
217

6
Presenting Data with the
DataGridView Control

HE PRECEDING CHAPTERS showed many detailed examples of data
binding to simple bound controls and list bound controls. However,

one of the most common ways of presenting data is in tabular form. Users
are able to quickly scan and understand large amounts of data visually
when it is presented in a table. In addition, users can interact with that data
in a number of ways, including scrolling through the data, sorting the data
based on columns, editing the data directly in the grid, and selecting col-
umns, rows, or cells. In .NET 1.0, the DataGrid control was the primary
Windows Forms control for presenting tabular data. Even though that con-
trol had a lot of capability and could present basic tabular data well, it was
fairly difficult to customize many aspects of the control. Additionally, the
DataGrid control didn’t expose enough information to the programmer
about the user interactions with the grid and changes occurring in the grid
due to programmatic modifications of the data or formatting. Due to these
factors and a large number of new features that customers requested, the
Windows Client team at Microsoft decided to introduce a replacement
control for the DataGrid in .NET 2.0. That new control, the DataGridView
control, is the focus of this chapter.

T

 Noyes.book Page 217 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW218

DataGridView Overview

The DataGridView control is a very powerful, flexible, and yet easy-to-use
control for presenting tabular data. It is far more capable than the Data-
Grid control and is easier to customize and interact with. You can let the
grid do all the work of presenting data in tabular form by setting the data-
binding properties on the control appropriately. You can also take explicit
control of presenting data in the grid through the new features of unbound
columns and virtual mode. Unbound columns let you formulate the con-
tents of the cell as the cells are being added to the grid. Virtual mode gives
you a higher degree of control by allowing you to wait until a cell is actu-
ally being displayed to provide the value it will contain.

You can make the grid act like a spreadsheet, so that the focus for inter-
action and presentation is at the cell level instead of at the row or column
level. You can control the formatting and layout of the grid with fine-
grained precision simply by setting a few properties on the control. Finally,
you can plug in a number of predefined column and cell control types, or
provide your own custom controls, and you can even mix different control
types within different cells in the same row or column.

Figure 6.1 shows an example of a DataGridView control in action with
some of the key visual features highlighted. You can see that the grid picks
up the visual styles of Windows XP; they are much like many of the
Windows Forms controls in .NET 2.0. The grid is composed of columns
and rows, and the intersection of a column and a row is a cell. The cell is
the basic unit of presentation within the grid, and is highly customizable in

Row Header Column Header Image Column Sort Direction Indicator

New Row Indicator Edit Indicator Combo Box Column CheckBox Column Button Column

Figure 6.1: DataGridView in Action

 Noyes.book Page 218 Thursday, December 15, 2005 3:57 PM

 BASIC DATA BINDING WITH THE DATAGRIDVIEW 219

appearance and behavior through the properties and events exposed by
the grid. There are header cells for the rows and columns that can be used
to maintain the context of the data presented in the grid. These header cells
can contain graphical glyphs to indicate different modes or functions of the
grid, such as sorting, editing, new rows, and selection. The grid can con-
tain cells of many different types, and can even mix different cell types in
the same column if the grid isn’t data bound.

Basic Data Binding with the DataGridView

The easiest way to get started using the DataGridView control is to use it
in basic data-binding scenarios. To do this, you first need to obtain a col-
lection of data, typically through your business layer or data access layer.
You then set the grid’s data-binding properties to bind to the data collec-
tion, as described in Chapters 4 and 5. Just like with other Windows
Forms controls, the recommended practice in .NET 2.0 is to always bind
your actual client-side data source to an instance of the BindingSource
class and then bind your controls to the binding source. The following
code shows this process.

private void OnFormLoad(object sender, EventArgs e)

{

 // Create adapter to get data source

 CustomersTableAdapter adapter = new CustomersTableAdapter();

 // Bind table data source to binding source

 m_CustomersBindingSource.DataSource = adapter.GetData();

 // Bind the binding source to grid control

 m_Grid.DataSource = m_CustomersBindingSource;

}

Alternatively, if the binding source is bound to a collection of data col-
lections, such as a data set, then you can refine what part of the data source
you want to bind to using the DataMember property:

private void OnFormLoad(object sender, EventArgs e)

{

 // Create adapter to get data source

 CustomersTableAdapter adapter = new CustomersTableAdapter();

 // Get data set instance

 CustomersDataSet customers = new CustomersDataSet();

 // Fill data set

 Noyes.book Page 219 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW220

 adapter.Fill(customers);

 // Bind binding source to the data set

 m_CustomersBinding source.DataSource = customers;

 // Bind grid to the Customers table within the data source

 m_Grid.DataSource = m_CustomersBinding source;

 m_Grid.DataMember = "Customers";

}

For basic data-binding scenarios, the DataGridView functions exactly
like the DataGrid control did in .NET 1.0, except that the combination of
DataSource and DataMember must resolve to a collection of data items,
such as a DataTable or object collection. Specifically, they need to resolve
to an object that implements the IList interface.

The DataGrid could be bound to a collection of collections, such as a
DataSet, and if so, the DataGrid presented hierarchical navigation con-
trols to move through the collections of data. However, this capability was
rarely used, partly because the navigation controls that were presented
inside the DataGrid were a little unintuitive and could leave the user dis-
oriented. As a result, the Windows Client team that developed the Data-
GridView control decided not to support hierarchical navigation within
the control. The DataGridView is designed to present a single collection of
data at a time. You can still achieve an intuitive hierarchical navigation
through data, but you will usually use more than one control to do so,
adopting a master-details approach as discussed in previous chapters.

The DataSource property can be set to any collection of objects that
implements one of four interfaces: IList, IListSource, IBindingList,
or IBindingListView. (These interfaces will be discussed in more detail
in Chapter 7.) If the data source is itself a collection of data collections, such
as a data set or an implementer of IListSource, then the DataMember
property must identify which data collection within that source to bind to.
If the DataSource property is set to an implementer of IList (from which
both IBindingList and IBindingListView derive), then the Data-
Member property can be null (the default value). When you bind the
DataGridView to a binding source, the BindingSource class itself imple-
ments IBindingListView (as well as several other data-binding related
interfaces), so you can actually bind a grid to any kind of collection that a
binding source can work with through a binding source, which includes
simple collections that only implement IEnumerable.

 Noyes.book Page 220 Thursday, December 15, 2005 3:57 PM

 CONTROLLING MODIFICATIONS TO DATA IN THE GRID 221

Any time the DataSource and/or DataMember properties are set, the
grid will iterate through the items found in the data collection and will
refresh the data-bound columns of the grid. If the grid is bound to a bind-
ing source, any change to the underlying data source to which the binding
source is bound also results in the data-bound columns in the grid being
refreshed. This happens because of events raised from the binding source
to any bound controls whenever its underlying collection changes.

Like most properties on the DataGridView control, any time the Data-
Source and DataMember properties are set, they fire the DataSource-
Changed and DataMemberChanged events, respectively. This lets you hook
up code that responds to the data binding that has changed on the grid. You
can also react to the DataBindingComplete event, since that will fire after
the data source or data member has changed and data binding has been
updated. However, if you are trying to monitor changes in the data source,
you usually are better off monitoring the corresponding events on the
BindingSource component rather than subscribing to the events on the
grid itself. This is especially true if the code you are using to handle the
event affects other controls on the form. Because you should always bind
your controls to a binding source instead of the data source itself if possible,
the binding source is the best place to monitor changes in the data source.

Controlling Modifications to Data in the Grid

The DataGridView control gives you explicit control over whether users
can edit, delete, or add rows in the grid. After the grid has been populated
with data, the user can interact with the data presented in the grid in a
number of ways, as discussed earlier. By default, those interactions include
editing the contents of cells (fields) in a row, selecting a row and deleting it
with the Delete keyboard key, or adding a new row using an empty row
that displays as the last row in the grid.

If you want to disallow any of these interactions, set the AllowUser-
ToAddRows or AllowUserToDeleteRows properties to false, or set the
ReadOnly property to true for adding, deleting, or editing, respectively.
Each of these properties also raise corresponding XXXChanged property
changed events whenever their values are set. When you support adding,
editing, or deleting, you may need to handle certain additional events to

 Noyes.book Page 221 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW222

accept new values for unbound rows or for virtual mode, as described later
in this chapter.

Programmatic DataGridView Construction

The most common way of using the grid is with data-bound columns.
When you bind to data, the grid creates columns based on the schema or
properties of the data items, and generates rows in the grid for each data
item found in the bound collection. If the data binding was set up statically
using the designer (as has been done in most of the examples in this book),
the types and properties of the columns in the grid were set at design time.
If the data binding is being done completely dynamically, the Auto-
GenerateColumns property is true by default, so the column types are
determined on the fly based on the type of the bound data items. You may
want to create and populate a grid programmatically when working with a
grid that contains only unbound data. To know what code you need to
write, you need to know the DataGridView object model a little better.

The first thing to realize is that like all .NET controls, a grid on a form is
just an instance of a class. That class contains properties and methods that
you can use to code against its contained object model. For DataGridView
controls, the object model includes two collections—Columns and Rows—
which contain the objects that compose the grid. These objects are cells, or
more specifically, objects derived from instances of DataGridViewCell.
The Columns collection contains instances of DataGridViewColumn
objects, and the Rows collection contains instances of DataGridViewRows.

Programmatically Adding Columns to a Grid
There are a number of ways to approach programmatically adding col-
umns and rows to the grid. The first step is to define the columns from
which the grid is composed. To define a column, you have to specify a cell
template on which the column is based. The cell template will be used by
default for the cells in that column whenever a row is added to the grid.
Cell templates are instances of a DataGridViewCell derived class. You
can use the .NET built-in cell types to present columns as text boxes, but-
tons, check boxes, combo boxes, hyperlinks, and images. Another built-in
cell type renders the column headers in the grid. For each of the cell types,

 Noyes.book Page 222 Thursday, December 15, 2005 3:57 PM

 PROGRAMMATIC DATAGRIDVIEW CONSTRUCTION 223

there is a corresponding column type that is designed to contain that cell
type. You can construct DataGridViewColumn instances that provide a
cell type as a template, but in general you’ll want to create an instance of a
derived column type that is designed to contain the specific type of cell
you want to work with. Additionally, you can define your own custom cell
and column types (discussed later in this chapter).

For now, let’s stick with the most common and simple cell type, a
DataGridViewTextBoxCell—a text box cell. This also happens to be the
default cell type. You can programmatically add a text box column in one
of three ways:

• Use an overloaded version of the Add method on the Columns collec-
tion of the grid:

// Just specify the column name and header text

m_Grid.Columns.Add("MyColumnName", "MyColumnHeaderText");

• Obtain an initialized instance of the DataGridViewTextBoxColumn
class. You can achieve this by constructing an instance of the Data-
GridViewTextBoxCell class and passing it to the constructor for the
DataGridViewColumn, or just construct an instance of a DataGrid-
ViewTextBoxColumn using the default constructor. Once the column
is constructed, add it to the Columns collection of the grid:

// Do this:

DataGridViewTextBoxColumn newCol = new DataGridViewTextBoxColumn();

// Or this:

DataGridViewTextBoxCell newCell = new DataGridViewTextBoxCell();

DataGridViewColumn newCol2 = new DataGridViewColumn(newCell);

// Then add to the columns collection:

m_Grid.Columns.Add(newCol);

m_Grid.Columns.Add(newCol2);

If you add columns this way, their name and header values are null
by default. To set these or other properties on the columns, you can
access the properties on the column instance before or after adding
it to the Columns collection. You could also index into the Columns
collection to obtain a reference to a column, and then use that refer-
ence to get at any properties you need on the column.

 Noyes.book Page 223 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW224

• Set the grid’s ColumnCount property to some value greater than zero.
This approach is mainly used to quickly create a grid that only con-
tains text box cells or to add more text box columns to an existing grid.

// Constructs five TextBox columns and adds them to the grid

m_Grid.ColumnCount = 5;

When you set the ColumnCount property like this, the behavior
depends on whether there are already any columns in the grid. If there are
existing columns and you specify fewer than the current number of col-
umns, the ColumnCount property will remove as many columns from the
grid as necessary to create only the number of columns you specify, start-
ing from the rightmost column and moving to the left. This is a little
destructive and scary because it lets you delete columns without explicitly
saying which columns to eliminate, so I recommend to avoid using the
ColumnCount property to remove columns.

However, when adding text box columns, if you specify more columns
than the current number of columns, additional text box columns will be
added to the right of the existing columns to bring the column count up to
the number you specify. This is a compact way to add some columns for
dynamic situations.

Programmatically Adding Rows to a Grid

Once you have added columns to the grid, you can programmatically add
rows to the grid as well. In most cases, this involves using the Add method
of the Rows collection on the grid. When you add a row this way, the row
is created with each cell type based on the cell template that was specified
for the column when the columns were created. Each cell will have a
default value assigned based on the cell type, generally corresponding to
an empty cell.

// Add a row

m_Grid.Rows.Add();

Several overloads of the Add method let you add multiple rows in a sin-
gle call or pass in a row that has already been created. The DataGridView
control also supports creating heterogeneous columns, meaning that the

 Noyes.book Page 224 Thursday, December 15, 2005 3:57 PM

 PROGRAMMATIC DATAGRIDVIEW CONSTRUCTION 225

column can have cells of different types. To create heterogeneous columns,
you have to construct the row first without attaching it to the grid. You
then add the cells that you want to the row, and then add the row to the
grid. For example, the following code adds a combo box as the first cell in
the row, adds some items to the combo box, adds text boxes for the remain-
ing four cells, and then adds the row to the grid.

private void OnAddHeterows(object sender, EventArgs e)

{

 m_Grid.ColumnCount = 5; // Create 5 text box columns

 DataGridViewRow heterow = new DataGridViewRow();

 DataGridViewComboBoxCell comboCell = new

DataGridViewComboBoxCell();

 comboCell.Items.Add("Black");

 comboCell.Items.Add("White");

 comboCell.Value = "White";

 heterow.Cells.Add(comboCell);

 for (int i = 0; i < 4; i++)

 {

 heterow.Cells.Add(new DataGridViewTextBoxCell());

 }

 m_Grid.Rows.Add(heterow); // this row has a combo in first cell

}

To add a row to a grid this way, the grid must already have been initial-
ized with the default set of columns that it will hold. Additionally, the
number of cells in the row that is added must match that column count. In
this code sample, five text box columns are implicitly added by specifying
a column count of five, then the first row is added as a heterogeneous row
by constructing the cells and adding them to the row before adding the
row to the grid.

You can also save yourself some code by using the grid’s existing col-
umn definitions to create the default set of cells in a row using the Create-
Cells method, then replace just the cells that you want to be different from
the default:

DataGridViewRow heterow = new DataGridViewRow();

heterow.CreateCells(m_Grid);

heterow.Cells.RemoveAt(0);

heterow.Cells.Insert(0, new DataGridViewComboBoxCell());

m_Grid.Rows.Add(heterow);

 Noyes.book Page 225 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW226

To access the contents of the cells programmatically, you index into the
Rows collection on the grid to obtain a reference to the row, and then index
into the Cells collection on the row to access the cell object.

Once you have a reference to the cell, you can do anything with that cell
that the actual cell type supports. If you want to access specific properties
or methods exposed by the cell type, you have to cast the reference to the
actual cell type. To change a cell’s contents, you set the Value property to
an appropriate value based on the type of the cell. What constitutes an
appropriate value depends on what kind of cell it is. For text box, link, but-
ton, and header cell types, the process is very similar to what was
described for the Binding object in Chapter 4. Basically, the value you set
on the Value property of the cell needs to be convertible to a string, and
formatting will be applied in the painting process. To change the format-
ting of the output string, set the Format property of the style used for the
cell. The style is an instance of a DataGridViewCellStyle object and is
exposed as another property on the cell, not surprisingly named Style.
The cell’s style contains other interesting properties that you can set
(described later in the section “Formatting with Styles”).

For example, if you want to set the contents of a text box cell to the cur-
rent date using the short date format, you could use the following code:

m_Grid.Rows[0].Cells[2].Value = DateTime.Now;

m_Grid.Rows[0].Cells[2].Style.Format = "d";

This sets the value of the third cell in the first row to an instance of a
DateTime object, which is convertible to a string, and sets the format string
to the short date predefined format string “d” (which is the short date for-
mat—MM/YYYY). When that cell gets rendered, it will convert the stored
DateTime value to a string using the format string.

Custom Column Content with Unbound Columns

Now that you understand how to programmatically create columns and
rows, and populate them with values, you may be wondering if you have
to go to all that trouble any time you want to present content in a cell that
isn’t bound to data. The good news is that there is a faster way for most

 Noyes.book Page 226 Thursday, December 15, 2005 3:57 PM

 CUSTOM COLUMN CONTENT WITH UNBOUND COLUMNS 227

scenarios where you want to present unbound data. You will need to pro-
grammatically create all the columns in the grid (although you can get the
designer to write this code for you too, as shown later), but you can use
events to make populating the values a little easier, especially when you
mix bound data with unbound columns.

An unbound column is a column that isn’t bound to data. You add
unbound columns to a grid programmatically, and you populate the col-
umn’s cells either programmatically as shown in the previous section or by
using events as shown in this section. You can still add columns to the grid
that are automatically bound to columns or properties in the data items of
the data source. You do this by setting the DataPropertyName property
on the column after it is created. Then you can add unbound columns as
well. The rows of the grid will be created when you set the grid’s Data-
Source property to the source as in the straight data-binding case, because
the grid will iterate through the rows or objects in the data collection, creat-
ing a new row for each.

There are two primary ways to populate the contents of unbound col-
umns: handling the RowsAdded event or handling the CellFormatting
event. The former is a good place to set the cell’s value to make it available
for programmatic retrieval later. The latter is a good place to provide a
value that will be used for display purposes only and won’t be stored as
part of the data retained by the grid cells collection. The CellFormatting
event can also be used to transform values as they are presented in a cell to
something different than the value that is actually stored in the data that
sits behind the grid.

 To demonstrate this capability, let’s look at a simple example.

1. Start a new Windows application project in Visual Studio 2005, and
add a new data source to the project for the Customers table in the
Northwind database (this is described in Chapter 1—here are the
basic steps):
a. Select Data > Add New Data Source.
b. Select Database as the data source type.
c. Select or create a connection to the Northwind database.
d. Select the Customers table from the tree of database objects.
e. Name the data set CustomersDataSet and finish the wizard.

 Noyes.book Page 227 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW228

At this point you have an empty Windows Forms project with a typed
data set for Customers defined.

2. Add a DataGridView and BindingSource to the form from the
Toolbox, naming them m_CustomersGrid and m_Customers-
BindingSource respectively.

3. Add the code in Listing 6.1 to the constructor for the form, following
the call to InitializeComponents.

Listing 6.1: Dynamic Column Construction

public Form1()

{

 InitializeComponent();

 // Get the data

 CustomersTableAdapter adapter = new CustomersTableAdapter();

 m_CustomersBindingSource.DataSource = adapter.GetData();

 // Set up the grid columns

 m_CustomersGrid.AutoGenerateColumns = false;

 int newColIndex = m_CustomersGrid.Columns.Add("CompanyName",

 "Company Name");

 m_CustomersGrid.Columns[newColIndex].DataPropertyName =

 "CompanyName";

 newColIndex = m_CustomersGrid.Columns.Add("ContactName",

 "Contact Name");

 m_CustomersGrid.Columns[newColIndex].DataPropertyName =

 "ContactName";

 newColIndex = m_CustomersGrid.Columns.Add("Phone","Phone");

 m_CustomersGrid.Columns[newColIndex].DataPropertyName = "Phone";

 newColIndex = m_CustomersGrid.Columns.Add("Contact", "Contact");

 // Subscribe events

 m_CustomersGrid.CellFormatting += OnCellFormatting;

 m_CustomersGrid.RowsAdded += OnRowsAdded;

 // Data bind

 m_CustomersGrid.DataSource = m_CustomersBindingSource;

}

This code first retrieves the Customers table data using the table
adapter’s GetData method. As discussed earlier in the book, the
table adapter was created along with the typed data set when you
added the data source to your project. It sets the returned data table

 Noyes.book Page 228 Thursday, December 15, 2005 3:57 PM

 CUSTOM COLUMN CONTENT WITH UNBOUND COLUMNS 229

as the data source for the binding source. The AutoGenerate-
Columns property is set to false, since the code programmatically
populates the columns collection. Then four text box columns are
added to the grid using the overload of the Add method on the
Columns collection, which takes a column name and the header text.
The first three columns are set up for data binding to the Customers
table’s CompanyName, ContactName, and Phone columns by set-
ting the DataPropertyName property on the column after it is cre-
ated. The fourth column is the unbound column and is simply
created at this point through the call to the Add method. It will be
populated later through events.

Finally, the events of interest are wired up to the methods that will
handle them using delegate inference. Using this new C# feature, you
don’t have to explicitly create an instance of a delegate to subscribe
a handler for an event. You just assign a method name that has the
appropriate signature for the event’s delegate type, and the compiler
will generate the delegate instance for you. In Visual Basic, you use
the AddHandler operator, which has always operated similarly.

When the data source is set on the grid and the grid is rendered, the
grid iterates through the rows of the data source and adds a row to
the grid for each data source row, setting the values of the bound col-
umn cells to the corresponding values in the data source. As each row
is created, the RowsAdded event is fired. In addition, a series of events
are fired for every cell in the row as it is created.

4. Add the following method as the handler for the CellFormatting
event:

private void OnCellFormatting(object sender,

 DataGridViewCellFormattingEventArgs e)

{

 if (e.ColumnIndex == m_CustomersGrid.Columns["Contact"].Index)

 {

 e.FormattingApplied = true;

 DataGridViewRow row = m_CustomersGrid.Rows[e.RowIndex];

 e.Value = string.Format("{0} : {1}",

 row.Cells["ContactName"].Value,

 row.Cells["Phone"].Value);

 }

}

 Noyes.book Page 229 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW230

As previously mentioned, you can use the CellFormatting event if
you are programmatically setting the displayed values for the cells.
The event argument that is passed in to the CellFormatting event
exposes a number of properties to let you know what cell is being ren-
dered. You can use the ColumnIndex to determine which column the
event is being fired for. It is checked against the index of the Contact
column using a lookup in the Columns collection.

Once it is determined that this is the column you want to supply a
programmatic value for, you can obtain the actual row being popu-
lated using the RowIndex property on the event argument. In this
case, the code just concatenates the ContactName and Phone from the
row to form a contact information string using the String.Format
method, and sets that string as the value on the Contact column.

In other situations, you may use the CellFormatting event to do
something like look up a value from another table, such as using a
foreign key, and use the retrieved value as the displayed value in the
unbound column. It also sets the FormattingApplied property on
the event argument to true. This is very important to do; it signals
the grid that this column is being dynamically updated. If you fail to
do this, you will get an infinite loop if you also set the column to have
its size automatically determined, as discussed in a later section.

It should be noted that the code example for the CellFormatting
event is fairly inefficient from a performance perspective. First, you
wouldn’t want to look up the column’s index by name in the column col-
lection every time. It would be more efficient to look it up once, store it in a

 NOTE Always Set FormattingApplied to True When
Dynamically Formatting Cell Content

If you fail to set the FormattingApplied property on the event argu-
ment to the CellFormatting event, the grid won’t know that the
content is being determined dynamically and may not work properly
for certain other grid behaviors.

 Noyes.book Page 230 Thursday, December 15, 2005 3:57 PM

 CUSTOM COLUMN CONTENT WITH UNBOUND COLUMNS 231

member variable, and then use that index directly for comparison. I went
with the lookup approach in this sample to keep it simple and easy to
read—so you could focus on the grid details instead of a bunch of perfor-
mance-oriented code. Besides, this is a somewhat contrived example any-
way; it’s just meant to demonstrate how to create an unbound column.

If you want to set the actual stored cell values of unbound columns in
the grid, a better way to do this is to handle the RowsAdded event. As you
might guess from the name, this event is fired as rows are added to the
grid. By handling this event, you can populate the values of all the
unbound cells in a row in one shot, which is slightly more efficient than
having to handle the CellFormatting event for every cell. The Rows-
Added event can be fired for one row at a time if you are programmatically
adding rows in a loop, or it can be fired just once for a whole batch of rows
being added, such as when you data bind or use the AddCopies method of
the rows collection. The event argument to RowsAdded contains properties
for RowIndex and RowCount; these properties let you iterate through the
rows that were added to update the unbound column values in a loop. The
following method shows an alternative approach for populating the grid’s
Contact column from the previous example, using the RowsAdded method
instead of the CellFormatting event:

private void OnRowsAdded(object sender,

 DataGridViewRowsAddedEventArgs e)

{

 for (int i = 0; i < e.RowCount; i++)

 {

 DataGridViewRow row = m_CustomersGrid.Rows[e.RowIndex + i];

 row.Cells["Contact"].Value = string.Format("{0} : {1}",

 row.Cells["ContactName"].Value,

 row.Cells["Phone"].Value);

 }

}

This code obtains the current row being set in the loop by indexing into
the Rows collection with the RowIndex property from the event argument
and a loop index offset up to the number of rows that are affected when
this event fires. It then uses the existing data in that row’s other columns to

 Noyes.book Page 231 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW232

compute the contents of the current row. For a real-world application, you
could obtain or compute the value of the unbound columns in the row in
the loop instead.

 TIP Use the CellFormatting event to control displayed
cell content and the RowsAdded event to control stored
cell content

The CellFormatting event is fired for every cell as it is rendered, giv-
ing you a chance to inspect and possibly modify the value that will be
presented for any of the cells in the grid. If you want to modify the
actual value of an unbound column that is stored in the grid cells col-
lection, use the RowsAdded event to set all the unbound column values
in one shot when the row is added, instead of requiring a separate
event firing for each cell. If the data that you are presenting is purely
computed data, instead of data that you are retrieving or deriving
from bound data, consider using virtual mode to populate those cells,
as discussed in the next section.

 NOTE Generate Computed Columns Where It Makes Sense

The example presented in this section simply computed a new column
based on the contents of other columns. If this was needed just for dis-
play purposes, then using an unbound column might be the best
approach. However, if that computed column value might be needed
anywhere else in your application, it would make more sense to make
it part of your application data entities by making it a custom data col-
umn based on an expression in the data set itself.

It is easy to add a custom column to a typed data set table using the
data set designer, and there are a number of custom expressions to
compute that column’s values from other data in the table. If you need
to generate the column data based on other tables or data in the data-
base, doing so in a stored procedure might make even more sense.

The bottom line is that you need to pick the appropriate scope for your
computed data. Don’t use unbound columns with repeated code to
display something that could have been computed once and made an
actual member of the data you are working with.

 Noyes.book Page 232 Thursday, December 15, 2005 3:57 PM

 DISPLAYING COMPUTED DATA IN VIRTUAL MODE 233

Displaying Computed Data in Virtual Mode

Another scenario where you may want to take explicit control over provid-
ing a display value for each cell is when you are working with data that con-
tains computed values, especially in combination with bound data and
large sets of data. For example, you may need to present a collection of data
that has tens of thousands or even millions of rows in a grid. You really
ought to question the use case first before supporting such a thing, but if
you really need to do this, you probably don’t want to clobber your sys-
tem’s memory by creating multiple copies of that data. You may not even
want to bring it all into memory at one time, especially if this data is being
dynamically created or computed. However, you will want users to able be
to smoothly scroll through all that data to locate the items of interest.

Virtual mode for the DataGridView lets you display values for cells as
they are rendered, so that data doesn’t have to be held in memory when it’s
not being used. With virtual mode you can specify which columns the grid
contains at design time, and then provide the cell values as needed, so they
display at runtime but not before. The grid will internally only maintain
the cell values for the cells that are displayed; you provide the cell value on
an as-needed basis.

When you choose to use virtual mode, you can either provide all of the
row values through virtual mode event handling, or you can mix the col-
umns of the grid with data-bound and unbound columns. You have to
define the columns that will be populated through virtual mode as
described earlier in the “Programmatic DataGridView Construction” sec-
tion. If you also data bind some columns, then the rows will be populated
through data binding and you just handle the events necessary for virtual
mode for the columns that aren’t data bound. If you aren’t data binding,
you have to add as many rows as you expect to present in the grid, so the
grid knows to scale the scrollbar appropriately. You then need a way to get
the values corresponding to virtual mode columns when they are needed
for presentation. You can do this by computing the values dynamically
when they are needed, which is one of the main times that you would use
virtual mode. You might also use cached client-side data in the form of an

 Noyes.book Page 233 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW234

object collection or data set, or you might actually make round-trips to the

server to get the data as needed. With the latter approach, you’ll need a

smart preload and caching strategy, because you could quickly bog down

the application if data queries have to run between the client and the server

while the user is scrolling. If the data being displayed is computed data,

then it really makes sense to wait to compute values until they are actually

going to be displayed.

Setting Up Virtual Mode

The following steps describe how to set up virtual mode data binding.

1. Create a grid and define the columns in it that will use virtual mode.

2. Put the grid into virtual mode by setting the VirtualMode property

to true.

3. If you aren’t using data binding, add as many rows to the grid as you

want to support scrolling through. The easiest and fastest way to do

this is to create one prototype row, then use the AddCopies method

of the Rows collection to add as many copies of that prototype row

as you would like. You don’t have to worry about the cell contents

at this point, because you are going to provide those dynamically

through an event handler as the grid is rendered.

4. The final step is to wire up an event handler for the CellValue-

Needed event on the grid. This event will only be fired when the grid

is operating in virtual mode, and will be fired for each unbound col-

umn cell that is currently visible in the grid when it is first displayed

and as the user scrolls.

The code in Listing 6.2 shows a simple Windows Forms application that

demonstrates the use of virtual mode. A DataGridView object was added

to the form through the designer and named m_Grid, and a button added

to the form for checking how many rows had been visited when scrolling

named m_GetVisitedCountButton.

 Noyes.book Page 234 Thursday, December 15, 2005 3:57 PM

 DISPLAYING COMPUTED DATA IN VIRTUAL MODE 235

Listing 6.2: Virtual Mode Sample

partial class VirtualModeForm : Form

{

 private List<DataObject> m_Data = new List<DataObject>();

 private List<bool> m_Visited = new List<bool>();

 public VirtualModeForm()

 {

 InitializeComponent();

 m_Grid.CellValueNeeded += OnCellValueNeeded;

 m_GetVisitedCountButton.Click += OnGetVisitedCount;

 InitData();

 InitGrid();

 }

 private void InitData()

 {

 for (int i = 0; i < 1000001; i++)

 {

 m_Visited.Add(false);

 DataObject obj = new DataObject();

 obj.Id = i;

 obj.Val = 2 * i;

 m_Data.Add(obj);

 }

 }

 private void InitGrid()

 {

 m_Grid.VirtualMode = true;

 m_Grid.ReadOnly = true;

 m_Grid.AllowUserToAddRows = false;

 m_Grid.AllowUserToDeleteRows = false;

 m_Grid.ColumnCount = 3;

 m_Grid.Rows.Add();

 m_Grid.Rows.AddCopies(0, 1000000);

// Uncomment the next line and comment out the

// the rest of the method to switch to data bound mode

// m_Grid.DataSource = m_Data;

 }

 private void OnCellValueNeeded(object sender,

 DataGridViewCellValueEventArgs e)

 {

 m_Visited[e.RowIndex] = true;

 if (e.ColumnIndex == 0)

 {

 e.Value = m_Data[e.RowIndex].Id;

 }

 else if (e.ColumnIndex == 1)

 {
continues

 Noyes.book Page 235 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW236

 e.Value = m_Data[e.RowIndex].Val;

 }

 else if (e.ColumnIndex == 2)

 {

 Random rand = new Random();

 e.Value = rand.Next();

 }

 }

 private void OnGetVisitedCount(object sender, EventArgs e)

 {

 int count = 0;

 foreach (bool b in m_Visited)

 {

 if (b) count++;

 }

 MessageBox.Show(count.ToString());

 }

}

public class DataObject

{

 private int m_Id;

 private int m_Val;

 public int Val

 {

 get { return m_Val; }

 set { m_Val = value; }

 }

 public int Id

 {

 get { return m_Id; }

 set { m_Id = value; }

 }

}

The form constructor starts by calling InitializeComponent as usual,
to invoke the code written by the designer from drag-and-drop operations
and Properties window settings. For this sample, that just declares and cre-
ates the grid and the button controls on the form. The constructor code
then subscribes two event handlers using delegate inference.

The first event handler is the important one for virtual mode—the
CellValueNeeded event. As mentioned earlier, this event is only fired when
the grid is in virtual mode and is called for each unbound column cell that is
visible in the grid at any given time. As the user scrolls, this event fires again

 Noyes.book Page 236 Thursday, December 15, 2005 3:57 PM

 DISPLAYING COMPUTED DATA IN VIRTUAL MODE 237

for each cell that is revealed through the scrolling operation. The constructor
also subscribes a handler for the button click, which lets you see how many
rows the CellValueNeeded event handler was actually called for.

After that, the constructor calls the InitData helper method, which
creates a collection of data using a List<T> generic collection that contains
instances of a simple DataObject class, defined at the end of Listing 6.2.
The DataObject class has two integer values, Id and Val, which are pre-
sented in the grid. The collection is populated by the InitData helper
method with one million rows. The Id property of each object is set to its
index in the collection, and the Val property is set to two times that index.

 TIP Favor object collections for large data collections

Object collections that are easily defined using the generic collections
in .NET 2.0 are inherently lighterweight and perform better than stor-
ing your data in a data set. Typed data sets are a great way to go for
smaller sets of data, particularly when you need to support updates,
inserts, and deletes. But for simply presenting a large collection of
data, you will pay a significant performance and memory cost for
using a data set compared to a custom object collection.

Choosing Data Sets or Custom Collections

When you are dealing with very large collections of data in memory like

the one in Listing 6.2, one of your primary concerns should be memory

impact. Based on the other samples presented in this book so far, you

may be inclined to use a typed data set as your data collection object.

However, you should think twice before doing this. Even though improve-

ments in the DataSet class (and therefore derived typed data set

classes) in .NET 2.0 significantly improve its scalability and performance

for large data sets, the DataSet class is still a fairly heavyweight object

because of all the hierarchical, change tracking, and updating capability

that is built into a data set.

continues

 Noyes.book Page 237 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW238

Initializing the Grid

After the data is initialized, the constructor calls the InitGrid helper
method, which does the following:

• Sets the grid into virtual mode.

• Turns off editing, adding, and deleting.

• Adds three text box columns to the grid by setting the ColumnCount
property.

• Adds one row to the grid as a template.

• Uses the AddCopies method on the Rows collection to add one mil-
lion more rows. This method also contains a commented-out line of
code that can be used to change the VirtualMode download sample
to be data bound against the object collection so that you can see the
difference in load time and memory footprint.

If you are thinking of presenting millions of rows of data in a grid, and

you expect to let users edit the rows in the grid and let the data set updat-

ing capabilities propagate those changes back to your data store, then the

DataSet class may actually be what you need. However, I would discour-

age you from designing your application this way. Displaying large collec-

tions of data should be a special use case that focuses on presentation—

you are just letting the user scroll through large numbers of rows to locate

a data item of interest. If you need to support editing of those data items,

I suggest you send the user to a different form for editing. However, you

can let them edit the values in the grid without needing the extra overhead

of a data set, as described shortly.

Object collections like the List<T> generic collection are significantly

more lightweight than a data set and result in less memory consumption

and quicker construction times. If you are going to cache a large collection

in memory, you should try to design the form to use a lightweight object

collection to cache the values for display only.

 Noyes.book Page 238 Thursday, December 15, 2005 3:57 PM

 DISPLAYING COMPUTED DATA IN VIRTUAL MODE 239

After that, Windows Forms event handling takes over for the rest of the
application lifecycle. Because the grid was set to virtual mode, the next
thing that happens is the OnCellValueNeeded handler will start to get
called for each cell that is currently displayed in the grid. This method is
coded to extract the appropriate value from the data collection based on
the row index and column index of the cell that is being rendered for the
first two columns. For the third column, it actually computes the value of
the cell on the fly, using the Random class to generate random numbers. It
also sets a flag in the m_Visited collection—you can use this to see how
many rows are actually being rendered when users scroll around with the
application running.

Understanding Virtual Mode Behavior

If you run the VirtualMode sample application from Listing 6.2, note that
as you run the mouse over the third column in the grid, the random num-
bers in the cells that the mouse passes over change. This happens because
the CellValueNeeded event handler is called every time the cell paints,
not just when it first comes into the scrolling region, and the Random class
uses the current time as a seed value for computing the next random num-
ber. So if the values that will be calculated when CellValueNeeded are
time variant, you will probably want to develop a smarter strategy for
computing those values and caching them to avoid exposing changing val-
ues in a grid just because the mouse passes over them.

The OnGetVisitedCount button Click handler displays a dialog that
shows the number of rows rendered based on the m_Visited collection. If
you run the VirtualMode sample application, you can see several things
worth noting about virtual mode. The first is that the biggest impact to
runtime is the loading and caching of the large data collection on the client
side. As a result, this is the kind of operation you would probably want to
consider doing on a separate thread in a real application to avoid tying up
the UI while the data loads. Using a BackgroundWorker component
would be a good choice for this kind of operation.

When dealing with very large data sets, if the user drags the scrollbar
thumb control, a large numbers of rows are actually skipped through the
paging mechanisms and latency of the scroll bar. As a result, you only have

 Noyes.book Page 239 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW240

to supply a tiny percentage of the actual cell values unless the user does an
extensive amount of scrolling in the grid. This is why virtual mode is par-
ticularly nice for computed values: you can avoid computing cell values
that won’t be displayed.

If you run this example and scroll around for a bit, then click the Get
Visited Count button, you will see how many rows were actually loaded.
For example, I ran this application and scrolled through the data from top
to bottom fairly slowly several times. While doing so, I saw smooth scroll-
ing performance that looked like I was actually scrolling through the
millions of rows represented by the grid. However, in reality, only about
1,000 rows were actually rendered while I was scrolling.

What if you want to support editing of the values directly in the grid?
Maybe you are just using virtual mode to present a computed column with
a relatively small set of data, and you want to use that column’s edited
value to perform some other computation or store the edited value.
Another event, CellValuePushed, is fired after an edit is complete on a
cell in a virtual mode grid. If the grid doesn’t have ReadOnly set to true,
and the cells are of a type that supports editing (like a text box column),
then the user can click in a cell, hesitate, then click again to put the cell into
editing mode. After the user has changed the value and the focus changes
to another cell or control through mouse or keyboard action, the Cell-
ValuePushed event will be fired for that cell. In an event handler for that
event, you can collect the new value from the cell and do whatever is
appropriate with it, such as write it back into your data cache or data store.

Virtual Mode Summary

That’s all there is to virtual mode: Set the VirtualMode property to true,
create the columns and rows you want the grid to have, and then supply a
handler for the CellValueNeeded event that sets the appropriate value for
the cell being rendered. If you need to support the editing of values
directly in the grid, then also handle the CellValuePushed event and do
whatever is appropriate with the modified values as the user makes the
changes. Hopefully, you won’t need to use virtual mode often in your
applications, but it’s nice to have for presenting very large data collections
or computing column values on the fly. There are no hard and fast rules on

 Noyes.book Page 240 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 241

when virtual mode will be needed. If you are having scrolling performance
problems in your application, or you want to avoid the memory impact of
holding computed values for large numbers of rows in memory, you can
see if virtual mode solves your problems. You will still need to think about
your data retrieval and caching strategy, though, to avoid seriously ham-
pering the performance of your application on the client machine.

Using the Built-In Column Types

Using a text box column is straightforward enough: you data bind to some-
thing that can be rendered as text, or set the Value property on a cell to
something that can be converted to a string, and you are done. Using some
of the other cell types may not be as easy to figure out, so this section steps
through each of the built-in column types, pointing out its capabilities and
how to use it.

The first thing to realize is that even though most of the functionality is
surfaced at the cell level in a DataGridView and it can support spreadsheet-
like behavior (as described later in this chapter), the grid is still primarily a
tabular control. The columns in the grid usually represent information that
can be determined at design time—specifically, the schema of the data that
will be presented. The rows are usually determined dynamically at runtime
and map to the structure specified by the columns. You may occasionally
programmatically create columns for rendering based on dynamic data
schemas at runtime, but even then you are first defining the data’s shape
(the columns) and then providing the data (the rows).

As a result, for each of the built-in cell types that the grid is capable of
displaying, there is a corresponding column type designed to contain cells
of that type. Each cell type is derived from the DataGridViewCell class,
and each of the corresponding column types is derived from DataGrid-
ViewColumn. Each of the column types expose properties to aid in the
data’s data binding, and each column type corresponds to the expected
content for the type of cells that the column contains. Likewise, each
derived cell type may expose additional properties based on the type of
content it is designed to display.

 Noyes.book Page 241 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW242

Because each built-in column type is different in subtle ways, it’s best to
cover them one at a time. However, since all of the cell types contained by
the column types derive from the same base class, there are a number of
properties from the base class that you’ll use for controlling and accessing
cell content. The properties of the DataGridViewCell base class are
described in Table 6.1.

TABLE 6.1: DataGridViewCell Properties

Property Name Type Description

ColumnIndex Int32 Gets the position index of the con-
taining column within the grid.

ContentBounds Rectangle Gets the bounding rectangle for
the content of the cell. The upper
left corner will be relative to the
upper left corner of the cell, and
the width and height represent the
area available for rendering con-
tent within the cell.

ContextMenuStrip ContextMenu-
Strip

Gets or sets the context menu
associated with the cell. If the user
right-clicks in the cell, this prop-
erty’s context menu displays. If a
context menu has been assigned
at the column level, setting a dif-
ferent one at the cell level will
replace the one used for the rest of
the column, but only for this cell.

DefaultNew-
RowValue

Object Gets the value that will be used if
no value has been provided for the
cell. The base class returns null
from this property, but derived
classes can provide a more
meaningful value based on their
expected content. For example,
the image cell type returns a red X
bitmap when no image has been
provided for a value.

 Noyes.book Page 242 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 243

Displayed Boolean True if the cell is currently dis-
played in the viewable area of the
grid, false otherwise. This is a
read-only property.

EditedFormatted-
Value

Object Gets the formatted version of the
transient edited value of the cell,
after any formatting or type con-
version has been applied, and
before the edited value has been
made the current value through a
focus change to a different cell.

EditType Type Gets the type of the control that
will be rendered in the cell when in
editing mode.

ErrorIconBounds Rectangle Gets the rectangle that bounds
where the error icon will be pre-
sented so you can do any custom
rendering based on that.

ErrorText String Gets or sets the text that can be
displayed if an error is associated
with the cell.

FormattedValue Object Gets the formatted version of the
current value of the cell, after any
formatting or type conversion has
been applied.

FormattedValue-
Type

Type Gets the type that will be set on
the cell for rendering, after format-
ting or type conversion has been
applied.

Frozen Boolean True if either the row or column
containing this cell is Frozen, false
otherwise. (See the later section
“Column and Row Freezing” for
details on the meaning of this
value.) This is a read-only property.

TABLE 6.1: DataGridViewCell Properties (Continued)

Property Name Type Description

continues

 Noyes.book Page 243 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW244

HasStyle Boolean True if a style has been explicitly
set for this cell, false otherwise.
This is a read-only property.

InheritedState DataGridView
ElementState

Gets the state enumeration that
describes the states provided by
the cell base class.

InheritedStyle DataGridView
CellStyle

Gets the style that will be applied
based on the styles of the grid,
row, column, and default cell style.
(See the later section on styles for
details.)

IsInEditMode Boolean True if the cell is being edited by
the user, false otherwise. This is
a read-only property.

OwningColumn DataGridView
Column

Gets a reference to the cell’s
column.

OwningRow DataGrid-
ViewRow

Gets a reference to the cell’s row.

PreferredSize Size Gets the preferred size of the cell
based on the cell template, which
can be used in custom cell painting.

ReadOnly Boolean True if the contents of this cell are
editable, false otherwise. This is a
read/write property.

Resizable Boolean True if either the containing row
or column is resizable, false
otherwise.

RowIndex Int32 Gets the index of the containing
row within the grid.

Selected Boolean True if the cell is rendered as being
selected and is marked as part of
the selected cells collection, false
otherwise. This is a read/write
property.

TABLE 6.1: DataGridViewCell Properties (Continued)

Property Name Type Description

 Noyes.book Page 244 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 245

Size Size Gets the size of the entire cell.

Style DataGridView
CellStyle

Gets or sets the Style object used
for rendering this cell. (See the
later section on styles for details
on this property.)

Tag Object This simple placeholder reference,
like other Windows Forms controls,
lets you get or set an associated
object reference for the cell. Typi-
cally, the tag is used as a place to
stash a unique identifier for the
control that can be used in lookup
scenarios, such as looping through
cells.

ToolTipText String Gets or sets the text that is ren-
dered when the mouse hovers over
a cell.

Value Object Probably the most important
property on any cell. This prop-
erty lets you get or set the value
that the cell renders when it is
displayed, but formatting and
type conversion may occur auto-
matically if the value set is differ-
ent from the expected type of
the cell.

ValueType Type Gets or sets the type of the value
that is set against this cell, before
formatting or type conversion
applies. If the type hasn’t been
explicitly set, it is derived from the
type of the containing column.

Visible Boolean True if both the containing row and
column are visible, false other-
wise. This is a read-only property.

TABLE 6.1: DataGridViewCell Properties (Continued)

Property Name Type Description

 Noyes.book Page 245 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW246

The DataGridViewColumn (discussed earlier in this chapter) is the base
class from which built-in column types derive. This class also has a number
of useful properties that you can set to drive the behavior of the grid and
that the type-specific column classes inherit. These properties are described
in Table 6.2.

TABLE 6.2: DataGridViewColumn Properties

Name Type Description

AutoSizeMode DataGridView-
AutoSizeColumnMode

Gets or sets the autosiz-
ing behavior of the col-
umn (described in the
later section on autosiz-
ing columns).

CellTemplate DataGridViewCell Gets or sets the cell type
that will be used as a
template for new cells
that are created. Derived
column types should
limit the setting of a cell
type to only the cell type
they were designed to
contain.

CellType Type Gets the type of cells this
column was designed to
contain.

ContextMenuStrip ContextMenuStrip Gets or sets the context
menu object that will
be presented when the
user right-clicks in the
column.

DataPropertyName String Gets or sets the prop-
erty’s name on bound
data that will be used to
set the value when data
binding occurs.

DefaultCellStyle DataGridView-
CellStyle

Gets or sets the cell style
that will be used by
default for rendering the
column’s cells.

 Noyes.book Page 246 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 247

DisplayIndex Int32 Gets or sets the display
index of the column
within the grid. This can
be different than the
ColumnIndex when
column reordering is
enabled (described later
in this chapter).

DividerWidth Int32 Gets or sets the width, in
pixels, of the divider line
that is drawn between
this column and the next
one to the right.

FillWeight Float Gets or sets the value
used to determine the
width of the column
when in AutoSize-
Mode of Fill.

Frozen Boolean True if the column is
frozen, false otherwise.
(Freezing columns and
rows is discussed later
in this chapter.) This is
a read/write property.

HeaderCell DataGridViewCell Gets or sets the header
cell (rendered at the top
of the column).

HeaderText String Gets or sets the text that
is rendered in the header
cell as its value.

InheritedAuto-
SizeMode

DataGridViewAuto-
SizeColumnMode

Gets the autosize mode
that is set for the base
column class.

InheritedStyle DataGridView-
CellStyle

Gets the style that is
inherited from the grid
that will be used if none
is assigned at the col-
umn, row, or cell level.

TABLE 6.2: DataGridViewColumn Properties (Continued)

Name Type Description

continues

 Noyes.book Page 247 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW248

IsDataBound Boolean True if the grid is operat-
ing in data-bound mode
(a data source has been
set), false otherwise. This
is a read-only property.

MinimumWidth Int32 Gets or sets the number
of pixels used for a mini-
mum width. This restricts
the resizing of the col-
umn at runtime to be no
less than this number.

Name String Gets or sets the name of
the column. This is used
for indexing into the col-
umns collection on the
grid and for data-binding
purposes.

ReadOnly Boolean True if the cells in the col-
umn can be edited, false
otherwise. This is a read/
write property.

Resizable Boolean True if runtime resizing
of the column is allowed
by the user, false other-
wise. This is a read/write
property.

Site ISite Gets the ISite inter-
face reference for the
column, if any. This is
used when the column is
hosting a component.

SortMode DataGridView-
ColumnSortMode

Gets or sets the sort
mode used for sorting
the rows of the grid
based on this column.
This enumerated
value can be set to
NotSortable,
Automatic, or
Programmatic.

TABLE 6.2: DataGridViewColumn Properties (Continued)

Name Type Description

 Noyes.book Page 248 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 249

There are a number of built-in column types that are available for using
with the DataGridView control corresponding to the most common con-
trol types that developers want to include in a grid. The following subsec-
tions describe each of the built-in column types and what is involved in
using them.

DataGridViewTextBoxColumn

This is the default type of column (as described earlier in this chapter), and
it displays text within the contained cells, which are of type DataGrid-
ViewTextBoxCell. Data that is bound to this column type and values set
on the cell have to be of a type that can be converted to a string.

This column type supports editing if the ReadOnly property is true
(the default) and the focus in on the cell. To enter editing mode, press F2,
type in characters, or click in the cell. This embeds a separate editing con-
trol of type DataGridViewTextBoxEditingControl, which derives from

ToolTipText String Gets or sets the text that
is shown as a tooltip pop-
up when the mouse hov-
ers over a cell in the col-
umn. If this property is
set at the cell level, the
value set for the cell is
the one displayed.

ValueType Type Gets or sets the type of
the values stored in the
cells of this column type.

Visible Boolean True if the column will
be displayed in the grid,
false otherwise. This is
a read/write property.

Width Int32 Gets or sets the width,
in pixels, of the column in
the grid.

TABLE 6.2: DataGridViewColumn Properties (Continued)

Name Type Description

 Noyes.book Page 249 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW250

TextBox. This type enables in-place editing for the grid value, like you are
used to for text box controls. The value in the text box is treated as a tran-
sient value until the focus leaves the cell; then the CellParsing event
fires, and the value is pushed into the underlying data store if data bound
or the CellValuePushed event fires if in virtual mode.

DataGridViewButtonColumn

This column type displays cells of type DataGridViewButtonCell, which
is sort of a fancy form of read-only text cell. A button cell lets you have a
button-push experience embedded in the grid, which you can use to trig-
ger whatever action makes sense for your application. The button cell ren-
ders itself with a border that looks like any other button control, and when
the user clicks on it, the cell renders again with a depressed offset so that
you get an action like a button. To handle the “button click,” you need to
handle the CellClick event on the grid, determine if it was a button cell
that was clicked, and then take the appropriate action for your application.
This involves taking the event argument from the CellClick event, check-
ing its ColumnIndex property against the column index of button columns
in your grid, and then calling the button click handling code from there
based on the row index, or the contents of that cell or others in that row.

DataGridViewLinkColumn

Like the button column, this is another form of rendering a text cell that
gives the user a visual cue that clicking on it will invoke some action. This
column type contains cells of type DataGridViewLinkCell and renders
the text in the cell to look like a hyperlink. Typically, clicking on a link
“navigates” the user somewhere else, so you might use this kind of column
if you are going to pop up another window or modify the contents of
another control based on the user clicking on the link. To do so, you handle
the CellClick event as described previously for the button, determine if
you are in a cell containing a link, and take the appropriate action based on
that link. You will have to derive the context of what action you should
take either from the cell’s contents or other cells in that row or column.

 Noyes.book Page 250 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 251

DataGridViewCheckBoxColumn
By now you are probably picking up the pattern, and as you would guess,
this column type contains cells of type DataGridViewCheckBoxCell. This
cell type renders a CheckBox-like control that supports tri-state rendering
like a CheckBox control.

The values that this cell type supports depend on whether you set the
cell or column type into ThreeState mode or not. If the ThreeState prop-
erty is set to false (the default), then a value of null or false will leave
the check box unchecked; a value of true will check the box. If ThreeState
is set to true, then the Value property of the cell can be null or one of the
CheckState enumeration values. If null and ThreeState is true, then
the check box will be rendered in the indeterminate state (a square filling
it). The CheckState enumeration values are Unchecked, Checked, and
Indeterminate, which are self-explanatory. The cell’s Value property can
be set explicitly through programmatic code that accesses the cell in the
Cells collection of the row, or it can be set through data binding.

DataGridViewImageColumn
This column, not surprisingly, contains cells of type DataGridView-
ImageCell, which support the rendering of images directly within the
grid’s cells. This cell type provides a very handy and easy-to-use capability
in the DataGridView control that used to be fairly painful to achieve with
the DataGrid control. This column type exposes Image and ImageLayout
properties in addition to the usual base class properties. Setting the col-
umn’s Image property results in that image being displayed by default for
all the cells in that column. The ImageLayout property takes a DataGrid-
ViewImageCellLayout enumeration value. The values of this enumera-
tion and their effect on the rendering of an image in the grid are described
in Table 6.3.

In addition to setting a default image at the column level, you can set
the Value property at the cell level, either explicitly through code or
implicitly through data binding. The value can be set to any type that can
be converted to an Image object for display in the cell. Natively in .NET,
this means that the value can either be an Image or a byte array that con-
tains a serialized Image.

 Noyes.book Page 251 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW252

DataGridViewComboBoxColumn

This column type contains cells of type DataGridViewComboBoxCell,
which renders itself like a standard ComboBox control within the cell. This
column type is definitely the most complex built-in column type for the
DataGridView, and it exposes a number of properties that drive its behav-
ior, as described in Table 6.4.

TABLE 6.3: DataGridViewImageCellLayout Enumeration Values and Effects

Value Effect

NotSet This is the default and indicates that the layout behavior has not been
explicitly specified. The resulting behavior of the cell is the same as if
Normal had been explicitly set.

Normal The image is rendered at its native size and centered in the cell.
Depending on the size of the cell, any portions of the image that are
outside the bounds of the cell will be clipped.

Stretch The image is stretched or shrunk in both width and height so that it
fills the cell and no clipping occurs. No attempt is made to maintain
the aspect ratio (width/height) of the image.

Zoom The image is resized so that it fits within the cell without clipping, and
the aspect ratio (width/height) is maintained so that no distortion of
the image occurs.

TABLE 6.4: DataGridViewComboBoxColumn Properties

Name Type Description

AutoComplete Boolean True if AutoComplete func-
tionality is enabled when the
cell is in edit mode, false oth-
erwise. This lets users type in
characters, and the combo box
will select matching items in
the list based on the charac-
ters typed. This is a read/write
property.

CellTemplate DataGridViewCell Gets or sets the cell type being
presented in the column. The
cell type must be a derived
class from DataGridView-
ComboboxCell.

 Noyes.book Page 252 Thursday, December 15, 2005 3:57 PM

 USING THE BUILT-IN COLUMN TYPES 253

DataSource Object Gets or sets the object being
used as the data source for
data binding the column. Set-
ting this property to a data
collection has the same data-
binding effect as it does with a
normal combo box—it will dis-
play items from the collection
as the items in the drop-down
list, using the Display-
Member property to deter-
mine which data member or
property within the items in
that collection to use for the
text in the list.

DisplayMember String Gets or sets which data mem-
ber or property within the data
source to display as the text
items in the list.

DisplayStyle DataGridView-
ComboBox-
DisplayStyle

Gets or sets the style that the
combo boxes in the column
are using. The values for this
enumeration include
ComboBox, DropDown-
Button, and Nothing.

DisplayStyleFor-
CurrentCellOnly

Boolean True if the DisplayStyle
value only applies to the cur-
rent cell in the column, false
if it is being used for all cells
within the column. This is a
read/write property.

DropDownWidth Int32 Gets or sets the width of the
drop-down list that is dis-
played when the user clicks on
the down arrow or presses F4.

FlatStyle FlatStyle Gets or sets the FlatStyle
enumerated value that deter-
mines the visual appearance
of the combo box when it is
rendered.

TABLE 6.4: DataGridViewComboBoxColumn Properties (Continued)

Name Type Description

continues

 Noyes.book Page 253 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW254

The combo box cells support edit mode, and users can type in a value
for autocompletion purposes or select values from a drop-down list. When
in edit mode, this cell type hosts a control that derives from the ComboBox
control, so all of its functionality is exposed when the cell is switched into
edit mode.

The Value property represents the currently selected value in the
combo box. It may contain the displayed text value in the combo box, or it
may contain the underlying ValueMember value for the selected item,
depending on what you set for the DataSource, DisplayMember, and
ValueMember properties. The FormattedValue property, inherited from
the base class, always contains the formatted text for the selected item that
is being displayed in the combo box.

Data binding this column type or the cells in it works just like data bind-
ing a standalone ComboBox control. You set the DataSource, Display-
Member, and ValueMember properties, and the items in the data source
collection are rendered in the drop-down list using the value of the data
member that is identified as the display member:

Items ObjectCollection Gets the collection of objects
that are set for the cell tem-
plate.

MaxDropDownItems Int32 Gets or sets the maximum
number of items to display in
the drop-down list.

Sorted Boolean True if the items in the list will
be sorted alphabetically, false
otherwise. This is a read/write
property.

ValueMember String Gets or sets the data member
or property within the data
source that will be kept with
the items in the list. Lets you
keep track of additional infor-
mation, such as the record pri-
mary key.

TABLE 6.4: DataGridViewComboBoxColumn Properties (Continued)

Name Type Description

 Noyes.book Page 254 Thursday, December 15, 2005 3:57 PM

 BUILT-IN HEADER CELLS 255

toCountryColumn.DataSource = m_CountriesBindingSource;

toCountryColumn.DisplayMember = "CountryName";

toCountryColumn.ValueMember = "CountryID";

The sample code that accompanies this chapter contains a simple appli-
cation called ColumnTypes that demonstrates how the code interacts with
each of the built-in column types described in this chapter.

Built-In Header Cells

Header cells are the cells rendered at the top and left sides of the grid.
They provide the context or a guide to what the cells in the grid contain.
Column header cells are of type DataGridViewColumnHeaderCell, and
their header text indicates the content of the column cells. The cell contains
an up or down triangle when the column supports sorting; users can sort
the column by clicking on the column header. Usually the header text is set
through the HeaderText property on the column, either explicitly through
code or implicitly through data binding based on the data’s schema. You
can also access the header cell directly from the column through the
HeaderCell property and use its Value to set the text displayed.

The row header cells are of type DataGridViewRowHeaderCell. They
indicate row selections with a triangle glyph, editing mode with a pencil
glyph, and the new row with a star glyph. Row header cells can display
text as well; you set the cell’s Value to a string value by accessing the row’s
HeaderCell property.

Both column and row headers can be further customized by imple-
menting custom painting by handling the CellPainting event on the
grid. Note that if you do custom painting, you must do all the painting of
the header cell yourself, and then set the Handled property on the event
argument to true:

private void OnCellPainting(object sender,

 DataGridViewCellPaintingEventArgs e)

{

 if (e.ColumnIndex < 0)

 {

 e.Graphics.FillRectangle(Brushes.Aqua, e.CellBounds);

 e.Handled = true;

 }

}

 Noyes.book Page 255 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW256

This code checks to see if the column being painted has an index less
than zero, which indicates that the row header is being painted. The col-
umn index of the row headers is –1, and the row index of the column head-
ers is also –1. You cannot index into the Cells collection on the row with
these values, but you can use them as a flag in the CellPainting event to
know when it is a header that is being painted.

Additionally, you can set the CellHeader property to an instance of a
class that derives from DataGridViewCell, and then that cell type will be
used when the header cells are rendered. You can derive your own class
from the cell base class and do whatever kind of custom painting, format-
ting, or setting of styles there that makes sense.

Handling Grid Data Edits

How you handle grid edits is going to depend on the following:

• The type of column or cell you are dealing with

• Whether the data is data bound

• Whether you are in virtual mode

As mentioned earlier, when working with a text box column, users can
start editing a cell by putting the focus into the cell with the mouse, arrow
keys, or by pressing the F2 key when the mouse pointer is in the cell. If
users then start typing characters, the current contents of the cell will be
overwritten. When they change the focus to another cell, this completes the
editing process.

The first thing that happens that you might want to handle is that the
CellParsing event fires. Like its CellFormatting counterpart, this event
gives you an opportunity to intercept the value that was entered into the
cell while in edit mode, either to handle storing that value somewhere
yourself or to transform it into some other value before it is stored.

If the cell is data bound, and if the data source supports editing the
data objects in the collection, the data will automatically be pushed back

 Noyes.book Page 256 Thursday, December 15, 2005 3:57 PM

 HANDLING GRID DATA EDITS 257

into the underlying data source. If the cell is a button or link cell, however,
you won’t be able to edit the contents in the first place because they don’t
support editing. If the cell is a combo box cell, editing is done by selecting
a value in the drop-down list or overtyping the current selection if the cell
has its DisplayStyle property set to ComboBox. This changes the cell’s
value when editing is complete (when the focus moves off the cell) and
results in the same action as if that value had been typed into a text box
cell. If the grid is in virtual mode, you will need to handle the CellValue-
Pushed event to grab the value that was entered and do what you need to
with it.

When a cell switches into edit mode, an event named Editing-
ControlShowing fires. This event passes an event argument that lets you
get a reference to the editing control itself. The built-in cell types that sup-
port editing (text box, combo box, and check box cell types) create an
instance of an editing control that derives from their normal Windows
Forms counterparts (TextBox, ComboBox, and CheckBox, respectively)
and display that control as a child control inside a panel inside the cell. If
you create a custom cell type that supports editing, then you will want to
follow a similar approach. Through the EditingControlShowing event,
you can get a reference to the editing control in use and can tap into its
event model to respond to edits in realtime. For example, if you want to
dynamically react to selections in a combo box column while the control is
still in edit mode and the selected value hasn’t been pushed yet into the
cell’s underlying value (meaning the CellParsing event hasn’t yet fired),
you could use the EditingControlShowing event to hook things up:

public Form1()

{

 InitializeComponent();

 m_Grid.EditingControlShowing += OnEditControlShowing();

}

private void OnEditControlShowing(object sender,

 DataGridViewEditingControlShowingEventArgs e)

{

 if (m_Grid.CurrentCell.ColumnIndex == 2)

 {

 Noyes.book Page 257 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW258

 m_HookedCombo = e.Control as ComboBox;

 if (m_HookedCombo == null)

 return;

 m_HookedCombo.SelectedIndexChanged += OnCountryComboChanged;

 }

}

void OnCountryComboChanged(object sender, EventArgs e)

{

 string countryName =

 (string)m_Grid.CurrentCell.EditedFormattedValue;

 if (string.IsNullOrEmpty(countryName))

 return;

 DataRow[] countries = m_MoneyData.Countries.Select(

 string.Format("CountryName = '{0}'", countryName));

 if (countries != null && countries.Length > 0)

 {

 MoneyDBDataSet.CountriesRow row =

 countries[0] as MoneyDBDataSet.CountriesRow;

 int flagColIndex = m_Grid.Columns["TargetCountryFlag"].Index;

 DataGridViewCell cell = m_Grid.CurrentRow.Cells[flagColIndex];

 cell.Value = row.Flag;

 }

}

This code does the following:

1. The constructor subscribes the OnEditControlShowing method to
the grid’s EditControlShowing event.

2. When the EditControlShowing event fires, the OnEditControl-
Showing method uses the Control property on the event argument
to get a reference to the ComboBox control that is embedded in the cell
that is being edited.

3. The OnEditControlShowing method then subscribes the
OnCountryComboChanged method to the SelectedIndexChanged
event on that ComboBox control.

4. When the SelectedIndexChanged event fires, the OnCountry-
ComboChanged method retrieves the country name from the cell
containing the drop-down list using the current cell’s Edited-
FormattedValue property. This lets you get the edited value before
the cell has left editing mode.

 Noyes.book Page 258 Thursday, December 15, 2005 3:57 PM

 AUTOMATIC COLUMN SIZING 259

5. The OnCountryComboChanged method then uses the country name
to retrieve the corresponding row in the Countries table and extracts
the flag image from the Flag column.

6. Finally, it sets the flag image as the value on the cell corresponding
to the country’s flag.

Keep in mind that the Flag column in the Countries table is actually a
byte array containing the bits of the saved image file. The automatic for-
matting of the image column kicks in here to present the image in the
same way that was discussed for a PictureBox control in Chapter 4. The
ColumnTypes sample in the download code demonstrates this technique.

Automatic Column Sizing

One of the DataGridView control’s new features is its ability to automati-
cally calculate the width of the columns to fit the content of the columns
based on several different criteria. Like many of the grid’s features, all you
need to do to take advantage of this feature is to set the appropriate prop-
erty on a given column—and then the grid does the rest. Specifically, the
property that takes care of this for you is the AutoSizeMode property of
the DataGridViewColumn class. By setting this property to one of the
enumerated values of the DataGridViewAutoSizeColumnMode enumer-
ation shown in Table 6.5, you can drive how to set the width of columns in
the grid.

TABLE 6.5: DataGridView AutoSizeMode Values

Value How the Column Width Is Calculated

NotSet By the value set on the AutoSizeColumnsMode
property at the grid level. This is the default value.

None Set explicitly by setting the column’s Width property.

ColumnHeader By the width of the content in the header cell only.

AllCellsExcept-
Header

By the width of the widest cell in the grid, whether it
is displayed or not, but the header cell content size is
ignored.

continues

 Noyes.book Page 259 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW260

One of the most useful values is AllCells. I recommend that this be
your default, unless you see a performance hit from using it for large data
sets or if you have some cell values that will be very long. This setting
ensures that the content of cells never wraps. Additionally, remember to
set the FormattingApplied property on the event argument to the Cell-
Formatting event if you are dynamically populating cell values. Other-
wise, setting the AutoSizeMode to one of the row values will result in an
infinite loop.

As a simple example of using this feature, the following code modifies
the code from Listing 6.1 to set the column width of the Full Name com-
puted column:

 newColIndex = m_AuthorsGrid.Columns.Add("FullName", "Full Name");

 m_AuthorsGrid.Columns[newColIndex].AutoSizeMode =

 DataGridViewAutoSizeColumnMode.AllCells;

The Fill mode is very powerful for automatically maximizing the use
of the grid real estate, but it can be a little complicated to understand. Basi-
cally, if you set the mode for all columns to Fill, each of the columns will
have their width set equally, and the columns will fill the grid boundary

AllCells By the width of all cells in the column, including those
not displayed and the header cell content.

DisplayedCells-
ExceptHeader

Based only on displayed cells in the column, ignoring
the width of the header cell content.

DisplayedCells By the width of the content in displayed cells, including
the header cell.

Fill Automatically calculated to fill the displayed content
area of the grid so the contents can be viewed without
scrolling. The actual value used depends on the mode
of the other columns in the grid, and their Minimum-
Width and FillWeight properties. If all the columns
in the grid are set to Fill mode, and their minimum
width requirements are met, then the columns will
each have equal width, filling the grid, but not requir-
ing any horizontal scrolling.

TABLE 6.5: DataGridView AutoSizeMode Values (Continued)

Value How the Column Width Is Calculated

 Noyes.book Page 260 Thursday, December 15, 2005 3:57 PM

 AUTOMATIC COLUMN SIZING 261

with no horizontal scrollbar needed. If the MinimumWidth property of any
column set to Fill mode is wider than the width that was computed using
the fill algorithm, then the MinimumWidth value will be used instead, and
the other columns just end up being narrower so that they all still fit in the
grid without a horizontal scrollbar. If the MinimumWidth values of multi-
ple columns make it so that all columns cannot be displayed, then the col-
umns that cannot be displayed will be set to their minimum width value,
and a scrollbar will be displayed. The default value for minimum width is
only 5 pixels, so you will definitely want to set a more sensible Minimum-
Width value when working with Fill mode.

Each column also has a FillWeight property, which takes effect when
that column’s AutoSizeMode is set to Fill. The FillWeight can be
thought of as the percentage of the remaining available grid width that
the individual column will take up compared to other columns that are set
to Fill. It is a weight instead of a percentage, though, because you can
use values that don’t add up to 100. For example, suppose you wanted to
display the CustomerID, CompanyName, and ContactName columns
from the Northwind Customers table in a grid. The following code sets
the column width of the CustomerID column to 75 pixels, and then sets
the remaining two columns to Fill mode with weights of 10 and 20,
respectively.

public Form1()

{

 InitializeComponent();

 m_CustomersGrid.Columns["CustomerID"].Width = 75;

 m_CustomersGrid.Columns["CompanyName"].AutoSizeMode =

 DataGridViewAutoSizeColumnMode.Fill;

 m_CustomersGrid.Columns["CompanyName"].FillWeight = 10;

 m_CustomersGrid.Columns["ContactName"].AutoSizeMode =

 DataGridViewAutoSizeColumnMode.Fill;

 m_CustomersGrid.Columns["ContactName"].FillWeight = 20;

}

As a result, the remaining two columns occupy 33 percent and 67
percent of the remaining grid width, respectively, after the CustomerID
column has taken up its fixed width space. Figure 6.2 illustrates this.

 Noyes.book Page 261 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW262

Column and Row Freezing

Scrolling is inevitable when dealing with lots of rows or columns of data.

Often when you scroll through data, it is easy to lose the context of what

rows or columns you are looking at, especially if that context is based on

the values in some other rows or columns. Let’s say you are browsing

through a grid filled with product information. If there are a lot of columns

of data associated with each product, as you scroll to the right to view col-

umns that aren’t currently displayed, you will lose the context of the prod-

uct name as it gets scrolled off the left of the screen. What you would really

want in this situation is to be able to freeze the product name column so

that it is always shown and only have the remaining columns scroll. Like-

wise, there may be situations where you need to present one or more rows

at the top of the grid that need to remain in place as you scroll down to

additional rows in the grid.

Accomplishing this with the DataGridView control is simple: You just

set the Frozen property to true on any row or column to get this behavior.

Specifically, if you freeze a column, then that column, and all the columns

to the left of it, won’t scroll when you scroll to the right in the grid. Simi-

larly, if you freeze a row, then that row and all the rows above it won’t

scroll when you scroll down in the grid. If you are going to freeze a column

or row, then you will probably want to provide a visual cue to the user

indicating the logical boundary that exists between the frozen item and the

nonfrozen ones next to it. The easiest way to do this is to set the Divider-

Width property on the column or row to something other than the default.

This property is an integer that specifies the number of pixels used to draw

Figure 6.2: Columns Using AutoSizeMode of Fill and FillWeights

 Noyes.book Page 262 Thursday, December 15, 2005 3:57 PM

 USING THE DESIGNER TO DEFINE GRIDS 263

the divider between cells of that column or row and the adjacent one (to
the right or below).

The following code shows a simple example of freezing both a column
and a row and setting the divider width:

m_ProductsGrid.Columns["ProductName"].Frozen = true;

m_ProductsGrid.Columns["ProductName"].DividerWidth = 3;

m_ProductsGrid.Rows[1].Frozen = true;

m_ProductsGrid.Rows[1].DividerHeight = 3;

Using the Designer to Define Grids

Now that you understand how to code most of the common uses of the
grid, let’s cover how to avoid having to write a lot of that code yourself.
The DataGridView control supports a very rich experience while working
in the Visual Studio designer through a combination of the designer Smart
Tags, dialogs, and the Properties window.

For starters, if you have defined a data source in your project, you can
simply drag a data collection source like a data table onto the form
designer and a DataGridView instance will be created with all of its sup-
porting objects. Additionally, the column definitions based on the grid’s
data source properties let you set other properties, such as the AutoSize-
Mode, using the designer. If you select the grid and display its Smart Tag,
as shown in Figure 6.3, you can modify the most common options of the
grid’s appearance and behavior from there.

The Choose Data Source drop-down displays a data sources selection
window similar to the one described in Chapter 5 for the Properties win-
dow. The presented data sources will be tailored to only those that imple-
ment the IList interface and thus are suitable for binding to the grid.

The Edit Columns and Add Column links display dialogs that let you
define the columns that the grid will contain, shown in Figures 6.4 and 6.5
respectively.

The Edit Columns dialog lets you add and remove columns, set the
order of the columns within the grid, and set all the design-time properties
for a defined column in a focused dialog. The properties shown in the dia-
log will be tailored based on whether the column is a bound or unbound

 Noyes.book Page 263 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW264

column, and will expose additional properties based on the column type
and cell type. If you define custom column types and include them in your
project, they will show up as options for new columns or for configuring
columns through this dialog.

The Add Column dialog (see Figure 6.5) lets you add a new data-bound
or unbound column to the grid. If you are adding a data-bound column,
you can select from the columns available in the currently selected data
source. You will first have to set the data source to an appropriate collec-
tion of data either through the Smart Tag or through the DataSource
property in the Properties window. If you are adding an unbound column,

Figure 6.3: DataGridView Smart Tag

Figure 6.4: Edit Columns Dialog

 Noyes.book Page 264 Thursday, December 15, 2005 3:57 PM

 USING THE DESIGNER TO DEFINE GRIDS 265

then you just specify the name of the column, the type of the column, and
the header text. When you click the Add button, the column is added to the
grid, and the dialog remains open so you can quickly define multiple new
columns.

Configuring the columns through these dialogs writes all the code for
you that has been covered earlier in this chapter for defining columns and
controlling their runtime behavior.

The Enable Adding check box on the DataGridView Smart Tag sets the
AllowUserToAddRows property to true if checked, which displays a new
empty row at the bottom of the grid. This lets users add a new row to the
data collection by typing new values into the cells. The ability to support
this depends on whether the grid is data bound, and, if so, whether the
underlying object collection supports adding new items to the collection
(see the discussion in Chapter 7). Likewise, the Enable Editing check box sets
the ReadOnly property, which affects whether users can edit the contents of
the grid in place, and Enable Deleting sets the AllowUserToDeleteRows
property. The Enable Column Reordering check box sets the AllowUser-
ToOrderColumns property, whose behavior is described in the next section.

The Dock in parent container link is only available if you first drag and
drop a grid control onto a form. It does exactly what it says—it simply sets
the Dock property to Fill.

Figure 6.5: Add Column Dialog

 Noyes.book Page 265 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW266

In addition to the common properties and behaviors that you can config-
ure through the Smart Tag, there are a bunch of other properties and events
that you can configure at design time through the Properties window. Set-
ting any of these properties generates appropriate code in the designer-
generated partial class for the form in the InitializeComponent method.
Most notably, you can configure any of the data-binding properties through
the Properties window. You’ll probably want to set styles using the Proper-
ties window, because you can preview the results of those settings in the
designer to make sure you are getting what you expect. Styles are discussed
in more detail at the end of this chapter.

Column Reordering

Column reordering is a slick built-in behavior of the grid that lets users
change the display order of columns in the grid at runtime. Because differ-
ent users of an application often pay more attention to some columns in a
grid than others, users commonly request to set the order of the columns
displayed in the grid themselves. While you could support this functional-
ity by programmatically removing columns from the grid and then insert-
ing them back in the new position, that requires a fair amount of tedious
code to have to write for a common use case. So the Windows Client team
was nice enough to build functionality for this right into the grid control.

The way this works is that if the AllowUserToOrderColumns property
is set to true and the user clicks and drags on a column header, the grid
lets them drag and drop the column to the position where they would like
it to display. The columns to the right of the drop position will move one
position to the right, and the columns surrounding the original location of
the dragged column will move to be adjacent after the column has been
moved. Figure 6.6 shows this in action. In this case, the QuantityPerUnit
column was clicked on and is being dragged to the left. A gray box is
drawn the size of the column’s header cell you are dragging. When you
move the cursor to one side of another column, the border between that
column and the adjacent one darkens, indicating where the column you
are dragging will be placed if you release the mouse button.

 Noyes.book Page 266 Thursday, December 15, 2005 3:57 PM

 COLUMN REORDERING 267

When a column has been moved through column reordering, its
ColumnIndex doesn’t change, but the DisplayIndex property indicates
its current display order within the grid. By default, the display order of
the grid is not persisted between application runs, but it’s a simple matter
to persist that information yourself and reinstate the display order by writ-
ing the display order to a file. The code in Listing 6.3 demonstrates persist-
ing the data into a file in isolated storage using the XmlSerializer class.

Listing 6.3: Persisting Display Order of Columns

public partial class Form1 : Form

{

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 m_Grid.AllowUserToOrderColumns = true;

 SetDisplayOrder();

 }

 private void OnFormClosing(object sender, FormClosingEventArgs e)

 {

 CacheDisplayOrder();

 }

Figure 6.6: Column Reordering in Action

continues

 Noyes.book Page 267 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW268

 private void CacheDisplayOrder()

 {

 IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForAssembly();

 using (IsolatedStorageFileStream isoStream = new

 IsolatedStorageFileStream("DisplayCache", FileMode.Create,

 isoFile))

 {

 int[] displayIndices =new int[m_Grid.ColumnCount];

 for (int i = 0; i < m_Grid.ColumnCount; i++)

 {

 displayIndices[i] = m_Grid.Columns[i].DisplayIndex;

 }

 XmlSerializer ser = new XmlSerializer(typeof(int[]));

 ser.Serialize(isoStream,displayIndices);

 }

 }

 private void SetDisplayOrder()

 {

 IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForAssembly();

 string[] fileNames = isoFile.GetFileNames("*");

 bool found = false;

 foreach (string fileName in fileNames)

 {

 if (fileName == "DisplayCache")

 found = true;

 }

 if (!found)

 return;

 using (IsolatedStorageFileStream isoStream = new

 IsolatedStorageFileStream("DisplayCache", FileMode.Open,

 isoFile))

 {

 try

 {

 XmlSerializer ser = new XmlSerializer(typeof(int[]));

 int[] displayIndicies =

 (int[])ser.Deserialize(isoStream);

 for (int i = 0; i < displayIndicies.Length; i++)

 {

 m_Grid.Columns[i].DisplayIndex = displayIndicies[i];

 }

 }

 catch { }

 }

 }

}

 Noyes.book Page 268 Thursday, December 15, 2005 3:57 PM

 DEFINING CUSTOM COLUMN AND CELL TYPES 269

This code isn’t specific to the data source in any way. The key facets
here are that the code in the form Load event handler sets the Allow-
UserToOrderColumns property to true, allowing the dynamic changing
of DisplayIndex for columns through drag-and-drop operations. I then
added a CacheDisplayOrder helper method that is called by the
Form.Closing event handler, and a SetDisplayOrder helper method
that is called when the form loads.

CacheDisplayOrder first collects all the display index values for each
of the grid’s columns and puts them into an integer array. It then creates an
isolated storage file stream and writes the array to that stream using the
XmlSerializer class. The SetDisplayOrder method does the reverse: it
first checks to see if the file exists, and if so, reads the array back in and uses
it to set the DisplayIndex on each column in the grid.

Defining Custom Column and Cell Types

With the DataGridView, you are already leaps and bounds ahead of the
DataGrid for presenting rich data because of the built-in column types
that it supports out of the box. But there are always custom scenarios that
you will want to support to display custom columns. Luckily, another
thing the DataGridView makes significantly easier is plugging in custom
column and cell types.

If you want to customize just the painting process of a cell, but you
don’t need to add any properties or control things at the column level, you
have an event-based option rather than creating new column and cell
types. You can handle the CellPainting event and draw directly into the
cell itself, and you can achieve pretty much whatever you want with the
built-in cell types and some (possibly complex) drawing code. But if you
want to be able to just plug your column or cell type in a reusable way with
the same ease as using the built-in types, then you can derive your own
column and cell types instead.

The model you should follow for plugging in custom column types
matches what you have already seen for the built-in types: You need to cre-
ate a column type and a corresponding cell type that the column will con-
tain. You do this by simply inheriting from the base DataGridViewColumn

 Noyes.book Page 269 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW270

and DataGridViewCell classes, either directly or indirectly, through one
of the built-in types.

The best way to explain this in detail is with an example. Say I wanted
to implement a custom column type that lets me display the status of the
items represented by the grid’s rows. I want to be able to set a status using
a custom-enumerated value, and cells in the column will display a graphic
indicating that status based on the enumerated value set on the cell. To do
this, I define a StatusColumn class and a StatusCell class (I disposed of
the built-in type naming convention here of prefixing DataGridView on
all the types because the type names get sooooooooooo long). I want these
types to let me simply set the value of a cell, either programmatically or
through data binding, to one of the values of a custom-enumerated type
that I call StatusImage. StatusImage can take the values Green, Yellow,
or Red, and I want the cell to display a custom graphic for each of those
based on the value of the cell. Figure 6.7 shows the running sample appli-
cation with this behavior.

Defining a Custom Cell Type

To achieve this, the first step is to define the custom cell type. If you are
going to do your own drawing, you can override the protected virtual
Paint method from the DataGridViewCell base class. However, if the
cell content you want to present is just a variation on one of the built-in cell
types, you should consider inheriting from one of them instead. That is
what I did in this case. Because my custom cells are still going to be pre-
senting images, the DataGridViewImageCell type makes a natural base
class. My StatusCell class isn’t going to expose the ability to set the
image at random, though; it is designed to work with enumerated values.

Figure 6.7: Custom Column and Cell Type Example

 Noyes.book Page 270 Thursday, December 15, 2005 3:57 PM

 DEFINING CUSTOM COLUMN AND CELL TYPES 271

I also want the cell value to be able to handle integers as long as they are
within the corresponding numeric values of the enumeration, so that I can
support the common situation where enumerated types are stored in a
database as their corresponding integer values. The code in Listing 6.4
shows the StatusCell class implementation.

Listing 6.4: Custom Cell Class

namespace CustomColumnAndCell

{

 public enum StatusImage

 {

 Green,

 Yellow,

 Red

 }

 public class StatusCell : DataGridViewImageCell

 {

 public StatusCell()

 {

 this.ImageLayout = DataGridViewImageCellLayout.Zoom;

 }

 protected override object GetFormattedValue(object value,

 int rowIndex, ref DataGridViewCellStyle cellStyle,

 TypeConverter valueTypeConverter,

 TypeConverter formattedValueTypeConverter,

 DataGridViewDataErrorContexts context)

 {

 string resource = "CustomColumnAndCell.Red.bmp";

 StatusImage status = StatusImage.Red;

 // Try to get the default value from the containing column

 StatusColumn owningCol = OwningColumn as StatusColumn;

 if (owningCol != null)

 {

 status = owningCol.DefaultStatus;

 }

 if (value is StatusImage || value is int)

 {

 status = (StatusImage)value;

 }

 switch (status)

 {

 case StatusImage.Green:

 resource = "CustomColumnAndCell.Green.bmp";

 break;

continues

 Noyes.book Page 271 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW272

 case StatusImage.Yellow:

 resource = "CustomColumnAndCell.Yellow.bmp";

 break;

 case StatusImage.Red:

 resource = "CustomColumnAndCell.Red.bmp";

 break;

 default:

 break;

 }

 Assembly loadedAssembly = Assembly.GetExecutingAssembly();

 Stream stream =

 loadedAssembly.GetManifestResourceStream(resource);

 Image img = Image.FromStream(stream);

 cellStyle.Alignment =

 DataGridViewContentAlignment.TopCenter;

 return img;

 }

 }

}

The first declaration in this code is the enumeration StatusImage. That
is the value type expected by this cell type as its Value property. You can
then see that the StatusCell type derives from the DataGridViewImage-
Cell, so I can reuse its ability to render images within the grid. There is a
default status field and corresponding property that lets the default value
surface directly. The constructor also sets the ImageLayout property of the
base class to Zoom, so the images are resized to fit the cell with no distortion.

The key thing a custom cell type needs to do is either override the
Paint method, as mentioned earlier, or override the GetFormattedValue
method as the StatusCell class does. This method will be called when-
ever the cell is rendered and lets you handle transformations from other
types to the expected type of the cell. The way I have chosen to code Get-
FormattedValue for this example is to first set the value to a default value
that will be used if all else fails. The code then tries to obtain the real
default value from the containing column’s DefaultValue property if that
column type is StatusColumn (discussed next). The code then checks to
see if the current Value property is a StatusImage enumerated type or an
integer, and if it is an integer, it casts the value to the enumerated type.

Once the status value to be rendered is determined, the GetFormatted-
Value method uses a switch-case statement to select the appropriate

 Noyes.book Page 272 Thursday, December 15, 2005 3:57 PM

 DEFINING CUSTOM COLUMN AND CELL TYPES 273

resource name corresponding to the image for that status value. You embed
bitmap resources in the assembly by adding them to the Visual Studio
project and setting the Build Action property on the file to Embedded
Resource. The code then uses the GetManifestResourceStream method
on the Assembly class to extract the bitmap resource out of the assembly,
sets the alignment on the cellStyle argument passed into the method,
and then returns the constructed image as the object from the method. The
object that you return from this method will be the one that is passed down-
stream to the Paint method as the formatted value to be rendered. Because
this doesn’t override the Paint method, the implementation of my Data-
GridViewImageCell base class will be called, and it expects an Image
value to render.

Defining a Custom Column Type
So now you have a custom cell class that could be used in the grid, but you
also want to have a custom column class that contains StatusCells and
can be used for setting up the grid and data binding. If you were going to
use the custom cell type completely programmatically, you could just con-
struct an instance of the DataGridViewColumn base class and pass in an
instance of a StatusCell to the constructor, which sets that as the
CellTemplate for the column. However, that approach wouldn’t let you
use the designer column editors covered in Figures 6.4 and 6.5 to specify a
bound or unbound column of StatusCells. To support that, you need to
implement a custom column type that the designer can recognize. As long
as you’re implementing your own column type, you also want to expose a
way to set what the default value of the StatusImage should be for new
rows that are added. The implementation of the StatusColumn class is
shown in Listing 6.5.

Listing 6.5: Custom Column Class

namespace CustomColumnAndCell

{

 public class StatusColumn : DataGridViewColumn

 {

 public StatusColumn() : base(new StatusCell())

 {

 }

continues

 Noyes.book Page 273 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW274

 private StatusImage m_DefaultStatus = StatusImage.Red;

 public StatusImage DefaultStatus

 {

 get { return m_DefaultStatus; }

 set { m_DefaultStatus = value; }

 }

 public override object Clone()

 {

 StatusColumn col = base.Clone() as StatusColumn;

 col.DefaultStatus = m_DefaultStatus;

 return col;

 }

 public override DataGridViewCell CellTemplate

 {

 get { return base.CellTemplate; }

 set

 {

 if ((value == null) || !(value is StatusCell))

 {

 throw new ArgumentException(

"Invalid cell type, StatusColumns can only contain StatusCells");

 }

 }

 }

 }

}

You can see from the implementation of StatusColumn that you first
need to derive from the DataGridViewColumn class. You implement a
default constructor that passes an instance of your custom cell class to the
base class constructor. This sets the CellTemplate property on the base
class to that cell type, making it the cell type for any rows that are added to
a grid containing your column type.

The next thing the class does is define a public property named
DefaultStatus. This lets anyone using this column type to set which of
the three StatusImage values should be displayed by default if no value is
explicitly set on the grid through data binding or programmatic value set-
ting on a cell. The setter for this property changes the member variable that
keeps track of the current default. The DefaultStatus property on the

 Noyes.book Page 274 Thursday, December 15, 2005 3:57 PM

 DEFINING CUSTOM COLUMN AND CELL TYPES 275

column is accessed from the StatusCell.GetFormattedValue method,
as described earlier.

Another important thing for you to do in your custom column type is to
override the Clone method from the base class, and in your override,
return a new copy of your column with all of its properties set to the same
values as the current column instance. This method is used by the design
column editors to add and edit columns in a grid through the dialogs dis-
cussed in Figures 6.4 and 6.5.

The last thing the custom column class does is to override the Cell-
Template property. If someone tries to access the CellTemplate, the
code gets it from the base class. But if someone tries to change the Cell-
Template, the setter checks to see if the type of the cell being set is a
StatusCell. If not, it raises an exception, preventing anyone from pro-
grammatically setting an inappropriate cell type for this column. This
doesn’t prevent you from mixing other cell types into the column for a
heterogeneous grid (as shown earlier in the section on programmatically
creating the grid).

Now that you have defined the custom cell and column types, how can
you use them? Well, you can define them as part of any Windows applica-
tion project type in Visual Studio, but generally when you create some-
thing like this, you are doing it so you can reuse it in a variety of
applications. Whenever you want reuse code, you need to put that code
into a class library. So if you define a class library project, add the classes
just discussed to the class library, along with the images you want to use
for displaying status as embedded resources in the project. This creates an
assembly that you can then reference from any Windows application that
you want to use the column and cell type within. All you need to do is set a
reference to that assembly from the Windows Forms project in which you
want to use them, and the custom column types will display in the Add
Column dialog, as shown in Figure 6.8 (StatusColumn, in this case).

Within your Windows Forms application, you can programmatically
add StatusColumns to a grid, or use the designer to do so. If you add the
column through the designer and then look at it in the Edit Columns dia-
log, you will see that DefaultStatus appears in the property list and is

 Noyes.book Page 275 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW276

settable as an enumerated property with its allowable values (see

Figure 6.9).

With a column of this type added to the grid, you can either populate

the grid programmatically with either of the types that the cell is able to

handle for values (either StatusImage values or integers within the value

range of StatusImage), or you can data bind to it with a collection of data

that contains those values. Here is a simple example of setting the values

programmatically on a grid containing two columns: a text box column

Figure 6.8: Custom Column Types in the Add Column Dialog

Figure 6.9: Custom Column Properties in the Edit Columns Dialog

 Noyes.book Page 276 Thursday, December 15, 2005 3:57 PM

 UTILIZING CELL-ORIENTED GRID FEATURES 277

and a StatusColumn. Note that you can set the values with either the enu-
merated value or with an appropriate integer value.

m_Grid.Rows.Add("Beer Bottler", StatusImage.Green);

m_Grid.Rows.Add("Beer Bottle Filler", 1); //StatusImage.Yellow = 1

m_Grid.Rows.Add("Bottle capper", StatusImage.Red);

The CustomColumnAndCell sample application in the download code
also demonstrates creating a data set and data binding against the status
column.

Utilizing Cell-Oriented Grid Features

You have probably noticed that the DataGridView is much more focused
at the cell level that its DataGrid predecessor was. Part of the reason for
this is that a frequent use of grids is where columns don’t necessarily dic-
tate the structure of the grid’s content. Specifically, users want spread-
sheet-like functionality that mimics the interaction model millions of
people have become accustomed to with programs like Microsoft Excel
and other spreadsheet applications.

Once again, the DataGridView comes to the rescue and makes sup-
porting that model fairly easy. You have already seen some of the cell-
level events that let you control what is displayed at the cell level (Cell-
Formatting event) and that tell you when users interact with a cell by
editing the contents (EditControlShowing event) or simply click on it
(CellClick event). You can set different context menus and tooltips
down to the cell level, so that every cell can become a distinct entity in the
grid from the users’ perspective. There are actually over 30 events raised
by the DataGridView that expose interactions and modifications at the
cell level that you can subscribe to for providing cell-oriented features.

Additionally, there are different selection modes that you can use to
change the way the grid highlights cells, columns, or rows when the user
clicks in different places in the grid. The SelectionMode property on the
grid determines the selection behavior and is of type DataGridView-
SelectionMode. The DataGridView control supports the selection modes
(described in Table 6.6). While you can’t combine these modes (the

 Noyes.book Page 277 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW278

enumeration isn’t a Flags enumerated type), you can achieve a combina-
tion of modes by using the SelectionMode property on the grid plus
some additional event handling. Regardless of which of these modes you
select, clicking on the upper left header cell (the one that is above the row
header cells and to the left of the column header cells) selects all the cells
in the grid.

As an example of a more cell-oriented application, the download code
includes an application called SimpleSpread. This application mimics a
simple spreadsheet and lets you do summations of the numeric values in a
cell. It uses a combination of selection mode and some event handling to

TABLE 6.6: DataGridViewSelectionMode Enumeration Values

Value Description

CellSelect This mode lets you select one or many cells in the grid
using the mouse or keyboard. If you click in any cell,
just that cell will be selected. You can click and drag,
and contiguous cells that you drag over will also be
selected. If you click in one cell, then Shift-click in
another, you will select the entire contiguous set of cells
from the first click to the second. You can even select
noncontiguous cells by holding down the Ctrl key while
you click cells. This is the default selection mode.

FullRowSelect Clicking in any cell in the grid will select all of the cells
in the entire row that contains the cell and will deselect
any cells outside the row.

FullColumnSelect Clicking in any cell in the grid will select all of the cells
in the entire column that contains the cell and will dese-
lect any cells outside the column.

RowHeaderSelect Clicking on the row header cell will select the entire
row, but otherwise this selection mode behaves like
CellSelect. This is the mode set by the designer for
a grid when you add it to a form.

ColumnHeaderSelect Clicking on the column header cell will select the entire
column, but otherwise this selection mode behaves like
CellSelect.

 Noyes.book Page 278 Thursday, December 15, 2005 3:57 PM

 UTILIZING CELL-ORIENTED GRID FEATURES 279

give you a similar selection experience to most spreadsheets—specifically,

it acts like a combination of RowHeaderSelect and ColumnHeaderSelect,

even though you can’t achieve that through the SelectionMode property

alone. The SimpleSpread sample application is shown in Figure 6.10.

As you can see, the application lets you enter numbers into the cells;

then you can select a sequence of cells and press the Sum button in the tool

strip control at the top to get it to calculate the sum and place that in the

next cell to the right or below the sequence of selections. As Figure 6.10

shows, this application even supports selecting rectangular groups of cells,

and it will compute the summation in both the row and column directions.

The logic is nowhere near complete to handle all combinations of selec-

tions and cell contents, but it gives you a good idea of how to set something

like this up.

To code this up (as shown in Listing 6.6), I had to do a few things that

are different from your average DataGridView application. As I men-

tioned, I wanted to support a spreadsheet-like selection model, where you

can select individual cells, but that selecting a column or row header

would select the entire column or row, respectively. To do this, I set the

SelectionMode for the grid to RowHeaderSelect, turned off sorting for

all the columns as I created them and added them to the grid, and then

handled the ColumnHeaderMouseClick event to manually select all the

cells in a column when the user clicks on a column header.

Figure 6.10: SimpleSpread Sample Application

 Noyes.book Page 279 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW280

Listing 6.6: Spreadsheet-Oriented Grid Column Selection Support

public partial class SimpleSpreadForm : Form

{

 public SimpleSpreadForm()

 {

 InitializeComponent();

 m_Grid.SelectionMode =

 DataGridViewSelectionMode.RowHeaderSelect;

 }

 private void OnFormLoad(object sender, EventArgs e)

 {

 int start = (int)'A';

 for (int i = 0; i < 26; i++)

 {

 string colName = ((char)(i + start)).ToString();

 int index = m_Grid.Columns.Add(colName, colName);

 m_Grid.Columns[i].SortMode =

 DataGridViewColumnSortMode.NotSortable;

 m_Grid.Columns[i].Width = 75;

 }

 for (int i = 0; i < 50; i++)

 {

 m_Grid.Rows.Add();

 }

 }

 private void OnColumnHeaderMouseClick(object sender,

 DataGridViewCellMouseEventArgs e)

 {

 m_Grid.ClearSelection();

 foreach (DataGridViewRow row in m_Grid.Rows)

 {

 row.Cells[e.ColumnIndex].Selected = true;

 }

 }

 ...

}

In this case, I just programmatically added some rows and columns to
the grid, set the column headers to be the letters of the alphabet, and
turned off sorting on the column by setting the SortMode property to Not-
Sortable. If you were going to support very large spreadsheets, you
might need to maintain an in-memory sparse array, and only render the

 Noyes.book Page 280 Thursday, December 15, 2005 3:57 PM

 FORMATTING WITH STYLES 281

cells as you need them (which you could do with virtual mode) to avoid
the overhead of maintaining a large number of cells, their contents, and
their selections if the grid will be sparsely populated.

To get the row numbers to display in the row headers, I handled the
RowAdded event and set the header cell value in that handler:

private void OnRowAdded(object sender, DataGridViewRowsAddedEventArgs e)

{

 m_Grid.Rows[e.RowIndex].HeaderCell.Value = e.RowIndex.ToString();

}

Another selection mode you might want to support is to have hot cells,
meaning that the selection of cells changes as you move the mouse around
the grid without having to click. To do this, you could just handle the
CellMouseEnter and CellMouseLeave events, selecting and deselecting
the cell under the mouse in those handlers, respectively.

Formatting with Styles

The last topic I want to cover about the DataGridView is how to handle
custom formatting of cells. As mentioned earlier, the grid supports a rich
formatting model. The styles in the grid work in a layered model, which
lets you set styles at a more macro level, then refine it at a more micro level.
For example, you might set a default cell style that applies to all cells in the
grid, but then have one entire column that has a different cell formatting,
and have selected cells within that column have yet a different cell format-
ting. You do this by setting a series of default cell style properties that are
exposed on the grid, which you can then refine by setting cell styles at the
individual cell level.

As can be seen in Figure 6.11, the lowest layer in the model is the
DefaultCellStyle property. This style will be used by default for any
cells in the grid that haven’t had their style set to something else by one
of the other style layers. The next layer up contains the RowHeaders-
DefaultCellStyle and ColumnHeadersDefaultCellStyle, which
affect the way the header cells are presented. Above that layer sits the
DataGridViewColumn.DefaultCellStyle property, followed by the

 Noyes.book Page 281 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW282

DataGridViewRow.DefaultCellStyle property, representing the default
styles on a column-by-column or row-by-row basis. The grid also supports
an alternating row cell style that is set through the AlternatingRows-
DefaultCellStyle property on the grid. Finally, the top-level layer that
will override the settings of any of the lower layers if set is the DataGrid-
ViewCell.CellStyle property.

You can set these properties programmatically by accessing the appro-
priate property member on the instance of the grid, column, row, or cell.
All of these properties are of type DataGridViewCellStyle, which
exposes properties for setting fonts, colors, alignment, padding, and for-
matting of values. You can also configure the cell styles through the
designer. Whenever you access one of the cell style properties on the grid
or a column through the Properties window or Smart Tag property edi-
tors in the designer, you will see the CellStyle Builder dialog shown in
Figure 6.12.

Using the property fields in this dialog, you can set fine-grained options
for how the cell will display its content, and you can even see what it is
going to look like in the Preview pane at the bottom of the dialog.

You can also set border styles for cells using the grid’s CellBorder-
Style, ColumnHeadersBorderStyle, and RowHeadersBorderStyle

properties. Using these styles, you can achieve some fairly sophisticated
grid appearances, as seen in Figure 6.13. In this sample, default cell styles
were set at the column and row level, and then the filling in of the shape
was done through individual cell selection.

However, you will still hit some limitations in using cell styles. For
example, a natural next step for the grid shown in Figure 6.13 would be to

Figure 6.11: Cell Style Layering

 Noyes.book Page 282 Thursday, December 15, 2005 3:57 PM

 FORMATTING WITH STYLES 283

set the border colors on the cells that have been colored in to show a black
border. However, there is really no way to accomplish this just through cell
styles, since the border styles available are only 3D effects and are applied
at the grid level for entire cells, not for individual sides of a cell. But, as
always, you can almost always accomplish what you need through custom
painting or custom cell type definition.

Figure 6.12: CellStyle Builder Dialog

Figure 6.13: Cell and Border Styles Applied

 Noyes.book Page 283 Thursday, December 15, 2005 3:57 PM

CHAPTER 6: PRESENTING DATA WITH THE DATAGRIDVIEW284

Where Are We?

This chapter has covered all the main features of the DataGridView con-
trol. It focused a lot on the code involved and what the capabilities were.
For most common cases, you’ll be able to get what you need simply by
defining the columns in the designer, setting up some data binding with
the Data Sources window, and maybe mixing in some custom code and
event handlers. The DataGridView control is considerably simpler to use
and more flexible and powerful than the DataGrid control from .NET 1.0,
and you should always favor using the DataGridView for new applica-
tions that will present tabular data or something that needs to be presented
in a grid format.

Some key takeaways from this chapter are:

• Setting the DataSource and DataMember properties on the Data-
GridView to a BindingSource that binds to the data source is the
standard way of using the grid.

• Use the Edit Columns functionality in the designer Smart Tag for the
easiest way to edit and customize the bound and unbound column
types and properties.

• Bound columns will use automatic type conversion and formatting
similar to the Binding object, as discussed in Chapter 4.

• To add a custom cell type, you create a custom column type derived
from DataGridViewColumn, and a custom cell type derived from
DataGridViewCell or one of the derived built-in cell types.

Next we’ll go deeper into the data-binding mechanisms used in
Windows Forms, specifically the interfaces that you need to understand
and implement in order to create any custom data objects or collections
that you want to use for data binding. You will gain a better understanding
of what the data-bound controls are looking for when you set up data
binding, and how they use what they find.

 Noyes.book Page 284 Thursday, December 15, 2005 3:57 PM

