INDEX

abstraction 204
 level, selecting 83
 problems 205
accessible plans 110
accounting, size 42
 added, definition 42
 base, definition 42
 deleted, definition 42
 example 44
 modified, definition 42
 new reusable, definition 43
 reused, definition 42
 total, definition 43
accuracy
 estimation 80, 125
 improving 80
 plans 111
Ackerman, A. F. 139, 161
 added
 and modified size, definition 42
 size, definition 42
advantages and disadvantages,
 debugging 196
A/FR, appraisal to failure ratio 146, 147
 versus unit test defects 147
alternate PROBE methods 95
analytical verification 271
 issues 277
 methods 277
appraisal
 cost of quality 145, 146
 to failure ratio, A/FR 146
Artemis Views 66
assignments, part time 130
ASTREE 279
attributes, FST 236
automated verification 278
 average defect fix times 139, 140
Barnes, John 278, 280, 285
base
 additions 87
 size, definition 42
baseline
 personal process 11
 process 295
Bencher, D. L. 154, 161
benefits, defined process 6
bias
 estimating 81
 knowledge 82
Blanchet, Bruno 279, 285
Boehm, B. W. 119, 132, 135, 161
Booch, Grady 226, 250
BPS/360 257
Brooks, F. P. 128, 132
building checklists 176
Bush, M. 139, 161
Butler, R. W. 255, 285

C++
coding standard 50
compile defects 198
defect
 distribution 179
 fix times 139
development time estimates 76
part size table 77
review rate vs. yield 193
size data 75, 77
calculation
 correlation 36
cost vs. quality 146
planned value 119
prediction interval 128
PROBE worksheet 91, 99
regression parameters 101, 102
significance 37
yield 188, 190
Capability Maturity Model (CMM)
 level versus defect density 134, 156
challenges, development 309
change 312
 control 312, 320
 managing 320
 requirements, handling 312
characteristics, successful teams 314
characterizing a process 295
checklists
 building 176
code review, C++ 175
design review 184, 283
 updating 177
 using 170, 180
classes and proxies 74
clear
 designs 185
 plans 110
ClearSpaces trace table 262, 264
CMM, Capability Maturity Model
 level versus defect density 134, 156
couch, TSP 317
COCOMO 66
code
 -intensive development 288
 quality, PQI 151
 review 163
 checklist 175
 quality, PQI 151
 script 174
time range 167
coding standards 179
 C++ 50
 coefficient, correlation 36
 combining estimates 80
 commitments 2
 and plans 60
 negotiating 311
 comparison, UML and PSP design
 247
 compile
 defects 167
 found and missed 198
 versus test defects 167
 phase 31
 PQI 151
 review before 196
time 165, 166
 complete
 and orthogonal functions 267
 designs 221
 functions 266
 completeness of verification 277
 completion date, estimating 124
 conceptual design 63, 70, 87
 considerations
 design 210
 estimating 80
planning 129
 PROBE 105
 process development 306
 verification 280
constructive verification 278
contents
 defined process 12
 software plan 60
context switching 181
control
 change 312, 320
 maintaining project 312
conventions, product 257
coordination
 design 287
 team 131
COQ, cost of quality 145, 146
correlation 36
calculating 36
definition 36
formula 36
cost
 finding and fixing defects 139
 of quality (COQ) 145, 146
countable
 proxy 73
 size measures 40
counters, size 48
 LOC 49
 logical 49
 physical 49
counting
 deletions and modifications 52
 program elements 49
 standards
 database 40
 LOC 40
creativity 5
creep, requirements 65
criteria for selecting a proxy 71
Crosby, P. B. 135, 145, 161
current process 295
Curtis, Bill 207, 224
customizable proxy 74
customizing the development process 289
data
 database estimating 86
 defects per hour 140, 193
 DRL 193
 estimating with 85
 limited 107
 outliers 106, 126
 recording 21
 using limited 107
database
 counting standard 40
 elements as proxy 86
 estimating data 86
 size measurement 37, 39
Davis, N. 133, 162, 314, 327
death march project 1
debugging
 advantages and disadvantages of 196
 definition 195
deChampeaux, D. 229, 250
decision table 269
defect
 C++ fix times 139
 compile vs. test 167, 168
 cost of finding and fixing 139
 data recording 20, 24
 density 46, 191, 226
 versus CMM level 134, 156
 description 24
 escapes 189
 filtering 144
 fix reference 24
 fix time 27, 140
 average 139, 140
 example 28
 relative 165
 found
 and missed by compile 198
 per hour 140
injection
 810 developers 173
 and removal rates (3240 programs) 150
levels, CMM and TSP 156
multiple 27
Pareto distribution (C++) 179
defect (continued)
 per function point 141
 per hour
 (3240 programs) 140
 data 193
 per KLOC (810 developers) 141
 versus design/code time 149
 prevention 158, 172
 recording 24
 recording log 25
 example 25
 instructions 26
 removal leverage (DRL) 192
 removal rate 193
 repair time, Xerox 138
 type standard 27, 177
 types 141
 versus design time 149
defined process
 benefits 6
 contents 14
defining a
 personal process 7, 13
 process 291
 reasons for 290
 steps in 292
definition
 added and modified size 42
 added size 42
 base size 42
 code
 quality, PQI 151
 review quality, PQI 151
 compile PQI 151
 correlation 36
 debugging 195
defect
 escapes 189
 removal leverage (DRL) 192
 deleted size 42
 delta time 22
definition
 conceptual 63
 quality, PQI 151
 review quality, PQI 151
 DRL 192
earned value 119
 escapes 189
 estimated proxy size 92
 inspection 164
 interruption time 22
 LPI 128
 modified size 42
 new reusable size 43
 part 70
 plan 60
 planned value 119
 prediction interval 126
 process 12, 292
 product 70
 program quality, PQI 151
 projected size 92
 quality 135
 measures, PQI 151
 regression line 86
 requirements 212
 reusable size, new 43
 reused size 42
 review 164
 quality, PQI 151
 yield 188
 self-directed team 315
 significance 37
 size accounting types 42
 software quality 135
 task time 130
 team 314
 total size 43
 unit test PQI 151
 unprecedented product 84
 UPI 128
 yield 143, 188
 deleted size 42
 deletions, counting 52
delivered defects vs. CMM level 134
delivering quality produces 313
delta time 22
Deming, W. E. 7, 10
density, defect 46, 191
depth of verification 277
Derby, Kentucky 172
description, defect 24
Index 333

design 203
 as a learning process 209
 by contract 278
 clear and understandable 185
 completeness 221
 conceptual 63, 70, 87
 considerations 210
 coordination 287
 definition 204
 detailed 215
 example, state machine 241
 for security 187, 289
 framework 208
 hierarchy 248
 high-level (HLD) 215
 -intensive development 288
 large-scale systems 248
 levels 210
 notation 228
 objective 226
 PQI 151
 precision 220
 process 207
 product standards 257
 pyramid 211
 quality 220
 reasons to 206
 representation 226
 review 163, 181
 checklist 184, 283
 PQI 151
 principles 183
 script 183, 282
 strategy 185
 reviewable 185
 secure 289
 specification 214
 structure 229
 standards 257
 strategies 216
 templates 225–248
 comparison with UML 247
 structure 230
 using 246
 time versus
 defects 149
 development time (810 developers) 288
 product size (810 developers) 289
 productivity (810 developers) 206
 verification 253
 why do? 206
detailed-level design (DLD) 215
developer view of project success 322
development
 challenges 309
 code-intensive 288
 design-intensive 288
 estimates 76
 incremental 32
 methods, generally used 4
 practices, disciplined 6
 principles 290
 process, customizing 289
 script, PSP0 19
 strategies 290
 example 217
 selecting 220
 time versus design time (810 developers) 288
 diagram, Ishikawa 159
 disadvantages, debugging 196
discipline
 logic for 4
 PSP 6
disciplined practices 6
distribution, t, values 38
DLD, detailed-level design 215
domain-specific verification 278
DRL, see defect-removal leverage
Dyer, M. 271, 285, 314, 327
earned value (EV) 119
 definition 119
 example 120
 limitations 119
 usefulness 119
economics
 review 194
 software quality 136
Index

effective
methods 324
teamwork 313
efficiency
review 195
verification 278
elements, process 292
end date, estimating 124
environment, TSP 323
equation
beta parameters 102
correlation 36
prediction interval 128
regression 86
significance 37
error, estimating 80, 125
escapes, defined 189
estimated
development time data 76
proxy size (E) 91, 92
estimating 69
abstraction level 83
accuracy 80, 125
improving 80
base additions 87
bias 81
combining estimates 80
completion date 124
considerations 80
data, size 75
database projects 86
error 80, 125
example 100
from data 70, 85
judgment 105
knowledge bias 82
large systems 83
limited data 95
nonprogramming tasks 102, 104
overcompensation 107
parts additions 89
parts size 87
practice 105
PROBE method for 88
procedure
size 92
time 93
project completion 124
proxy-based 71, 87
reused parts 89
script, PROBE 96
size 69
example 100
software 69
software 69
task hours 113
time, with PROBE 93
tools 66
unprecedented products 84
with data 85
with limited data 95
with proxies 75
yield 190
EV, earned value 119
evolution
process 294
PSP process 8
example
ClearSpaces trace table 262, 264
defect fix time 28
Defect Recording Log 25
development strategies 217
earned value 120
estimating 100
execution table 260
for-loop verification 271
FST attributes 236
Functional Specification Template
234
Logical Specification Template
240
LogIn state machine 241, 269
execution table 260
Operational Specification Template
231
Project Plan Summary
PSP0 31
PSP1 94
regression calculation 101
repeat-until verification 276
report-writing data 103
Schedule Planning Template 116,
121
search state machine 242, 270
Index

size
accounting 44
estimating 100
state
machine design 241
machine verification 268–270
Specification Template 238
Task Planning Template 118, 123
trace table 262
while-loop verification 272, 273
execution table
example 260
LogIn 260
verification 258
Fagan, Michael 164, 199, 202
failure cost of quality 145, 146
filter view of yield 144
firm requirements 321
fix reference, defect 24
fix time
defects 27, 139, 140
relative 165
Flaherty, M. J. 48, 55
for-loop verification 271
forms
TSP Weekly Summary Report
124
why helpful 16
formula for
beta parameters 102
correlation 36
prediction interval 128
regression 86
significance 37
framework for
design 208
project planning 63, 112
understanding personal work 3
FST, see Functional Specification Template
function points 53
defects per 141
Functional Specification Template (FST)
233
ingredient 234
instructions 235
functions
complete 266
complete and orthogonal 267
orthogonal 267
future, personal 326
Gage, D. 254, 285
Gale, J. L. 159, 162
Garmus, D. 53, 55
general purpose verification 278
Gilb, Tom 199, 202
goals, process 293
Greene, Maurice 7
guidelines
design strategy 216
planning 129
handling requirements changes 320
help, from manager 129
hierarchy
design 248
implementation 249
high-level design (HLD) 215
quality parts 310
histogram, compile vs. test defects 168
history, learning from 325
HLD, high-level design 215
how a process helps 11, 15
Humphrey, W. S. 47, 55, 60, 67, 119, 120,
132, 164, 199, 202, 295, 296, 308,
314, 327
IBM 47, 57, 129, 141, 257, 258, 320
IFPUG, International Function Point Users Group 53
implementation
hierarchy 249
sensitive proxies 74
improvement
estimating accuracy 80
personal 15
practices, PSP 157
strategies 296, 335
IMS 141
incomplete knowledge bias 82
increases, workload 65
incremental development 32
index, process quality, see process quality index
industrial project performance 310
information
 in plans 61
 needs, quality management 279
initial process 297
injection, defect, 810 developers 173
inspections
 definition 164
 vs. reviews 199
Instructions
 Defect Recording Log 26
 Functional Specification Template 235
 Operational Specification Template 232
 PSP0 Project Plan Summary 32
 Size Estimating Template 98
 State Specification Template 239
 Time Recording Log 23
International Function Point Users Group, IFPUG 53
interruption time 22
interruptions 23
interval, prediction 93, 126, 128
intuitive methods 4
Ishikawa diagram 159
issues
 analytical verification 277
 planning 65
 review 194
 safety 187
 security 187
Jacky, Jonathan 214, 224, 227, 251, 280, 285
Jones, Capers 53, 55, 141, 142, 162
judgment, estimating 105
Juran, J. M. 145, 162
Karnaugh map 266
Kentucky Derby 172
Knight, J. C. 199, 202
knowledge bias, in estimating 82
large
 projects 310
 scale design 248
 systems estimating 83
Larus, J. R. 280, 285
launch, TSP 316
learning
 from history 325
 process, design as a 209
to use the PSP 8
levels
 design 210
 verification 278
Levendel, Y. 154, 162
limitations, EV 119
limited data
 estimating with 95
 using 107
Linberg, K. R. 322, 327
line of code
 counters 49
 counting standard 40
linear regression 86
 parameters, calculating 101, 102
 requirements for 95
Littlewood, Bev 255, 285
LOC, see line of code
Log
 Defect Recording 25
 Time Recording 22
logic
 for the PSP 157
 for the TSP 314
 notation 227, 228
 software engineering discipline 4
Specification Template (LST) 240
 example 240
 logical LOC counters 49
LogIn state machine
design 234, 238, 240
 example 241
 execution table 260
State Specification Template 238
 verification 269
loop verification 271
LPI, lower prediction interval 128
LST, see Logic Specification Template

maintaining the plan 312, 318
making the schedule 115
managers, getting help from 129
managing
change 312, 320
personal
quality 154
work 324
product quality 153, 156
quality 153, 321
information needed 279
steps in 279
task time 114
your own project 318
Mandeville, W. A. 145, 162
map, Karnaugh 266
Martin, D. 315, 327
Mays, R. G. 159, 162
maze, testing 255
possible paths 256
McConnell, Steve 241, 251
measures
countable 40
precise 40
process 15
PSP0 20
quality 143
review 187
size 35, 53
specific 40
yield 143
measuring software size 35
methods
effective 324
genraly used 4
intuitive 4
PROBE 85, 88
scalable 203
verification 279
Microsoft 280
Project 66
mile, time for man and horse 171
milestones 119

Mills, H. D. 271, 285
Modarress, B. M. 145, 162
modifications, counting 52
modified size, definition 42
motivation 129
multiple defects 27
needs, process 293
negotiating commitments 311
new reusable size, definition 43
new tasks, estimating 102
nonprogramming tasks, estimating 102, 104
notation
design 228
logic 227, 228
objectives
design 226
review 199
O’Neill, D. 139, 162
operational
processes 6
Specification Template (OST) 230
example 231
Instructions 232
orthogonal functions 267
OS/360 57, 141
Osprey aircraft 254
OST, see Operational Specification Template
other size measures 53
outliers 106, 126
overcompensation in estimating 83, 107
overview, PSP 8
parameters, regression 102
Pareto distribution, defects 179
part
additions 89
base 87
definition 70
LOC table
C++ 77
Pascal 77
quality 310
part (continued)
 reused 89
 size
determining 87
estimated 87, 91
 table 77
-time assignments 130
type, determining 87
Pascal
defect fix times 140
development time estimates 76
part size table 77
size data 73, 77
paths, through testing maze 256
PDL, programming design language 240
performance, industrial software projects 310
period plans 111
personal
goals 326
improvement 15
methods, effective 324
planning 62
process
 baseline 11
defining and using 7
 how it helps 11
 learning to use 8
 why needed? 12
quality
management 153
practices 142
strengths and weaknesses 324
work, planning and managing 324
Personal Software Process (PSP)
defect-type standard 27
discipline 6
evolution 8
exercise program size ranges 64
improvement practices 157
logic for 157
overview 8
principles 157, 290
process evolution 8
purpose 3
quality strategy 135
size counting 49, 50
strategy 5, 291
Time Recording Log 22
tool support 34
using 309
personal
strengths and weaknesses 324
work, planning and managing 324
working style 287
PERT 118
philosophy, PROBE method 82
physical LOC counters 49
PIP, see Process Improvement Proposal
planning 57, 109
 a software project 62
considerations 129
framework 63, 112
guidelines 129
issues 65
personal work 62, 324
process 58
requirements 61
script, PSP0 19
steps 62
the schedule 116
tools 66
why first in the PSP course 58
planned value (PV) 119
calculating 119
plans
accessible 110
accurate 111
and commitments 60
clear 110
contents of 60
definition 60
information provided by 61
maintaining 318
period 111
precise 111
project 111
quality 65
requirements for 61, 109
 accessible 110
 accurate 111
 clear 110
 precise 111
 specific 110
what they are 60
why make? 59
points, outlier 126
possible proxies 74
postmortem phase
PSP0 Script 21
why important 17
PQL, see process quality index
practice 325
estimating 105
verification 281
practices
PSP improvement 157
quality 142
review 194
trace table 264
precise
designs 220
plans 111
size measures 40
prediction interval 93, 126
calculating 128
defined 126
preparation for TSP 9
prevention, defect 158, 172
strategies 158
Primavera 66
principles
design review 183
development 290
process development 290
PSP 157, 290
requirements uncertainty 207, 208
review 168
size estimating 69
PROBE 85
alternate methods 95
Calculation Worksheet 91
Instructions 99
considerations 105
estimating considerations 105
Estimating Script 96
limited data 95
method 82, 85, 88
philosophy 82
script 96
time estimating 93
with limited data 95
problems, abstractions 205
procedure, estimating 87, 88, 92, 93
process
baseline 11, 295
benefits of 6
characterizing 295
contents 12
PSP0 14
current 295
customizing 289
defined 12
defining 291
personal 7, 13
definition 12, 292
design 207
development
considerations 306
principles 290
strategy 290, 296
development Process (PDP) 299
customizing 289
script 299
elements 292
evolution 8, 294
goals 293
how helps 11, 15
Improvement Proposal (PIP) 200, 292, 299
initial 297
measures 15
needs and goals 293
operational 6
planning 58
Product Maintenance (PMP) 302
script 304
Prototype Experimental (PEP) 302
script 303
PSP0 14
development script 19
planning script 19
process script 18
PSP1 Project Plan Summary 94
PSP3 Development 300
quality index (PQI) 150–153
code quality 151
process (continued)
code review quality 151
definition 150
design quality 151
design review quality 151
profiles 152
program quality 151
sample programs 152
versus test defects 153
script, PSP0 18
self-improvement 3
strategies, improvement 296, 335
target 296
TSP launch 316
why
a process is needed 12
define a process 13
producing the
relative-size table 78
schedule 113
product
conventions 257
definition 70
design standards 257
Maintenance Process (PMP) 302
script 304
quality 136, 313
managing 156
reviewable 172
size vs. design time 289
standards 257
unprecedented 84
productivity 47, 130
calculating 47
variations 48
versus design time 206
program
elements, counting 49
quality, in PQI 151
size ranges 64
size with and without design (810 developers) 289
programming
design language (PDL) 240
style 32
progress tracking and reporting 319
project
completion, projecting 124
control, maintaining 312
death march 1
large 310
managing your own 318
performance, industrial 310
Plan Summary
PSP0 30, 31
PSP1 94
planning framework 63, 112
plans 111
scale 287
success, developer view 322
success vs. size 310
tracking and reporting 319
troubled 310
projected size (P) 92
definition 92
projecting completion dates 124
proper state machine 268
Prototype Experimental Process (PEP) 302
script 303
prototyping 209
proxy
based estimating 71, 87
classes as 74
countable 73
criteria for 71
customizable 74
database programming 86
easily visualized 73
in estimating 75
possible 74
relative size table 77–79
selecting 71
selection criteria 71
sensitive to implementation 74
size
estimated 91
ranges 77–79
visualized 73
pseudocode 240
PSP, see Personal Software Process
PSP0 14
 contents 14
 development script 19
 flow 14
 measures 20
 planning script 19
 postmortem script 21
 process flow 14
 process script 18
 Project Plan Summary 30
 example 31
 Instructions 32
PSP1 Project Plan Summary example 94
PSP2
 Design Review Checklist 184
 Design Review Script 183
PSP3.0
 development script 301
 process 300
purpose
 PSP 3
 TSP 314
PV, planned value 119
pyramid, design 211
quality
 cost of (COQ) 145
 definition 135
 design 220
 economics of 136
 index, PQI 150
 large projects 310
 management 153
 in TSP 321
 information needs 279
 personal 154
 steps 279
 measures 143
 parts, need for 310
 plan 65
 PQI 150–153
 practices, personal 142
 product 136, 156, 313
 profiles 152
 software 133, 135
 strategy, PSP 135

r, correlation value 36
Ragland, B. 139, 162
ranges, program size 64
rate
 defects injection and removal
 (3240 programs) 140, 150
 review 192
record, the mile 171
recording
 defect data 21, 24
 time data 21
redesign 247
regression
 calculation example 101
 equation 86
 line, definition 86
 linear 86
 parameters, calculating 102
 relative size table, producing
 78–79
Remus, H. 139, 162
repair time, Xerox defects 138
repeat-until verification 276
report, TSP weekly 124
reporting project progress 319
representation, design 226
requirements 2, 186
 changes, handling 320
 creep 65
 definition 212
 firm 321
 for linear regression 95
 for plans 61, 109
 for size measures 40
 instability, managing 320
 planning 61
 size measures 40
 specification-design cycle 213
 uncertainty principle 207, 208
results, TSP 322
retrospective verification 278
reuse size, new, definition 43
reuse standards 258
reused
 parts 89
 size, definition 42
REVIC 66
review 163
before or after compile 196
code 163
definition 164
design 163, 181
 checklist 184, 283
 principles 183
 script 183, 282
economics 194
efficiency 195
issues 194
measures 187
objectives 199
on the screen 194
practices 194
principles 168
rate 192
 vs. yield 148, 193
strategy 180
versus inspection 199
why do 164
yield 188
reviewable
designs 185
products 172
rewards of teamwork 322
Rumbaugh, James 233, 251
running, time for mile 171
Russell, G. W. 139, 162
safety 187
Santayana, G. 325, 327
scalable development methods 203
schedule
 making 115
 planning 116
 planning Template 121
 example 121
 producing 113, 115
 steps in 115
Schneider, Geri 230, 251
Schulmeyer, G. 159, 162
screen, reviewing on 194
script
code review 174
design review 183, 282
PROBE 96
Process Development Process (PDP) 299
Product Maintenance Process (PMP) 304
Prototype Experimental Process (PEP) 303
PSP
 development 19
 planning 19
 postmortem 21
 process 18
PSP3 development 301
search state machine
design strategy 243
example 242
state diagram 246
State Specification Template 245
verification 270
SEER 66
security 187, 289
SEI, Software Engineering Institute 1, 309
selecting
 a development strategy 220
 a proxy 71
 an abstraction level 83
self-
directed team 315
improvement process 3
Shooman, M. L. 139, 162
significance 37
 calculating 37
 definition 37
size
 accounting 42
 elements 42
 example 44
 counters 48, 49
data
 C++ 75
 Pascal 73
database programs 37, 39
estimated part (E) 87
estimating 69, 96, 100
 principles 69
 procedure 92
Template 90
Template Instructions 98
measures 35, 53
countable 40, 73
other than LOC 53
precise 40
requirements 40
specific 40
measuring 35, 48
part, determining 77, 87
projected part (P) 92
proxy, estimated 91
ranges, PSP programs 64
relative, table 78–79
versus
design time (810 developers) 289
project success 310
skill 3, 5
required for TSP 314
software
design 203
discipline, logic for 4
engineering discipline 4
Engineering Institute 1, 309
estimating 69
plan, contents 60
planning 109
quality 133, 135
definition 135
economics 136
size, measuring 35
soundness, verification 277
SOW, statement of work 66
SPARK 280
specific
plans 110
size measures 40
specification, design 214, 229
Splint 280
SST, see State Specification Template
stability, requirements 320
standard
coding 50, 179
database counting 40
defect 27, 177
design 257
line-of-code counting 40
reuse 258
size counting 40
Standish Group 310, 327
state
diagram
LogIn 237
search 246
search design strategy 243
machine
design example 241
LogIn 268
proper 268
verification 265, 268, 269
Specification Template (SST) 236
instructions 239
LogIn example 237, 238
search example 245
statement of work, SOW 66
status report, TSP 124, 320
steps in
defining a personal process 292
planning 62
quality management 279
scheduling 115
strategy
defect prevention 158
design 216, 217
design review 185
guidelines, design 216
improvement 296, 335
process
development 296
improvement 290
PSP 5
quality, PSP 135
review 180
search state machine 243
selecting 220
testing 5
verification 281
strengths, personal 324
structure, PSP design templates 229, 230
style
programming 32
working 287
success, project, vs. size 310
successful project, developer view 322
 team characteristics 314
support, tool 34
switching tasks, cost of 131, 181
t-distribution, table of values 38
table
 decision 269
 t-distribution 38
 trace 262
 ClearSpaces 264
target process 296
task
 hours, estimating 113
 Planning Template 118, 123
 switching 131
 time 130
 definition 130
 estimating 113, 130
 managing 114
team
 characteristics, successful 314
 coordination 131
 definition 314
 of one, TSP 323
 self-directed 315
Software Process (TSP) 9, 309, 313
 coach 317
 defect levels 156
 environment 323
 launch process 316
 logic for 314
 preparation for 9
 purpose 314
 quality management 321
 results 322
 skills required 314
 team of one 323
 Weekly Summary Status form 124, 320
 successful, characteristics 314
 teambuilding 314
teamwork
 rewards of 322
 sustaining 313
template
 design 225
 Functional Specification (FST) 233
 example 234
 Instructions 235
 Logic Specification (LST) 240
 example 240
 Operational Specification (OST) 230
 example 231
 Instructions 232
 Schedule Planning 116, 121
 Size Estimating 90
 Instructions 98
 State Specification (SST) 236
 example 238, 245
 Instructions 239
 Task Planning 118, 123
test
 defects 167, 168
 time 165
testing
 maze paths 255, 256
 strategy 5
Thayer, T. A. 198, 202
time
 code-review 167
 compile 165, 166
 delta 22
 estimating, with PROBE 93
 for mile, men and horses 171
 interruption 22
 record, for mile 171
 recording 21
 Log 22
 Log Instructions 23
task 113, 114, 130
test 165
tool
 estimating and planning 66
 support, PSP 34
total
 defect injection, 810 developers 173
 size, definition 43
trace tables 262
 ClearSpaces 262, 264
 practices 264
tracking project progress 319

trend line, regression 86

troubled projects 310

TSP, see Team Software Process
types, defect 141

UML, Universal Modeling Language 226, 247

compared with PSP templates 247

uncertainty principle, requirements 207, 208

undercompensation 107

understandable designs 185

understanding, frameworks for 3

unit test

defects vs. A/FR 147

PQI 151

unprecedented products

definition 84

estimating 84

updating checklists 177

UPI, upper prediction interval 128

usefulness, EV 119

using

a checklist 170, 180
design templates 246
effective methods 324
limited data 107

a personal process 7

PSP 309

values, t-distribution 38

van Genuchten, M. 139, 162

VB.NET 31

verification

analytical 277

automated 278

completeness 277

considerations 280

constructive 278

depth 277
design 253

efficiency 278

execution table 258

for-loop 271

issues 277

level 278

loop 271

methods 279

practice 281

proper state machine 268

examples 268–271

repeat-until 276

retrospective 278

soundness 277

state machine 265, 269, 270

strategy 281

trace-table 262

while-loop 272, 273

why do? 254

verifying designs 253

visualizing, proxy 73

weaknesses, personal 324

Weekly Summary Report, TSP 124, 320

Weller, E. F. 139, 162

what plans are 60

while-loop verification 272, 273

why

define a process? 13
design? 206
do reviews? 164

forms are helpful 16

make plans 59

planning first in PSP 58

postmortem important 17

processes are needed 12

verify designs? 254

workload increases 65

Worksheet, PROBE Calculation 91

Instructions 99

World record, mile 171

Xerox 138

Yang, Jinlin 280, 285

yield 143

calculation 188, 190
definition 143

estimates of 190

filter view of 144

for 810 developers 191
yield (continued) for 25 C++ programs 193
PSP class 145 for 810 developers 148
review 188 versus review rate Zells, Lois 118, 132
versus review rate