Index

Numbers
1NF (First Normal Form), 106
2NF (Second Normal Form), 107
3NF (Third Normal Form), 107
4NF (Fourth Normal Form), 107
5NF (Fifth Normal Form), 107
12 rules of relational databases, 103-105

A
Access (Microsoft) databases, 226-227
access, role-based matrix, 206-207
accounting, fair-value accounting, 4
accuracy, validity rules, 56
acquisitions, data integration process, 36-37
adaptation
data quality improvement cycle, 69
integration process, 45
administration
goal development costs, 299
UD (unstructured data), 283-284
administrators
data governance group, 60
metadata management initiative, 77
agendas
DBMS vendors, 252-253
team weekly meetings, 158
analysts, BI (business intelligence), 13
analytics, BI (business intelligence), 266
APIs (application programming interfaces), 286
applications
inventory, EA (enterprise architecture), 67
packages, 176-177, 232-233
measurements, performance monitoring, 193-194
archeology, quality improvement practices, 57-58

archiving
- data (tuning option), 197
- metadata management, 95
- UD (unstructured data), 284

assessments
- Data Environment Assessment Questionnaire, 16-21
- data quality improvement cycle, 68
- organization teams, 156-157

assets
- business data, 291-295
- data integration, 31
- organizations data, 4

atomic values, 102

attributes
- business quality rules, 53-55
- completeness, 56
- auditing procedures, 211-212

availability
- data strategy development costs, 296
- establishing benchmark criteria and methodology, 173-174

B
- backups, metadata management, 95
- balanced scorecard (BSC), 268-269
- BAM (business activity monitoring), 30
- BCNF (Boyce-Codd Normal Form), 107
- benchmarks, capacity planning, 168-175

benefits of metric measurement
- better decisions, 306-307
- cash flow acceleration, 301
- competitive effectiveness, 306
- cost containment, 302-303
- customer attrition control, 304
- customer conversion rates, 303
- customer service, 307
- data mart consolidation, 305
- demand management, 303
- DW (Data Warehouse), 301
- employee empowerment, 307
- fraud reduction, 303
- improved supplier relationships, 304
- marketing campaign responses, 304
- post implementation measurement, 307-308

- productivity analysis, 301-302
- public relations, 305-306
- revenue enhancement, 301

Berkeley study, explosion of volume in data, 280

best practices, RFPs (requests for proposals), 242-245

BI (business intelligence), 7, 13-14, 259-261, 274

benefits, 262-263
- BSC (balanced scorecard), 268-269
- CRM, 263

- data cleansing, 265-266
- mining, 267-268
- presentation, 267
- transformation, 265-266
- visualization, 267

- digital dashboards, 269
- ERM, 263
- history, 261-262
- integration risks, 41
- metadata repositories, 265
- myths, 272-274
- office politics, 263
- OLAP tools and analytics, 266
- pitfalls, 272-274
- ROI, 262
- rule-based analytics, 268
- trends and technologies, 269
- data mining, 270
- RFID (Radio Frequency Identification), 271-272

- big-bang effort, building enterprise logical data model, 109-110
BLOBs (Binary Large Objects), 279
Boston Globe, report on cost of converting to digital media, 290
bottom-up logical data modeling, 112-115
Boyce-Codd Normal Form (BCNF), 107
BPM (business performance management), 30
break-even analysis, 309, 312
Brown, Robert, 101
BSC (balanced scorecard), 268-269
buffer pools (tuning option), 196
business activity monitoring (BAM), 30
Business Data Model, EA (enterprise architecture), 67
Business Function Model, EA (enterprise architecture), 67
business performance management (BPM), 30
Business Process Model, EA (enterprise architecture), 67
business-focused data analysis, data modeling, 106

C

caching (tuning option), 196
calculations
 cost template, 312-314
 intangible benefits template, 315
 ROI, 309
 cost of capital, 309
 risk, 310
California SB 1386 Identity Protection Bill, 210
call centers, data types, 292
Canada, security laws, 211
capability maturity model (CMM), 43
capacity planning (performance modeling), 166-168
benchmark teams, 169
communication of results, 175
costs, 171
criteria and methodology, 171-174
evaluation and measurement of results, 174-175
goals and objectives, 170
reasons for pursuing a benchmark, 168-169
standard benchmarks, 170-171
verification and reconciliation of results, 175
cardinality, business entity quality rules, 52
CASE (computer aided software engineering), 79, 94, 113
case studies, performance, 198-201
cash flow, strategic goal benefits metric, 301
categorization
 DBMS vendor capabilities and functions, 254-255
data, 14-15, 296
central processing units CPUs), 102
centralized metadata repositories, 85-86
certification data, 4
challenges, integrating data, 40-41
channels, business data value, 293-294
Character Large Objects (CLOBs), 279
Chen, Dr. Peter, 99, 101
chief information officer (CIOs), 133
chief operating officers (COOs), 269
chief technology officer (CTOs), 133
CIOs (chief information officer), 133
class words, business metadata names, 80
classes, choices, 139
cleansing
 BI (business intelligence), 265-266
 quality improvement practices, 58-59
CLOBs (Character Large Objects), 279
club cards, business data value, 294
CMM (capability maturity model), 43
Codd, Dr. Edgar F., 102-105
combining structured and unstructured data, 287
commercial off-the-shelf (COTS), 176-177
competencies, information steward, 155
competitions, strategic goal benefits metric, 306
completeness, validity rules, 55
compliances
failures, reducing through data integration, 31
information legislation, 30
Comprehensive Data Sublanguage rule (12 rules of relational databases), 104
computer aided software engineering (CASE), 79, 94, 113
conformance to measures of success, performance monitoring, 191
consistencies, validity rules, 57
consolidation, data integration, 42
Constantine, Larry, 100
content reusability, unified content strategy, 286
contextual information, metadata, 74
analysis, 89
categories, 78-82
construction, 91-92
critical data strategy, 74-78
deployment, 92-93
design, 90-91
justification, 88
MME (Managed Metadata Environment), 93-97
planning, 88-89
repositories, 84-87
sources, 82-84
COOs (chief operating officers), 269
corporate assets, data integration, 31
Codd, Dr. Edgar F., 102-105
correctness, validity rules, 56
costs
benchmarks (capacity planning), 171
BI (business intelligence), 13
calculation template, 312-314
development of capital, ROI calculation, 309
DBMSs, TCO (total cost of ownership), 228-232
integration risks, 40
justification process, risk, 310
reducing through data integration, 29
strategic goal development, 295-296
cost categories, 296-300
COTS (commercial off-the-shelf), 176-177
critical success factors (CSFs), 249
CRM (Customer Relationship Management), 27, 263
BI, 263
cost containment, 303
promises versus realities, 27
CSFs (critical success factors), 249
CTOs (chief technology officer), 133
cultures (company), influence on physical data model, 128
currencies, integration risks, 41
Customer Relationship Management. See CRM
customers
attrition control, 304
BI (business intelligence), 13
call centers, 292
channel preferences, 293-294
click-stream data, 293
companies that sell data, 292
conversion rates, 303
demographics, 293
direct retailers, 294
internal information, 292
loyalty cards, 294
service integration, 30
travel data, 294-295
Index

D

DAM software (Digital Asset Management), 287-288
DAs (data administrators), 10, 142
data definition language (DDL), 114, 141
Data Environment Assessment Questionnaire, 16-21
data integration, 6-7
 business case for, 31-32
 business data
 acquisitions, 36-37
 data lineage, 37-38
 knowing business entities, 35-36
 mergers, 36-37
 multiple DBMSs, 38
 redundancy, 37
CMM (capability maturity model), 43
consolidating data, 42
CRM (Customer Relationship Management), 27
data modeling, 108
definitions, 23-24
disintegrated data, 24
DW (Data Warehousing), 26-27
EAI (Enterprise Application Integration), 28
ERP (Enterprise Resource Planning), 24-25
federating data, 42-43
implementation planning, 44-45
industry opportunities, 32-35
logrith, 38
management support, 29-31
physical, 38
prioritizing data, 39-40
risks, 40-41
silver-bullet solutions, 24
Data Mart (DM), 264
data modeling, 9, 99-100
 enterprise logical data model, 109
 big-bang effort versus incremental, 109-112
top-down versus bottom-up, 112-115
 logical data model, 105-108
 process-independence, 105-106
 origins, 100-101
 physical data modeling, 115
 database design, 117
 database views, 122
denormalization, 117-120
 dimensional model, 122-126
 indexes, 121
 influential factors, 126-130
 partitioning, 121-122
 process-dependence, 116
 surrogate keys, 120-121
 significance of, 102-105
data ownership, 148-151
data quality steward, 143-144
Data Warehousing. See DW
database administrators (DBAs), 10, 82, 141-142
database management system. See DBMSs
databases
 12 rules of relational databases, 103-105
 Access, 226-227
data controls, 213
design, physical data modeling, 117
metadata repositories, 77, 84
 analysis, 89
 building, 85
centralized, 85-86
deployment, 91-92
deployment, 92-93
design, 90-91
distributed, 86-87
justification, 88
planning, 88-89
purchasing product, 84-85
XML-enabled, 87
security, 213
views, physical data modeling, 122
Date, Christopher J., 102
DB2 (IBM), 226
DBAs (database administrator), 10, 82, 141-142
DBMSs (database management systems), 2, 223
 application packages, 232-233
 available choices, 226
 capabilities/functions, 224-226
dictionaries, MME source, 94
dictionaries, DBMS, MME source, 94
ERPs, 232-233
multiple, integration process, 38
parameters (tuning option), 196
RFPs (requests for proposals), 242
 best practices, 242-245
 response formats, 246
selecting, 12
criteria, 233-234
process, 234-241
standardization, 12, 227-228
vendor evaluation, 246-249
 early code, 250
 financial capacity, 254
 level of service, 250
 performance, 249
 personnel capacity, 253
rules of engagement, 250-252
selection matrix, 254-255
setting agenda for meetings and presentations, 252-253
DDL (data definition language), 114, 141
defect prevention, quality improvement practices, 59-60
DeMarco, Tom, 100
demographics, customer information, 293
denormalization, physical data modeling, 117-120
dependencies, data quality rules, 54-55
designs
 performance, 177-189
 security, 213-214
desired references, DBMS selection, 237-238
Dessert logical data model, 117
developer tools, MME source, 94
development
 data strategies, 15
 quality disciplines methodology, 63
 strategic goals, costs, 295-300
dictionaries, DBMS, MME source, 94
Digital Asset Management software (DAM software), 287-288
digital dashboards, 269
Digital rights management (DRM software), 102, 288, 290
dimensional model, physical data modeling, 122-124
 snowflake schema, 125
 star schema, 124-125
 starflake schema, 126
direct retailers, business data value, 294
dirty data
 defect prevention, 59-60
 enterprise quality disciplines, 65
 quality improvement practices, 58-59
 recognizing, 49-51
disciplines, quality
 development methodology, 63
dirty data handling, 65
 manipulation reconciliation, 65
 maturity levels, 61-62
 metadata components, 63-64
 metrics, 66
 modeling, 64-65
 naming and abbreviations standards, 63
 security, 66
 standards and guidelines, 62-63
 testing, 65
discovery data mining, 268
disintegrated data, 24
distributed metadata repositories, 86-87
distributed organizations, 137
Distribution Independence rule (12 rules of relational databases), 105
Index

DM (Data Mart), 264
documentation, metadata
 analysis, 89
categories, 78-82
construction, 91-92
critical data strategy, 74-78
deployment, 92-93
design, 90-91
justification, 88
MME (Managed Metadata Environment), 93-97
planning, 88-89
repositories, 84-87
sources, 82, 84
Documentum™ (EMC), 283
domains
 business attribute data quality, 54
 completeness, 56
 data ownership, 148
dormant data, measurements for
 monitoring performance, 192-193
DRM (Digital rights management) software, 102, 288, 290
DW (Data Warehousing), 26-27, 99, 264-265
 DM (Data Mart), 264
 EDW (Enterprise Data Warehouse), 264
 integration risks, 41
 ODS (Operational Data Store), 264
 promises versus realities, 26-27
 strategic goals
 benefits metrics, 301
 development costs, 296-298
Dynamic On-Line Catalog Based on the Relational Model rule, 103

de

E

E/R model (entity-relationship model), 99, 101, 105
 business-focused data analysis, 106
 data integration, 108
 data quality, 109
 process-independence, 105-106
EA (enterprise architecture), 66-69
EAI (Enterprise Application Integration), 28
early code, DBMS vendors, 250
ECMS (enterprise content management systems), 283, 287-288
education
 data quality improvement cycle, 69
 integration planning, 44
EDW (Enterprise Data Warehouse), 264
EII (Enterprise information integration) tools, 42
electronic medical records (EMR software), 290
employee information, DBMS vendors, 253
EMR software (electronic medical records), 290
encryption, 214
English, Larry, CMM (capability maturity model) adaptation, 61
Enterprise Application Integration (EAI), 28
enterprise architecture (EA), 66
enterprise content management systems (ECMS), 283, 287-288
Enterprise Data Warehouse (EDW), 264
Enterprise information integration (EII) tools, 42
enterprise logical data model, 109
 big-bang effort versus incremental, 109-112
 top-down versus bottom-up, 112-115
Enterprise Resource Planning. See ERPs
entity completeness, 55
entity-relationship model. See E/R model
environments, metadata management, 96
ERPs (Enterprise Resource Plannings), 2, 24-25, 176-177, 232-233, 263
BI, 263
promises versus realities, 25
ersrors, minimizing data errors, 7
ETL (extract, transform, load), 8, 47, 100, 142
EU (European Union), 146, 211
Europe, fair-value accounting, 4
European Union (EU), 146
evaluation
data quality improvement cycle, 69
DBMS vendors, 246-249
early code, 250
financial capacity, 254
level of service, 250
performance, 249
personnel capacity, 253
rules of engagement, 250-252
selection matrix, 254-255
setting agenda for meetings and presentations, 252-253
results, benchmarks (capacity planning), 174-175
executing, integration process, 45
executives, quality incentive programs, 69-71
external data
integration risks, 41
security, 216
external users, auditing procedures, 212
extract/transform/load (ETL), 8, 47, 100, 142

F
fair-value accounting, 4
Family Educational Rights and Privacy Act (FERPA), 210
Federal Bureau of Investigation (FBI), 270
federation, data integration, 42-43
FERPA (Family Educational Rights and Privacy Act), 210
Fifth Normal Form (5NF), 107
financial capacity, DBMS vendors, 254
First Normal Form (1NF), 106
Flavin, Mat, 101
foreign keys, 114
Fourth Normal Form (4NF), 107
fraud
BI (business intelligence), 13
detecting through data integration, 32
strategic goal benefits metric, 303

G
Gane-Sarson, 100
Gartner Group, report on BI, 262-263
gathering references, DBMS selection, 237
goals
benchmarks (capacity planning), 170
organizations data, 5-6
ROI (return on investment), 295
governors (tuning option), 197
Gramm-Leach-Bliley Act, 210
Guarantees Access rule (12 rules of relational databases), 103
guidelines, quality disciplines, 62-63

H
Health Insurance Portability and Accountability Act (HIPAA), 210
help desk/support, DBMS TCO (total cost of ownership), 231
HIPAA (Health Insurance Portability and Accountability Act), 210
history
BI (business intelligence), 261-262
data, quality, 8
UD (unstructured data), 278, 280
Index

HMOs, rule-based analytics, 268
HOLAP (Hybrid OLAP), 266
horizontal partitioning, 121
hospitals, rule-based analytics, 268
Hybrid OLAP (HOLAP), 266

IBM, DB2, 226
IDUG (International DB2 User Group), 238
IFS (Oracle), 283
implementation data
integration planning, 44-45
quality improvement cycle, 69
strategies, 15
performance, 177, 180
planning, 44-45
improvement practices, quality
cleansing dirty data, 58-59
data profiling, 57-58
defect prevention, 59-60
inaccurate data, 49
incentives, executive quality sponsorship, 69-71
incomplete data, 50
inconsistent data, 50
incorrect data, 49
incremental effort, building enterprise
logical data model, 109-112
indexes
physical data modeling, 121
tuning option, 196
influential factors, physical data
modeling, 126
cultural influence, 128
DBMS software, 127
denormalization for short-term
solutions, 127
KISS principle, 130
metric facts, 129-130
modeling expertise, 128
powerful servers, 127
robust models, 126-127
user-friendly structures, 129
information
consumers, 71
legislation, compliance, 30
rule (12 rules of relational
databases), 103
stewards, roles and responsibilities,
151-155
information resource management
(IRM), 102
inheritance, business attribute data
quality, 53-54
intangible benefits, template, 315
integration (data), 6-7, 23
business case, 31-32
business data
acquisitions, 36-37
data lineage, 37-38
knowing business entities, 35-36
mergers, 36-37
multiple DBMSs, 38
redundancy, 37
CMM (capability maturity
model), 43
consolidating data, 42
CRM (Customer Relationship
Management), 27
definitions, 23-24
disintegrated data, 24
DW (Data Warehousing), 26-27
EAI (Enterprise Application
Integration), 28
ERP (Enterprise Resource Planning),
24-25
federating data, 42-43
implementation planning, 44-45
industry opportunities, 32-35
logical, 38
management support, 29-31
physical, 38
prioritizing data, 39-40
risks, 40-41
silver-bullet solutions, 24
standardized DBMSs, 227
integrity, DBMS vendors, 247
Integrity Independence rule (12 rules
of relational databases), 105
intellectual capital, 4
internal cost containment, 302
internal rate or return (IRR), 311
internal staff, DBMS TCO (total cost
of ownership), 231
International DB2 User Group
(IDUG), 238
international rules, security, 211
IOUG (International Oracle User
Group), 238
IRM (information resource
management), 102
IRR (internal rate of return), 311

J-K
Jennings, Michael, Universal Meta Data
Models, 93
job scheduling, metadata management, 96
Kelvin, Lord, 11, 21
Kimball, Ralph, 99
KISS (keep it simple stupid)
principle, 130

L
Large Objects (LOBs), 279
legacy systems, retiring through
integrated databases, 32
legalities, prioritizing data, 40
level of service, DBMS vendors, 250
levels, CMM (capability maturity model), 43
lineage
data integration process, 37-38
Y2K, 38
load time, capacity planning, 174
LOBs (Large Objects), 279
Logical Data Independence rule (12 rules
of relational databases), 104
logical data integration, 38
logical data model, 101, 105
business-focused data analysis, 106
data integration, 108
data quality, 109
enterprise logical data model, 109
big-bang effort versus incremental,
109-112
top-down versus bottom-up,
112-115
enterprise quality discipline, 64
process-independence, 105-106
loyalty cards, business data value, 294

M
Managed Metadata Environment.
See MME
management
data, 15
integration support, 29-31, 40
planning integration, 44
Managing Enterprise Content, 290
many-to-many cardinality, 52
many-to-one cardinality, 52
Marco, David, Universal Meta Data
Models, 93
marketing
business data value, 294
response rates, 304
Mastering Data Warehouse Design, 122
maturity levels, data quality, 61-62
<table>
<thead>
<tr>
<th>Index</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>means of measurement, performance monitoring, 193</td>
<td></td>
</tr>
<tr>
<td>measurements integration planning, 44 performance monitoring, 190 conformance to measures of success, 191 dormant data, 192-193 means of measurement, 193 reporting results to management, 194-195 resource utilization, 192 response time, 191 responsibility for measurement, 193 ROI (return on investment), 194 usage metrics, 191 use of measurement, 193-194 user satisfaction, 192 results, benchmarks (capacity planning), 174-175</td>
<td></td>
</tr>
</tbody>
</table>
| meetings, DBMS vendors, 252-253 membership cards, business data value, 294 mergers, data integration process, 36-37 metadata, 8-9, 74 administrator data governance group, 60 roles and responsibilities, 142 categories, 78-79 business, 79-81 process, 81-82 technical, 81 usage, 82 critical data strategy, 74 business intelligence keystone, 74-75 management initiative, 76-78 required support, 75 data strategy development costs, 296 enterprise quality disciplines, 63-64 MME (Managed Metadata Environment), 93-94 communication, 97 delivery, 97 integration, 95 management, 95-96 metadata marts, 96 selling, 97 sources, 94 repository, 77, 84, 265 analysis, 89 building, 85 centralized, 85-86 construction, 91-92 deployment, 92-93 design, 90-91 distributed, 86-87 EA (enterprise architecture), 68 justification, 88 planning, 88-89 purchasing product, 84-85 XML-enabled, 87 sources, 82, 84 methodology, benchmarks (capacity planning), 171 actual test data and queries, 172 availability, 173-174 data volume, 172 load time, 174 success criteria, 172-173 system configuration, 172 metrics enterprise quality disciplines, 66 facts, influence on physical data model, 129-130 monitoring performance, 190 conformance to measures of success, 191 dormant data, 192-193 means of measurement, 193 reporting results to management, 194-195 resource utilization, 192 response time, 191 responsibility for measurement, 193 ROI (return on investment), 194 usage, 191
use of measurement, 193-194
user satisfaction, 192
strategic goal benefits
benefit decisions, 306-307
cash flow acceleration, 301
competitive effectiveness, 306
cost containment, 302-303
customer attrition control, 304
customer conversion rates, 303
customer service, 307
data mart consolidation, 305
demand management, 303
employee empowerment, 307
fraud reduction, 303
improved supplier relationships, 304
marketing campaign responses, 304
post implementation measurement, 307-308
productivity analysis, 301-302
public relations, 305-306
revenue enhancement, 301
Microsoft, 226
The Mind Manipulators: A Non-Fiction Account, 205
mining (data), 267
Discovery, 268
Predictive, 267
trends, 270
MME (Managed Metadata Environment), 93-96
modeling, 9
data modeling, 99-100
time logical data model, 109-115
logical data model, 105-109
origins, 100-101
physical data modeling, 115-130
significance of, 102-105
data strategy development costs, 296
enterprise quality discipline, 64-65
expertise, influence on physical data model, 128
performance, capacity planning, 166-175
requirements, 166
modules, ERP (Enterprise Resource Planning), 24-25
MOLAP (Multidimensional OLAP), 266
monitoring
measurements, 190
conformance to measures of success, 191
dormant data, 192-193
means of measurement, 193
reporting results to management, 194-195
resource utilization, 192
response time, 191
responsibility for measurement, 193
ROI (return on investment), 194
usage metrics, 191
use of measurement, 193-194
user satisfaction, 192
security policies, 217
Multidimensional OLAP (MOLAP), 266
MySQL, 226
myths, BI (business intelligence), 272-274

N
naming, quality standards, 63
Napster™, 289
NCR, Teradata, 226
NDAs (nondisclosure agreements), 242
near real-time data
integration risks, 41
versus real time, 150
net present value (NPV), 309-311
network usage, DBMS TCO (total cost of ownership), 230
nondisclosure agreements (NDAs), 242
nonintegrated data, 50
Nonsubversion rule (12 rules of relational databases), 105
normalization rules, 106, 111, 122
NPV (net present value), 309-311

O
ODS (operational data store), 147, 264
office politics, BI, 263
OLAP (online analytical processing), 143, 262, 266
OLTP (online transaction processing), 161, 165, 261
one-to-many cardinality, 52
one-to-one cardinality, 52
one-to-one optionality, 52
one-to-zero optionality, 53
online analytical processing (OLAP), 143, 262, 266
online transaction processing (OLTP), 161, 165, 261
operational data
 cleansing dirty data, 58-59
 defect prevention, 59-60
operational data store (ODS), 147, 264
operational transactions, 165
opportunities, integration support, 32-35
optimizer tweeking (tuning option), 196
optionality, business entity quality rules, 52-53
options, tuning, 196-197
Opton, Edward M. Jr., The Mind Manipulators: A Non-Fiction Account, 205
Oracle, 226, 283
organizations
 responsibilities, 10
 roles, 10
security, 11-12
strategic goals, ROI (return on investment), 295
teams
 assessment exercise, 156-157
 building, 134
 change resistance, 134-135
 data ownership, 148-151
 information stewards, 151-155
 roles and responsibilities, 140-148
 structure, 135-138
 training, 138-140
 weekly meeting agenda, 158
worst practices, 156
UD (unstructured data), 282
unstructured data, 14
vision and goals, 4-6
origins, data modeling, 14-101
outsourced personnel, 137-138
ownership, data, 148-150

P
Page-Jones, Meilir, 100
partitioning, physical data modeling, 121-122
payback period, 309
performance-guiding principles, 162-163
personnel, goal development costs, 298
personnel capacity, DBMS vendors, 253
Physical Data Independence rule (12 rules of relational databases), 104
physical data integration, 38
physical data modeling, 115-129
pitfalls, BI (business intelligence), 272-274
planning, data
 integration, 44-45
 quality improvement cycle, 69
policies
 metadata management initiative, 77
 security, 217, 218
politics, prioritizing data, 39
practices, quality improvement
cleansing dirty data, 58-59
data profiling, 57-58
defect prevention, 59-60
precision, validity rules, 56
Predictive data mining, 267
preferred savings cards, business data
value, 294
presentations, DBMS vendors, 252-253
prevention, quality improvement
practices, 59-60
prime words, business metadata
names, 80
principles, performance-guiding, 162-163
prioritizing
data integration, 39-40
planning integration, 44
privacy
auditing procedures, 211-212
common practices, 218-219
data, 11-12
ownership, 148-149
sensitivity exercise, 219-220
strategy development costs, 296
warehouse, 215. See also DW
design, 213-214
policies, 217-218
regulatory laws, 210-211
role-based access matrix, 206-207
staff roles and responsibilities, 208-210
vendors
external data, 216
software, 215-216
procedures, metadata management
initiative, 77
process for selection, DBMSs, 234-241
process-dependence, physical data
modeling, 116
process-independence, data modeling, 105-106
processes
improvement through data
integration, 31
integration, 35-41
metadata, 81-82
enterprise quality disciplines, 63
sources, 83
reference checking, DBMS selection, 238-239
product development time, increasing
efficiency through data integration, 29
production data, security, 213
productivity, strategic goal benefits
metric, 301-302
professional employee information,
DBMS vendors, 253
profiling, quality improvement practices, 57-58
public relations, strategic goal benefits
metric, 305-306
purging, metadata management, 95

Q
qualifiers, business metadata names, 80
queries, 161
design reviews, 185-186
establishing benchmark criteria
and methodology (capacity
planning), 172
questionnaires,
Data Environment Assessment, 16-21
reference checking, DBMS selection, 239-241

R
radio frequency identification (RFID), 29, 271
rate of return, 309-311
real-time data
integration risks, 41
versus near real time, 150
reconciliation
enterprise quality discipline, 65
results, benchmarks (capacity planning), 175
recoveries, metadata management, 96
recruiting, planning integration, 44
redundancy (data)
integration process, 37
minimizing, 7-9
reference checking, DBMS selection, 236
alternatives to reference checking, 236-237
desired references, 237-238
process, 238-239
questions to ask, 239-241
selecting and gathering references, 237
referential integrity (RI), 197
regulations, prioritizing data, 40
regulatory laws, security, 210-211
relational database management system.
See RDBMS
relational databases, 12 rules of relational databases, 103-105
relational model, 102
“A Relational Model of Data for Large Shared Data Banks” (Codd), 102
Relational OLAP (ROLAP), 266
relationship completeness, 56
reporting
design reviews, 185-186
metadata marts, 96
repositories, metadata, 77, 84
analysis, 89
building, 85
centralized, 85-86
construction, 91-92
deployment, 92-93
design, 90-91
distributed, 86-87
justification, 88
planning, 88-89
purchasing product, 84-85
XML-enabled, 87
requests for information (RFIs), 242
requests for proposals. See RFPs
requests for quotes (RFQs), 242
requirements
effective modeling, 166
performance, 163-164
research, planning integration, 44
resource utilization, measurements for monitoring performance, 192
response time
measurements for monitoring performance, 191
SLAs (service level agreements), 165-166
responsibilities, 140
consultants, 145
contractors, 145
data administrator, 142
data ownership, 148-151
data quality steward, 143-144
data strategist, 140-141
DBA (database administrator), 141-142
information stewards, 151-155
metadata administrator, 142
organizational, 10
security, 145-146, 208-210
sharing data, 146-147
strategic data architect, 147
technical services, 147-148
worst practices, 156
responsibility for measurement, performance monitoring, 193
retail, cost containment, 302
retailers, 294
retention, UD (unstructured data), 285-286
return on investment. See ROI
revenues
BI (business intelligence), 13
increasing through data integration, 29
strategic goal benefits metric, 301
reviews, design reviews, 180-187
RFID (radio frequency identification), 29, 271-272
RFIs (requests for information), 242
RFPs (requests for proposals), 242
DBMSs, 242
best practices, 242-245
response formats, 246
RFQs (requests for quotes), 242
RI (referential integrity), 197
risks
integrating data, 40-41
ROI calculation, 310
robust models, influence on physical data model, 126-127
Rockley, Ann, unified content strategy, 282
ROI (return on investment), 194, 295
BI, 262
break-even analysis, 309, 312
calculations, 309
cost of capital, 309
equation, 309-312
risk, 310
net present value, 309-311
performance monitoring, 194
rate of return, 309-311
ROLAP (Relational OLAP), 266
role-based access matrix, 206-207
roles, 140
assessment exercise, 156-157
consultants, 145
contractors, 145
data administrator, 142
data ownership, 148-151
data quality steward, 143-144
data strategist, 140-141
DBA (database administrator), 141-142
information stewards, 151-155
metadata administrator, 142
organizational, 10
security, 145-146
security officer, 208-209
system administrators, 209-210
sharing data, 146-147
strategic data architect, 147
technical services, 147-148
worst practices, 156
rule-based analytics, 268
rules
12 rules of relational databases, 103-105
data quality
business attributes, 53-54
business entities, 51-53
dependency, 54-55
validity, 55-57
of engagement, DBMS vendors, 250-252
normalization, 106, 111, 122
Sarbanes-Oxley Act of 2002, 30, 210, 281
satisfaction surveys, measurements for monitoring performance, 192
Scheflin, Alan W., The Mind Manipulators: A Non-Fiction Account, 205
SCI (supply chain intelligence), 29
Scofield, Michael, Corporate Data Stewardship Function, 151
SDLC (system development life cycle), 77, 100
searchability, UD (unstructured data), 286-287
Second Normal Form (2NF), 107
security
auditing procedures, 211-212
common practices, 218-219
Index

data, 11-12
 warehouse, 215. See also DW
 ownership, 148-149
 sensitivity exercise, 219-220
 strategy development costs, 296
databases, 213
design, 213-214
target quality disciplines, 66
target policies, 217-218
prioritizing data, 39
regulatory laws, 210-211
role-based access matrix, 206-207
roles and responsibilities, 145-146, 208-210
vendors, 215-216
selection
 criteria, DBMSs, 233-234
 matrix, DBMS vendors, 254-255
 process, DBMSs, 234-241
senior management, 15
service level agreements. See SLAs
set placement of data (tuning option), 196
shared data, 146-147
simple object access protocol (SOAP), 87
Single Version of the Truth, data
 modeling, 9
Six Sigma, 270
skills, information steward, 155
SLAs (service level agreements), 140, 164
data strategists responsibilities, 140
data warehouse, queries, 166
metrics, 165
online transactions, 166
response time, 165-166
smart keys (tuning option), 196
snowflake schema (dimensional model), 125
SOAP (simple object access protocol), 87
software
 DAM (Digital Asset Management), 287-288
 DRM (Digital rights management), 288, 290
 EMR (electronic medical records), 290
 expense, standardized DBMSs, 228
 goal development costs, 297-298
 security, 215-216
sources, metadata, 82-84
sponsorship, integration planning, 44
spreadsheets, MME source, 94
SQL Server (Microsoft), 226
stability, DBMS vendors, 246
staff
 assessment exercise, 156-157
 data ownership, 148-151
 expenses, standardized DBMSs, 228
 goal development costs, 298
 information stewards, 151-155
 responsibilities, 140-148
 structure, 135-136
 distributed organizations, 137
 outsourced personnel, 137-138
 training, 138-140
 weekly meeting agenda, 158
 worst practices, 156
standard benchmarks (capacity planning), 170-171
standardization, DBMSs, 12, 227
 integration, 227
 reduced staff expense, 228
 software expense, 228
standards
 quality disciplines, 62-63
 resistance to, 135
 security, 214
 XML-enabled metadata repositories, 87
star schema (dimensional model), 124-125
starflake schema (dimensional model), 126
storage, UD (unstructured data), 283-284
strategic data architect, 147
strategic goals
 benefits metric measurement, 301-308
development costs, 295-300
 ROI (return on investment), 295
stewards, roles and responsibilities, 151-155
success criteria, establishing benchmark
 criteria and methodology, 172-173
summary tables (tuning option), 196
suppliers, improved relationships, 304
supply chain intelligence (SCI), 29
supply chains, improving through data integration, 29
support, DBMS vendors, 246
surrogate keys, physical data modeling, 120-121
Sybase, 226
system development lifecycle (SDLC), 77, 100
Systematic Treatment of Null Values rule (12 rules of relational databases), 103

tables, design reviews, 184-185
tasks, performance, 201-202
tCO (total cost of ownership), 228, 299
 DBMSs, 228
 actual DBMS, 230
 consultants and contractors, 231
 hardware, 230
 help desk/support, 231
 internal staff, 231
 IT training, 232
 network usage, 230
 operations and system administration, 232
goal development costs, 299-300

teams
 assessment exercise, 156-157
 building, 134
change resistance
 existing staying same, 134-135
 nonacceptance to standards, 135
 reasons for, 135
data strategy, 15
information stewards, 151-155
responsibilities, 140-148
structure, 135-136
 distributed organizations, 137
 outsourced personnel, 137-138
training, 138
 choices for classes, 139
 employees attendance, 138-139
 required mindset, 139
 timing, 140
 weekly meeting agenda, 158
worst practices, 156
technical metadata, 81
 enterprise quality disciplines, 63
 sources, 83
technical segment, metadata repositories, 265
technical services, roles and responsibilities, 147-148
techniques, anticipating performance, 167
technologies
 BI (business intelligence), 269
 data mining, 270
 RFID (Radio Frequency Identification), 271-272
 UD (unstructured data), 287
 DAM software, 287-288
 DRM (Digital rights management) software, 288-290
 EMR (electronic medical records) software, 290
Teradata (NCR), 226
testing
data
 establishing benchmark criteria and methodology, 172
security, 213
enterprise quality discipline, 65
information, design reviews, 187
Third Normal Form (3NF), 107
time, real versus near real time, 150
Title VIII (Sarbanes-Oxley Act of 2002), 281
top-down logical data modeling, 112
total cost of ownership. See TCO
Total Quality Management, 270
training
goal development costs, 299
IT, DBMS TCO (total cost of ownership), 232
security policies, 217
teams, 138
choices for classes, 139
employees attendance, 138-139
required mindset, 139
timing, 140
transactions, 161, 165
travel data, business value, 294-295
trends, BI (business intelligence), 269
data mining, 270
RFID (Radio Frequency Identification), 271-272
triaging data, 65
tuning
databases, metadata management, 96
performance, 195
options, 196-197
reporting performance results, 197-198
selling management on, 198

U
UD (unstructured data), 277-278, 290
central strategy, 282-287
current state in organizations, 282
emerging technologies, 287
DAM software, 287-288
DRM (Digital rights management) software, 288-290
EMR (electronic medical records) software, 290
focus on, 280-282
history, 278-280
unified content strategy, dealing with UD (unstructured data), 282-283
archiving UD, 284
combining structured and unstructured data, 287
content reusability, 286
retention, 285-286
search and delivery, 286-287
storage and administration, 283-284
uniquenesses
business entity quality rules, 51
validity rules, 56-57
United States, fair-value accounting, 4
Universal Meta Data Models, 93
Universal Product Code (UPC), 271
University of California at Berkeley study, explosion of volume in data, 280
UPC (Universal Product Code), 271
usage
measurements for monitoring performance, 191
metadata, 82
enterprise quality disciplines, 63
sources, 84
segment, metadata repositories, 265
standards, security, 214
user-friendly structures, influence on physical data model, 129
users
expectations, performance, 189-190
role-based access matrix, 207
satisfaction, measurements for monitoring performance, 192
V
validity
integration risks, 41
quality rules, 55-57
value
business data, 291-292
call centers, 292
channel preferences, 293-294
click-stream data, 293
demographics, 293
direct retailers, 294
internal customer
information, 292
loyalty cards, 294
selling customer data, 292
tavel data, 294-295
strategic goals
benefits metric measurement,
301-308
development costs, 295-300
ROI (return on investment), 295
vendors
DBMSs, evaluation, 246-255
security
external data, 216
software, 215-216
verification, results, benchmarks (capacity
planning), 175
versioning, metadata management, 96
vertical partitioning, 121
View Updating rule (12 rules of relational
databases), 104
vision
data strategy, 4
organizations data, 5-6
visualization, BI (business
intelligence), 267

W
Wall Street, data value to, 4
websites, click-stream data, 293
wisdom, CMM (capability maturity
model), 62
word processing files, MME source, 94

X-Y-Z
XML-enabled metadata repositories, 87
Y2K, data lineage, 38
yield, 309-311
Yourdon, Ed, 100
zero-to-one optionality, 53
zero-to-zero optionality, 53