
167

11

Road to a Resilient
Architecture

The single most important determinant of the quality of a software system
is its architecture. A good architecture keeps concerns of different kinds
separate so that a change in one does not affect other parts of the system.
You establish this architecture by identifying the critical use cases for the
system. By analyzing these critical use cases, you can build a resilient
structure—one in which concerns of different kinds are kept separate and
changes in one part of the system have minimum impact on the rest of the
system. The architecture must also be designed to meet system-level con-
cerns such as performance and reliability. The architecture is manifested
in an early and critical version of the system, a version that can be made
executable—a version we call the architecture baseline. It might take sev-
eral iterations before you finally establish the architecture baseline, but
when you do, you have validated your assumptions, your approach to
developing the system, and you have reduced your risks. Based on this
architecture, the rest of the development can speed up tremendously.

Jacobson_Ch11.fm Page 167 Wednesday, December 8, 2004 4:10 PM

168 ROAD TO A RESILIENT ARCHITECTURE

11.1 What Is Architecture?

Architecture clearly is important, but if you ask five different people what
architecture really is, you will probably get five different answers. Architec-
ture, like many other words, is something you cannot really touch. It is in
that sense similar to process, use case, project, component. However,
these terms are concrete in the form of their descriptions. We can under-
stand a process description, a component description, a use case specifi-
cation, a project plan and, thus, an architecture description. So, when we
talk about architecture, we talk about how we understand the architecture
description. Architecture is thus the semantics of an architecture descrip-
tion, which encompasses the major decisions about the system, such as:

• How are the system elements organized?
• How does the system realize the required functionality?
• How does the system meet the desired performance, reliability, and

other quality characteristics?
• What technologies does the system require (e.g., Web client, rich cli-

ent, a particular messaging middleware)?
• Are the internals of the system structured to be resilient to changes in

functionality, technology, platform, and so on?
• Are standards in place to ensure that the system is developed consis-

tently? For example, what design patterns will be used? What guide-
lines will be used to handle exceptions?

Definitely, there are important, project-specific decisions to consider. For
example, you may have to interface to a particular legacy system. Or
maybe the system has to be configurable and you need a way to define
system parameters. Perhaps the system has to be remotely installed and
managed. Possibly the system is to deal with the complexities of a particu-
lar business domain. The list goes on. But the architecture is not every-
thing. It is just the top 20 percent of the most important things about the
system.

11.2 What Is a Good Architecture?

So, a good architecture is important. But what constitutes a good architec-
ture? Of course, a good architecture meets systemwide concerns such as

Jacobson_Ch11.fm Page 168 Wednesday, December 8, 2004 4:10 PM

11.2 WHAT IS A GOOD ARCHITECTURE? 169

performance and reliability. It must be understandable so that you can
easily trace which part of the architecture realizes which requirement or
use case. Each class—and consequently the packages it resides in—plays
clearly defined roles and performs a set of responsibilities that fulfill those
roles and nothing else. There is little or no duplication of responsibilities
between classes.

A good architecture keeps concerns separate, which means that changes
in one part of the system do not propagate to other parts of the system.
Even if they do, you can clearly identify what changes are to be made. If
there is a need to extend the architecture, the impact should be minimal.
Everything that already works should continue to work. For a system that
applies aspect orientation, the different concerns about a system can be
kept separated effectively.

Separating Functional Requirements. In general, you want to keep func-
tional requirements, whether expressed as features, use cases, or in other
terms, separate from each other. After all, they address different end-user
concerns and will evolve separately. You do not want changes in one to
impact the other. The functional requirements are often expressed on top
of the problem domain (e.g., hotel management, logistics, banking, insur-
ance, etc.). You naturally want to keep what is specific to the functionality
of the system separate from the domain. In this way, you can easily adapt a
system to a similar domain. In addition, some functional requirements are
defined as extensions of other functional requirements: you must keep
these separate from each other as well.

Separating Nonfunctional from Functional Requirements. Nonfunc-
tional requirements usually specify the desired quality attributes of the
system: security, performance, reliability, and so forth. These are provided
by some infrastructure mechanisms—for example, you need some autho-
rization, authentication, and encryption mechanisms to achieve security;
you need caching and load-balancing to achieve performance. Frequently,
these infrastructure mechanisms require small bits of behavior that must
be executed within many classes. This means that a change in the realiza-
tion of an infrastructure mechanism often implies huge repercussions, so
you want to keep these separate.

Separating Platform Specifics. Today’s systems need to execute on top of
many technologies. Even for a single infrastructure mechanism such as

Jacobson_Ch11.fm Page 169 Wednesday, December 8, 2004 4:10 PM

170 ROAD TO A RESILIENT ARCHITECTURE

authorization, you still have many technologies (e.g., through HTTP cook-
ies, session identifiers, etc.) to choose from. These technologies are often
platform- and vendor-specific. When a vendor upgrades its technologies to
a new and better version, it is not easy to upgrade your system accordingly
if your implementation has been tightly coupled with the previous version
of that technology. You most certainly do not want to be tied down to a par-
ticular technology. Thus, you need to keep platform specifics separate.

Separating Tests from the Units Being Tested. As part of implementing a
test, you must perform some control and instrumentation (e.g., debug-
ging, tracing, logging, etc.). Control is for the purpose of forcing the execu-
tion flow of the system to follow some test sequences. Instrumentation is
for the purpose of extracting information to verify that the system does
indeed follow the desired test sequence. Control and instrumentation
usually require some behavior that must execute within the context of the
system under test. Such control and instrumentation behavior have to be
removed after the test is conducted. Thus, you want to keep the imple-
mentation of tests separate from the system under test.

11.3 Steps to Establish an Architecture Baseline

A good architecture should be established as early as possible. Even in the-
ory, it is very difficult to change a poor architecture into a good one with
incremental techniques such as refactoring. In practice, it is extremely dif-
ficult. This is not to say that refactoring is not useful, but it is much better
to begin with an initial structure that is relatively good. Otherwise, the cost
of refactoring is too high for any business-oriented manager to accept,
and he or she will typically opt for quick fixes instead. So, a good architec-
ture needs to be created when the cost of creating it is small or even non-
existent. Prioritization of architectural work has a good return on
investment. It reduces the need for redesign and minimizes throwaway
work during the remainder of the project. Having achieved a good initial
structure, you can continually evaluate the architecture and make the nec-
essary refinements and refactorings.

Architecture Baseline. The architecture is manifested as an early version
of the final system known as an architecture baseline. The architecture
baseline is a subset of the entire system, so we call it the skinny system.

Jacobson_Ch11.fm Page 170 Wednesday, December 8, 2004 4:10 PM

11.3 STEPS TO ESTABLISH AN ARCHITECTURE BASELINE 171

This skinny system has versions of all the models that the full-fledged sys-
tem has at the end of the project. It includes the same skeleton of sub-
systems, components, and nodes, but not all the musculature is in place.
However, they do have behavior, and they are executable code. The skinny
system evolves to become the full-fledged system, perhaps with some
minor changes to the structure and behavior. The changes are minor
because, at the end of the elaboration or architectural iterations, we have
by definition a stable architecture; otherwise, the elaboration phase must
continue until we know that this goal has been achieved. There is a sys-
tematic way to do this.

Even though the skinny system (the architecture baseline) usually only
includes 5 to 15 percent of the final code, it is enough to validate the key
decisions you have made. More importantly, you need to be assured that
the skinny system can grow to become the complete system. The skinny
system is accompanied by a paper product called the architecture descrip-
tion. But now, this paper product is verified and validated through the
architecture baseline.

Use Cases Drive the Architecture Baseline. The establishment of the
architecture baseline is driven by a critical subset of use cases. We call this
subset the architecturally significant use cases. Before you can identify the
architecturally significant use cases, you must first identify all the use
cases for the system—at least to the best of your knowledge with the avail-
able information. Please note that identifying use cases is not the same as
specifying use cases. Identifying is about scoping and exploring and find-
ing what the system needs to do. Specifying use cases is about detailing
the flows and the steps in the use case. Specifying use cases is allocated
across the project lifecycle. However, identifying the use cases can and
must be done early.

From these identified use cases, you determine which among them are
important—important in the sense that together they cover all the key
decisions you need to make:

• They exercise key functionalities and characteristics of the system.
• They have a large coverage in terms of the various risks that you face

concerning functionality, infrastructure, platform specifics, and so on.
• They stress some delicate or risky parts of the system.
• They are the basis for the rest of the system to be developed.

Jacobson_Ch11.fm Page 171 Wednesday, December 8, 2004 4:10 PM

172 ROAD TO A RESILIENT ARCHITECTURE

Architecturally significant use cases involve use cases of different kinds.
After all, each use case captures a different set of stakeholder concerns
and requires different decisions to be made. Your list of architecturally sig-
nificant use cases will therefore involve a combination of both application
and infrastructure use cases. You might find this in your system use cases
that are technically similar and have similar interaction patterns. In that
circumstance, you need to choose just one use case as a representative,
since the moment you can solve one of them, you can solve the others. For
example, the Check In Customer and Check Out Customer use cases are
similar, so you choose just one of them to serve as an architecturally sig-
nificant use case.

Once you have identified the architecturally significant use cases, you can
explore the critical scenarios within them. As you analyze the use case sce-
narios, you get a better understanding of what the system needs to do and
how the elements in the system should interact with each other. Through
that understanding, you define and evaluate the architecture. This pro-
ceeds iteratively until you achieve a stable architecture. By stable, we
mean that key risks in the system have been resolved, and the decisions
made are a sufficient basis for you to develop the rest of the system.

The architecture is influenced not only by the architecturally significant
use cases, but also by the platform, legacy systems that the system needs
to be integrated to, standards and policies, distribution needs, middleware
and frameworks used, and so on. Even then, use cases are still useful for
evaluating the architecture. You analyze each use case in the context of the
chosen platform, the chosen middleware, the chosen distribution struc-
ture, and so on. In this way, you can evaluate whether the choices you have
made are sufficient and discover where improvements need to be made.

Establish the Architecture Baseline Iteratively. For a complex system, it
takes several iterations before you finally establish a stable architecture.
Since these iterations focus on developing the architecture, they are also
called the architectural iterations. In Unified Process terminology, these
iterations are known as elaboration iterations.

You must address all architectural concerns in each architectural iteration.
You may not be successful at resolving all of them in each architectural
iteration, but you need to consider all of them. Each architectural iteration
produces an increment that resolves some of these architectural concerns.

Jacobson_Ch11.fm Page 172 Wednesday, December 8, 2004 4:10 PM

11.3 STEPS TO ESTABLISH AN ARCHITECTURE BASELINE 173

The iterations proceed until all architectural concerns have indeed been
resolved. At the end of these architectural iterations, you have an early ver-
sion of the system (a skinny system) that is executable. It is supported by
test and execution results, so it is verified and validated.

The version of the system at this point is the architecture baseline. Thus,
the architecture is an early version of the system that demonstrates how
architectural concerns are resolved. Since the system comprises a set of
models, the architecture baseline is also represented by a version of these
models. The architecture baseline is accompanied by an architecture
description, which is an extract of the models.

The architecture description serves as a guide for the whole development
team through the lifetime of the system. The architecture description is
the reference to be followed by the developers in subsequent iterations of
the project.

The architecture description is also reviewed by stakeholders to determine
if the architecture is indeed feasible. Attached to the architecture descrip-
tion (and basically to every artifact) is a history sheet that explains the sys-
tem’s evolution. It may also explain important decisions.

You normally find the architecture description developed concurrently,
often ahead of the activities that result in the versions of the models that
are parts of the architecture baseline. It is to be updated in iterations fol-
lowing the architecture baseline.

During architectural iterations, progress is relatively slow because you
need time to make decisions. Once you have gone past the architectural
iterations, productivity will shoot up significantly, so the time devoted to
iterations is well spent.

Before we discuss architecture description, we need to present the con-
cepts that will help you understand it. Since the architecture description is
such an important artifact, we devote an entire chapter to it (see Chapter
18, “Describing the Architecture”).

Jacobson_Ch11.fm Page 173 Wednesday, December 8, 2004 4:10 PM

174 ROAD TO A RESILIENT ARCHITECTURE

11.4 Begin with a Platform-Independent Structure

The way you structure the system is an important architectural decision.
You structure the system such that concerns are kept separate. You
achieve this structure first from a platform-independent perspective and
then refine it with platform specifics. A platform-independent structure is
driven by functional requirements (as modeled with use cases).

The tools you use to achieve a resilient structure are classes and use cases.
Classes help you keep the elements in a system separate, and use cases
help you keep the tasks of each element separate. Accordingly, there are
two orthogonal structures in the system—the element structure and the
use case structure.

• The element structure identifies where elements of the system are
located in the element namespace. It structures the elements hierar-
chically in terms of layers, packages, classes, and the features within
these classes.

• The use case structure defines how you overlay functionality onto the
element structure. It comprises slices—both use-case slices and non-
use-case-specific slices—that add the actual classes and class features
onto the element structure.

You want your structure to be resilient along both structures. This means
that if there are changes in requirements, their impact should be localized
to a few packages and classes in the element structure. Their impact must
also be localized to a few use-case slices. Localized means that there are
few changes, and the changes do not propagate beyond those packages or
use-case slices that require change.

11.4.1 Element Structure
The element structure for a model is a hierarchical structure of packages
and classes. It uniquely identifies each element. Since the goal is to
achieve resilient structure, you naturally locate classes that are used for
the same purpose together.

Layers. You normally use layers as the first-level partitioning in a model.
Layers are used to group software elements that are on the same level of
abstraction. You place more abstract and reusable elements in lower layers

Jacobson_Ch11.fm Page 174 Wednesday, December 8, 2004 4:10 PM

11.4 BEGIN WITH A PLATFORM-INDEPENDENT STRUCTURE 175

and more concrete or less reusable elements at the top. Normally, two
high-level layers are sufficient to refine the functional requirements for
the system: the application layer and the domain layer.

Application Layer. The application layer contains elements that realize
workflows in the use cases supporting the primary actors of the system.
The elements in this layer normally use the elements in the domain layer
to realize use cases. You can organize packages in the application layer
according to the following criteria.

• Classes that support one or more particular actors.
• Classes that are involved in one or more particular use cases.
• Classes that are involved in some functional area in the system.

Domain layer. The domain layer contains elements representing signifi-
cant domain concepts. They capture information to be maintained,
tracked, or manipulated by the system and the associated behaviors for
doing so. These elements are normally shared across use case realizations.
They are more reusable and so reside in a lower layer than the application
layer. However, since they are shared by use-case realizations, use-case
realizations frequently cut across domain elements.

Figure 11-1 depicts the initial structure of the Hotel Management System
that realizes the functional requirements of the system. The packages in
the application layer are grouped according to actors—the customer, the
hotel counter staff, and the management. The packages in the domain
layer group classes related to rooms and classes related to reservations.

Figure 11-1 Initial layers and packages in the element structure.

Reservation
Management

Room
Management

Application
Layer

Domain
Layer

Customer
Application

Counter Staff
Application

Management
Application

Jacobson_Ch11.fm Page 175 Wednesday, December 8, 2004 4:10 PM

176 ROAD TO A RESILIENT ARCHITECTURE

The structure in Figure 11-1 is an initial one. It is refined further into
classes and so forth as you analyze the use cases for the system.

Sidebar 11-1 How Use Cases Help to Structure the
Application Layer

We mentioned earlier that classes that are involved in a particular use case can
be placed within packages in the application layer. Figure 11-1 shows a rela-
tively simple case of identifying packages in the application layer. For larger sys-
tems, you can partition your application layer based on the principles
illustrated by the figure below. Before we go on, we want to emphasize that this
is but one way for you to structure the application layer.

In the example above, we split the application layers further—application-spe-
cific and application-generic. Classes participating in peer use case realization
are allocated to application-specific packages. Classes that participate in gener-
alized or included use cases are allocated to application-generic packages.
There is a dependency from application-specific packages to application-
generic packages. This preserves the relationship from the use case model into
the analysis element structure.

Note that there is a limit to how much you can keep the realization of the use
cases separate in the element structure. That is why we need the use case struc-
ture that defines overlays on the element structure.

application-specific

application-generic e.g., Check
Room Details

e.g., Reserve Room

Application
Use Case

Generalized
Use Case

Included
Use Case

«include»

Jacobson_Ch11.fm Page 176 Wednesday, December 8, 2004 4:10 PM

11.4 BEGIN WITH A PLATFORM-INDEPENDENT STRUCTURE 177

11.4.2 Use-Case Structure
As mentioned, the element structure is simply about identifying elements
in a namespace. It is the slices in the use-case structure that overlay the
actual content for each element. There are two kinds of slices: use-case
slices and non-use-case-specific slices.

The convention is to depict the element structure (comprising layers,
packages, and classes) vertically such that at the top you find application-
specific layers and packages, and at the bottom you find application-inde-
pendent ones (as per Figure 11-1). To emphasize the orthogonality of the
use case structure, we depict the use case structure horizontally with the
non-use-case-specific slices on the left and the use-case–specific slices on
the right (see Figure 11-2). The arrows in Figure 11-2 show the dependen-
cies between the use-case slices and non-use-case-specific slices.

Sidebar 11-2 How to Organize the Domain Layer

In Figure 11-1, we show only two domain-layer packages. You definitely expect
more from larger systems. The example below shows how you can structure
packages in the domain layer.

In essence, you organize entities that are common across industry domains
within domain-generic packages. For example, classes like Address, Cus-
tomer, and Company are used in many industry domains and are, therefore,
highly reusable. Domain-specific entities can then either specialize these enti-
ties or reference them through associations. Again, we like to emphasize that
this is but one way for you to organize your domain layer. The key idea is to dis-
tinguish between what is domain-specific and what is domain-generic or inde-
pendent. This is a way to achieve understandability and also reuse.

domain-specific

domain-generic
e.g., Address,
Customer, Company

e.g., Room,
Reservation

system-
generic
entity

system-
specific
entity

system-
generic
entity

Jacobson_Ch11.fm Page 177 Wednesday, December 8, 2004 4:10 PM

178 ROAD TO A RESILIENT ARCHITECTURE

Non-use-case-specific slices are derived by exploring the commonalities
between use-case realizations. They normally have a close correspon-
dence to the element structure, especially to the lower layers. After all,
lower layers in the element structure and non-use-case-specific slices are
for the purpose of grouping things that are shared—though shared from a
different perspective. This is exemplified by the slices on the left of Figure
11-2. The Hotel Reservation slice adds the domain packages into the ele-
ment structure. The slices Customer Application and Counter Application
add classes to the corresponding packages in the element structure.

The use case slices in Figure 11-2 are derived directly from use cases in the
use-case model. Thus, on the right of Figure 11-2, there are use-case slices
for Reserve Room, Check In Customer, and Check Out Customer.

Note that the Customer Application and the Counter Application non-
use-case-specific slices do not extend the Hotel Reservation non-use-
case-specific slices. The former contains classes that depend on or makes
use of classes contained in the latter. The former do not extend the latter.
Hence, there is no «extend» relationship between them.

Figure 11-2 Use-case structure.

«non-uc-specific slice»

Hotel Reservation

«non-uc-specific slice»

Customer Application

«non-uc-specific
slice»

Counter Application

«use case slice»
Reserve Room

«use case slice»
Check In
Customer

«use case slice»
Check Out
Customer

Non-Use-Case-Specific Slices Use-Case Slices

«extend»

«extend»

«extend»

Jacobson_Ch11.fm Page 178 Wednesday, December 8, 2004 4:10 PM

11.5 OVERLAY PLATFORM SPECIFICS ON TOP 179

11.5 Overlay Platform Specifics on Top

At the end of the day, the system you are building must execute on some
target platform. You must incorporate some user interfaces. If you need to
offer high processing capacity, you must distribute the processing across
processing nodes. Distribution is platform-specific. You must provide per-
sistent storage for information managed by your system. You might need
to integrate with a legacy system. Thus, you see that platform specifics
occur throughout the realization of a use case whether this is an applica-
tion use case or an infrastructure use case.

11.5.1 Choosing the Platform
The platform specifics for a system are based on the deployment structure
and process structure chosen by the architect. In this case, we assume that
the architect has chosen a J2EE-based solution. Figure 11-3 depicts the
deployment structure for the Hotel Management System. It is annotated
with the architect’s choice of communication mechanisms, implementa-
tion languages, and technologies.

Sidebar 11-3 How Use Case Slices Improve Reuse

Without aspect orientation, you normally attempt to achieve reuse by pushing
reusable things into lower layers. For example, if a class is reusable, you push
the class down to a lower layer or a lower package. If some operations in a class
are reusable, you may factor the common operations into a generalized class
and push this down to a lower layer or package. This seems to work well, but the
problem is this: you need to push down complete operations or complete
classes.

On your project team, you may find a good programmer. Every boss likes her
and gives her different things to do. Soon, she has so many different things to do
that she ceases to be effective. Working with reusable elements is similar. As you
attempt to make these elements more reusable, you inevitably get them to do
more things, and they quickly become heavyweight and entangled.

This problem is solved with aspect orientation and use-case slices. In the use-
case structure, you can push only those reusable extensions into lower slices—
not the entire class. For example, the Hotel Reservation non-use-case-specific
slice contains partial elements that are needed by all slices that are on top of it.
In this way, you achieve reuse without the heavyweight problem.

Jacobson_Ch11.fm Page 179 Wednesday, December 8, 2004 4:10 PM

180 ROAD TO A RESILIENT ARCHITECTURE

Figure 11-3 depicts actors so you can readily see how the deployment
structure relates to the use-case model. The customer accesses the system
through a phone or his own PC. The customer PC interacts with the appli-
cation server over a wide area network over HTTP. The application server
accesses that database to retrieve records, update records, and so on.
Access to the application server is through Remote Method Invocation
(RMI). Hotel counter staff and hotel management access the system
through their PCs. Staff PCs uses Java Swing, which is a GUI framework for
Java. For those nodes that use Java as a programming language, AspectJ is
used as the composition technology.

Zooming into each deployment structure, you find active elements (i.e.,
processes and threads) executing. This is depicted in Figure 11-4, which
shows the customer PC running a browser, whereas the staff PC runs a
thick client. The application server runs a Web container and an EJB con-
tainer. The staff PC communicates using HTTP with the Web container,
which in turn communicates with the EJB using RMI. The thick client
communicates with the EJB container directly. The EJB container commu-
nicates with the relational database using Java Database Connectivity
(JDBC).

Figure 11-3 Deployment structure for Hotel Management System design model.

 : Customer

 : Staff PC

 : Customer PC

 : Database

: Phone
Access

RMI

HTTP

RMI JDBC

SQL

HTML

Java Swing,
AspectJ

: Application
Server

J2EE,
AspectJ

Access Data

Handle Request
Submit Request

 : Hotel Counter Staff

Submit Request

Submit Request

Handle Request

Handle Request

 : Hotel Management

Submit Request

 : Staff PC

Java Swing,
AspectJ

Handle Request

RMI

Jacobson_Ch11.fm Page 180 Wednesday, December 8, 2004 4:10 PM

11.5 OVERLAY PLATFORM SPECIFICS ON TOP 181

11.5.2 Keeping Platform Specifics Separate
Even with a chosen deployment and process structure, there are still many
platform-specific implementation technologies to be chosen. You most
definitely do not want to be tied down to a particular execution platform or
even to a particular vendor. Platform-specific technologies evolve, and a
new and better version becomes available regularly. It would be disastrous
if you had to modify the design just to keep up with the changes in these
technologies. Thus, you would like to keep platform specifics separate.

If you strip away the platform specifics from the design of a use case, what
remains is a minimal use-case design. This minimal use-case design has
the following characteristics:

• It is executable and is implemented in a default programming lan-
guage such as Java.

• It is activated through a program interface. A separate program trig-
gers the minimal use case. In this way, all concerns on user interface,
presentation of information, and data input mechanisms is kept out
of the minimal use-case design.

• Concerns about distribution, interprocess communication, and plat-
form-specific messaging are kept separate from it. So, the minimal use
case design appears to run on a single node, a single process, and a
single thread, when in fact it is running on the chosen platform
described earlier.

Figure 11-4 Process structure for Hotel Management System design model.

«process»

«process»

 Customer

 Customer PC

 Browser

Application Server

EJB
Container

Web

Container
HTTP

RMI

Database Server

Relational
Database

JDBC

Staff PC

 Thick
Client

Hotel Counter Staff

RMI

«node» «node»

«node»

«node»

«process»
«process»

«process»

Jacobson_Ch11.fm Page 181 Wednesday, December 8, 2004 4:10 PM

182 ROAD TO A RESILIENT ARCHITECTURE

• Every piece of information it needs is assumed to be in memory. In
this way, all persistency concerns are not present in the minimal
design. Likewise, each action from the actor instance is an atomic
action.

Everything else (user interface, distribution, etc.) is considered platform-
specific and is designed separately and overlaid on top of this minimal
use-case design.

Figure 11-5 shows a use-case design slice decomposed into the minimal
use-case design slice plus several platform-specific slices for the use case.
There is a platform-specific slice to modularize the user interface design
for the use case, another platform-specific slice to modularize the distri-
bution of the use case, and yet another to handle platform-specific persis-
tency. There could be potentially other platform-specific slices, depending
on what kinds of platform specifics you want to overlay on top of the min-
imal use-case design slice.

The benefits of separating the platform-specific parts from the minimal
use-case design are many. First, the minimal use-case design is signifi-
cantly simpler. Anyone who knows the designated programming language
can develop it without knowing all the platform specifics. The minimal use
case design is easy to design and develop, and you can produce an execut-
able quickly. It is also much easier to test because it does not require any
platform-specific test environment.

Figure 11-5 Use-case design slice with platform specifics kept separate.

Use-Case Design Slice
«use case slice»

Case Design

Minimal Use-
«use case slice»

Use-Case
Distribution

«use case slice»

Use-Case
Presentation

«use case slice»

Use-Case
Persistence

«use case slice»

«extend»

«extend»

«extend»

Jacobson_Ch11.fm Page 182 Wednesday, December 8, 2004 4:10 PM

11.5 OVERLAY PLATFORM SPECIFICS ON TOP 183

Sidebar 11-4 How Aspect Orientation Relates to Model-
Driven Architecture (MDA)

Perhaps you are familiar with research on model-driven architecture (MDA)
[Kleppe et al. 2003]. Model-driven development recognizes the need to keep
business and application specifics separate from the infrastructure and envi-
ronment specifics. Thus, in MDA, a platform-independent model (PIM) is
distinguished from a platform-specific model (PSM). The analysis model in
use-case–driven development corresponds to the PIM, and the design model
corresponds to the PSM.

The idea behind MDA is to define a set of transformation rules to map a PIM into
a PSM automatically. This is quite attractive because a sizeable portion of soft-
ware development work is about dealing with platform specifics. There are com-
mon solutions to deal with platform specifics, and they apply to many parts of the
system. Developers who incorporate the platform specifics find such work repeti-
tive, laborious, and also error prone. It also means that they must learn about the
platform specifics, too, not an easy task considering the regular and frequent
updates to technologies. An architect also wants the transformations from plat-
form-independent to platform-specific to be made in a consistent manner. Thus,
the possibility of automating the transformation process is quite attractive.

In practice, you do not transform complete models; you transform part by part,
since real projects have different members working on different parts of the
models in parallel. In addition, breaking down the models into smaller parts
simplifies the transformation process. After all, transforming a smaller model is
much easier than transforming a larger model. However, this necessitates two
mechanisms: one to separate the model and the other to compose the result.
Use-case modularity is advantageous in this situation because it provides both
the separation criteria and the composition mechanism. You work on the mod-
els use-case module by use-case module, and through aspect technology, you
compose the use-case modules.

As mentioned, with MDA you get a lot of code generated for you automatically
into the classes in the PSM, provided that you have a good and sufficient set of
transformation rules. But, what if the transformation rules are not comprehen-
sive enough? This means that you must at times work on the PSM itself. This cre-
ates two major problems. First, much tangling results from all the code generated
using different transformation rules, different parts of the PIM, and so on. This
makes understanding and debugging difficult. Second, if you make changes to
the PSM itself, you worry that if you were to regenerate the codes from the PIM, it
might overwrite what you have done on the PSM. Alternately, you may attempt to
write your own transformation rules. However, such effort is attractive only if you
can apply the transformation rules many times in your project. If your transfor-
mation rules can be applied only once or twice, it is definitely much easier to
work on the PSM directly. In this case, you again worry about whether other
transformation rules will overwrite your work, but you can choose a powerful
MDA tool that can ensure that your changes to the PSM do not get overwritten.

Jacobson_Ch11.fm Page 183 Wednesday, December 8, 2004 4:10 PM

184 ROAD TO A RESILIENT ARCHITECTURE

11.6 Summary and Highlights

Establishing resilient architecture early in the project is critical. The goal is
to make the system robust and reduce the impact of requirement changes
and changes elsewhere in the system. It also make the system easier to
understand. From an aspect orientation point of view, a resilient system
makes your pointcuts easier to define because all the classes and respon-
sibilities you need to extend are localized.

The way you establish the structure of models that describe the system is
iterative. You start with some initial platform-independent structure. You

In our opinion, use-case slices and aspects provide an effective solution to the
problem. In the PSM (i.e., the design model), you have minimal use-case design
slices that contain platform-independent parts and additional slices that have
platform specifics. This means that the platform specifics are kept separate
even in the PSM. In this way, you do not worry about your work being overwrit-
ten. Moreover, since the platform specifics are kept separate, what you have in
the PSM is much easier to understand and maintain. You can use the same
code-generation techniques in MDA to generate the platform-specific slices.
Moreover, since the minimal use-case design has few platform specifics, it is
much easier to generate it from the PIM than from the complete PSM. Thus,
aspects dramatically solve the many problems faced by MDA.

Furthermore, aspects are a more general technique. Whereas MDA attempts to
keep platform specifics separate, aspects keep crosscutting concerns in general
separate—not just platform specifics, but also functional requirements, non-
functional requirements, and tests. Aspects can benefit from MDA approaches
too. By assimilating the code-generation technologies to generate platform-
specific use-case slices, you can speed up aspect-oriented software develop-
ment tremendously.

In short, you get exceptional leverage if you apply a combination of aspect ori-
entation and MDA. The use case–driven approach provides the methodology to
unify these technologies.

Definitely, aspect technologies today cannot transform a language-indepen-
dent analysis model to a language-specific design model as MDA attempts to
do. This is not a big drawback for aspects because many projects today do
choose an implementation language upfront in the project.

Sidebar 11-4 How Aspect Orientation Relates to Model-
Driven Architecture (MDA) (continued)

Jacobson_Ch11.fm Page 184 Wednesday, December 8, 2004 4:10 PM

11.6 SUMMARY AND HIGHLIGHTS 185

then analyze the architecturally significant use cases one by one. As you
do so, you add on and refine the existing structure and incorporate plat-
form-specific elements onto the structure. After going through all the
architecturally significant use cases, you will have established a fairly resil-
ient architecture.

In the subsequent chapters, we explain how to handle different kinds of
crosscutting concerns with different kinds of use cases. This will help you
understand the general approach to aspect-oriented software development.

Jacobson_Ch11.fm Page 185 Wednesday, December 8, 2004 4:10 PM

Jacobson_Ch11.fm Page 186 Wednesday, December 8, 2004 4:10 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

