given that block ciphers operate on a fixed block size,
any blocks of data smaller than that size must be padded. Stream ciphers avoid
this, and when the data stream ends, the encryption ends. We’ll return to block and
stream ciphers in the algorithm discussion in Chapter 4 “Cryptographic Engines
and Algorithms.”

The primary drawback of symmetric key ciphers is key management. Because
the same key is used for both encryption and decryption, the key must be
distributed to every entity that needs to work with the data. Should an adversary

1. A military cipher would seem an exception, except that most likely the cipher is designed in accordance with
Kerckhoffs’ Principle in the not-too-unlikely case that an enemy discovers the cipher.

20



Kenan-150003 book September 22, 2005 19:8 21

2.2 What Is Cryptography?

obtain the key, not only is the confidentiality of the data compromised, but integrity
is also threatened given that the key can be used to encrypt as well as decrypt.

The risks posed by losing control of the key make distributing and storing the
key difficult. How can the key be moved securely to all the entities that need to
decrypt the data? Encrypting the key for transmission would make sense, but what
key would be used to encrypt the key, and how would you get the key-encrypting
key to the destination?

Once the key is at the decryption location, how should it be secured so that an
attacker can’t steal it? Again, encryption offers a tempting solution, but then you
face the problem of securing the key used to encrypt the original key.

We’ll look at these problems in more detail in Chapter 5 “Keys: Vaults,
Manifests, and Managers.” In terms of the key distribution problem,
cryptographers have devised an elegant solution using public-key cryptography,
which we examine next.

2.2.2 Public-Key Cryptography
Public-key cryptography, also known as asymmetric cryptography, is a relatively
recent invention. As you might guess from the name, the decryption key is
different from the encryption key. Together, the two keys are called a key pair and
consist of a public key, which can be distributed to the public, and a private key,
which must remain a secret. Typically the public key is the encryption key and the
private key is the decryption key, but this is not always the case. Well-known
asymmetric algorithms include RSA, ElGamal, and Diffie-Hellman. Elliptic curve
cryptography provides a different mathematical basis for implementing existing
public-key algorithms.

Public-key ciphers are much slower than symmetric-key ciphers and so are
typically used to encrypt smaller data items. One common use is to securely
distribute a symmetric key. A sender first encrypts a message with a symmetric key
and then encrypts that symmetric key with the intended receiver’s public key. He
then sends both to the receiver. The receiver uses her private key to decrypt the
symmetric key and then uses the recovered symmetric key to decrypt the message.
In this manner the speed of the symmetric cipher is still a benefit, and the problem
of distributing the symmetric key is removed. Such systems are known as
hybrid cryptosystems.

Another important use for public-key cryptography is to create digital
signatures. Digital signatures are used much like real signatures to verify who sent
a message. The private key is used to sign the message, and the public key is used
to verify the signature.

21



Kenan-150003 book September 22, 2005 19:8 22

Chapter 2—Securing Databases with Cryptography

A common, easily understood digital signature scheme is as follows. To sign a
message, the sender encrypts the message with the private key. Anyone with the
corresponding public key can decrypt the message and know that it could only
have been encrypted with the private key, which presumably only the sender
possesses. Note that this does not protect the confidentiality of the message,
considering anyone could have the sender’s public key. The goal of a digital
signature is simply to verify the sender.

Because the public key can be distributed to anyone, we don’t have the same
problem as we do with symmetric cryptography. However, we do have a problem
of unambiguously matching the public key with the right person. How do we know
that a particular public key truly belongs to the person or entity we think it does?
This is the problem that public key infrastructure (PKI) has tried to solve.
Unfortunately, PKI hasn’t lived up to its promise, and the jury is still out on what
the long-term accepted solution will be.

Public-key cryptography is mentioned here to help readers new to cryptography
understand how it is different from symmetric algorithms. We do not use
public-key cryptography in this book, and we do not cover particular algorithms
or implementation details. As is discussed in section 2.3, “Applying Cryptography,”
public-key schemes aren’t necessary for solving the problems in which
we’re interested.

2.2.3 Cryptographic Hashing
The last type of cryptographic algorithm we’ll look at is cryptographic hashing.
A cryptographic hash, also known as a message digest, is like the fingerprint of
some data. A cryptographic hash algorithm reduces even very large data to a small
unique value. The interesting thing that separates cryptographic hashes from other
hashes is that it is virtually impossible to either compute the original data from the
hash value or to find other data that hashes to the same value.

A common role played by hashing in modern cryptosystems is improving the
efficiency of digital signatures. Because public-key ciphers are much slower than
symmetric ciphers, signing large blocks of data is very time-consuming. Instead,
most digital signature protocols specify that the digital signature is instead applied
to a hash of the data. Given that computing a hash is generally fast and the
resulting value is typically much smaller than the data, the signing time is
drastically reduced.

Other common uses of cryptographic hashes include protecting passwords,
time-stamping data to securely track creation and modification dates and times,
and assuring data integrity. The well-known Secure Hash Algorithm family

22



Kenan-150003 book September 22, 2005 19:8 23

2.3 Applying Cryptography

includes SHA-224, SHA-256, SHA-384, and SHA-512. The older SHA-1 and MD5
algorithms are currently in wider use, but flaws in both have been identified, and
both should be retired in favor of a more secure hash.

2.3 Applying Cryptography
Now that you’ve freshened your recollection of database terminology and surveyed
the basics of modern cryptography, we examine how cryptography can help secure
your databases against the classes of threats covered in Chapter 1.

As we discuss the types of solutions offered by cryptography, we’ll also
consider the threats that cryptography is expected to mitigate. This threat analysis,
as discussed previously, is an essential component of any cryptographic project,
and the answers significantly shape the cryptographic solution. Unfortunately, in
practice, a requirement to encrypt data is rarely supported with a description of
the relevant threats. Encrypting to protect confidentiality from external attackers
launching SQL injection attacks is different from protecting against internal
developers with read-only access to the production database. The precise nature
of the threat determines the protection.

2.3.1 Protecting Confidentiality
A breach of confidentiality occurs when sensitive data is accessed by an
unauthorized individual. Encrypting that sensitive data, then, seems to make
excellent sense: if the data is encrypted, you’ve secured it against unauthorized
access. Unfortunately, the solution is not this simple. Cryptography only changes
the security problem; it doesn’t remove it.

The initial problem was to protect the confidentiality of the business data.
Encrypting that data changes the problem to one of protecting the confidentiality
of the key used for the encryption. The key must be protected with very strong
access controls, and those controls must cover both direct and indirect access.

Direct access is access to the key itself. An attacker with direct access may
copy the key and use it without fear of detection. Indirect access is access to an
application or service that has access to the key. With indirect access, an attacker
can feed encrypted data to the application or service and view the decrypted
information. An attacker exploiting indirect access faces additional risk, because
the application or service, due to its sensitivity, is generally well monitored. From
an attacker’s point of view, the advantage that might make the indirect access
worth the additional risk is that the application or service will continue to provide

23



Kenan-150003 book September 22, 2005 19:8 24

Chapter 2—Securing Databases with Cryptography

decryption even after the key is changed. An attacker who has a copy of the key
will find the key useless as soon as the data is encrypted with a different key.

The problem of securing access to the key lies behind much of the complexity
of key management systems. Cryptography is often said to transform the problem
of protecting many secrets into the problem of protecting one secret. Protecting
this one secret, despite the complexity, is generally easier than protecting the many
secrets. Because of this, encryption is a strong and preferred method of protecting
confidentiality in a database.

Consider the confidentiality threats identified in the previous chapter. The
potential attackers included individuals with a copy of the database, privileged
administrators, IT troubleshooters, development staff using nonproduction
environments, individuals with access to backup media (often stored off-site), and
attackers exploiting application weaknesses. In each of these cases, encryption
protects the data so long as access to the keys is tightly controlled.

While tightly controlling direct access to keys is a relatively solvable problem
(this book recommends dedicated key storage hardware but offers suggestions
if such protection is unavailable), controlling indirect access is more difficult.
Information is stored because the business is likely to need it at a later date, and
to use it at that later date, encrypted information will need to be decrypted. The
application that provides the decryption service is a weak link in the security chain.
Rather than attack the encryption or the controls protecting direct access to the
key, a smart attacker targets the decrypting application. We’ll consider this issue
in more detail in section 2.5.1, “Indirect Access of Keys.”

Protecting against attackers with access to a copy of the database, whether
stolen from a production machine or a backup tape, requires that the key not be
stored within or, ideally, on the same machine as the database. In the case of
attacks exploiting backup media, backups of keys must be stored separately from
the backups of encrypted data. Access to those backups must also be restricted to
different individuals. How deep that separation goes depends on the threat model.
If the relevant threat is the off-site backup staff, two different staffs (perhaps two
different backup companies) are all that is necessary. If the relevant threats extend
all the way to internal system administrators, separate administrators should
manage the backups of each system.

Protecting against administrators with full access to database or application
servers is primarily a matter of strong indirect access controls to the keys. However,
even with just moderate access controls protecting the keys, encryption prevents
casual attacks from administrators. In particular, encryption significantly increases
the amount of effort required for an administrator to compromise confidentiality
and keep the risk of detection low. Such protection is often described as “keeping

24



Kenan-150003 book September 22, 2005 19:8 25

2.3 Applying Cryptography

the honest, honest.” If the threat model rates the risk of administrator compromise
sufficiently low, keys may need only a moderate level of protection from
indirect access.

Most threat models should identify the presence of sensitive production
data in nonproduction environments as a significant threat. Because encryption
does such a fine job of preserving confidentiality, encrypted production data
can’t be decrypted in a nonproduction environment.2 While this is good
from a security perspective, the failure in decryption typically results in a
malfunctioning environment.

The best solution is to replace all the encrypted data with mock data. Ideally,
the mock data reflects the entire data model specified by the application’s design,
including common, general-use scenarios as well as edge cases. Depending on
resource availability, the mock data might be encrypted after it is written to the
database. In some cases, it might be possible to encrypt the mock data first and
then update the table with the encrypted mock data wherever it is needed. This
latter strategy avoids the row-by-row encryption of the mock data.

2.3.2 Assuring Integrity
Cryptography can help detect and prevent integrity attacks, which are unauth-
orized modifications of data. In some cases, both integrity and confidentiality
protection are desired, while in other cases just integrity protection may be needed.
When integrity protection alone is called for, the data itself remains unencrypted,
and some other operation protects integrity.

The naive solution for both confidentiality and integrity is to simply encrypt the
information with a symmetric cipher. Later, if it doesn’t decrypt properly, someone
has tampered with the information.

Unfortunately, the naive solution is not very robust. A clever attacker will attack
integrity in a less obvious fashion. For instance, an attacker might move encrypted
fields around so that the rows containing my information now have someone else’s
encrypted credit card number. Or the attacker might swap blocks within the
ciphertext or between ciphertexts. In such an attack, much of the field could
decrypt to the correct value, but selected portions of it would decrypt to something
else. This attack might result in some garbled data, but the rest of the field would
look fine.

2. This assumes that the keys for decrypting the data are not available in nonproduction environments; if
they are, the key management procedures are seriously flawed. This is discussed further in Part II, “A
Cryptographic Infrastructure.”

25



Kenan-150003 book September 22, 2005 19:8 26

Chapter 2—Securing Databases with Cryptography

A better solution, and one that works even if confidentiality protection is not
needed, is to use a message authentication code (MAC). A MAC is generated from
the plaintext and a unique ID for that row (the ID thwarts attacks that move entire
fields around). To confirm the integrity of the data, we check to make sure that the
MAC still corresponds to the data.

While this will detect a past integrity attack, a MAC can also prevent integrity
attacks. When data and its MAC are inserted into a table, the database can first
check to ensure that the MAC is the correct MAC for that data. If it is the wrong
MAC (or the MAC is not included), the database can reject the change.

Every database threat model should consider integrity threats, but as described
in the previous chapter, cryptographic integrity protection is typically not a good fit
for databases. The threat model will help make this clear. Integrity threats against
the database may be carried out by attackers directly targeting the database or by
attackers targeting the application providing access to the database, which also
stamps changes with the MAC. In general, attacks against the application are more
likely to be successful than attacks directly against the database, so, in this context,
the risk posed by the application is greater than the risk posed by the database
itself. To be effective, security should be applied to the higher-risk items. Because
the protection offered by a MAC further increases the difficulty of directly
attacking the database successfully (which is already a lower risk), those resources
should be applied to securing the application instead, thus reducing the overall
risk. Refer to section 1.1.3, “Integrity Attacks,” for a more detailed discussion.

2.4 Cryptographic Risks
Cryptography should not be undertaken lightly. While it can significantly help
secure information in a database, cryptography carries risk as well.

Perhaps the most obvious risk is the danger of lost keys. Should a key become
lost, either corrupted or deleted or even accidentally thrown away, any data
encrypted with that key is also lost. There is no “undelete” or “data recovery”
program that can undo the encryption. All it takes is the loss of just 128 bits
(the recommended size of a key in this book), and megabytes of data become
meaningless. This threat is one of the reasons that key management is such an
important topic in cryptography.

As mentioned earlier, weaknesses in key management tools and procedures can
put overall security at risk. If an attacker can access the key, directly or indirectly,

26



Kenan-150003 book September 22, 2005 19:8 27

2.5 Cryptographic Attacks

or insert a known key into the system, the cryptography is broken.3 If the key
generation routines aren’t based on sufficiently random numbers, the attacker
may be able to guess the key.

Implementation bugs also introduce risks. If other data used in the encryption
process, such as initialization vectors, which are covered later, does not possess
the appropriate properties, attackers will likely be able to discern patterns in the
encrypted data and possibly deduce the real data. If the data is written to logs
or even not wiped from memory, it is vulnerable to attackers. Even if the key
management is perfect and the implementation bug-free, indirect access to the
keys is still a significant issue.

Because poor encryption looks so similar to good encryption, it generates
misplaced confidence, which can amplify the risks posed by the data. An
encrypted system may not have as many other controls placed around it, so any
vulnerabilities are even more exposed. In this way, a bad cryptographic system
can decrease the data’s security.

It is vitally important that the cryptographic infrastructure be designed
and implemented correctly. Later chapters go into detail on the design of a
cryptographic infrastructure.

2.5 Cryptographic Attacks
Cryptographers classify attacks against cryptosystems into several categories.
These attacks attempt to either retrieve the key or expose the plaintext. The
algorithms discussed in this book are strong and resist all the attacks discussed
here. However, the demands of a practical cryptosystem can easily introduce
vulnerabilities even though the algorithm itself is strong. Much of the design
presented in this book is aimed at mitigating these weaknesses.

A known-ciphertext attack is what most people think of as a cryptographic
attack. The attacker has access only to the ciphertexts produced with a given key.
These attacks can target either the key or the plaintext. Generally, we’ll assume
that the attacker has all the ciphertexts.

In the case of a database, this is tantamount to the attacker’s having access to
the database. Perhaps the attacker has found a weakness in the operating system
that allows the database file itself to be downloaded, or perhaps a SQL injection

3. Adding to the risk is the fact that such situations can be very difficult to detect.

27



Kenan-150003 book September 22, 2005 19:8 28

Chapter 2—Securing Databases with Cryptography

attack is exposing the encrypted data. A properly placed insider often has easy
access to all the data.

When the attacker has access to both the plaintext and the ciphertext, the
attacker can mount a known-plaintext attack. People new to cryptography often
dismiss known-plaintext attacks as a sort of “cheating.” After all, if the attacker
already has all the plaintexts, all the secrets have been exposed. We generally
assume, though, that only some of the plaintext-ciphertext pairs are known.
Perhaps all the past plaintexts prior to a certain date were compromised. The goal
of a known-plaintext can be to recover the key or to uncover plaintext.

In a database context, it is often not too hard to find known plaintexts. The
system might temporarily cache the plaintext prior to encryption, or the system
might store the data unencrypted elsewhere in the system. This last case is far more
common than you might think. For instance, say customer data is stored encrypted,
but the data is decrypted in order to e-mail the invoice. The invoice might very well
be stored in the database as well. If the invoice isn’t also encrypted, the attacker has
a source of plaintexts to match with ciphertexts.

An even more subtle example is when data taken together must be encrypted
but when the data is separate, it can be unencrypted. For instance, a customer’s
name and credit card number might be encrypted when they are together in the
order table. But another table, in the call tracking system, perhaps, might have the
customer’s name unencrypted. If these two tables can be linked in a series of joins,
the attacker has access to the plaintext. Database normalization can help security
in this case, but in practice many databases are not highly normalized, so leaks like
this are common.

As its name implies, a chosen-plaintext attacker can construct plaintext for the
system to encrypt. This is a much more powerful version of a known-plaintext
attack. An even more powerful variation is when the attacker can experiment
by constructing new plaintexts based on the results of previously
constructed plaintexts.

This attack is generally quite easy to mount against a database. In the case of an
online ordering system, the attacker simply places additional orders with whatever
data he would like to see encrypted. If he would like to see the ciphertext for
“Kenan,” placing a false order with that information would be suffucient. Unless
the cryptosystem is designed carefully, the attacker would then be able to identify
all the rows in the table with an order for “Kenan” (and encrypted with a particular
key) by searching for the ciphertext produced by the chosen-plaintext attack.

28



Kenan-150003 book September 22, 2005 19:8 29

2.5 Cryptographic Attacks

2.5.1 Indirect Access of Keys
The general strategy to protect against direct access of keys is to design the
cryptosystem to ensure that the keys are never available outside the code that uses
them. Ideally, the keys are locked in dedicated tamper-proof hardware that also
contains the cryptographic code. Indirect access, though, as discussed earlier, is a
much thornier problem since programs must be able to decrypt the data in order to
process it.4 If automatically launched programs can decrypt the data, a sufficiently
motivated and skilled attacker will eventually be able to do the same.

In practice, an indirect access of keys is typically made through a function that
passes data to the cryptosystem for decryption. This decryption function is often
the weakest link in the security chain protecting encrypted data. If compromised, it
will enable an attacker to decrypt arbitrary ciphertexts.5

Ideally, the cryptosystem is guarded by strong access controls that require
authentication and authorization for each decryption call. To make this effective,
though, the authorization check needs to occur as close to the actual decryption
as possible. If a dedicated cryptographic device (discussed in Chapter 4,
“Cryptographic Engines and Algorithms”) is in use, the device should make the
check itself. Unfortunately, that capability is very rare. The goal of these measures
is to prevent the attacker from following the chain of function calls until a
decryption call is found after the authorization check. If such a call is found, the
attacker uses it for the decryption compromise attack.

Automated processes throw a wrinkle into this strategy. Automation, such as a
batch credit card payment process, often needs access to decrypted data, and while
it is certainly possible to require the automation to provide credentials prior to
decrypting data, those credentials must also be stored and protected. The following
discussion of data obfuscation covers this situation in more detail, but it is best
to assume that if the attacker is sophisticated enough to break the application
sufficiently to access the decryption function, he also will be capable of retrieving
any credentials used by the automation.

Our approach is one of containment and observation. First, we ensure that the
decryption function decrypts only the fewest necessary columns. This contains the
damage in the case of a decryption compromise; the attacker won’t be able to

4. Do not store unneeded data, especially unneeded sensitive information such as customer data. Storing and
protecting unneeded data increases your risk and costs and provides no business value.
5. A decryption compromise exploiting indirect key access is related to the chosen-ciphertext class of attacks.
The primary difference is that the general goal of a chosen-ciphertext attack is to recover the key, whereas a
decryption compromise generally ignores attempts to recover the key (our algorithms are not susceptible to
chosen-ciphertext attacks) and is content with decrypting all encrypted information in the system.

29



Kenan-150003 book September 22, 2005 19:8 30

Chapter 2—Securing Databases with Cryptography

decrypt all protected data in the system. Our next layer of defense, observation, is
the critical control.

Extensive logging of decryption requests will expose sudden spikes caused by
an attacker. Correlation of the logs with server processing and customer request
logs helps reveal skimming.6 Honeycombing is also a valuable technique against an
attempted decryption compromise.

Honeycombs are to applications and databases what honeypots are to
networks. A honeycombed application has several APIs that are named and look
like they should do what the attacker wants, but in reality they simply trigger
alerts. A honeycombed database contains tables and views that look promising to
potential attackers, but any select against them triggers an alert. In some cases,
honeycombs can take the form of special rows in a table that look legitimate, but
the data is fake and any query against them results in an alert. Any alert fired by
a honeycomb is by definition suspicious since the honeycomb serves no actual
business purpose and there is no reason in the normal course of business that the
honeycomb would be accessed.

2.6 Obfuscation
Cryptography can be applied so as to provide strong security or weak security.
Generally, since cryptography is expensive and introduces risk, you want only as
much security as is necessary. This book uses the term obfuscation to describe
situations where encryption is used to provide a minimal amount of security.
Obfuscation is used simply to make reading data more difficult and thereby
prevent casual attacks.

Obfuscation should be used rarely. Strong encryption, not obfuscation, is
necessary for nearly every threat requiring a cryptographic solution. Obfuscation is
generally appropriate only as a solution of last resort and relies on other controls
for adequate protection. For instance, consider the situation described in the
previous section, where a program must, in order to decrypt data, log into a
dedicated decryption machine over the internal network. The dedicated machine
requires a password, so the program must have access to that password. The
problem of how to protect that password is an issue.

Encrypting the password makes sense, but how would it be decrypted? The
strong cryptographic solution would be to use the dedicated decryption machine,

6. Skimming is where the attacker grabs only a few items at a time as opposed to going for bulk. It is a tactic more
appropriate for an insider, who typically has a longer attack window.

30



Kenan-150003 book September 22, 2005 19:8 31

2.7 Transparent Encryption

but that won’t work because the decrypted password is necessary to access the
machine. Another option would be to encrypt the password with a key stored
elsewhere and not use the dedicated machine. Then the problem becomes a matter
of protecting that key while also making it available to the program when it needs
to use the password.

Complicated schemes where the credentials are entered manually by a security
administrator when the program first starts and are then stored only in primary
memory, perhaps split into several pieces, further shift the problem to one of
protecting the key when it is in the administrator’s possession. Such measures
also increase the program’s fragility and introduce dependencies for restarting the
program. Additionally, the security of such techniques is, ultimately, questionable.
A skilled and patient attacker with the right tools and access can simply wait until
the program decrypts the password, at which point the attacker picks it out of
memory. While this isn’t trivial, it certainly isn’t impossible. The threat model
helps you determine if such a complex scheme is appropriate in a given situation.

Alternatively, the password could simply be obfuscated. An obfuscated
password might be encrypted and stored in one file while the key used for the
encryption is stored in another file. Anybody simply browsing through files won’t
accidentally compromise the password, but, obviously, if that individual were
dedicated to retrieving the password, it would not be difficult to get both the
encrypted password and the key. Various schemes could be employed to increase
the difficulty, but by calling the protection obfuscation, we recognize that the
security is rather easily broken, so we are reminded to maintain other controls
appropriately. In this case, we want to ensure that only administrators and the
necessary programs have access to both files.

2.7 Transparent Encryption
Several products on the market advertise transparent encryption. The name itself
should raise a few questions: what kind of security does transparent encryption
provide? The assumption is, of course, that the cryptography is transparent to the
legitimate, authorized user but not to attackers. The security in such a system
depends not only on the cryptosystem and key storage, but also on how well
legitimate users can be distinguished from attackers.

Attackers are notoriously good at looking like legitimate users. Internal
attackers typically are legitimate users. Many of the attacks discussed in the
previous chapter are not stopped by transparent encryption, including SQL

31



Kenan-150003 book September 22, 2005 19:8 32

Chapter 2—Securing Databases with Cryptography

injection and “sanctioned” backdoors. The threat model must be considered
carefully to see if transparent encryption offers the necessary protection.

For instance, triggers and views (features of some databases) can offer
automatic encryption and decryption for authorized users. The trigger in this case
is a program embedded in the database that runs every time a row is inserted and
encrypts the necessary data. The view is a “virtual” table that decrypts the data
before returning it to the requester. A select against the view (by an authorized
user) returns decrypted data.

Which threats does this system protect against? Assuming that the keys are
secured on another machine,7 the risk posed by thievery of the database or
backups is mitigated. Of course, if an attacker can steal the database file, it is not
too much of a stretch to assume that he can attack the transparent encryption
system itself or the database’s authorization mechanism.

Also, threats from legitimate users with direct access to the database via an
account that allows them to select against the encrypted table but not against the
auto-decrypting view are reduced. However, such users are rare. Development staff
engaged in troubleshooting is perhaps the most likely scenario, but, depending on
the problem, they may need access to the auto-decrypting view. Most other users
will access the data through an application that typically uses its own account, so
they will not directly access the database. This is a rather minimal gain.

Most of our other threats still pose a risk for the database. Administrators can
easily don the “authorized” user role and have the cryptosystem happily decrypt
the data. Application crackers have the option of attacking the application or the
database. If either succeeds, the attacker will be well on the way to accessing the
encrypted data.8 Application subversion attacks, such as SQL injection, will also
likely remain viable since such attacks generally leverage the application’s access
privileges, and the application will likely access the database through an account
that is authorized to view the decrypted data.

In a nutshell, the trigger and view solution described here reduces the data’s
online security to the security level of the passwords to the accounts that are
authorized to select against the auto-decrypting view. Should any of those accounts
be compromised, the cryptography is circumvented. In terms of online threats, if
this level of security were acceptable, cryptography in the database wouldn’t be
necessary in the first place.

7. If the keys are actually stored in the same database as the encrypted data or even on the same machine as the
database, the solution provides very little protection against all but the most simple threats.
8. One of the design goals of a secure system is to minimize the number of attack points, and this book attempts
to remove the database as an attack point.

32



Kenan-150003 book September 22, 2005 19:8 33

2.8 Summary

If the local threat model consists of only offline attacks, transparent encryption,
such as the scheme just discussed, might be sufficient.9 The threat model
considered in this book, though, is more extensive. To mitigate online threats, we
can, at the very least, require that an attacker gain access to both the database for
the encrypted data and a cryptography service to decrypt it. The cryptography
service can then be protected with much better security controls. We can better
limit which machines may communicate with it, monitor it more closely,
significantly strengthen its access credentials, increase the frequency with which
the credentials are changed, and better protect the handling of those credentials.

When considering a transparent encryption solution, an organization’s security
analysts must carefully compare the threat model the solution targets with the
organization’s threat model. In addition, key storage must be considered. Ideally,
the solution will support the use of a dedicated cryptographic hardware module for
protecting the key and performing cryptographic operations. At the very least, the
keys should be kept and used on a different machine.

A final word of caution. As you’ll see later, using a good algorithm is not
enough. How it is used is of equal importance. This how is captured in the mode,
and selecting the right mode depends on many conditions. While no single mode is
correct in every situation, some modes are very rarely the right choice. Always ask
which mode is used, and be very suspicious if a vendor indicates that no mode was
used or if electronic code book (ECB) mode was used. In either case, the system is
likely to be vulnerable to chosen-plaintext attacks, as described earlier in this
chapter. This is covered in more detail in Chapter 4.

2.8 Summary
This chapter looked at database cryptography as a hardening solution to what is
often referred to as the “soft, chewy center” of most organizations. This hardening
is the last line of defense between data and attackers.

The chapter opened with introductory coverage of databases and cryptography.
The cryptographic overage included symmetric cryptography, asymmetric (or
public-key) cryptography, and cryptographic hashing. While the material certainly
won’t turn you into a database expert or cryptographer, it should provide enough
background for you to follow the rest of the book.

9. If the threat model is concerned only about access of backup media, a dedicated backup-only encryption
solution might be most appropriate. Such a scheme is generally much easier to implement than cryptography
in the database.

33



Kenan-150003 book September 22, 2005 19:8 34

Chapter 2—Securing Databases with Cryptography

With the introductory material out of the way, the discussion turned to
examining, at a high level, how cryptography can be applied to protect the
confidentiality and integrity threats identified in the previous chapter. Confirming
the principle that security is always a balance of trade-offs, the risks of attacks
against a database cryptosystem were considered. In particular, we explored the
idea that encryption turns the problem of protecting the confidentiality of a large
quantity of business data into the problem of protecting a small set of keys.

This chapter also discussed obfuscation, the purposeful use of poor key
protection to obtain a minimal amount of data security, and transparent
encryption, the problematic technique of automatically decrypting information
for any “legitimate” user.

This chapter hopefully provided a taste of what cryptography can and cannot
do. With the promise and limits of cryptography covered, we now move on to
exploring the details of a functioning cryptosystem.

34


