
6
Security

VERSION 1.1 OF ASP.NET provided many built-in security services for
developers to take advantage of. A common favorite is Forms-based

authentication.
Forms-based authentication allows Web developers to easily build ap-

plications that require authentication to access secured resources. How-
ever, rather than relying on Windows Authentication, Forms-based
authentication allows us to author a simple ASP.NET login page. ASP.NET
is then configured so that any unauthenticated requests are redirected to
the login page (see Figure 6.1).

The login page is a simple ASP.NET page used to collect and verify the
user’s credentials. It is the responsibility of the login page to determine
whether the user credentials are valid; typically this information is stored
in a database.

Listing 6.1 shows an example of a login page written in ASP.NET 1.1.

Listing 6.1. Example Login Page

<%@ Page Language="VB" %>

<%@ import namespace="System.Data" %>

<%@ import namespace="System.Data.SqlClient" %>

<script runat="server">

Public Sub Login_Click(ByVal sender As Object, ByVal e As EventArgs)

203

continues

06.1 6/17/04 11:53 AM Page 203

Dim userId As Integer

Dim reader As SqlDataReader

Dim connectionString = _

ConfigurationSettings.ConnectionStrings("MyConnectionString")

Dim conn As New SqlConnection(connectionString)

Dim command As New SqlCommand("dbo.Authenticate", conn)

' Set the command type to stored procedure

command.CommandType = CommandType.StoredProcedure

' Set @Username and @Password

command.Parameters.Add("@Username", _

SqlDbType.NVarChar, 256).Value = Username.Text

command.Parameters.Add("@Password", _

SqlDbType.NVarChar, 256).Value = Password.Text

' Open the connection and execute the reader

conn.Open()

reader = command.ExecuteReader()

CHAPTER 6: SECURIT Y204

GET /default.aspx HTTP/1.1

Valid
Authentication

Cookie?

User is
authenticated

Redirect user
to the login

page

A
S

P
.N

E
T Yes

No

Request

Provide
requested

content

Valid
Credentials?

No

Issue
FormsAuthentication

cookie

Yes

Figure 6.1. Forms Authentication

06.1 6/17/04 11:53 AM Page 204

' Read the value we're looking for

reader.Read()

userId = Integer.Parse(reader("UserId"))

' Close connections

reader.Close()

conn.Close()

' Did we find a user?

If (userId > 0) Then

FormsAuthentication.RedirectFromLoginPage(Username.Text, _

False)

Else

Status.Text = "Invalid Credentials: Please try again"

End If

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Enter your username/password</H1>

<form id="Form1" runat="server">

Username: <asp:textbox id="Username" runat="server" />

Password: <asp:textbox id="Password" runat="server" />

<p>

<asp:button id="Button1"

text="Check if Member is Valid"

onclick="Login_Click" runat="server"/>

</form>

<asp:label id="Status" runat="server"/>

</body>

</html>

In this sample the login page raises the Login_Click event, connects to
a database, calls a stored procedure to verify the submitted username and
password, and then either uses the FormsAuthentication APIs to log the
user in or tells the user that the credentials are invalid.

SECURIT Y 205

06.1 6/17/04 11:53 AM Page 205

The ASP.NET FormsAuthentication class is used to encrypt the user-
name and store it securely in an HTTP cookie. On subsequent requests this
HTTP cookie, with its encrypted contents, is decrypted and the user auto-
matically reauthenticated.

Forms Authentication is definitely a great feature, but what makes it
even better is the reduction in the amount of code developers must write.
Forms Authentication isn’t something new introduced by ASP.NET.
Rather, ASP.NET is simply providing an easier way to solve the problem;
in the past, most developers would have needed to author this code plus
infrastructure on their own.

One of the things you may have noticed about the ASP.NET team
members: They are always looking for ways to make things easier. They
want developers to solve problems without writing hundreds of lines of
code. For ASP.NET 2.0 they’re again tackling many security-related prob-
lems and providing new features to make things simpler.

In this chapter we’re going to examine some of the security infrastruc-
ture and controls that have been added in ASP.NET 2.0. We’ll start by look-
ing at the new Membership feature. Membership solves the user credential
storage problem, a problem most developers solved themselves in
ASP.NET 1.0.

Membership
After Microsoft released ASP.NET 1.0, the team members immediately
started looking for areas where they could simplify. One area was the man-
agement of user credentials, personalization, and user roles. These prob-
lems could be solved in ASP.NET 1.1, but the team wanted to make the
process better and easier!

The Membership feature of ASP.NET does just that—makes it better
and easier. Membership provides secure credential storage with simple,
easy-to-use APIs. Rather than requiring you to repeatedly develop infra-
structure features for authenticating users, it is now part of the platform.
More importantly, it’s a pluggable part of the platform through the new
provider pattern, allowing you to easily extend the system (e.g., to add
support for LDAP or existing corporate user account systems).

Forms Authentication and Membership complement one another.
However, they can also act independently; that is, you don’t have to use
them together. The code sample in Listing 6.2 demonstrates how Member-
ship is used with Forms Authentication.

CHAPTER 6: SECURIT Y206

06.1 6/17/04 11:53 AM Page 206

Listing 6.2. Using the Membership API

<script runat="server">

Public Sub Login_Click(sender As Object, e As EventArgs e)

' Is the user valid?

If (Membership.ValidateUser (Username.Text, Password.Text)) Then

FormsAuthentication.RedirectFromLoginPage (Username.Text, false)

Else

Status.Text = "Invalid Credentials: Please try again"

End If

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Enter your username/password</H1>

<form id="Form1" runat="server">

Username: <asp:textbox id="Username" runat="server" />

Password: <asp:textbox id="Password" runat="server" />

<p>

<asp:button id="Button1"

text="Check if Member is Valid"

onclick="Login_Click" runat="server"/>

</form>

<asp:label id="Status" runat="server"/>

</body>

</html>

As you can see, our custom code to validate the credentials is now re-
placed with a single call to the static Membership.ValidateUser()
method. The code is also much cleaner and more readable as a result—and
much more concise!

The Membership class contains only static methods. You don’t have to
create an instance of the class to use its functionality; for example, you
don’t have to new the Membership class to use it. Behind the scenes the

MEMBERSHIP 207

06.1 6/17/04 11:53 AM Page 207

Membership class is forwarding the calls through a configured provider.
The provider in turn knows which data source to contact and how to ver-
ify the credentials (see Figure 6.2).

Providers are a new design pattern introduced with ASP.NET 2.0.
Providers are pluggable data abstraction layers used within ASP.NET. All
ASP.NET 2.0 features that rely on data storage expose a provider layer. The
provider layer allows you to take complete control over how and where
data is stored.1

Membership Providers
The beauty of the provider model is the abstraction that it affords the de-
veloper. Rather than being pigeonholed into a particular data model or
fixed API behavior, the provider pattern allows you to determine how and
where the actual data storage takes place and the behavior of the API itself.

CHAPTER 6: SECURIT Y208

Membership.ValidateUser()

Membership Providers

.ValidateUser() .ValidateUser() .ValidateUser()

Membership API

AspNetDb.mdb

Provider-Specific Storage

SQL Server

AspNetAccessProviderAspNetSqlProvider Custom Provider

Figure 6.2. The provider model

1. For more details on providers, see Chapter 7. Also, the provider specification is
published on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnaspnet/html/asp02182004.asp.

ployed programs.

06.1 6/17/04 11:53 AM Page 208

ASP.NET 2.0 will ship with several providers for Membership (not a
complete list):

• Access

• SQL Server

• Active Directory2

You can easily author your own provider and plug it in. The provider
design pattern allows for one common API that developers can familiarize
themselves with, such as Membership, but under the covers you still have
control over what exactly is happening. For example, if you had all of your
customer information stored in an AS/400, you could write a provider for
Membership. Users would call the familiar Membership APIs, but the
work would actually be handled by the configured AS/400 provider.

The goal of Membership is to simplify managing and storing user cre-
dentials while still allowing you to control your data, but it does much
more. Let’s dig deeper.

Setting Up Membership
Setting up Membership is easy: It just works. By default all the providers
that ship with ASP.NET 2.0 use a Microsoft Access provider and will use
the default AspNetDB.mdb file created in the \data\ directory of your ap-
plication.3

If the \data\ directory of your application does not exist, ASP.NET will
attempt to create it. If ASP.NET is unable to create the \data\ directory or
the AspNetDB.mdb file because of the security policy on the machine, an ex-
ception is thrown detailing what needs to be done.

Before we can begin using Membership for its most common task—val-
idating user credentials—we need to have users to validate!

Creating a New User
The Membership API exposes two methods for creating new users:

MEMBERSHIP 209

2. Not available with the beta release of ASP.NET 2.0.
3. Access is the configured default since it works without requiring the user to perform

any further setup. SQL Server is the recommended provider for large applications.

06.1 6/17/04 11:53 AM Page 209

CreateUser(username As String, password As String)

CreateUser(username As String, password As String,

email As String)

These two APIs are somewhat self-explanatory. We call them to create
a user with a username and password, optionally also providing the e-mail
address. Both of these methods return a MembershipUser instance, which
we’ll look at later in this chapter.

Which of these two methods you use is determined by the Membership
configuration settings. We can examine the settings in machine.config for
the defaults (see Listing 6.3, where the line in bold indicates whether or not
an e-mail address must be unique).4

Listing 6.3. Membership Configuration

<configuration>

<system.web>

<membership defaultProvider="AspNetAccessProvider"

userIsOnlineTimeWindow="15">

<providers>

<add

name="AspNetAccessProvider"

type="System.Web.Security.AccessMembershipProvider,

System.Web,

Version=2.0.3600.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"

connectionStringName="AccessFileName"

enablePasswordRetrieval="false"

enablePasswordReset="true"

requiresQuestionAndAnswer="false"

applicationName="/"

requiresUniqueEmail="false"

passwordFormat="Hashed"

description="Stores and retrieves membership data from

the local Microsoft Access database file"/>

</providers>

</membership>

</system.web>

</configuration>

CHAPTER 6: SECURIT Y210

4. You can also define these settings or change the defaults in the web.config file of
your application.

ployed programs.

06.1 6/17/04 11:53 AM Page 210

Table 6.1 shows an explanation of the various configuration settings.

Table 6.1. Configuration Elements for the Membership Provider

Attribute Description

connectionStringName Names the key within the <connectionStrings />
configuration section where the connection string is
stored. The default value for the Access provider is
AccessFileName, and for the SQL Server provider it is
LocalSqlServer.

enablePasswordRetrieval Controls whether or not the password can be retrieved
through the Membership APIs. When set to false, the
password cannot be retrieved from the database. The
default value is false.

enablePasswordReset Allows the password to be reset. For example, although
the password may not be retrieved, the APIs will allow for
a new random password to be created for the user. The
default value is true.

requiresQuestionAndAnswer Allows the use of a question and answer to retrieve the
user’s password. Only valid when the passwordFormat
setting is not Hashed and enablePasswordRetrieval
is true. The default value is false.

applicationName Indicates the application to which the Membership data
store belongs. Multiple applications can share the same
Membership data store by specifying the same
applicationName value. The default value is /.

requiresUniqueEmail Requires that a given e-mail address can be used only
once. This attribute can be used to prevent users from
creating multiple accounts. Note that the uniqueness is
constrained to the applicationName the user is created
within. The default value is false.

passwordFormat Controls how the password is stored in the data store.
Hashed is the most secure but does not allow password
retrieval. Additional valid values include Encrypted and
Clear. The default value is Hashed.

description Describes the provider. This is an optional attribute; when
present, tools capable of working with providers can
optionally display this description string.

Knowing what the defaults are, we can write a simple page for creating
new users (see Listing 6.4).

MEMBERSHIP 211

06.1 6/17/04 11:53 AM Page 211

Listing 6.4. Creating Users with the Membership API

<%@ Page Language="VB" %>

<script runat="server">

Public Sub CreateUser_Click (sender As Object, e As EventArgs)

Try

' Attempt to create the user

Membership.CreateUser(Username.Text, Password.Text)

Status.Text = "Created new user: " & Username.Text

Catch ex As MembershipCreateUserException

' Display the status if an exception occurred

Status.Text = ex.ToString()

End Try

End Sub

</script>

<html>

<head>

</head>

<body style="FONT-FAMILY: Verdana">

<H1>Create a new user</H1>

<hr />

<form runat="server">

Desired username: <asp:TextBox id="Username" runat="server"/>

Password: <asp:TextBox id="Password" runat="server" />

<p>

<asp:button Text="Create Member"

OnClick="CreateUser_Click" runat="server"/>

</form>

<asp:Label id="Status" runat="server" />

</body>

</html>

CHAPTER 6: SECURIT Y212

06.1 6/17/04 11:53 AM Page 212

The code in Listing 6.4 calls the Membership.CreateUser() method,
which accepts a username and a password.5 If there is a problem creating
the user, a MembershipCreateUserException is thrown. If there are no
problems, the new user is created.

Once we’ve created some users, we can test the Membership
.ValidateUser() method.

Validating User Credentials
The primary purpose for Membership is to validate credentials. This is ac-
complished through the static ValidateUser() method:

ValidateUser(username As String,

password As String) As Boolean

We can use this method, as seen earlier, along with Forms Authentica-
tion to validate user credentials. Here is a partial code example:

If (Membership.ValidateUser (Username.Text, Password.Text)) Then

FormsAuthentication.RedirectFromLoginPage (Username.Text, False)

Else

Status.Text = "Invalid Credentials: Please try again"

End If

Apart from ValidateUser(), most of the remaining Membership APIs
are used for retrieving a user or users.

Retrieving a User
There are a few ways you can retrieve users that have already been created:

GetUser() As MembershipUser

GetUser(userIsOnline As Boolean) As MembershipUser

GetUser(username As String) As MembershipUser

GetUser(username As String,

userIsOnline As Boolean) As MembershipUser

MEMBERSHIP 213

5. You may already wonder what we do with additional user data, such as first names.
Membership is not used to store this type of data. Instead, the new Personalization
feature is used to store user data—Membership is used only for storing user creden-
tials used in authentication. Personalization is covered in Chapter 7.ployed pr

06.1 6/17/04 11:53 AM Page 213

The first two methods that don’t have a username parameter will at-
tempt to return the currently logged-on user. The parameter userIsOnline,
when set to True, will update a timestamp in the data store indicating the
date/time the user was last requested. This timestamp can then be used to
calculate the total number of users online.6 The remaining methods will
perform similar operations but on a specified user.

Figure 6.3 shows an example of getting the MembershipUser class for
the currently logged-on user.

Listing 6.5 provides the code used for this page.

Listing 6.5. Fetching the Logged-on User

<%@ Page Language="VB" %>

<script runat="server">

Public Sub Page_Load()

CHAPTER 6: SECURIT Y214

6. This functionality is similar to that used on the ASP.NET forums (http://www.asp.net
/Forums/). All users have a timestamp that can be updated. The number of users
online is calculated by finding all users whose timestamps fall within a calculated
window of time. This time window is configured in the <membership> configura-
tion setting userIsOnlineTimeWindow.

Customer Table

CustomerID

ContactName

Street

City

CustomerID

Customer

Name

Street

City
Country

Country

XSD:
XML Schema

Definition

MSD:
Mapping

Schema Definition

RSD:
Relational

Schema Definition

Figure 6.3. Getting a user

06.1 6/17/04 11:53 AM Page 214

Dim user As MembershipUser

' Get the currently logged-on user and

' update the user's online timestamp

user = Membership.GetUser(True)

UserName.Text = user.Username

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Get User</H1>

<hr />

<form runat="server">

The currently logged-on user is:

<asp:literal id="UserName" runat="server" />

</form>

</body>

</html>

If we want to find a user but don’t have the username (e.g., the user
forgot his or her username), we can use the GetUserNameByEmail()
method:

GetUserNameByEmail(email As String) As String

Once we have the username, we can then look up the user with one of the
GetUser() methods listed earlier.

We can additionally get multiple users with the following method:

Membership.GetAllUsers() As MembershipUserCollection

Membership.GetAllUsers() simply returns a MembershipUserCollection,
which we can use to enumerate users or bind to a server control, such as a
Repeater or DataGrid (see Figure 6.4).

Listing 6.6 shows the code.

MEMBERSHIP 215

06.1 6/17/04 11:53 AM Page 215

Listing 6.6. Displaying All Users

<%@ Page Language="VB" %>

<script runat="server">

Public Sub Page_Load()

Users.DataSource = Membership.GetAllUsers()

Users.DataBind()

End Sub

</script>

<html>

<head>

</head>

<body style="FONT-FAMILY: Verdana">

<H1>Users in Membership Database</H1>

<hr />

<asp:repeater id="Users" runat="server">

<headertemplate>

<table border="1">

<tr>

<td bgcolor="black" style="color:white">

Username

</td>

CHAPTER 6: SECURIT Y216

Figure 6.4. Getting all users

06.1 6/17/04 11:53 AM Page 216

<td bgcolor="black" style="color:white">

Email

</td>

<td bgcolor="black" style="color:white">

Is Online

</td>

<td bgcolor="black" style="color:white">

Is Approved

</td>

<td bgcolor="black" style="color:white">

Last Logged In Date

</td>

<td bgcolor="black" style="color:white">

Last Activity Date

</td>

<td bgcolor="black" style="color:white">

Creation Date

</td>

<td bgcolor="black" style="color:white">

Password Changed Date

</td>

<td bgcolor="black" style="color:white">

Password Question

</td>

</tr>

</headertemplate>

<itemtemplate>

<tr>

<td>

<%# Eval("Username") %>

</td>

<td>

<%# Eval("Email") %>

</td>

<td>

<%# Eval("IsOnline") %>

</td>

<td>

<%# Eval("IsApproved") %>

</td>

MEMBERSHIP 217

06.1 6/17/04 11:53 AM Page 217

<td>

<%# Eval("LastLoginDate") %>

</td>

<td>

<%# Eval("LastActivityDate") %>

</td>

<td>

<%# Eval("CreationDate") %>

</td>

<td>

<%# Eval("LastPasswordChangedDate") %>

</td>

<td>

<%# Eval("PasswordQuestion") %>

</td>

</tr>

</itemtemplate>

<footertemplate>

</table>

</footertemplate>

</asp:repeater>

</body>

</html>

The GetAllUsers() method now also supports paging for working with
large sets of users. This overloaded version expects pageIndex, pageSize,
and totalRecords out parameters, where pageIndex is the location
within the result set and pageSize controls the number of records re-
turned per page. For example, a pageIndex of 2 with a pageSize of 25 in
a system with 2,000 records would return users 26–50.

Now that we’ve looked at how to create users and retrieve named
users, let’s look at the MembershipUser class, which allows us to set and
retrieve extended properties for each user.

The MembershipUser Class
The MembershipUser class represents a user stored in the Membership
system. It provides the following methods for performing user-specific op-
erations, such as retrieving or resetting a user’s password.

CHAPTER 6: SECURIT Y218

06.1 6/17/04 11:53 AM Page 218

GetPassword() As String

GetPassword(answer As String) As String

ChangePassword(oldPassword As String,

newPassword As String) As Boolean

ChangePasswordQuestionAndAnswer(password As String,

question As String,

answer As String) As Boolean

ResetPassword() As String

ResetPassword(answer As String) As String

Note that if a question and answer are being used, the overloaded
GetPassword(answer As String) method requires the case-insensitive
question answer.

The ChangePassword() method allows changes to the user’s pass-
word, and the ChangePasswordQuestionAndAnswer() method allows
changes to the user’s password question and answer. The code in Listing
6.7 allows the currently logged-on user to change his or her password
question and answer.7

Listing 6.7. Changing a Password

<%@ Page Language="VB" %>

<script runat="server">

Public Sub Page_Load()

If Not Page.IsPostBack Then

DisplayCurrentQuestion()

End If

End Sub

Public Sub SetQandA_Click(sender As Object, e As EventArgs)

Dim u As MembershipUser = Membership.GetUser()

MEMBERSHIP 219

7. When the <membership /> configuration’s requiresQuestionAndAnswer is
set to true, the GetPassword(answer As String) and
ResetPassword(answer As String) methods must be used to either retrieve
or reset the user’s password. (The answer value is the answer to the user’s ques-
tion.)

continues

06.1 6/17/04 11:53 AM Page 219

u.ChangePasswordQuestionAndAnswer(CurrentPassword.Text, _

Question.Text, _

Answer.Text)

Membership.UpdateUser(u)

DisplayCurrentQuestion()

End Sub

Public Sub DisplayCurrentQuestion()

Status.Text = Membership.GetUser().PasswordQuestion

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Set Question Answer</H1>

<hr />

<form id="Form1" runat="server">

Current Password: <asp:textbox id="CurrentPassword"

runat="server" />

<p></p>

Question: <asp:textbox id="Question" runat="server" />

<p></p>

Answer: <asp:textbox id="Answer" runat="server" />

<p></p>

<asp:button id="Button1" text="Set Question/Answer"

onclick="SetQandA_Click" runat="server"/>

</form>

 Your new password question is:

<asp:label id="Status" runat="server"/>

</html>

The ResetPassword() methods are similar to the GetPassword()
methods. However, rather than retrieving the user’s password, they reset
and then return a random password for the user.

Keep in mind that the ability to retrieve, change, or reset the user’s
password is determined by the settings within the configuration.

In addition to password management, the MembershipUser class has
some useful properties that provide us some details about how and when
the user last logged in, last changed passwords, and so on (see Table 6.2).

CHAPTER 6: SECURIT Y220

06.1 6/17/04 11:53 AM Page 220

Table 6.2. MembershipUser Properties

Property Description

LastLoginDate Sets or returns a timestamp for the last time
ValidateUser() was called for the current
MembershipUser.

CreationDate Sets or returns a timestamp value set when the user
was first created.

LastActivityDate Sets or returns a timestamp value set when the user
authenticates or is retrieved using the overloaded
GetUser() method that accepts a userIsOnline
parameter.

LastPasswordChangedDate Sets or returns a timestamp value set when the user
last changed his or her password.

Email Sets or returns the e-mail address, if set, of the user.

IsApproved Sets or returns a value that indicates whether or not
the user is approved. Users whose IsApproved
property is set to false cannot log in, even when the
specified credentials are valid.

PasswordQuestion Returns the question used in question/answer re-
trieval.

Provider Returns an instance (of type MembershipProvider)
of the current provider used to manipulate the data
store.

UserName Returns the username of the current user.

Updating a User’s Properties
When changes are made to the user, for example, updating the user’s e-
mail address, we need to use the Membership.UpdateUser(user As

MembershipUser) method to save the values.8 For example, in Listing 6.7
earlier, the SetQandA_Click event (repeated here for convenience) shows
an example of Membership.UpdateUser():

MEMBERSHIP 221

8. The goal of this design is to allow multiple values to be changed without requiring
multiple round-trips to the data store. By using the UpdateUser() method, all
updates are batched together.

06.1 6/17/04 11:53 AM Page 221

Public Sub SetQandA_Click(sender As Object, e As EventArgs)

Dim u As MembershipUser = Membership.GetUser()

u.ChangePasswordQuestionAndAnswer(CurrentPassword.Text,

Question.Text,

Answer.Text)

Membership.UpdateUser(u)

DisplayCurrentQuestion()

End Sub

So far we’ve learned how to create and update users, but what about
removing users from the Membership system?

Deleting a User
Deleting a user from Membership is easy. Membership supports a single
method for removing users:

DeleteUser(username As String) As Boolean

We simply need to name the user we wish to delete. If the operation is
successful, the method returns True. If the delete operation fails, for exam-
ple, if the user doesn’t exist, False is returned.

Listing 6.8 shows a code example that allows us to specify a user to be
removed from the Membership system.

Listing 6.8. Deleting a User

<%@ Page Language="VB" %>

<script runat="server">

Public Sub DeleteUser_Click(sender As Object, e As EventArgs)

If (Membership.DeleteUser(Username.Text)) Then

Status.Text = Username.Text & " deleted"

Else

Status.Text = Username.Text & " not deleted"

End If

End Sub

</script>

<html>

<head>

</head>

CHAPTER 6: SECURIT Y222

06.1 6/17/04 11:53 AM Page 222

<body style="FONT-FAMILY: Verdana">

<H1>Delete a user</H1>

<hr />

<form runat="server">

Username to delete: <asp:TextBox id="Username"

runat="server"/>

<p>

<asp:button Text="Delete User"

OnClick="DeleteUser_Click" runat="server"/>

</form>

<asp:label id="Status" runat="server" />

</body>

</html>

Figure 6.5 shows how this page looks.
While the Membership APIs definitely simplify day-to-day tasks, there

is also an alternative to using programmatic APIs: security server controls.
In many cases we can use these server controls and never have to write
code that uses the Membership APIs!

MEMBERSHIP 223

Figure 6.5. Deleting a user

06.1 6/17/04 11:53 AM Page 223

Security Server Controls
The new Membership infrastructure feature of ASP.NET simplifies the
management and storage of user credentials. Using APIs, such as
Membership.ValidateUser(), for Forms Authentication definitely makes
things easy. However, some techniques are made even easier through the
use of several new security-related server controls. For example, you can
author your own login page with zero lines of code by using the new
Login control or create users using the new CreateUserWizard control.

The CreateUserWizard Control
Earlier in the chapter we showed the code required to create a new user. In
the alpha version of ASP.NET (then code-named “Whidbey”) this was the
only way to create new users. In the beta version the new CreateUserWizard
control can be used instead for a no-code alternative.

The CreateUserWizard control, <asp:CreateUserWizard runat=

"server" />, uses the new Wizard control and allows for multiple steps
to be defined during the user creation process. Figure 6.6 shows the
CreateUserWizard control in design time. As you can see, the options

CHAPTER 6: SECURIT Y224

Figure 6.6. The CreateUserWizard control

06.1 6/17/04 11:53 AM Page 224

available are specific to Membership, but we could just as easily add an-
other step to the control for collecting more user information, such as first
name, last name, and so on. Listing 6.9 shows the source to the
control_createuser.aspx page.

Listing 6.9. Using the CreateUserWizard Control

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Validate Credentials</H1>

<hr />

<form id="Form1" runat="server">

<asp:CreateUserWizard runat="server" />

</form>

</body>

</html>

The Login Control
Figure 6.7 shows a control_login.aspx page that authenticates the
user’s credentials against the default Membership provider and uses the
new <asp:Login runat="server" /> control. As you can see in Figure
6.7, it looks nearly identical to the login page we built with the Member-
ship APIs. Listing 6.10 shows the source to the control_login.aspx page.

SECURIT Y SERVER CONTROLS 225

Figure 6.7. The login control

06.1 6/17/04 11:53 AM Page 225

Listing 6.10. Using the Login Control

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Validate Credentials</H1>

<hr />

<form id="Form1" runat="server">

<asp:Login id="Login1" runat="server" />

</form>

</body>

</html>

When the username and password are entered, this control will
automatically attempt to log in the user by calling Membership

.ValidateUser(). If successful, the control will then call the necessary
FormsAuthentication.RedirectFromLoginPage API to issue a cookie
and redirect the user to the page he or she was attempting to access. In
other words, all the code you would have needed to write in ASP.NET 1.1
is now neatly encapsulated in a single server control!

The <asp:Login runat="server" /> control automatically hides it-
self if the user is logged in. This behavior is determined by the AutoHide
property, set to True by default. If the login control is used with Forms Au-
thentication and hosted on the default login page (specified in the config-
uration for Forms Authentication) the control will not auto-hide itself.

We can further customize the login control’s UI. To preview one UI
option—we can’t cover all of them in depth in this book—right-click on the
login control within Visual Studio 2005 and select Auto Format. This will
bring up the dialog box shown in Figure 6.8.

Once you’ve chosen an auto-format template, such as Classic, you can
see the changes in the login control (see Listing 6.11).

Listing 6.11. A Formatted Login Control

<asp:Login id="Login1"

runat="server"

font-names="Verdana"

font-size="10pt"

bordercolor="#999999"

borderwidth="1px"

borderstyle="Solid"

CHAPTER 6: SECURIT Y226

06.1 6/17/04 11:53 AM Page 226

backcolor="#FFFFCC">

<TitleTextStyle Font-Bold="True"

ForeColor="#FFFFFF"

BackColor="#333399">

</TitleTextStyle>

</asp:Login>

If you desire more control over the display of the control, right-click on
the control, or from the Common Tasks dialog, select Convert to Template.
You’ll see no changes in the rendered UI of the control. However, you will
see a notable difference in the declarative markup generated for the con-
trol. For brevity we are not including the updated markup.9 What you will
see is a series of templates that allow you to take 100% control over the UI
rendering of the control. Note that it is important that the IDs of the con-
trols within these templates remain because the control expects to find
these IDs.

While the login control simplifies authoring the login page, several
other controls help us display content to users based on their login status.
Let’s take a look at the login status control first.

The Login Status Control
The login status control, <asp:LoginStatus runat="server" />, is used
to display whether the user is logged in or not. When the user is not logged
in, the status displays a Login link (see Figure 6.9). When the user is logged
in, the status displays a Logout link (see Figure 6.10).

SECURIT Y SERVER CONTROLS 227

Figure 6.8. The Auto Format dialog

9. One of the nice features in the Designer is a Reset feature. When you change your
mind about using the template layout of the login control, you can simply select
Reset from the Common Tasks menu.

06.1 6/17/04 11:53 AM Page 227

Listing 6.12 shows the code required.

Listing 6.12. The Login Status Control

<html>

<body style="FONT-FAMILY: Verdana">

<h1>Login Status</h1>

<hr />

<form runat="server">

<asp:LoginStatus id="LoginStatus1" runat="server" />

</form>

</body>

</html>

CHAPTER 6: SECURIT Y228

Figure 6.9. The login status control when the user is not logged in

Figure 6.10. The login status control when the user is logged in

06.1 6/17/04 11:53 AM Page 228

SECURIT Y SERVER CONTROLS 229

By default the text displayed for the link is “Login” when the user is
not logged in and “Logout” when the user is logged in.10 However, this
text can easily be changed; you simply need to change the LoginText or
LogoutText properties of the control:

<asp:LoginStatus id="Loginstatus1" runat="server"

LoginText="Please log in"

LogoutText="Please log out" />

Other properties can also be set to control the behavior of this control.
For example, you can use the LoginImageUrl and the LogoutImageUrl to
use images rather than text for displaying the login status. Finally, there
are two properties for controlling the behavior upon logout:

• LogoutAction: This property specifies the behavior when the
logout button is clicked. Options include Refresh, Redirect, and
RedirectToLoginPage.

• LogoutPageUrl: When the LogoutAction is set to Redirect, the
LogoutPageUrl is the location to which the browser is redirected.

Whereas <asp:LoginStatus runat="server" /> provides an easy
way for the user to log in and log out, another server control,
<asp:LoginView runat="server" />, allows us to easily determine
what content is shown to the user based on his or her login status.

The Login View Control
The <asp:LoginView runat="server" /> server control is used to dis-
play different output depending on the login status of the user. Further-
more, the control can also be used to display different content based on the
role(s) the user belongs to. Figure 6.11 shows an example of what the con-
trol might display for an anonymous user. The code that generates this
page appears in Listing 6.13.

Listing 6.13. Using the Login View Control

<html>

<body style="FONT-FAMILY: Verdana">

10. Note the handy feature in Visual Studio 2005 in the Tasks dialog, Views, which
allows you to select the view of the control in the Designer.

continues

06.1 6/17/04 11:53 AM Page 229

<h1>Login View and Login Name Controls</h1>

<hr />

<form runat="server">

<asp:LoginView id="Loginview1" runat="server">

<anonymoustemplate>

Unknown user please <asp:LoginStatus runat="server"

logintext="login" />

</anonymoustemplate>

<rolegroups>

<asp:rolegroup roles="Admin">

<contenttemplate>

This is admin only content!

</contenttemplate>

</asp:rolegroup>

</rolegroups>

<loggedintemplate>

You are logged in as: <asp:LoginName id="LoginName1"

runat="server" />

</loggedintemplate>

</asp:LoginView>

</form>

</body>

</html>

In this code you can see that two templates are defined for the
<asp:LoginView runat="server" /> control:

CHAPTER 6: SECURIT Y230

Figure 6.11. The login view for an anonymous user

06.1 6/17/04 11:53 AM Page 230

• <anonymoustemplate /> is used to control the displayed content
when the user is not logged in.

• <loggedintemplate /> is used to control the displayed content
when the user is logged in.

In addition to the templates, there is also a special <rolegroups />
section that allows us to create different templates that are displayed if the
user is in a corresponding role or roles. If the user is logged in but no roles
apply, the <loggedintemplate /> is used.11

You’ll notice that we also made use of another control in Listing 6.13:
<asp:LoginName runat="server" />. This control simply displays the
name of the logged-in user. If the user is not logged in, the control does not
render any output.

The last security-related server control is <asp:PasswordRecovery
runat="server" />, which is used to help users obtain their forgotten
passwords.

The Password Recovery Control
The <asp:PasswordRecovery runat="server" /> control works in con-
junction with the Membership system to allow users to easily recover their
passwords.12

The <asp:PasswordRecovery runat="server" /> control relies on
the <smtpMail /> configuration options to be correctly set to a valid SMTP
server—the control will mail the password to the user’s e-mail address. By
default, the <smtpMail /> section will have the SMTP mail server set to
localhost and the port set to 25 (the default SMTP port).

Similar to <asp:Login runat="server" />, this control supports
auto-format and full template editing. Assuming we select an auto-format
template, such as Classic, and use the default Membership settings, we
should see the page shown in Figure 6.12.

Listing 6.14 presents the code that generates this page (auto-formatting
removed).

SECURIT Y SERVER CONTROLS 231

11. Template evaluation for rolegroups is done top to bottom. The first matched role
group is used. If no match is found, the <loggedintemplate /> is used.

12. For this server control to work, your Membership configuration must be set up to
allow for password recovery.

06.1 6/17/04 11:53 AM Page 231

Listing 6.14. Using the Password Recovery Control

<html>

<body style="FONT-FAMILY: Verdana">

<H1>

Password Recovery

<hr />

</H1>

<form id="Form1" runat="server">

<asp:PasswordRecovery runat="server">

<maildefinition from="admin@mywebsite.com" />

</asp:PasswordRecovery>

</form>

</body>

</html>

If we attempt to use the control with the default Membership settings—
which do not allow password recovery—we will receive the following error:

“Your attempt to retrieve your password was not successful. Please try again.”

To allow us to recover the password, we need to change some of the de-
fault membership settings. Below are the necessary changes to the
<membership /> configuration settings to allow for password recovery:

CHAPTER 6: SECURIT Y232

Figure 6.12. Password recovery

06.1 6/17/04 11:53 AM Page 232

• enablePasswordRetrieval="True"

• passwordFormat="Clear"

The enablePasswordRetrieval attribute must be set to True to allow
for password retrieval, and the passwordFormat attribute must be set to
either Clear or Encrypted.13 Another alternative is that when enable
PasswordReset is set to True, the new password can be e-mailed to the
user.

In addition to configuring the <membership /> configuration settings, we
must specify the <maildefinition /> element of the <asp:PasswordRecovery
runat="server" /> control. The <maildefinition /> names the address
from whom e-mails are sent.

Finally, we can also use the <asp:PasswordRecovery runat="server" />
control to retrieve the user’s password using the question/answer support
of Membership (see Figure 6.13). The control still requires that we enter the
username first, but before simply mailing the password it will first also re-
quest the answer to the user’s question.

SECURIT Y SERVER CONTROLS 233

Figure 6.13. Password recovery with question and answer

13. The default passwordFormat value, Hashed, can be best thought of as one-way
encryption; thus it is impossible to retrieve the original value once the value is
hashed. The hashed value is also salted (combined with random characters) to
further obscure the password.

06.1 6/17/04 11:53 AM Page 233

This behavior is forced by setting the <membership /> configuration
setting requiresQuestionAndAnswer to true (the default is false).14

Note that this configuration change is in addition to changing the
enablePasswordRetrieval to true and setting the passwordFormat to a
value other than Hashed.

Managing and storing user credentials are only one part of securely
controlling access to resources within your site. In addition to validating
who the user is, you need to determine whether the user is allowed to ac-
cess the requested resource. The process of validating credentials is known
as authentication; authorization is the process of determining whether the
authenticated user is allowed to access a particular resource.

ASP.NET 1.x already provides authorization facilities, but just as we
have shown with Membership, there is more simplification to be done.

Role Manager
The ASP.NET Role Manager feature is designed to simplify managing roles
and the users that belong to those roles. After authentication, when Role
Manager is enabled, ASP.NET will automatically add the users to the
role(s) he or she belongs to. When ASP.NET authorization occurs, the user
is either allowed or denied access to the requested resource based on his or
her role(s).15

URL-based role authorization is a feature of ASP.NET 1.0. We can con-
trol what users are allowed to access by specifying access permissions
within configuration (see Listing 6.15).

Listing 6.15. Configuring Roles

<configuration>

<system.web>

<authorization>

<deny users="?" />

</authorization>

</system.web>

CHAPTER 6: SECURIT Y234

14. You will also need to ensure that the user set a question and answer when his or
her account in the Membership system was created.

15. Authorization always occurs after authentication; that is, first the user’s credentials
are validated, and if the credentials are valid, then the determination is made
whether the user is allowed to access the requested resource.

06.1 6/17/04 11:53 AM Page 234

<location path="PremiumContent.aspx">

<system.web>

<authorization>

<allow roles="Premium" />

<deny users="*" />

</authorization>

</system.web>

</location>

</configuration>

The above web.config file could be added to any application. It states
that anonymous users are denied access to all resources. Furthermore, only
users in the role Premium are allowed access to PremiumContent.aspx. All
other users are denied access.

Before we can control access to resources through roles, we need to cre-
ate some roles and then add users to them. Let’s look at how we can do
this with the new Role Manager feature.

Setting Up Role Manager
Similar to Membership, Role Manager relies on a provider to store data
and thus allow us to create roles and associations between users and their
roles.16 Unlike Membership, Role Manager is not enabled by default.
Therefore, before we can use the Role Manager API, we need to enable the
feature in its configuration settings.

Similar to Membership configuration settings, Role Manager configu-
ration settings are defined in machine.config and can be overridden or
changed within an application’s web.config file. Listing 6.16 shows a sam-
ple web.config enabled for Role Manager.

Listing 6.16. Configuring Role Manager

<configuration>

<system.web>

<roleManager enabled="true"

cacheRolesInCookie="true"

cookieName=".ASPXROLES"

cookieTimeout="30"

ROLE MANAGER 235

16. This is identical to how Membership uses a provider. The difference is that a differ-
ent set of providers exists for the Role Manager feature. Different providers are
used to avoid making Role Manager providers dependent on Membership.

continues

06.1 6/17/04 11:53 AM Page 235

cookiePath="/"

cookieRequireSSL="false"

cookieSlidingExpiration="true"

cookieProtection="All"

defaultProvider="AspNetAccessProvider" >

<providers>

<add name="AspNetAccessProvider2"

type="System.Web.Security.AccessRoleProvider, System.Web"

connectionStringName="AccessFileName"

applicationName="/"

description="Stores and retrieves roles data from

the local Microsoft Access database file" />

</providers>

</roleManager>

</system.web>

</configuration>

Table 6.3 shows an explanation of the various configuration settings.

Table 6.3. Role Manager Configuration Settings

Attribute Default Value Description

enabled false Controls whether or not the Role Manager feature
is enabled. By default it is disabled because
enabling breaks backward compatibility with
ASP.NET 1.0.

cacheRolesInCookie true Allows for the roles to be cached within an HTTP
cookie. When the roles are cached within a
cookie, a lookup for the roles associated with the
user does not have to be done through the
provider.

cookieName .ASPXROLES Sets the name of the cookie used to store the
roles when cookies are enabled.

cookieTimeout 30 Sets the period of time for which the cookie is
valid. If cookieSlidingExpiration is true,
the cookie timeout is reset on each request within
the cookieTimeout window.

cookiePath / Sets the path within the application within which
the cookie is valid.

cookieRequireSSL false Specifies whether or not the cookie must be sent
over an SSL channel.

CHAPTER 6: SECURIT Y236

06.1 6/17/04 11:53 AM Page 236

Table 6.3. Role Manager Configuration Settings (continued)

Attribute Default Value Description

cookieSlidingExpiration true Sets the cookie timeout. When true, the
cookie timeout is automatically reset
each time a request is made within the
cookieTimeout window, effectively
allowing the cookie to stay valid until the
user’s session is complete.

cookieProtection All Controls how the data stored within the
cookie is secured.

defaultProvider string Sets the friendly name of the provider to
use for roleManager. By default this is
AspNetAccessProvider.

Now that we’ve seen how to configure the settings of Role Manager,
let’s create some roles.

Creating Roles
The Roles API supports a single method for creating roles:

CreateRole(rolename As String)

This API is used to create the friendly role name, such as Administra-
tors, used to control access to resources. Listing 6.17 provides sample code
for creating roles in an ASP.NET page.

Listing 6.17. Creating and Viewing Roles

<script runat="server">

Public Sub Page_Load (sender As Object, e As EventArgs)

If Not Page.IsPostBack Then

DataBind()

End If

End Sub

Public Sub CreateRole_Click(sender As Object, e As EventArgs)

Try

' Attempt to create the role

Roles.CreateRole (Rolename.Text)

ROLE MANAGER 237

continues

06.1 6/17/04 11:53 AM Page 237

Catch ex As Exception

' Failed to create the role

Status.Text = ex.ToString()

End Try

DataBind()

End Sub

Public Overrides Sub DataBind()

RoleList.DataSource = Roles.GetAllRoles()

RoleList.DataBind()

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Create Role</H1>

Below is a list of the current roles:

<asp:datagrid id="RoleList" runat="server" />

<hr />

<form runat="server">

Rolename to create: <asp:TextBox id="Rolename" runat="server" />

<asp:button Text="Create Role"

OnClick="CreateRole_Click" runat="server"/>

</form>

<asp:Label id="Status" runat="server"/>

</body>

</html>

This code sample allows us to enter a role name, which is then created
using the Roles.CreateRole()API. If the role already exists, an exception
is thrown. Finally, all of the available roles are enumerated through a
DataGrid using the Roles.GetAllRoles() API, discussed shortly.

Now that we can create roles, let’s add some users to the roles.

CHAPTER 6: SECURIT Y238

06.1 6/17/04 11:53 AM Page 238

Adding Users to Roles
Membership and Role Manager are not rigidly coupled. They are designed
to work together, but you do not have to use one to use the other. Both use
the authenticated username as the only shared piece of data. For example,
it is possible to add a user to a role even if the user is not created through
the Membership system.17

Adding users to roles is accomplished by using the following methods
supported by the Roles API:

AddUserToRole(username As String, rolename As String)

AddUserToRoles(username As String, rolenames() As String)

AddUsersToRole(usernames() As String, rolename As String)

AddUsersToRoles(usernames() As String, rolenames() As String)

These various methods allow for adding users to roles in bulk or indi-
vidually. Listing 6.18 demonstrates Roles.AddUserToRole().

Listing 6.18. Adding Users to Roles

<%@ Page Language="VB" %>

<script runat="server">

Public Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

DataBind()

End Sub

Public Sub AddUserToRole_Click(sender As Object, e As EventArgs)

Roles.AddUserToRole(Username.Text, _

RoleList.SelectedItem.Value)

DataBind()

End Sub

ROLE MANAGER 239

17. This flexible design allows using various providers for data storage. For example,
you could have an AS/400 Membership provider and an Access Role Manager
provider.

continues

06.1 6/17/04 11:53 AM Page 239

Public Overrides Sub DataBind()

RoleList.DataSource = Roles.GetAllRoles()

RoleList.DataBind()

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Add User to Role</H1>

<form runat="server">

User: <asp:TextBox id="Username" runat="server" />

Role to add user to: <asp:DropDownList id="RoleList"

runat="server" />

<asp:button Text="Add User To Role"

OnClick="AddUserToRole_Click" runat="server"/>

</form>

<asp:Label id="StatusCheck" runat="server"/>

</body>

</html>

This code sample data binds the results of Roles.GetAllRoles() to a
DropDownList control and then allows us to enter a user to add to a role.18

The Roles.AddUserToRole() API is then used to add the user to the role.
When adding multiple users to roles or a user to multiple roles, the ad-

dition occurs within the context of a transaction. Either all updates succeed
or all fail.

We can now use another Roles API to determine to what roles a par-
ticular user belongs.

Returning a User’s Roles
To return a list of the roles to which a user belongs, we can simply use one
of the following APIs:

CHAPTER 6: SECURIT Y240

18. You could also data-bind to a list of the Members from the Membership system.

06.1 6/17/04 11:53 AM Page 240

GetRolesForUser() As String()

GetRolesForUser(username As String) As String()

GetUsersInRole(rolename As String) As String()

The Roles.GetRolesForUser() method will return a string array of all
the roles that the current user is in. The overloaded version of this method
that accepts a username parameter allows us to specify for which user we
want a listing of roles. The last method, Roles.GetUsersInRole(), allows
us to get a string array listing of usernames that belong to the specified
role.

Listing 6.19 demonstrates the overloaded version of
Roles.GetRolesForUser().

Listing 6.19. Finding the Roles for a User

<script runat="server">

Public Sub GetRolesForUser_Click(sender As Object, e As EventArgs)

RolesForUser.DataSource = Roles.GetRolesForUser(Username.Text)

RolesForUser.DataBind()

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Roles user is in</H1>

<hr />

<form runat="server">

Username: <asp:TextBox id="Username" runat="server" />

<asp:button Text="Roles User Is In"

OnClick="GetRolesForUser_Click" runat="server"/>

</form>

User is in roles:

<asp:DataGrid runat="server" id="RolesForUser" />

</body>

</html>

ROLE MANAGER 241

06.1 6/17/04 11:53 AM Page 241

This code sample simply asks for the name of a user. When the page is
posted back, the Roles.GetRolesForUser() API is called, passing in the
name of the specified user. The results are then data-bound to a DataGrid.

Checking Whether a User Is in a Role
Access to resources can be controlled by which roles the user belongs to.
As shown in the beginning of this section, it is possible to control access to
URLs based on settings made in the configuration file. In addition to this
declarative security access control, we can also perform programmatic
checks for the role the user belongs to.

ASP.NET 1.1 allowed for programmatic checks for determining
whether the user was in a role through User.IsInRole(username as

String); the result of this method returned True or False. The RolesAPI
supports a similar Roles.IsUserInRole(rolename As String) API:

IsUserInRole(rolename As String) As Boolean

IsUserInRole(username As String, rolename As String) As Boolean

Now that we’ve seen how to add users to roles and check whether
users are in a particular role, let’s look at how we can remove a user from
a role.

Removing Users from Roles
Similar to the methods used for adding a user to roles, we have four dif-
ferent methods for removing users from roles:

RemoveUserFromRole(username As String, rolename As String)

RemoveUserFromRoles(username As String, rolenames() As String)

RemoveUsersFromRole(usernames() As String, rolename As String)

RemoveUsersFromRoles(usernames() As String, rolenames() As String)

Again, similar to adding users to roles, when the process of removing
users from roles is transacted, either all succeed or all fail.

Deleting a Role
Roles can be deleted easily by using the Roles.DeleteRole(rolename As

String) method. Listing 6.20 shows a sample ASP.NET page that demon-
strates how to use this API.

CHAPTER 6: SECURIT Y242

06.1 6/17/04 11:53 AM Page 242

Listing 6.20. Deleting a Role

<%@ Page Language="VB" %>

<script runat="server">

Public Sub Page_Load()

If Not Page.IsPostBack Then

DataBind()

End If

End Sub

Public Sub DeleteRole_Click(sender As Object, e As EventArgs)

Try

Roles.DeleteRole(Rolename.Text)

Catch ex As Exception

StatusCheck.Text = "There was an error removing the role(s)"

End Try

DataBind()

End Sub

Public Overrides Sub DataBind()

RoleList.DataSource = Roles.GetAllRoles()

RoleList.DataBind()

End Sub

</script>

<html>

<body style="FONT-FAMILY: Verdana">

<H1>Delete Role</H1>

Below is a list of the current roles:

<asp:datagrid id="RoleList" runat="server" />

<hr />

<form runat="server">

Rolename to delete: <asp:TextBox id="Rolename" runat="server" />

<asp:button Text="Delete Role" OnClick="DeleteRole_Click"

runat="server"/>

</form>

ROLE MANAGER 243

continues

06.1 6/17/04 11:53 AM Page 243

<asp:Label id="StatusCheck" runat="server"/>

</body>

</html>

This code lists all the available roles by binding the result of
Roles.GetAllRoles() to a DataGrid. It then allows for a specific role to
be named and deleted using the Roles.DeleteRole() method, as shown
in Figure 6.14. There is a second form of DeleteRoles that takes two pa-
rameters: the first is the role name and the second a Boolean to indicate
whether an exception should be thrown if the role being deleted has users.

Role Manager uses a provider to write back to and read from a data
store in which the roles and user-to-role mapping is done. Rather than
reading/writing to this database on each request—since a list of the roles
the user belongs to must be obtained—a cookie can optionally be used to
cache roles, as described in the next subsection.

Role Caching
Role caching is a feature of Role Manager that enables user-to-role map-
pings to be performed without requiring a lookup to the data store on each

CHAPTER 6: SECURIT Y244

Figure 6.14. Deleting roles

06.1 6/17/04 11:53 AM Page 244

request.19 Instead of looking up the user-to-role mapping in the data store,
the roles the user belongs to are stored, encrypted, within an HTTP cookie.
If the user does not have the cookie, a request is made against the provider
to retrieve the roles the user belongs to. The roles are then encrypted and
stored within a cookie. On subsequent requests the cookie is decrypted
and the roles obtained from the cookie.

Internally, in cases where there are more roles than can fit in the cookie,
the cookie is marked as an incremental role cookie. That is, the cookie
stores as many roles as possible but likely not all the roles. When role
checking is performed, and the user is not in one of the roles being checked
for, ASP.NET will call the Roles API and check whether the user belongs
to that role. If not, access is denied. If the user is in the role and the role is
not currently stored in the cookie, the last role stored within the cookie is
removed and the requested role is added. Thereby, in cases where the user
has more roles than can fit in the cookie, the cookie over time will contain
a list of the most frequently accessed roles.

Cookieless Forms Authentication
ASP.NET 1.0 introduced the Forms Authentication feature to allow devel-
opers to easily author ASP.NET applications that rely on an authentication
mechanism they could control. Forms Authentication exposed a set of APIs
that developers can simply call to authenticate the user, such as

FormsAuthentication.RedirectFromLoginPage(Username.Text, False)

Forms Authentication in ASP.NET 1.0 would then take the username,
encrypt it, and store it within an HTTP cookie. The cookie would be pre-
sented on subsequent requests and the user automatically reauthenticated.

One of the common feature requests the ASP.NET team continually re-
ceived was the ability for Forms Authentication to support cookieless au-
thentication, that is, to not require an HTTP cookie. This is just what the
team has provided in ASP.NET 2.0.

Enabling Cookieless Forms Authentication
Cookieless Forms Authentication is enabled within the machine.config file
or the web.config file of your application by setting the new cookieless
attribute (see Listing 6.21).

COOKIELESS FORMS AUTHENTICATION 245

19. This implementation is similar to what is done within all the ASP.NET Starter Kits.

06.1 6/17/04 11:53 AM Page 245

Listing 6.21. Default Configuration for Forms Authentication

<configuration>

<system.web>

<authentication mode="Forms">

<forms name=".ASPXAUTH"

loginUrl="login.aspx"

protection="All"

timeout="30"

path="/"

requireSSL="false"

slidingExpiration="true"

defaultUrl="default.aspx"

cookieless="UseCookies" />

</authentication>

</system.web>

</configuration>

The cookieless attribute has four possible values:20

• UseUri: Forces the authentication ticket to be stored in the URL.

• UseCookies: Forces the authentication ticket to be stored in the
cookie (same as ASP.NET 1.0 behavior).

• AutoDetect: Automatically detects whether the browser/device
does or does not support cookies.

• UseDeviceProfile: Chooses to use cookies or not based on the de-
vice profile settings from machine.config.

If we set the cookieless value to UseUri within web.config and then
request and authenticate with Forms Authentication, we should see some-
thing similar to what Figure 6.15 shows within the URL of the requested
page.

Below is the requested URL—after authentication—in a more readable
form:

http://localhost/Whidbey/GrocerToGo/(A(AcNzj7rSUh84OWViZTcwMi0xNWYyLTQ5

ODAtYjU2NC0yYTg3MjEzMzRhY2Y`)F(uoG1wsK16NJFs7e2TJo2yNZ6eAZ8eoU9T8rSXZX

LEPPM8STwp6EONVtt4YCqEeb-9XDrrEpIHRpOOlKh8rO9f0AhP6AXWwL*0bM bxYcfZ

c`))/default.aspx

CHAPTER 6: SECURIT Y246

20. In case you forget the values, an incorrect value set for cookieless will cause an
ASP.NET error page to be generated that lists the acceptable values.

06.1 6/17/04 11:53 AM Page 246

The Web Site Administration Tool
Administration of ASP.NET applications has always been easy, although
diving into the XML-based configuration file isn’t the most user-friendly
way to do it. For the 2.0 release of ASP.NET, there is the Web Site Adminis-
tration Tool, which allows configuration of a Web application via an easy
browser interface.

The Web Site Administration Tool is useful for two main reasons. First,
it abstracts the XML configuration into an easy-to-use interface, and sec-
ond, it provides administration features via a browser. This means that for
remote sites (such as those provided by a hosting company), it’s easy to ad-
minister an application without having to edit the configuration file (e.g.,
to add new security credentials) and then upload it.

The Web Site Administration Tool is available for each directory con-
figured as an application, by way of a simple URL:

http://website/WebAdmin.axd

This presents you with a home page and menu consisting of five main
options.

THE WEB SITE ADMINISTRATION TOOL 247

Figure 6.15. Cookieless Forms Authentication

06.1 6/17/04 11:53 AM Page 247

The Home Page
The Home page, shown in Figure 6.16, details the current application and
security details, as well as links to the other main sections.

The Security Page
The Security page, shown in Figure 6.17, offers two options for configuring
security. The first is a wizard that takes you through the following steps:

1. Select Access Method, which defines whether the application is
available from the Internet (in which case Forms Authentication is
used) or from the LAN (in which case Windows Authentication is
used)

2. Specify Data Source, where you can specify the database (Access or
SQL Server) that will store the user credentials and what details are
required (e.g., unique e-mail address, allow password retrieval, and
so on)

CHAPTER 6: SECURIT Y248

Figure 6.16. The Web Site Administration Tool Home page

06.1 6/17/04 11:53 AM Page 248

3. Define Roles, where you can optionally specify Authorization roles

4. Add New Users, which allows addition of new users and allocation
to roles

5. Add New Access Rules, which defines which files and folders users
and roles have permissions for

6. Complete, to indicate that the security settings have been
configured

The second option is for configuration of security that has already been en-
abled. If configured, the details are shown at the bottom of the main secu-
rity page (see the following subsection for more information).

Security Management
Once you have initially set up security (or selected the second option titled
Security Management on the main Security page), the Security page allows
management of users, roles, and permissions without the use of the wizard.

THE WEB SITE ADMINISTRATION TOOL 249

Figure 6.17. The Web Site Administration Tool Security page

06.1 6/17/04 11:53 AM Page 249

CHAPTER 6: SECURIT Y250

Figure 6.18. Web Site Administration Tool user configuration

Figure 6.19. Web Site Administration Tool role configuration

06.1 6/17/04 11:53 AM Page 250

For example, consider the users added earlier in the chapter. If we select the
Manage Users options, we see the User Management features shown in
Figure 6.18.

Likewise, selecting Manage Roles allows you to customize roles and
members, as shown in Figure 6.19.

Other Pages
Three other pages are used in the Web Site Administration Tool:

• Profile, which allows configuration of the Personalization Profile
(see Chapter 7)

• Application, which allows configuration of application settings, site
and page counters, SMTP settings, and debugging and tracing (see
Chapter 13)

• Provider, which allows configuration of the data provider or
providers to be used in the application (see Chapter 13)

SUMMARY

We’ve sampled only some of the new security capabilities in ASP.NET 2.0.
The Membership and Role Manager features are specifically designed to
solve problems the ASP.NET team saw developers addressing over and
over again. Although both complement and can be used easily with Forms
Authentication, they were also designed to work independently—inde-
pendently of one another and independently of Forms Authentication.
Furthermore, both support the provider design pattern. This design pat-
tern allows you to take complete control over how and where the data
used for these features is stored. The provider design pattern gives you ul-
timate control and flexibility, because you can control the business logic,
while developers can learn a simple, friendly, and easy-to-use API.

Although writing code using Membership has become more concise,
there are also now cases where no code is required. The new security
server controls make many scenarios, such as login or password recovery,
much easier to implement. The other security-related server controls sim-
ply save you the time formerly required to write code to perform simple
tasks such as checking who is logged in.

SUMMARY 251

06.1 6/17/04 11:53 AM Page 251

The cookieless support for Forms Authentication means you don’t
have to require the use of cookies for authenticating users—something
many of you have been requesting.

Finally, the Web Site Administration Tool provides a simple way to ad-
minister site security without building custom tools.

Now it’s time to extend the topic of users interacting with a site and
look at how sites can be personalized.

CHAPTER 6: SECURIT Y252

06.1 6/17/04 11:53 AM Page 252

