
Item 10: Understand the Pitfalls of GetHashCode()

This is the only item in this book dedicated to one function that you
should avoid writing. GetHashCode() is used in one place only: to define
the hash value for keys in a hash-based collection, typically the
Hashtable or Dictionary containers. That’s good because there are a
number of problems with the base class implementation of GetHash-

Code(). For reference types, it works but is inefficient. For value types,
the base class version is often incorrect. But it gets worse. It’s entirely pos-
sible that you cannot write GetHashCode() so that it is both efficient and
correct. No single function generates more discussion and more confu-
sion than GetHashCode(). Read on to remove all that confusion.

If you’re defining a type that won’t ever be used as the key in a container,
this won’t matter. Types that represent window controls, web page con-
trols, or database connections are unlikely to be used as keys in a collec-
tion. In those cases, do nothing. All reference types will have a hash code
that is correct, even if it is very inefficient. Value types should be
immutable (see Item 7), in which case, the default implementation always
works, although it is also inefficient. In most types that you create, the
best approach is to avoid the existence of GetHashCode() entirely.

One day, you’ll create a type that is meant to be used as a hashtable key,
and you’ll need to write your own implementation of GetHashCode(), so
read on. Hash-based containers use hash codes to optimize searches.
Every object generates an integer value called a hash code. Objects are
stored in buckets based on the value of that hash code. To search for an
object, you request its key and search just that one bucket. In .NET, every
object has a hash code, determined by System.Object.GetHashCode().
Any overload of GetHashCode() must follow these three rules:

1. If two objects are equal (as defined by operator==), they must gen-
erate the same hash value. Otherwise, hash codes can’t be used to
find objects in containers.

2. For any object A, A.GetHashCode() must be an instance invariant.
No matter what methods are called on A, A.GetHashCode() must
always return the same value. That ensures that an object placed in a
bucket is always in the right bucket.

3. The hash function should generate a random distribution among all
integers for all inputs. That’s how you get efficiency from a hash-
based container.

Item 10: Understand the Pittfalls of GetHashCode() ❘ 1

Wagner_Item10.qxd 10/18/04 4:07 PM Page 1

Writing a correct and efficient hash function requires extensive knowl-
edge of the type to ensure that rule 3 is followed. The versions defined in
System.Object and System.ValueType do not have that advantage.
These versions must provide the best default behavior with almost no
knowledge of your particular type. Object.GetHashCode() uses an
internal field in the System.Object class to generate the hash value. Each
object created is assigned a unique object key, stored as an integer, when it
is created. These keys start at 1 and increment every time a new object of
any type gets created. The object identity field is set in the
System.Object constructor and cannot be modified later. Object.

GetHashCode() returns this value as the hash code for a given object.

Now examine Object.GetHashCode() in light of those three rules. If
two objects are equal, Object.GetHashCode()returns the same hash
value, unless you’ve overridden operator==. System.Object’s version
of operator==() tests object identity. GetHashCode() returns the inter-
nal object identity field. It works. However, if you’ve supplied your own
version of operator==, you must also supply your own version of
GetHashCode() to ensure that the first rule is followed. See Item 9 for
details on equality.

The second rule is followed: After an object is created, its hash code never
changes.

The third rule, a random distribution among all integers for all inputs,
does not hold. A numeric sequence is not a random distribution among
all integers unless you create an enormous number of objects. The hash
codes generated by Object.GetHashCode() are concentrated at the low
end of the range of integers.

This means that Object.GetHashCode() is correct but not efficient. If
you create a hashtable based on a reference type that you define, the
default behavior from System.Object is a working, but slow, hashtable.
When you create reference types that are meant to be hash keys, you
should override GetHashCode()to get a better distribution of the hash
values across all integers for your specific type.

Before covering how to write your own override of GetHashCode, this
section examines ValueType.GetHashCode()with respect to those same
three rules. System.ValueType overrides GetHashCode(), providing the

2 ❘ Chapter 1 C# Language Elements

Wagner_Item10.qxd 10/18/04 4:07 PM Page 2

default behavior for all value types. Its version returns the hash code from
the first field defined in the type. Consider this example:

public struct MyStruct

{

private string _msg;

private int _id;

private DateTime _epoch;

}

The hash code returned from a MyStruct object is the hash code gener-
ated by the _msg field. The following code snippet always returns true:

MyStruct s = new MyStruct();

return s.GetHashCode() == s._msg.GetHashCode();

The first rule says that two objects that are equal (as defined by opera-
tor==()) must have the same hash code. This rule is followed for value
types under most conditions, but you can break it, just as you could with
for reference types. ValueType.operator==() compares the first field in
the struct, along with every other field. That satisfies rule 1. As long as any
override that you define for operator== uses the first field, it will work.
Any struct whose first field does not participate in the equality of the type
violates this rule, breaking GetHashCode().

The second rule states that the hash code must be an instance invariant.
That rule is followed only when the first field in the struct is an
immutable field. If the value of the first field can change, so can the hash
code. That breaks the rules. Yes, GetHashCode() is broken for any struct
that you create when the first field can be modified during the lifetime of
the object. It’s yet another reason why immutable value types are your
best bet (see Item 7).

The third rule depends on the type of the first field and how it is used. If
the first field generates a random distribution across all integers, and the
first field is distributed across all values of the struct, then the struct gen-
erates an even distribution as well. However, if the first field often has the
same value, this rule is violated. Consider a small change to the earlier
struct:

public struct MyStruct

{

private DateTime _epoch;

Item 10: Understand the Pittfalls of GetHashCode() ❘ 3

Wagner_Item10.qxd 10/18/04 4:07 PM Page 3

private string _msg;

private int _id;

}

If the _epoch field is set to the current date (not including the time), all
MyStruct objects created in a given date will have the same hash code.
That prevents an even distribution among all hash code values.

Summarizing the default behavior, Object.GetHashCode() works
correctly for reference types, although it does not necessarily generate an
efficient distribution. (If you have overridden Object.operator==(),
you can break GetHashCode()). ValueType.GetHashCode() works only
if the first field in your struct is read-only. ValueType.GetHashCode()
generates an efficient hash code only when the first field in your struct
contains values across a meaningful subset of its inputs.

If you’re going to build a better hash code, you need to place some
constraints on your type. Examine the three rules again, this time in the
context of building a working implementation of GetHashCode().

First, if two objects are equal, as defined by operator==(), they must
return the same hash value. Any property or data value used to generate
the hash code must also participate in the equality test for the type. Obvi-
ously, this means that the same properties used for equality are used for
hash code generation. It’s possible to have properties participate in equal-
ity that are not used in the hash code computation. The default behavior
for System.ValueType does just that, but it often means that rule 3 usu-
ally gets violated. The same data elements should participate in both
computations.

The second rule is that the return value of GetHashCode() must be an
instance invariant. Imagine that you defined a reference type, Customer:

public class Customer

{

private string _name;

private decimal _revenue;

public Customer(string name)

{

_name = name;

}

4 ❘ Chapter 1 C# Language Elements

Wagner_Item10.qxd 10/18/04 4:07 PM Page 4

public string Name

{

get { return _name; }

set { _name = value; }

}

public override int GetHashCode()

{

return _name.GetHashCode();

}

}

Suppose that you execute the following code snippet:

Customer c1 = new Customer("Acme Products");

myHashMap.Add(c1, orders);

// Oops, the name is wrong:

c1.Name = "Acme Software";

c1 is lost somewhere in the hash map. When you placed c1 in the map,
the hash code was generated from the string "Acme Products". After you
change the name of the customer to "Acme Software", the hash code
value changed. It’s now being generated from the new name: "Acme

Software". C1 is stored in the bucket defined by "Acme Products", but
it should be in the bucket defined for "Acme Software". You’ve lost that
customer in your own collection. It’s lost because the hash code is not an
object invariant. You’ve changed the correct bucket after storing the
object.

The earlier situation can occur only if Customer is a reference type. Value
types misbehave differently, but they still cause problems. If customer is a
value type, a copy of c1 gets stored in the hashmap. The last line changing
the value of the name has no effect on the copy stored in the hashmap.
Because boxing and unboxing make copies as well, it’s very unlikely that
you can change the members of a value type after that object has been
added to a collection.

The only way to address rule 2 is to define the hash code function to
return a value based on some invariant property or properties of the
object. System.Object abides by this rule using the object identity,
which does not change. System.ValueType hopes that the first field in

Item 10: Understand the Pittfalls of GetHashCode() ❘ 5

Wagner_Item10.qxd 10/18/04 4:07 PM Page 5

your type does not change. You can’t do better without making your type
immutable. When you define a value type that is intended for use as a key
type in a hash container, it must be an immutable type. Violate this
recommendation, and the users of your type will find a way to break
hashtables that use your type as keys. Revisiting the Customer class, you
can modify it so that the customer name is immutable:

public class Customer

{

private readonly string _name;

private decimal _revenue;

public Customer(string name) :

this (name, 0)

{

}

public Customer(string name, decimal revenue)

{

_name = name;

_revenue = revenue;

}

public string Name

{

get { return _name; }

}

// Change the name, returning a new object:

public Customer ChangeName(string newName)

{

return new Customer(newName, _revenue);

}

public override int GetHashCode()

{

return _name.GetHashCode();

}

}

6 ❘ Chapter 1 C# Language Elements

Wagner_Item10.qxd 10/18/04 4:07 PM Page 6

Making the name immutable changes how you must work with customer
objects to modify the name:

Customer c1 = new Customer("Acme Products");

myHashMap.Add(c1,orders);

// Oops, the name is wrong:

Customer c2 = c1.ChangeName("Acme Software");

Order o = myHashMap[c1] as Order;

myHashMap.Remove(c1);

myHashMap.Add(c2, o);

You have to remove the original customer, change the name, and add the
new customer object to the hashtable. It looks more cumbersome than
the first version, but it works. The previous version allowed programmers
to write incorrect code. By enforcing the immutability of the properties
used to calculate the hash code, you enforce correct behavior. Users of
your type can’t go wrong. Yes, this version is more work. You’re forcing
developers to write more code, but only because it’s the only way to write
the correct code. Make certain that any data members used to calculate
the hash value are immutable.

The third rule says that GetHashCode() should generate a random distri-
bution among all integers for all inputs. Satisfying this requirement
depends on the specifics of the types you create. If a magic formula
existed, it would be implemented in System.Object and this item would
not exist. A common and successful algorithm is to XOR all the return val-
ues from GetHashCode() on all fields in a type. If your type contains
some mutable fields, exclude those fields from the calculations.

GetHashCode() has very specific requirements: Equal objects must pro-
duce equal hash codes, and hash codes must be object invariants and
must produce an even distribution to be efficient. All three can be satis-
fied only for immutable types. For other types, rely on the default behav-
ior, but understand the pitfalls.

Item 10: Understand the Pittfalls of GetHashCode() ❘ 7

Wagner_Item10.qxd 10/18/04 4:07 PM Page 7

