
1
When a Microsoft Windows machine is involved in an incident, we have several choices
of how to proceed in our investigation. The overall scenario usually dictates the next
steps an investigator takes. Sometimes your victim cannot afford to remove the system
from the network because a proper backup server cannot be swapped in its place.
Therefore, a traditional forensic duplication cannot be acquired. Other times, the data
currently in memory may be the only evidence of the incident. This chapter will address
a technique for collecting and analyzing forensically sound evidence from what is known
as the Live Incident Response Process.

In short, a live response collects all of the relevant data from the system that will be
used to confirm whether an incident occurred. The data collected during a live response
consists of two main subsets: volatile and nonvolatile data. The volatile data is informa-
tion we would lose if we walked up to a machine and yanked out the power cord. This
data would not be present if we were to rely on the traditional analysis methods of foren-
sic duplications. A live response process contains information such as the current net-
work connections, running processes, and open files. On the other hand, the nonvolatile
data we collect during the live response is information that would be “nice to have.” We
would collect non-volatile data such as the system event logs in an easily readable for-
mat, for instance, instead of the raw binary files in which Microsoft Windows saves
them. Of course, this data would exist in a forensic duplication, but it would be more
difficult to output it in a nice format after the machine has been powered off.

The live response data is collected by running a series of commands. Each command
produces data that under normal circumstances would be sent to the console. Because

Windows Live
Response

3

Jones_01.qxd 8/25/2005 3:34 PM Page 3

we must save the data for further analysis, we want to transmit the data to our forensic
workstation (a machine that the forensic investigator considers trusted) instead of the
local victim’s hard drive. If we were to save the data locally to the victim’s hard drive,
there would be a significant chance that we would be overwriting evidence if we chose to
acquire a forensic duplication at a later date. Therefore, that effect is undesirable.

There are two main ways that we can transmit the data to the forensic workstation.
The first way is to use the “swiss army knife” of network administrators called netcat.
netcat simply creates TCP channels. netcat can be executed in a listening mode, like a
telnet server; or in a connection mode, like the telnet client. We can start a netcat server
on our forensic workstation with the following command:

nc –v –l –p 2222 > command.txt

The -v switch places netcat in verbose mode. The -l switch places netcat in listening
mode (like a telnet server). The -p switch tells netcat on which TCP port to listen for
data. By using this command, any data sent to TCP port 2,222 on our forensic worksta-
tion will be saved to command.txt. On the victim computer, you will want to run a com-
mand to collect live response data. The output of the command is sent over our TCP
channel on port 2,222 and saved on the forensic workstation instead of the victim’s hard
drive.

The data can be sent from the victim computer with the following command:

command | nc forensic_workstation_ip_address 2222

Of course, you will want to rename the italicized keywords such as command with
the command you run to collect the live response data. More relevant commands that
make up our Live Incident Response Process will be discussed shortly. Moreover, you
will want to substitute the IP address of your forensic workstation where it says
forensic_workstation_ip_address. After these commands have completed, you will
press CTRL-C (^C) to break the netcat session, and the resulting file command.txt will
contain all of the data from the command we executed. A simple MD5 checksum of
command.txt can be calculated so that you may prove its authenticity at a later date with
the following command:

md5sum –b command.txt > command.md5

The -b option tells md5sum to calculate the MD5 hash of the contents of the
command.txt file in binary mode. You will always want to use the -b command-line

CHAPTER 1 WINDOWS LIVE RESPONSE

4

Jones_01.qxd 8/25/2005 3:34 PM Page 4

switch. md5sum is available in the Cygwin utilities from www.cygwin.com. You may also use
the md5sum from UnxUtils located at unxutils.sourceforge.net. UnxUtils are native
Windows binaries, so you will not need additional dynamically linked libraries (DLL)
installed on your system like Cygwin requires. This will become important when we
create a response toolkit. We will discuss the methods of creating a response toolkit in
Chapter 16, “Building the Ultimate Response CD.”

In most circumstances, you will want to use a variant of netcat, named cryptcat
(http://sourceforge.net/projects/cryptcat), because it encrypts all of the data across
the TCP channel. cryptcat uses all of the same command-line switches as netcat.
cryptcat offers two advantages: secrecy and authentication. Because the data is
encrypted, intruders will not be able to see what you are collecting. Due to the encryp-
tion, any bit manipulation by an intruder will be detectable because it will be unen-
crypted on the forensic workstation. If the bits are altered when traversing the network,
your output will be garbled. You can choose the password used in the encryption algo-
rithm by issuing the -k command-line flag provided to cryptcat. You must have the
same encryption password on both sides of the connection for this process to work.

The rest of this chapter will assume you are collecting data through the TCP channel
we described earlier. When we discuss a new command, assume it will be transferred to
the forensic workstation through this “Poor Man’s FTP.” We have postponed the discus-
sion of how to create the toolkit that will contain these commands until Chapter 16,
when we discuss how the response toolkits are created. For the remainder of this chapter,
we will analyze the data acquired during the “JBR Bank’s Intrusion” live response sce-
nario that you may reference at the beginning of this book.

ANALYZING VOLATILE DATA

When we chose to run a live response on a victim system, the web server named
JBRWWW in our current scenario, most of the important data we acquired was in
volatile data. The volatile data of a victim computer usually contains significant informa-
tion that helps us determine the “who,”“how,” and possibly “why” of the incident. To help
answer these questions, we collected data from the following areas on the victim machine:

• The System Date and Time
• Current Network Connections
• Open TCP or UDP Ports
• Which Executables Are Opening TCP or UDP Ports
• Cached NetBIOS Name Table
• Users Currently Logged On

ANALYZING VOLATILE DATA

5

Jones_01.qxd 8/25/2005 3:34 PM Page 5

• The Internal Routing Table
• Running Processes
• Running Services
• Scheduled Jobs
• Open Files
• Process Memory Dumps

We will address each of these vital areas in their respective sections and analyze the
data we acquired from JBRWWW.

THE SYSTEM DATE AND TIME

This is probably the easiest information to collect and understand, yet it is one of the
most important pieces of information to the investigator and is easily missed. Without
the current time and date, it would be difficult to correlate the information between
victim machines if multiple machines were affected. Although in our scenario we are
examining a single system, your intrusions may involve tens or hundreds of systems.
Keeping the system time and noting the offset from a trusted source (such as a reliable
NTP server) is paramount when examining log files or other time-based evidence from
multiple servers.

The time and date are simply collected by issuing the time and date commands at the
prompt. The time and date for JBRWWW were found to be as follows:

The current date is: Wed 10/01/2003

The current time is: 21:58:19.29

This is indeed the time we started our live response on JBRWWW. We will also note
that this time is in EDT because we are collecting it on the east coast of the United States.

CURRENT NETWORK CONNECTIONS

It is entirely possible that we could be executing our live response process while the
attacker is connected to the server. It could also be possible that the attacker is running a
brute force mechanism against other machines on the Internet from this server.
Scenarios similar to the ones we mentioned earlier would be detected if we examined the
current network connections.

We view a machine’s network connections by issuing the netstat command.
Specifically, we need to specify the -an flags with netstat to retrieve all of the network

CHAPTER 1 WINDOWS LIVE RESPONSE

6

Jones_01.qxd 8/25/2005 3:34 PM Page 6

connections and see the raw IP addresses instead of the Fully Qualified Domain Names
(FQDN):

netstat –an

When we executed the netstat command on JBRWWW, we received the following
information:

Active Connections

Proto Local Address Foreign Address State

TCP 0.0.0.0:7 0.0.0.0:0 LISTENING

TCP 0.0.0.0:9 0.0.0.0:0 LISTENING

TCP 0.0.0.0:13 0.0.0.0:0 LISTENING

TCP 0.0.0.0:17 0.0.0.0:0 LISTENING

TCP 0.0.0.0:19 0.0.0.0:0 LISTENING

TCP 0.0.0.0:21 0.0.0.0:0 LISTENING

TCP 0.0.0.0:25 0.0.0.0:0 LISTENING

TCP 0.0.0.0:80 0.0.0.0:0 LISTENING

TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

TCP 0.0.0.0:443 0.0.0.0:0 LISTENING

TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

TCP 0.0.0.0:515 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1027 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1030 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1031 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1033 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1174 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1465 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1801 0.0.0.0:0 LISTENING

TCP 0.0.0.0:3372 0.0.0.0:0 LISTENING

TCP 0.0.0.0:4151 0.0.0.0:0 LISTENING

TCP 0.0.0.0:60906 0.0.0.0:0 LISTENING

TCP 103.98.91.41:139 0.0.0.0:0 LISTENING

TCP 103.98.91.41:445 95.208.123.64:3762 ESTABLISHED

TCP 103.98.91.41:1033 95.208.123.64:21 CLOSE_WAIT

TCP 103.98.91.41:1174 95.145.128.17:6667 ESTABLISHED

TCP 103.98.91.41:1465 95.208.123.64:3753 ESTABLISHED

TCP 103.98.91.41:3992 95.208.123.64:445 TIME_WAIT

TCP 103.98.91.41:4151 103.98.91.200:2222 ESTABLISHED

TCP 103.98.91.41:60906 95.16.3.23:1048 ESTABLISHED

TCP 127.0.0.1:1029 0.0.0.0:0 LISTENING

TCP 127.0.0.1:2103 0.0.0.0:0 LISTENING

ANALYZING VOLATILE DATA

7

Jones_01.qxd 8/25/2005 3:34 PM Page 7

TCP 127.0.0.1:2105 0.0.0.0:0 LISTENING

TCP 127.0.0.1:2107 0.0.0.0:0 LISTENING

TCP 127.0.0.1:4150 0.0.0.0:0 LISTENING

UDP 0.0.0.0:7 *:*

UDP 0.0.0.0:9 *:*

UDP 0.0.0.0:13 *:*

UDP 0.0.0.0:17 *:*

UDP 0.0.0.0:19 *:*

UDP 0.0.0.0:135 *:*

UDP 0.0.0.0:161 *:*

UDP 0.0.0.0:162 *:*

UDP 0.0.0.0:445 *:*

UDP 0.0.0.0:1026 *:*

UDP 0.0.0.0:1028 *:*

UDP 0.0.0.0:1032 *:*

UDP 0.0.0.0:3456 *:*

UDP 0.0.0.0:3527 *:*

UDP 103.98.91.41:137 *:*

UDP 103.98.91.41:138 *:*

UDP 103.98.91.41:500 *:*

UDP 103.98.91.41:520 *:*

The bolded lines represent the active network connections. The additional lines (that
are not bolded) are open ports, which we will address in the next section. Because we
know that our forensic workstation is at the IP address 103.98.91.200, we can ignore
corresponding connections. A TCP connection over port 2,222 was expected due to the
data transferal process we discussed earlier in this chapter with netcat. After removing
all of the other extraneous data, we are left with six interesting lines:

Proto Local Address Foreign Address State

TCP 103.98.91.41:445 95.208.123.64:3762 ESTABLISHED

TCP 103.98.91.41:1033 95.208.123.64:21 CLOSE_WAIT

TCP 103.98.91.41:1174 95.145.128.17:6667 ESTABLISHED

TCP 103.98.91.41:1465 95.208.123.64:3753 ESTABLISHED

TCP 103.98.91.41:3992 95.208.123.64:445 TIME_WAIT

TCP 103.98.91.41:60906 95.16.3.23:1048 ESTABLISHED

The first line is a connection to JBRWWW’s Windows 2000 NetBIOS port. Therefore,
the IP address 95.208.123.64 could be issuing commands with a tool like psexec, con-
necting to a file share with the net use command, or exploiting some other Microsoft
Windows functionality. The second line is very interesting. JBRWWW is connecting to
port 21, the FTP port, on system 95.208.123.64. Because the administrator swears he

CHAPTER 1 WINDOWS LIVE RESPONSE

8

Jones_01.qxd 8/25/2005 3:34 PM Page 8

was not involved in this connection, we flag this line as suspicious activity. The third line
is a connection to an IRC server (TCP port 6,667) at 95.145.128.17. This is another con-
nection the administrator did not participate in, and we note it as such.

The fourth line does not look familiar to us. A quick search on www.portsdb.org
shows this could be the “nattyserver” or “ChilliASP” service. Because this information
does not ring a bell, we flag this connection as “possibly suspicious” and move on. The
fifth line details a NetBIOS connection from our victim machine back to 95.208.123.64.
This could indicate that the attacker has issued a net use command on JBRWWW to
map a share on his attacking machine to the victim machine. Because this IP address
showed up more than once in the suspicious activity category, we also flag this connec-
tion as suspicious. The last line shows a connection involving JBRWWW’s TCP port
60,906. Ports above 1,024 typically are ephemeral ports. Notice that it is also connecting
to an ephemeral port on a different destination IP address at 95.16.3.23. An untrained
eye may have passed this line over by now, but we add it to our possible suspicious activ-
ity category.

OPEN TCP OR UDP PORTS

If we return to the lengthy netcat listing shown earlier, all of the lines that are not
bolded are open ports. We are interested in these lines for one reason: an open rogue
port usually denotes a backdoor running on the victim machine. Now, we realize that
Windows opens a lot of legitimate ports during the course of doing its business, but we
can weed many of them out quickly.

The first lines up through TCP port 515 are normal Windows ports, typically started
when IIS and simple TCP/IP services are installed on the machine. The next TCP ports,
up to the established connections portion of the output, are the ephemeral ports:

Proto Local Address Foreign Address State

TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1027 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1030 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1031 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1033 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1174 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1465 0.0.0.0:0 LISTENING

TCP 0.0.0.0:1801 0.0.0.0:0 LISTENING

TCP 0.0.0.0:3372 0.0.0.0:0 LISTENING

TCP 0.0.0.0:4151 0.0.0.0:0 LISTENING

TCP 0.0.0.0:60906 0.0.0.0:0 LISTENING

ANALYZING VOLATILE DATA

9

Jones_01.qxd 8/25/2005 3:34 PM Page 9

We see that there are a lot of ports open that we cannot identify. They could be legiti-
mately open ports or ports onto which the attacker has attached a backdoor. With
netstat alone, we cannot identify the purpose of the open ports, so we have to see which
executables opened the ports to get a better idea of their purposes.

EXECUTABLES OPENING TCP OR UDP PORTS

To examine the strange ports that are open on this machine, we must link the open ports
to the executables that opened them. There is a tool that does this called FPort, freely dis-
tributed at www.foundstone.com. FPort does not need additional command-line argu-
ments to execute it during our live response. After we executed FPort, we received the
following results:

FPort v1.31 - TCP/IP Process to Port Mapper

Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Securing the dot com world

Pid Process Port Proto Path

1292 tcpsvcs -> 7 TCP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 9 TCP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 13 TCP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 17 TCP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 19 TCP C:\WINNT\System32\tcpsvcs.exe

1044 inetinfo -> 21 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

1044 inetinfo -> 25 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

1044 inetinfo -> 80 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

380 svchost -> 135 TCP C:\WINNT\system32\svchost.exe

8 System -> 139 TCP

1044 inetinfo -> 443 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

8 System -> 445 TCP

1292 tcpsvcs -> 515 TCP C:\WINNT\System32\tcpsvcs.exe

492 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe

784 msdtc -> 1027 TCP C:\WINNT\System32\msdtc.exe

860 mqsvc -> 1029 TCP C:\WINNT\System32\mqsvc.exe

8 System -> 1030 TCP

1044 inetinfo -> 1031 TCP C:\WINNT\System32\inetsrv\inetinfo.exe

1372 ftp -> 1033 TCP C:\WINNT\system32\ftp.exe

1224 iroffer -> 1174 TCP C:\WINNT\system32\os2\dll\iroffer.exe

1224 iroffer -> 1465 TCP C:\WINNT\system32\os2\dll\iroffer.exe

860 mqsvc -> 1801 TCP C:\WINNT\System32\mqsvc.exe

860 mqsvc -> 2103 TCP C:\WINNT\System32\mqsvc.exe

860 mqsvc -> 2105 TCP C:\WINNT\System32\mqsvc.exe

CHAPTER 1 WINDOWS LIVE RESPONSE

10

Jones_01.qxd 8/25/2005 3:34 PM Page 10

860 mqsvc -> 2107 TCP C:\WINNT\System32\mqsvc.exe

784 msdtc -> 3372 TCP C:\WINNT\System32\msdtc.exe

1348 t_NC -> 4151 TCP D:\win_2k\intel\bin\t_NC.EXE

1224 iroffer -> 4153 TCP C:\WINNT\system32\os2\dll\iroffer.exe

1424 nc -> 60906 TCP C:\WINNT\system32\os2\dll\nc.exe

1292 tcpsvcs -> 7 UDP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 9 UDP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 13 UDP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 17 UDP C:\WINNT\System32\tcpsvcs.exe

1292 tcpsvcs -> 19 UDP C:\WINNT\System32\tcpsvcs.exe

380 svchost -> 135 UDP C:\WINNT\system32\svchost.exe

8 System -> 137 UDP

8 System -> 138 UDP

1244 snmp -> 161 UDP C:\WINNT\System32\snmp.exe

1256 snmptrap -> 162 UDP C:\WINNT\System32\snmptrap.exe

8 System -> 445 UDP

224 lsass -> 500 UDP C:\WINNT\system32\lsass.exe

440 svchost -> 520 UDP C:\WINNT\System32\svchost.exe

212 services -> 1026 UDP C:\WINNT\system32\services.exe

860 mqsvc -> 1028 UDP C:\WINNT\System32\mqsvc.exe

1044 inetinfo -> 1032 UDP C:\WINNT\System32\inetsrv\inetinfo.exe

1044 inetinfo -> 3456 UDP C:\WINNT\System32\inetsrv\inetinfo.exe

860 mqsvc -> 3527 UDP C:\WINNT\System32\mqsvc.exe

The unidentified ports from the last section are bolded in this text. The first five lines
can most likely be attributed to system binaries opening TCP ports 1,025, 1,027, 1,029,
1,030, and 1,031. The next line shows that someone was running the native FTP client on
JBRWWW. Because the administrator states that he was not running the FTP client, we
flag this behavior as suspicious activity.

The next two lines detail an executable running in C:\winnt\system32\os2\dll that is
named iroffer.exe:

Pid Process Port Proto Path

1224 iroffer -> 1174 TCP C:\WINNT\system32\os2\dll\iroffer.exe

1224 iroffer -> 1465 TCP C:\WINNT\system32\os2\dll\iroffer.exe

Immediately this information seems suspicious because we are not aware of any
OS/2-related DLLs that open network ports. A quick search at www.google.com for “irof-
fer” turns up a Web site at www.iroffer.org. It is a real Web site, and the tool has legiti-
mate purposes. Apparently, this tool is a bot that connects to IRC channels and offers
remote control of JBRWWW! Thus, these two lines provide confirmation that there was an
incident involving JBRWWW.

ANALYZING VOLATILE DATA

11

Jones_01.qxd 8/25/2005 3:34 PM Page 11

The next five lines in the FPort output show ports opened by mqsvc.exe, a binary affil-
iated with the message queue in Windows. The next line detects our live response netcat
session:

Pid Process Port Proto Path

1348 t_NC -> 4151 TCP D:\win_2k\intel\bin\t_NC.EXE

We renamed our netcat binary on the CD-ROM to t_NC.EXE to symbolize that it was
“trusted.” It was also renamed so that we would not accidentally run a copy of nc.exe
from the victim machine. More information will be presented about live response toolk-
its in Chapter 16. If we move to the next two lines, we realize that they provide us with
most of the information regarding the attacker’s backdoors:

Pid Process Port Proto Path

1224 iroffer -> 4153 TCP C:\WINNT\system32\os2\dll\iroffer.exe

1424 nc -> 60906 TCP C:\WINNT\system32\os2\dll\nc.exe

It seems as if the attacker has not only iroffer on the system but a netcat session as
well. We cannot tell what the attacker is doing with the netcat session with only these
two lines. It could be an outbound connection, or it could be in listening mode, allowing
inbound connections free access to a command shell. When we reexamine the netstat
output shown earlier, we see that port 60,906 is actively listening. Therefore, we could
conclude through netcat and FPort that the attacker’s backdoor on 60,906 is currently
listening for connections and is actively connected to a rogue IP address.

We neglected to mention the UDP ports in the previous section, for good reason.
UDP is typically used less than TCP because it is a stateless protocol, so UDP ports may
be un-familiar to you. One way of determining open UDP ports is to check
www.portsdb.org along with the analysis of a similarly configured Windows 2000 server
with IIS and basic Unix services installed. Of course, that is the hard way of doing it. If
you compare the executable files that open UDP ports with the legitimately opened TCP
ports on JBRWWW, you will see that they are opened by similar system binaries. Of
course, to truly make sure they are system binaries, we must compare the MD5 check-
sum of these files with a known, trusted source such as Microsoft or by comparing them
to copies found on an uncompromised server.

CACHED NETBIOS NAME TABLES

When we examine the system event logs later in this chapter, we will see that Windows
(up until version 2003) stored connection specifics by NetBIOS name rather than IP

CHAPTER 1 WINDOWS LIVE RESPONSE

12

Jones_01.qxd 8/25/2005 3:34 PM Page 12

address. As an investigator, this does us no good. An attacker can easily change his
NetBIOS name to “HACKER,” do damage to your system, and then change it back to the
original value. Your logs would have the word “HACKER” as the connecting machine.

Because we want to map a NetBIOS name to an IP address to throttle the nefarious
individual, we can issue the nbtstat command during our live response to dump the vic-
tim system’s NetBIOS name cache. Please take note that this command will only show us
the NetBIOS name table cache, not a complete history of connections. Therefore, values
in this table represent connections to and from machines a relatively short time ago.
When we run the following command (the -c switch instructs nbtstat to dump the
cache):

nbtstat –c

we receive the following results:

Local Area Connection:

Node IpAddress: [103.98.91.41] Scope Id: []

NetBIOS Remote Cache Name Table

Name Type Host Address Life [sec]

——————————————————————————————

95.208.123.64 <20> UNIQUE 95.208.123.64 562

This is a unique response! The “name” of this server is actually the same as the IP
address for this computer located at 95.208.123.64. Usually the NetBIOS name would
appear in the “Name” column. When we examine additional evidence later in this chap-
ter, the actual IP address will show up for this computer, which will make our life a lot
simpler than having to count on NetBIOS names.

USERS CURRENTLY LOGGED ON

If you want to be stealthy during your live response, you could run PsLoggedOn, which
is a tool distributed within the PsTools suite from www.sysinternals.com. This tool will
return the users that are currently logged onto the system or accessing the resource
shares. When we execute this tool on JBRWWW without command-line parameters, we
receive the following information:

ANALYZING VOLATILE DATA

13

Jones_01.qxd 8/25/2005 3:34 PM Page 13

PsLoggedOn v1.21 - Logon Session Displayer

Copyright (C) 1999-2000 Mark Russinovich

SysInternals - www.sysinternals.com

Users logged on locally:

8/23/2003 3:32:53 PM JBRWWW\Administrator

Users logged on via resource shares:

10/1/2003 9:52:26 PM (null)\ADMINISTRATOR

There is one user logged in locally. The local Administrator login is attributed to our
live response because we must be logged in with Administrator access to run our tools.
The second login is also Administrator, but it is a remote login. Therefore, someone is
currently accessing JBRWWW as we are investigating the system. Notice that this con-
nection has administrator privileges, which is a prerequisite for PsExec, another tool
within the PsTool suite that we will discuss a little later on. Let us return to our current
network connections:

Proto Local Address Foreign Address State

TCP 103.98.91.41:445 95.208.123.64:3762 ESTABLISHED

For a user to be connected remotely, he or she must be connected to a NetBIOS port.
For Windows 2000, it is TCP port 445 or 139. For prior versions of Windows, it was only
TCP port 139. Therefore, we now know the attacker’s IP address is 95.208.123.64.

THE INTERNAL ROUTING TABLE

One of the nefarious uses of a compromised server involves the attacker altering the
route tables to redirect traffic in some manner. A benefit for the attacker of rerouting
traffic is avoiding a security device, such as a firewall. If there is a firewall in the way
of the attacker’s next victim, he may be able to enter the network through a different
router that has more permissive access control lists. It is possible that your compromised
server may enable him to do this. Another reason an attacker may alter the route table
is to redirect the flow of traffic to sniff (capture) the data flying by on the network
connection.

We can examine the routing table by issuing the netstat command with the -rn
command-line switch. The following data comes from the netstat command when
executed on JBRWWW:

CHAPTER 1 WINDOWS LIVE RESPONSE

14

Jones_01.qxd 8/25/2005 3:34 PM Page 14

===

Interface List

0x1 MS TCP Loopback interface

0x1000003 ...00 c0 4f 1c 10 2b 3Com EtherLink PCI

===

===

Active Routes:

Network Destination Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 103.98.91.1 103.98.91.41 1

103.98.91.0 255.255.255.0 103.98.91.41 103.98.91.41 1

103.98.91.41 255.255.255.255 127.0.0.1 127.0.0.1 1

103.255.255.255 255.255.255.255 103.98.91.41 103.98.91.41 1

127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1

224.0.0.0 224.0.0.0 103.98.91.41 103.98.91.41 1

255.255.255.255 255.255.255.255 103.98.91.41 103.98.91.41 1

Default Gateway: 103.98.91.1

===

Persistent Routes:

None

Route Table

Active Connections

Proto Local Address Foreign Address State

TCP 103.98.91.41:445 95.208.123.64:3762 ESTABLISHED

TCP 103.98.91.41:1033 95.208.123.64:21 CLOSE_WAIT

TCP 103.98.91.41:1174 95.145.128.17:6667 ESTABLISHED

TCP 103.98.91.41:1465 95.208.123.64:3753 ESTABLISHED

TCP 103.98.91.41:3992 95.208.123.64:445 TIME_WAIT

TCP 103.98.91.41:4151 103.98.91.200:2222 ESTABLISHED

TCP 103.98.91.41:60906 95.16.3.23:1048 ESTABLISHED

The routing table looks like a normal routing table for this server. Notice that this com-
mand also lists open network connections. The list of open network connections matches
exactly the version we saw previously when we issued the netstat -an command.

RUNNING PROCESSES

Ultimately, we would like to know what processes the attacker executed on JBRWWW
because they could contain backdoors or further the attacker’s efforts into the victim’s
network. We can list the process table with the pslist tool from the PsTools suite

ANALYZING VOLATILE DATA

15

Jones_01.qxd 8/25/2005 3:34 PM Page 15

distributed from www.sysinternals.com. Executing pslist without flags gives us the fol-
lowing information:

PsList v1.2 - Process Information Lister

Copyright (C) 1999-2002 Mark Russinovich

Sysinternals - www.sysinternals.com

Process information for JBRWWW:

Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time

Idle 0 0 1 0 16 0:00:00.000 4:32:11.623 942:27:36.131

System 8 8 32 183 212 0:00:00.000 0:00:16.073 942:27:36.131

smss 140 11 6 33 344 0:00:00.010 0:00:00.470 942:27:36.131

csrss 164 13 14 449 1804 0:00:00.460 0:00:06.339 942:27:27.649

winlogon 184 13 14 336 2920 0:00:00.721 0:00:02.513 942:27:26.067

services 212 9 32 532 5432 0:00:02.643 0:00:05.087 942:27:24.084

lsass 224 9 14 276 1208 0:00:01.271 0:00:01.642 942:27:24.044

svchost 380 8 6 222 2464 0:00:02.994 0:00:04.135 942:27:20.108

SPOOLSV 408 8 10 98 2460 0:00:00.050 0:00:00.160 942:27:19.467

svchost 440 8 27 549 5784 0:00:00.510 0:00:00.771 942:27:19.347

regsvc 476 8 2 30 812 0:00:00.020 0:00:00.020 942:27:19.087

mstask 492 8 6 89 1772 0:00:00.040 0:00:00.040 942:27:18.786

explorer 636 8 10 225 1180 0:00:01.972 0:00:05.417 942:25:26.054

msdtc 784 8 22 166 3312 0:00:00.440 0:00:00.180 942:20:24.901

mqsvc 860 8 22 180 3628 0:00:00.160 0:00:00.370 942:20:21.697

inetinfo 1044 8 36 655 10712 0:00:08.352 0:00:05.327 942:17:39.914

snmptrap 1256 8 4 47 1148 0:00:00.010 0:00:00.020 942:16:44.374

tcpsvcs 1292 8 4 77 1444 0:00:00.010 0:00:00.100 942:16:39.958

snmp 1244 8 6 222 3132 0:00:00.050 0:00:00.160 942:13:39.358

cmd 556 8 1 24 1020 0:00:00.110 0:00:00.230 942:08:37.614

dllhost 888 8 11 135 3416 0:00:00.280 0:00:00.160 195:07:22.229

mdm 580 8 3 75 1928 0:00:00.030 0:00:00.030 195:07:21.047

dllhost 1376 8 23 229 4684 0:00:00.130 0:00:00.160 195:06:26.479

PSEXESVC 892 8 6 63 1008 0:00:00.010 0:00:00.030 2:41:47.564

cmd 1272 8 1 25 984 0:00:00.020 0:00:00.030 2:41:15.969

ftp 1372 8 1 39 1176 0:00:00.020 0:00:00.020 2:39:05.861

cmd 1160 8 1 28 976 0:00:00.020 0:00:00.010 2:24:25.536

nc 1424 8 3 40 1012 0:00:00.010 0:00:00.040 2:23:39.800

cmd 1092 8 1 34 968 0:00:00.010 0:00:00.020 2:22:03.992

iroffer 1224 8 5 95 2564 0:00:00.090 0:00:00.200 2:21:30.544

cmd 1468 8 1 30 984 0:00:00.030 0:00:00.030 2:00:02.272

cmd 496 8 1 24 964 0:00:00.020 0:00:00.090 0:00:00.841

T_NC 1348 8 1 28 1004 0:00:00.020 0:00:00.030 0:00:00.821

T_PSLIST 1484 8 2 87 1216 0:00:00.040 0:00:00.030 0:00:00.050

CHAPTER 1 WINDOWS LIVE RESPONSE

16

Jones_01.qxd 8/25/2005 3:34 PM Page 16

Upon the examination of this data, we see that the first several lines up to the bolded
section are system processes by the lengthy elapsed running time. This is indicative of
processes running since startup, which are typical system processes. The attacker could
have run something on startup, and we would have missed it by skimming the elapsed
time, so we would re-verify this process list against an uncompromised server to confirm
our theory.

Next, the bolded section shows the processes executed by the attacker. The processes
were executed approximately 2 hours and 40 minutes before we ran our live response.
This information gives us a time frame of when the attacker was on JBRWWW. Because
the machine was booted long ago, his initial attack may have been nearly three hours
before our response. If we calculate 2 hours and 40 minutes before our response started
(remember the date and time commands?), it was 19:18 on October 1, 2003.

It seems that the attacker ran PSEXECSVC, which is the result of a PsExec command
channel initiated to JBRWWW. PsExec is a tool distributed from www.sysinternals.com
that enables a valid user to connect from one Microsoft Windows machine to another
and execute a command over a NetBIOS connection. (That could explain the connec-
tions to port 445 that we discovered in an earlier section.) Attackers use this tool to typi-
cally run cmd.exe. Knowing that the attacker is running PsExec tells us a lot about this
intrusion. First, PsExec will only open a channel if you supply proper administrator-level
credentials. Therefore, the attacker has an administrator-level password. Second, the
attacker knows one of JBR’s passwords, and that password may work on other machines
throughout JBR’s enterprise. Third, the attacker must be running a Microsoft Windows
system on his attacking machine to execute PsExec.

We also see that the attacker is running the ftp command. One of the first things
attackers usually do when they gain access to a system is to transfer their tools to the vic-
tim machine. Perhaps this process is part of the standard hacker methodology. We also
see nc, which we will find out is netcat, and iroffer, a program we discussed previously.

The last three lines were part of our live response process, and we expected to see
them. This process list will be used again when we acquire memory dumps of the rogue
processes we discovered in this section.

RUNNING SERVICES

We saw in the last section that there was a process running with the name PSEXECSVC.
“SVC” probably stands for service. We can easily obtain a list of services with the
PsService executable distributed in the PsTools suite. The tool is run without command-
line arguments to obtain the data we need. The full results of this command are not

ANALYZING VOLATILE DATA

17

Jones_01.qxd 8/25/2005 3:34 PM Page 17

listed here because they are lengthy, but the full output can be found on your DVD. The
only service that catches our attention is the following:

PsService v1.01 - local and remote services viewer/controller

Copyright (C) 2001 Mark Russinovich

Sysinternals - www.sysinternals.com

SERVICE_NAME: PSEXESVC

DISPLAY_NAME: PSEXESVC

(null)

TYPE : 10 WIN32_OWN_PROCESS

STATE : 4 RUNNING

(STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)

WIN32_EXIT_CODE : 0 (0x0)

SERVICE_EXIT_CODE : 0 (0x0)

CHECKPOINT : 0x0

WAIT_HINT : 0x0

The other services are plainly Microsoft Windows services, and they contain valid
descriptions about their purposes. This service does not have a description. The (null)
line is where a description would typically be placed. We can see that this service is run-
ning, and with a little research on the Internet, we find information linking PSEXECSVC to
the PsExec tool. It is important to note that even if the PsExec tool were renamed, we
would still see this service in the service listing.

Services are important to us because an attacker can hide programs in them. If you
examine Psservice’s output, you will see that it is lengthy. An extra service in the list is
easy for an investigator to miss. In addition, unlike general processes, services can be
forced to start up at reboot. We have examined many intrusions in real life that use the
technique of starting backdoors, FTP servers, and more using Firedaemon. Firedaemon
makes any process a service and enables you to force its startup on reboots.

SCHEDULED JOBS

Attackers with administrative access can schedule jobs. This will enable an attacker to
run commands when he is not even on the box. For an example, an attacker may want to
schedule a job that will open a backdoor every night at 2AM. That way, your usual secu-
rity port scans will not pick up the backdoor during work hours. By typing at, we see the
following jobs scheduled on JBRWWW:

There are no entries in the list.

CHAPTER 1 WINDOWS LIVE RESPONSE

18

Jones_01.qxd 8/25/2005 3:34 PM Page 18

Therefore, we do not have to worry about that type of activity during this
investigation.

OPEN FILES

By examining the list of open files, we are able to determine more information pertinent
to our investigation. The PsTools suite contains another tool we can use to retrieve this
information. The program’s name is Psfile. When we run Psfile on JBRWWW, we
receive the following results:

PsFile v1.01 - local and remote network file lister

Copyright (C) 2001 Mark Russinovich

Sysinternals - www.sysinternals.com

Files opened remotely on JBRWWW:

[100] \PIPE\psexecsvc

User: ADMINISTRATOR

Locks: 0

Access: Read Write

[101] \PIPE\psexecsvc-CAINE-2936-stdin

User: ADMINISTRATOR

Locks: 0

Access: Write

[102] \PIPE\psexecsvc-CAINE-2936-stdout

User: ADMINISTRATOR

Locks: 0

Access: Read

[103] \PIPE\psexecsvc-CAINE-2936-stderr

User: ADMINISTRATOR

Locks: 0

Access: Read

We see that Psfile reports a system pipe opened by PSEXECSVC. We now see the word
CAINE. If you have become familiar with PsExec and Psfile, you would know that CAINE
is the NetBIOS name of the computer that connected to JBRWWW using PsExec. If we
were able to seize a potential attacker’s computer, we might want to search for this key-
word. We will talk about keyword searching later in this book when we discuss analyzing
forensic duplications.

ANALYZING VOLATILE DATA

19

Jones_01.qxd 8/25/2005 3:34 PM Page 19

PROCESS MEMORY DUMPS

We have seen that the attacker started rogue processes on JBRWWW, yet we do not really
know what exactly the attacker ran. Through previous forensic experience, we can make
educated guesses, as we did in the case of the netcat session being bound to a command
prompt, but we need a good way to find out for sure. To help us accomplish this, we will
capture the memory space of the suspect processes.

Traditionally, incident response and forensic investigators rarely collect the memory
space utilized by suspect processes from Windows systems. This is primarily due to the
lack of documented methods, techniques, and tools for this process. The nature of the
operating system, combined with associated imposed restrictions on protected memory
areas, makes memory acquisition and analysis complex and problematic. However, for
several reasons, not the least of which is the increasing sophistication of intrusion tools
and techniques, the acquisition and processing of application and system memory may
be of paramount importance. Such memory structures may provide critical investigative
and evidentiary material of a volatile nature—data that may be lost when the system is
powered down to perform a traditional forensic duplication. Examples of the types of
data that may be lost include the command line utilized by the intruder to execute a
rogue process, remotely executed console commands and their resultant output, clear-
text passwords, and unencrypted data. Although we won’t go into detail on the structure,
organization, and management of memory on these operating systems, we recommend
having a working knowledge of them to facilitate examination of captured memory. An
excellent reference is Inside Windows 2000, Third Edition, by David Solomon and Mark
Russinovich.

Microsoft provides a utility called userdump.exe for the Windows NT family of
operating systems that enables us to capture the memory space utilized by any execut-
ing process. This tool is a component of the Microsoft OEM Support tools package
available at

http://download.microsoft.com/download/win2000srv/Utility/3.0/NT45/EN-US/Oem3sr2.zip

Because userdump writes the process’s extracted memory to disk, we can’t use our
netcat sessions to transfer the data directly. We want to have as small an impact as possi-
ble on the suspect system, so before we execute userdump commands, which would write
large files to the suspect system’s hard drive (possibly deleting material of evidentiary
value in unallocated space), we will map a network share directly to our forensic system.
In this case, we mapped a share from our forensic system as drive Z: by using the
following command:

CHAPTER 1 WINDOWS LIVE RESPONSE

20

Jones_01.qxd 8/25/2005 3:34 PM Page 20

C:\> net use Z: \\103.98.91.200\data

The command completed successfully.

Now that we have a network-accessible storage area established on our forensic work-
station, we can familiarize ourselves with userdump. When we execute userdump.exe
without command-line options, user help is displayed:

User Mode Process Dumper (Version 3.0)

Copyright (c) 1999 Microsoft Corp. All rights reserved.

userdump -p

Displays a list of running processes and process IDs.userdump [-k] <ProcessSpec>

➥ [<TargetDumpFile>]

Dumps one process or processes that share an image binary file name.

-k optionally causes processes to be killed after being dumped.

<ProcessSpec> is a decimal or 0x-prefixed hex process ID, or the

base name and extension (no path) of the image file used to create

a process.

<TargetDumpFile> is a legal Win32 file specification. If not specified,

dump files are generated in the current directory using a name

based on the image file name.

userdump -m [-k] <ProcessSpec> [<ProcessSpec>...] [-d <TargetDumpPath>]

Same as above, except dumps multiple processes.

-d <TargetDumpPath> supplies the directory where the dumps will go.

The default is the current directory.

userdump -g [-k] [-d <TargetDumpPath>]

Similar to above, except dumps Win32 GUI apps that appear hang.

Note that userdump has several useful options, including capturing multiple processes
on a single command line and displaying running processes. To execute userdump on a
single suspect process, we simply supply it with a process ID (PID) that we obtained
from the earlier pslist command and a destination. To save the attacker’s netcat session
(PID 1,424) to our mapped hard drive at Z:, we executed the following command:

userdump 1424 Z:\nc_1424.dmp

User Mode Process Dumper (Version 3.0)

ANALYZING VOLATILE DATA

21

Jones_01.qxd 8/25/2005 3:34 PM Page 21

Copyright (c) 1999 Microsoft Corp. All rights reserved.

Dumping process 1424 (nc.exe) to

Z:\nc_1424.dmp...

The process was dumped successfully.

We acquired the process memory dumps for processes 1092, 1160, 1272, 1468, 1372,
1224, 1424, and 892 and placed the resultant files on your evidence DVD.

Now that we have the suspect application’s memory dump files, we can perform an
initial examination with dumpchk.exe, a utility provided as a component of the
Debugging Tools for Windows, which are available at http://www.microsoft.com/
whdc/ddk/debugging/default.mspx. Several of the utilities distributed as part of this
package, which can facilitate advanced analysis of captured memory processes such as
the kernel and user-mode debuggers, may require the symbols from the Windows oper-
ating system that were the source of the memory dump. These symbols and information
on their use are available at http://www.microsoft.com/whdc/ddk/debugging/
symbols.mspx.

The dumpchk utility is actually designed to validate a memory dump; however, it does
provide valuable information. On our forensic workstation, we executed dumpchk.exe to
examine the process memory dump of the suspected netcat process:

D:\dumpchk nc_1424.dmp

Microsoft (R) Windows Debugger Version 6.2.0013.1

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [nc_1424.dmp]

User Dump File: Only application data is available

Windows 2000 Version 2195 UP Free x86 compatible

Product: WinNt

[portions removed for brevity]

Windows 2000 Version 2195 UP Free x86 compatible

Product: WinNt

kernel32.dll version: 5.00.2191.1

PEB at 7FFDF000

InheritedAddressSpace: No

ReadImageFileExecOptions: No

BeingDebugged: No

ImageBaseAddress: 00400000

Ldr.Initialized: Yes

CHAPTER 1 WINDOWS LIVE RESPONSE

22

Jones_01.qxd 8/25/2005 3:34 PM Page 22

Ldr.InInitializationOrderModuleList: 131f38 . 13b470

Ldr.InLoadOrderModuleList: 131ec0 . 13b460

Ldr.InMemoryOrderModuleList: 131ec8 . 13b468

Base TimeStamp Module

400000 34d74d22 Feb 03 12:00:18 1998 C:\WINNT\system32\os2\dll\nc.exe

77f80000 38175b30 Oct 27 15:06:08 1999 C:\WINNT\System32\ntdll.dll

77e80000 3844d034 Dec 01 02:37:24 1999 C:\WINNT\system32\KERNEL32.dll

75050000 3843995d Nov 30 04:31:09 1999 C:\WINNT\System32\WSOCK32.dll

75030000 3843995d Nov 30 04:31:09 1999 C:\WINNT\System32\WS2_32.DLL

78000000 37f2c227 Sep 29 20:51:35 1999 C:\WINNT\system32\MSVCRT.DLL

77db0000 3844d034 Dec 01 02:37:24 1999 C:\WINNT\system32\ADVAPI32.DLL

77d40000 384700c2 Dec 02 18:29:06 1999 C:\WINNT\system32\RPCRT4.DLL

75020000 3843995d Nov 30 04:31:09 1999 C:\WINNT\System32\WS2HELP.DLL

74fd0000 3843995d Nov 30 04:31:09 1999 C:\WINNT\system32\msafd.dll

77e10000 3844d034 Dec 01 02:37:24 1999 C:\WINNT\system32\USER32.DLL

77f40000 382bd384 Nov 12 03:44:52 1999 C:\WINNT\system32\GDI32.DLL

75010000 3843995d Nov 30 04:31:09 1999 C:\WINNT\System32\wshtcpip.dll

SubSystemData: 0

ProcessHeap: 130000

ProcessParameters: 20000

WindowTitle: ‘nc -d -L -n -p 60906 -e cmd.exe’

ImageFile: ‘C:\WINNT\system32\os2\dll\nc.exe’

CommandLine: ‘nc -d -L -n -p 60906 -e cmd.exe’

DllPath:

‘C:\WINNT\system32\os2\dll;.;C:\WINNT\System32;C:\WINNT\system;C:\WINNT;C:\WINNT\

➥ system32;C:\WINNT;C:\WINNT\System32\Wbem’

Environment: 0x10000

Finished dump check

The output confirms the file name and location and provides a list of associated
dynamic link library files along with timestamps and the command line utilized to initi-
ate the netcat process. If you are familiar with netcat, the bolded command line in this
example should look familiar. It indicates that netcat was configured to detach from the
console, listen on port 60,906, and execute a command shell whenever a connection
occurred. This volatile data would have been lost if the process memory wasn’t captured,
and it simply would not be available if you examined the captured nc.exe binary alone.
Subsequent examination with dumpchk revealed that PID 1,224 was initiated with a com-
mand line of iroffer myconfig, and PID 1,372 with ftp 95.208.123.64.

Now we can examine the memory dumps for additional information by searching
through the contiguous ASCII strings that are embedded within. Because data stored by
an application or process in memory may be in Unicode format, we need to use a
Unicode-capable Windows version of the strings command. One is available at
http://www.sysinternals.com/ntw2k/source/misc.shtml, which displays Unicode and

ANALYZING VOLATILE DATA

23

Jones_01.qxd 8/25/2005 3:34 PM Page 23

standard ASCII by default. The Linux strings command does not display Unicode
strings by default, so if you are using this as a forensic processing platform, make sure
that you enable this option.

Running strings on the nc_1424 memory dump, you’ll immediately see the applica-
tion environment, which provides, among other things, the computer name, the system
path, the location on the file system of the executed application, and the command line
used:

strings nc_1424.dmp

Strings v2.1

Copyright (C) 1999-2003 Mark Russinovich

Systems Internals - www.sysinternals.com

g=C:=C:\WINNT\system32\os2\dll

ALLUSERSPROFILE=C:\Documents and Settings\All Users

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=JBRWWW

ComSpec=C:\WINNT\system32\cmd.exe

NUMBER_OF_PROCESSORS=1

OS=Windows_NT

Os2LibPath=C:\WINNT\system32\os2\dll;

Path=C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\Wbem

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 6 Model 6 Stepping 5, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=0605

ProgramFiles=C:\Program Files

PROMPT=PG

SystemDrive=C:

SystemRoot=C:\WINNT

TEMP=C:\WINNT\TEMP

TMP=C:\WINNT\TEMP

USERPROFILE=C:\Documents and Settings\Default User

windir=C:\WINNT

C:\WINNT\system32\os2\dll\

C:\WINNT\system32\os2\dll;.;C:\WINNT\System32;C:\WINNT\system;C:\WINNT;C:\WINNT\

➥ system32;C:\WINNT;C:\WINNT\System32\Wbem

C:\WINNT\system32\os2\dll\nc.exe

nc -d -L -n -p 60906 -e cmd.exe

Additional strings you will come across when you examine the captured memory files
include these:

CHAPTER 1 WINDOWS LIVE RESPONSE

24

Jones_01.qxd 8/25/2005 3:34 PM Page 24

*** XDCC Autosave: Saving... Done

*** Saving Ignore List... Done

es.c : 328 0.000000

*** XDCC Autosave: Saving... Done

*** Saving Ignore List... Done

Trace -1 mainloop src/iroffer.c You A|

*** XDCC Autosave: Saving... Done

*** Saving Ignore List... Done

ies.c : 328 0.000000

*** XDCC Autosave: Saving... Done

*** Saving Ignore List... Done

Trace -1 mainloop src/iroffer.c

w{‘

iroffer myconfig

C:\WINNT\System32\cmd.exe - iroffer myconfig

CygwinWndClass

IR>

23 File(s) 1,739,715 bytes

&NCN

2 Dir(s) 3,451,928,576 bytes free

C:\

WHATSNEW

C:\WINNT\system32\os2\dll\iroffer.exe

iroffer myconfig

2 Dir(s) 3,451,928,576 bytes free

C:\WINNT\system32\ftp.exe

ftp 95.208.123.64

jbrwww

jbrbank.com

xUSER ftp

uH<

User (95.208.123.64:(none)):

xl’

Password:

FTP. control

rator

(95.208.123.64:(none)):

Although nothing here is earth shattering, it does provide information that supports
the analysis. In subsequent chapters, you will see a situation where the examination of
process memory plays a critical role.

We acquired the process memory dumps for the following processes and placed them
on your evidence DVD: 1,092, 1,160, 1,272, 1,468, 1,372, 1,224, 1,424, and 892.

ANALYZING VOLATILE DATA

25

Jones_01.qxd 8/25/2005 3:34 PM Page 25

FULL SYSTEM MEMORY DUMPS

Now we have the application memory of the suspect processes, but we also want to cap-
ture all of the system memory, which may have remnants of other intruder processes or
previous sessions. We can obtain it using a program you are probably already familiar
with—dd.

George M. Garner, Jr. has modified dd, along with several other useful utilities, specifi-
cally for forensic investigation. Enhancements include built-in md5sum, compression, and
logging abilities, to name a few. By incorporating these frequently used options that are
normally associated with separate commands, he significantly reduces I/O, thus increasing
acquisition speed. For more information, and to download his tools, go to his Forensic
Acquisition Utilities page at http://users.erols.com/gmgarner/forensics. Some of
Garner’s utilities are based on the UnxUtils distribution, which provides many useful GNU
utilities. The UnxUtils are available at http://unxutils.sourceforge.net.

By using the /dev/kmem file on Unix systems, we can obtain a logical view of physical
memory from a live Unix operating system. Unfortunately, Windows NT operating sys-
tems do not provide such a file object, but Garner’s version of dd creates a
/Device/PhysicalMemory section object. A section object, also called a file-mapping
object, represents a block of memory that two or more processes can share, and it can be
mapped to a page file or other on-disk file. By mapping the /Device/PhysicalMemory
section object to virtual address space, Garner’s version of dd enables us to generate a
dump representing system memory.

Using Mr. Garner’s version of dd, we used the following command line to capture sys-
tem memory:

D:\>dd.exe if=\\.\physicalmemory of=z:\JBRWWW_full_memory_dump.dd bs=4096

Forensic Acquisition Utilities, 3, 16, 2, 1030

dd, 1, 0, 0, 1030

Copyright (C) 2002 George M. Garner Jr.

Command Line: dd.exe if=\\.\physicalmemory of=z:\JBRWWW_full_memory_dump.dd bs=4096

Based on original version developed by Paul Rubin, David MacKenzie, and Stuart Kemp

Microsoft Windows: Version 5.0 (Build 2195.Professional)

02/10/2003 02:41:01 (UTC)

01/10/2003 22:41:01 (local time)

Current User: JBRWWW\Administrator

Total physical memory reported: 129260 KB

Copying physical memory...

CHAPTER 1 WINDOWS LIVE RESPONSE

26

Jones_01.qxd 8/25/2005 3:34 PM Page 26

E:\dd.exe:

Stopped reading physical memory:

The parameter is incorrect.

Output z:\JBRWWW_full_memory_dump.dd 129260/129260 Kbytes

This memory image, named JBRWWW_full_memory_dump.dd, is on the evidence DVD
for your review. Although we didn’t do so in this case, you can also use this version of dd
to obtain an image of the entire physical hard drive from the live system without requir-
ing a shutdown, reboot, or disruption of service. To accomplish this, we would have used
the following command line:

D:\>dd.exe if=\\.\physicaldrive0 of=z:\JBRWWW_physicaldrive0.dd bs=4096

During a review, the strings command revealed several pieces of information rele-
vant to the intrusion response.

The following are some of the commands the attacker executed during the intrusion.
It would appear that the intruder pinged himself at 95.208.123.64, initiated an
ipconfig /all command, initiated an FTP session, and executed iroffer.exe:

Ping statistics for 95.208.123.64:

Packets: Sent = 2, Received = 2, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

<g 95.208.123.64

ipconfig /all

T\System32\cmd.exe - ping 95.16

<g 95.208.123.64

cmd.exe

ipconfig.exe

ftp.exe

iroffer.exe

ystemRoot%\System32\cmd.exe

<c:\

cd ..

This is the output of an ipconfig /all command extracted from the system memory
file:

Windows 2000 IP Configuration

Host Name : jbrwww

ANALYZING VOLATILE DATA

27

Jones_01.qxd 8/25/2005 3:34 PM Page 27

Primary DNS Suffix :

Node Type : Broadcast

IP Routing Enabled. : No

WINS Proxy Enabled. : No

DNS Suffix Search List. : jbrbank.com

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : jbrbank.com

Description : 3Com 3C920 Integrated Fast Ethernet Controller

(3C905C-TX Compatible)

Physical Address. : 00-C0-4F-1C-10-2B

DHCP Enabled. : Yes

Autoconfiguration Enabled : Yes

IP Address. : 103.98.91.41

Subnet Mask : 255.255.255.0

Default Gateway : 103.98.91.1

DHCP Server : 103.98.91.1

DNS Servers : 103.98.91.1

Lease Obtained. : Saturday, August 23, 2003 3:55:31 PM

Lease Expires : T = 1.0

This appears to be an iroffer status window, which may show files the intruder
“offered” out.

XDCC Autosave: Saving... Done

—> Saving Ignore List... Done

(159K)

—> AUTOEXEC.BAT (0K)

—> boot.ini (0K)

—> CONFIG.SYS (0K)

—> Documents and Settings (4K)

—> Inetpub (4K)

—> IO.SYS (0K)

—> MSDOS.SYS (0K)

—> NTDETECT.COM (33K)

—> ntldr (209K)

—> pagefile.sys (209K)

—> Program Files (4K)

—> System Volume Information (0K)

—> update.exe (0K)

—> WINNT (24K)

—> 16 Total Files

—> ADMIN LISTUL Requested (DCC Chat)

CHAPTER 1 WINDOWS LIVE RESPONSE

28

Jones_01.qxd 8/25/2005 3:34 PM Page 28

During the review of system memory, we found several sections of IIS logs. In the fol-
lowing section, the successful Unicode exploit launched from 95.16.3.79 was found in
system memory.

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2003-10-01 22:58:53

#Fields: time c-ip cs-method cs-uri-stem sc-status

22:58:53 95.208.123.64 GET /NULL.printer 404

23:00:55 95.208.123.64 HEAD /iisstart.asp 200

23:01:18 95.16.3.79 GET /iisstart.asp 200

23:01:18 95.16.3.79 GET /pagerror.gif 200

23:01:18 95.16.3.79 GET /favicon.ico 404

23:03:23 95.208.123.64 GET /NULL.printer 404

23:08:45 95.16.3.79 GET /NULL.printer 404

23:15:09 95.208.123.64 OPTIONS / 200

23:16:30 95.208.123.64 OPTIONS / 200

23:16:30 95.208.123.64 PROPFIND /ADMIN$ 404

23:17:04 95.16.3.79 GET /scripts/../../../../winnt/system32/cmd.exe 200

23:17:54 95.16.3.79 GET /scripts/../../../../winnt/system32/cmd.exe 502

23:20:19 95.16.3.79 GET /scripts/..%5c..%5c..%5c../winnt/system32/cmd.exe 200

23:32:43 95.208.123.64 OPTIONS / 200

23:32:43 95.208.123.64 PROPFIND /ADMIN$ 404

23:33:52 95.208.123.64 PROPFIND /ADMIN$ 404

23:58:16 95.208.123.64 OPTIONS / 200

23:58:16 95.208.123.64 PROPFIND /ADMIN$ 404

If the intruder had deleted the log files on the hard drive, this volatile data may have
played a critical role in identifying how, when, and where the intrusion was initiated.

ANALYZING NONVOLATILE DATA

We would like to obtain several key pieces of information while the machine is still run-
ning. The type of data we will discuss in this section is nonvolatile. This means we could
also retrieve this information from a forensic duplication if we so desired, but that option
may be difficult or impossible. Some of the information we would like to acquire is this:

• System Version and Patch Level
• File System Time and Date Stamps
• Registry Data

ANALYZING NONVOLATILE DATA

29

Jones_01.qxd 8/25/2005 3:34 PM Page 29

• The Auditing Policy
• A History of Logins
• System Event Logs
• User Accounts
• IIS Logs
• Suspicious Files

We will address each set of data in its own subsection and analyze the evidence col-
lected from JBRWWW.

SYSTEM VERSION AND PATCH LEVEL

If you have not figured it out by now, an investigation can be tedious, and sometimes it is
difficult to know where to start. One of the important facts we can learn about JBR-
WWW is its operating system version level and which security patches have been
installed. Knowing which patches have been applied to the server will enable us to nar-
row our initial investigation to areas of high probability. This is not to say that an
intruder would not try to install a patch to cover the means of attack, keep his access to
the machine, and deter other intruders. A program in our toolkit called PsInfo, distrib-
uted from the PsTools suite at www.sysinternals.com, will enable us to query JBRWWW
for its system information. The system information that PsInfo produces will enable us
to see the patches that have been applied. PsInfo is run with the following command,
where -h is used to show installed hotfixes, -s is used to show installed software, and -d
is used to show disk volume information:

psinfo –h –s -d

PsInfo provides the following results. We have bolded the important pieces of
information:

PsInfo 1.34 - local and remote system information viewer

Copyright (C) 2001-2002 Mark Russinovich

Sysinternals - www.sysinternals.com

Querying information for JBRWWW...

System information for \\JBRWWW:

Uptime: 39 days, 6 hours, 27 minutes, 42 seconds

Kernel version: Microsoft Windows 2000, Uniprocessor Free

CHAPTER 1 WINDOWS LIVE RESPONSE

30

Jones_01.qxd 8/25/2005 3:34 PM Page 30

Product type: Professional

Product version: 5.0

Service pack: 0

Kernel build number: 2195

Registered organization: JBR Bank

Registered owner: JBR Bank

Install date: 8/23/2003, 12:46:00 PM

IE version: 5.0100

System root: C:\WINNT

Processors: 1

Processor speed: 435 MHz

Processor type: Intel Pentium II or Celeron

Physical memory: 126 MB

Volume Type Format Label Size Free Free

A: Removable 0%

C: Fixed NTFS 4.0 GB 3.2 GB 80%

D: CD-ROM CDFS CDROM 272.8 MB 0%

OS Hot Fix Installed

Q147222 8/23/2003

Applications:

WebFldrs 9.00.3501

We see that only one hotfix (Q147222) has been applied. The named hotfix addresses
the Exchange server, the mail server for Microsoft Windows. Doing a little research on
www.securityfocus.com, we see that JBRWWW is vulnerable to a multitude of attacks,
including the “Unicode” (Bugtraq ID #1806) and “Double Decode” (Bugtraq ID #2708)
attacks. Because these are both Web server attacks and JBRWWW is running a Web
server (as we saw in the netstat and FPort output), we need to acquire the Web server
logs to see whether the intruder gained access through the Web server. We will discuss
the commands to do this in a later section in this chapter.

FILE SYSTEM TIME AND DATE STAMPS

Most investigators will use the dir command to capture the file time and date stamps,
but we recommend a better tool. The standard dir command produces output that is
cumbersome and that cannot easily be imported into a spreadsheet so that we may
sort on different attributes of the data. In the UnxUtils package, available from unxu-
tils.sourceforge.net, you will find a command called find. If you are already familiar
with Cygwin, you can also use the find utility from that tool set (this is what we used in
our response). This command will print, one line for each file, any of the file’s attributes
we desire. Therefore, with the following command, we can print the file permissions, last

ANALYZING NONVOLATILE DATA

31

Jones_01.qxd 8/25/2005 3:34 PM Page 31

access date, last access time, modification date, modification time, created date, created
time, user ownership, group ownership, file size, and the full path of every file on the C:
drive:

find c:\ -printf “%m;%Ax;%AT;%Tx;%TT;%Cx;%CT;%U;%G;%s;%p\n”

Notice that with the find command, we are delimiting each of the attributes with a
semicolon. This will enable us to import it into our favorite spreadsheet. After we import
this data, we can perform sorts for file pathname. Because we already know that
C:\WINNT\sytem32\os2\dll is a path where the attacker left his tools, we will examine
that directory in Table 1-1:

Table 1-1 Suspicious Files Discovered on JBRWWW

Created Date Created Time File Size File Name

08\23\2003 8:14:18 0 c:\WINNT\system32\os2

08\23\2003 8:14:18 8192 c:\WINNT\system32\os2\dll

10\01\2003 19:25:07 13929 c:\WINNT\system32\os2\dll\Configure

10\01\2003 19:25:07 15427 c:\WINNT\system32\os2\dll\COPYING

10\01\2003 19:25:07 68016 c:\WINNT\system32\os2\dll\cygregex.dll

10\01\2003 19:25:07 971080 c:\WINNT\system32\os2\dll\cygwin1.dll

12\07\1999 7:00:00 12646 c:\WINNT\system32\os2\dll\doscalls.dll

10\01\2003 19:25:08 902 c:\WINNT\system32\os2\dll\iroffer.cron

10\01\2003 19:25:08 213300 c:\WINNT\system32\os2\dll\iroffer.exe

10\01\2003 19:25:09 2924 c:\WINNT\system32\os2\dll\Makefile.config

10\01\2003 19:25:09 0 c:\WINNT\system32\os2\dll\mybot.ignl

10\01\2003 19:25:09 0 c:\WINNT\system32\os2\dll\mybot.ignl.bkup

10\01\2003 19:25:09 4 c:\WINNT\system32\os2\dll\mybot.ignl.tmp

10\01\2003 19:25:09 25774 c:\WINNT\system32\os2\dll\mybot.log

10\01\2003 19:25:09 168 c:\WINNT\system32\os2\dll\mybot.msg

10\01\2003 19:25:09 5 c:\WINNT\system32\os2\dll\mybot.pid

CHAPTER 1 WINDOWS LIVE RESPONSE

32

Jones_01.qxd 8/25/2005 3:34 PM Page 32

Created Date Created Time File Size File Name

10\01\2003 22:26:23 49 c:\WINNT\system32\os2\dll\mybot.xdcc

10\01\2003 21:56:22 49 c:\WINNT\system32\os2\dll\mybot.xdcc.bkup

10\01\2003 22:26:23 233 c:\WINNT\system32\os2\dll\mybot.xdcc.txt

10\01\2003 19:25:09 19792 c:\WINNT\system32\os2\dll\myconfig

10\01\2003 19:24:37 120320 c:\WINNT\system32\os2\dll\nc.exe

12\07\1999 7:00:00 247860 c:\WINNT\system32\os2\dll\netapi.dll

10\01\2003 19:25:09 5080 c:\WINNT\system32\os2\dll\README

10\01\2003 19:55:51 36864 c:\WINNT\system32\os2\dll\samdump.dll

10\01\2003 19:25:09 19767 c:\WINNT\system32\os2\dll\sample.config

10\01\2003 19:55:42 32768 c:\WINNT\system32\os2\dll\setup.exe

10\01\2003 19:58:38 342 c:\WINNT\system32\os2\dll\temp.txt

10\01\2003 19:52:44 122880 c:\WINNT\system32\os2\dll\update.exe

10\01\2003 19:25:10 16735 c:\WINNT\system32\os2\dll\WHATSNEW

12\07\1999 7:00:00 108095 c:\WINNT\system32\os2\oso001.009

We see that most of the tools were created during the evening of 10\01\2003. If we do
a sort on the file metadata by creation time and date stamps, we see that all these files
were created approximately at the same time, as in Table 1-2:

Table 1-2 Files Created During the Attack on JBRWWW

Created Date Created Time File Size File Name

10\01\2003 19:16:30 61440 c:\WINNT\system32\PSEXESVC.EXE

10\01\2003 19:24:37 120320 c:\WINNT\system32\os2\dll\nc.exe

10\01\2003 19:25:07 13929 c:\WINNT\system32\os2\dll\Configure

10\01\2003 19:25:07 15427 c:\WINNT\system32\os2\dll\COPYING

10\01\2003 19:25:07 68016 c:\WINNT\system32\os2\dll\cygregex.dll

ANALYZING NONVOLATILE DATA

33

(continues)

Jones_01.qxd 8/25/2005 3:34 PM Page 33

Table 1-2 Continued

Created Date Created Time File Size File Name

10\01\2003 19:25:07 971080 c:\WINNT\system32\os2\dll\cygwin1.dll

10\01\2003 19:25:08 902 c:\WINNT\system32\os2\dll\iroffer.cron

10\01\2003 19:25:08 213300 c:\WINNT\system32\os2\dll\iroffer.exe

10\01\2003 19:25:09 2924 c:\WINNT\system32\os2\dll\Makefile.config

10\01\2003 19:25:09 0 c:\WINNT\system32\os2\dll\mybot.ignl

10\01\2003 19:25:09 0 c:\WINNT\system32\os2\dll\mybot.ignl.bkup

10\01\2003 19:25:09 4 c:\WINNT\system32\os2\dll\mybot.ignl.tmp

10\01\2003 19:25:09 25774 c:\WINNT\system32\os2\dll\mybot.log

10\01\2003 19:25:09 168 c:\WINNT\system32\os2\dll\mybot.msg

10\01\2003 19:25:09 5 c:\WINNT\system32\os2\dll\mybot.pid

10\01\2003 19:25:09 19792 c:\WINNT\system32\os2\dll\myconfig

10\01\2003 19:25:09 5080 c:\WINNT\system32\os2\dll\README

10\01\2003 19:25:09 19767 c:\WINNT\system32\os2\dll\sample.config

10\01\2003 19:25:10 16735 c:\WINNT\system32\os2\dll\WHATSNEW

10\01\2003 19:48:44 0 c:\update.exe

10\01\2003 19:52:44 122880 c:\WINNT\system32\os2\dll\update.exe

10\01\2003 19:55:42 32768 c:\WINNT\system32\os2\dll\setup.exe

10\01\2003 19:55:51 36864 c:\WINNT\system32\os2\dll\samdump.dll

10\01\2003 19:58:38 342 c:\WINNT\system32\os2\dll\temp.txt

10\01\2003 21:56:22 49 c:\WINNT\system32\os2\dll\mybot.xdcc.bkup

10\01\2003 22:22:59 16384 c:\Documents and Settings\

Administrator\Application Data\Microsoft\

Internet Explorer\MSIMGSIZ.DAT

10\01\2003 22:26:23 49 c:\WINNT\system32\os2\dll\mybot.xdcc

10\01\2003 22:26:23 233 c:\WINNT\system32\os2\dll\mybot.xdcc.txt

CHAPTER 1 WINDOWS LIVE RESPONSE

34

Jones_01.qxd 8/25/2005 3:34 PM Page 34

We obviously know that iroffer was installed on the system from earlier steps in our
investigation. We also saw that the attacker, along with PsExec, established a backdoor
with netcat. The files we did not know about are bolded in Table 1-2. All of the files in
Table 1-2 are of interest to us, and it would behoove us to copy these files to our forensic
workstation to perform additional tool analysis. We will describe the process for acquisi-
tion a little later in this chapter so that we may perform tool analysis later.

We could obviously perform a sort on modified and access times and review the files
that may have been altered or run around the time of the suspicious files listed in Table
1-2. We will save you that step, however, because there are no interesting results from
that investigative action.

REGISTRY DATA

There are two main investigative leads we can discover in the registry dump. Although
the result of dumping the registry is large (in the case of JBRWWW, it was more than 7
MB long), we can quickly search for the following leads:

• Programs executed on bootup
• Entries created by the intruder’s tools

We are able to capture the complete registry, in a rather cryptic format, by using RegDmp
without command-line options. The output is ASCII-formatted such that Microsoft’s reg-
istry tools can alter the contents. Because we are interested in only a few lines, we will do
our analysis with a standard text editor. After we obtain the output with the regdmp com-
mand, we see that the key \HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion contains three sub-keys that are of interest to us: Run, RunOnce,
and RunOnceEx. Any values in the Run keys signify programs that will be executed when the
system starts up. JBRWWW had the following information in this area of the registry:

Run

Synchronization Manager = mobsync.exe /logon

RunOnce

RunOnceEx

mobsync.exe is a system binary, so we do not see tools the intruder intended to execute at
system startup. If the attacker was savvy, he could have placed the following command in
the registry to automatically open a backdoor:

nc –d –L –p 10000 –e C:\winnt\system32\cmd.exe

ANALYZING NONVOLATILE DATA

35

Jones_01.qxd 8/25/2005 3:34 PM Page 35

Another thing we may want to look for in the registry is any suspicious artifact from
the intruder’s tool. This may sound daunting, but it really isn’t. Most of the time we
know the names of the tools because of the entries in the file system. Therefore, in the
case of JBRWWW, we may search for “PsExec”, “iroffer”, or other relevant file names.
Searching for these names yielded nothing for JBRWWW.

This step becomes more important when you have a rack of servers and you know
one is compromised. After you do a thorough investigation and find the remnants in the
registry from an intruder’s tools, you can quickly do a search on other servers to deter-
mine whether they were compromised also.

THE AUDITING POLICY

The next series of tools we will be running will depend on JBRWWW’s auditing policy.
Without proper auditing (and that is the default for Windows NT and 2000, by the way),
we will not have security-related logs. The command to determine the auditing policy is
auditpol. Auditpol is distributed with Microsoft’s resource kits. The following informa-
tion is returned when we run auditpol without command-line arguments on JBRWWW:

Running ...

(0) Audit Disabled

System = No

Logon = No

Object Access = No

Privilege Use = No

Process Tracking = No

Policy Change = No

Account Management = No

Directory Service Access = No

Account Logon = No

This is disturbing! There are no events generated from logins or other security-related
events. Our system event logs will not be a good source of information for us because of
the conservative auditing policy. Believe it or not, we see this during a majority of our
investigations.

CHAPTER 1 WINDOWS LIVE RESPONSE

36

Jones_01.qxd 8/25/2005 3:34 PM Page 36

A HISTORY OF LOGINS

A history of logins can be obtained with the NTLast command, distributed by
www.foundstone.com. NTLast can be run in a myriad of ways, but we are interested in
all of the logins, so we will not use command-line arguments when we run it on
JBRWWW:

- No Records - Check to see if auditing is on

Yikes! This tool depends on the auditing policy to determine the login history. As you
can see, it is very important to enable auditing.

SYSTEM EVENT LOGS

Typically, there are three types of event logs on a Windows machine:

• Security
• Application
• System

The command PsLogList within the PsTools suite distributed at www.sysinternals.com
will extract these logs into a nice, easy-to-read text format. The following command will
dump the Security Event Logs a comma-delimited format suitable for your favorite
spreadsheet program:

psloglist –s –x security

The -s switch tells psloglist to dump each event on a single line so that the output
is suitable for analysis with a spreadsheet. The -x switch tells psloglist to dump the
extended information for each event. You can also replace security with application
or system if you want to acquire the other logs on the victim system.

The Security Event Log contains all of the information generated by our auditing pol-
icy, discussed in a previous section. Most importantly, we would be interested in the
information regarding logons/logoffs and any objects audited on the system. Of course,
as we would expect, JBRWWW reports no events in the logs.

The application event log contains data generated from the installed applications.
Some events are informational, whereas others indicate application failures. As we peruse

ANALYZING NONVOLATILE DATA

37

Jones_01.qxd 8/25/2005 3:34 PM Page 37

JBRWWW’s application logs, all we see are messages created from the installation of
standard programs on the system beginning August 23, 2003.

The system event log, as you may have guessed, contains the messages from system
services. The system log is the log where you would see device driver failures, IP address
conflicts, and other information. As we browse JBRWWW’s system logs, we see only
messages created from standard use of the system. It seems that the event logs, in this
investigation, do not give us valid leads.

USER ACCOUNTS

The easiest type of backdoor for an intruder to use is one that will blend into the normal
traffic patterns for the victim machine. Therefore, it would make sense for the attacker to
create a new user so that he could log into the same services that valid users utilize. It is
simple for us to dump the user accounts using the popular pwdump utility, which is well
known by administrators and attackers alike. By typing pwdump on JBRWWW, we receive
the following information:

Administrator:500:9DCFD05D3688BBBFAAD3B435B51404EE:CB8C5705F92DE9D8D11642948ECCAB72:::

Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::

IUSR_JBRWWW:1000:B936986BA1C5636B0F28D0549F4A7C10:137C045C1CACAE4B07C6C3B88BF0CE6D:::

IWAM_JBRWWW:1001:DA3DF28964893179378B2EB9047FBA87:A2C8D0EC209C60A48DB9365A51565DC4:::

There are four users for JBRWWW: Administrator, Guest, IUSR_JBRWWW, and
IWAM_JBRWWW. Administrator is the super user account (RID 500) that every system
must have. Guest is a disabled account that also exists on all Windows systems.
IUSER_JBRWWW and IWAM_JBRWWW are normal user accounts that processes, such
as the IIS Web server, use to run. These accounts are on the machine to limit the damage
an attacker could cause the system through a Web-based attack because he would only
have a lowly user account rather than Administrator-level access right away. We see that
there are no other accounts on JBRWWW of interest.

IIS LOGS

Most attacks in the modern era happen over TCP port 80 (HTTP). Why? you may ask.
Because there are literally millions of Web servers running, and incoming port 80 traffic
is rarely blocked at the victim’s network boundaries. You cannot block what you must
allow in. Because we have not seen the initial method of intrusion, we can only guess at
this point that it may have been the IIS Web server.

CHAPTER 1 WINDOWS LIVE RESPONSE

38

Jones_01.qxd 8/25/2005 3:34 PM Page 38

The IIS Web server writes any activity to logs in the C:\winnt\system32\logfiles
directory by default. In this directory, there is another directory named W3SVCn, where n
is the unique ID of the Web server. Usually this ID starts at one, but because one Web
server can host numerous domains, each W3SVC directory must be analyzed. JBRWWW
only hosted one domain, so the directory of interest is W3SVC1.

Inside the W3SVC1 directory there are two files: ex030923.log and ex031001.log. Each
of these logs contains the activity for the Web server for a whole day. The file name dis-
tinguishes the day:

ffyymmdd.log

. . . where ff is the format, yy is the year, mm is the month, and dd is the day. IIS can log
three different types of formats: W3C Extended (ff would be ex in this case), NCSA
common (ff would be nc in this case), and Microsoft IIS native format (ff would be in
in this case). JBRWWW is using the default extended log formatting and contains activ-
ity for the days of September 9, 2003 and October 1, 2003.

The next problem we must overcome is how to transfer the relevant logs to our foren-
sic workstation. We do not want to FTP them or to perform any other intrusive com-
mand that would greatly change the state of JBRWWW because we will be performing a
forensic duplication in the future. Instead, if you refer to the introduction in this chapter,
we presented a method of transferring data from one machine to another. Instead of
using command like we initially presented, we will use type file.txt to transfer file.txt
from the victim machine to the forensic workstation. Therefore, first execute this com-
mand on the forensic workstation:

nc –v –l –p 2222 > ex030923.log

Next, type the following command on JBRWWW to transfer the file named
ex030923.log to our forensic workstation:

type c:\winnt\system32\logfiles\w3svc1\ex030923.log | nc

➥ forensic_workstation_ip_address 2222

Press CTRL-C when the file is finished transferring. This can be confirmed with a
simple network monitoring session (described in a later chapter). We also performed the
same series of commands to transfer ex031001.log to the forensic workstation.

When we open ex030923.log, we see the following header:

ANALYZING NONVOLATILE DATA

39

Jones_01.qxd 8/25/2005 3:34 PM Page 39

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2003-09-23 22:50:59

#Fields: time c-ip cs-method cs-uri-stem sc-status

The date and time, the first bolded line, are actually reported in GMT, not EDT
(JBRWWW’s local time zone). Keep this in mind because it can trip you up when corre-
lating this information to other auditing material (such as file system time and date
stamps). The second bolded line lists the recorded fields. These are the default fields that
are recorded by the IIS server, but there are many more available if the Administrator
enables them. A good reference for these fields exists at

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/proddocs/standard/

ref_we_logging.asp

As we begin to skim the first few lines, we notice something very interesting. First, the
accesses happen very quickly, and the source IP address is 95.16.3.79. The speed of the
Web accesses is much faster than one person can type. Second, the fourth request has an
interesting keyword embedded in it:

22:51:17 95.16.3.79 GET /Nikto-1.30-Y7hUN21Duija.htm 404

Nikto is a well-known Web server vulnerability scanning tool available from
http://www.cirt.net/code/nikto.shtml. It would make sense that a Web vulnerability
scanning tool would access JBRWWW repeatedly in a short amount of time. Another tell-
tale sign is the status code (the last number 404). Any time this number is in the 400s, the
access was unsuccessful. If the status code was in the 200s, the access was successful. Web
vulnerability scanners generate numerous result codes in the 400s. Other result codes can
be compared to the chart at http://www.iisfaq.com/default.aspx?View=A145&P=230.
Upon reviewing the log for September 9, we see that all the activity came from one IP
address in less than one minute. JBRWWW was the victim of an HTTP vulnerability scan
on that day.

On October 1, 2003, we see the following activity:

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2003-10-01 22:58:53

#Fields: time c-ip cs-method cs-uri-stem sc-status

22:58:53 95.208.123.64 GET /NULL.printer 404

CHAPTER 1 WINDOWS LIVE RESPONSE

40

Jones_01.qxd 8/25/2005 3:34 PM Page 40

23:00:55 95.208.123.64 HEAD /iisstart.asp 200

23:01:18 95.16.3.79 GET /iisstart.asp 200

23:01:18 95.16.3.79 GET /pagerror.gif 200

23:01:18 95.16.3.79 GET /favicon.ico 404

23:03:23 95.208.123.64 GET /NULL.printer 404

23:08:45 95.16.3.79 GET /NULL.printer 404

23:15:09 95.208.123.64 OPTIONS / 200

23:16:30 95.208.123.64 OPTIONS / 200

23:16:30 95.208.123.64 PROPFIND /ADMIN$ 404

23:17:04 95.16.3.79 GET /scripts/../../../../winnt/system32/cmd.exe 200

23:17:54 95.16.3.79 GET /scripts/../../../../winnt/system32/cmd.exe 502

23:20:19 95.16.3.79 GET /scripts/..%5c..%5c..%5c../winnt/system32/cmd.exe 200

23:32:43 95.208.123.64 OPTIONS / 200

23:32:43 95.208.123.64 PROPFIND /ADMIN$ 404

23:33:52 95.208.123.64 PROPFIND /ADMIN$ 404

23:58:16 95.208.123.64 OPTIONS / 200

23:58:16 95.208.123.64 PROPFIND /ADMIN$ 404

The first bolded line is a telltale sign of the “.printer” Microsoft Windows 2000 buffer
overflow (Securityfocus.com Bugtraq ID 2674) from IP address 95.208.123.64. Because
we are seeing the attack in our logs, we know it was unsuccessful. Typically, when this
buffer overflow is used against a vulnerable server, it causes the Web server to crash, so
the activity is not logged in the IIS log. The next four lines not bolded are attributed to
users at 95.208.123.64 and 95.16.3.79 accessing the default Web page, perhaps checking
whether the Web server is available. The second set of bolded lines represents unsuccess-
ful attempts from 95.208.123.64 and 95.16.3.79 using the same “.printer” buffer over-
flow. Seeing two IP addresses tells us that they may be the same person or more than one
person working together.

The third set of bolded lines shows a successful (due to the result codes being 200 and
502) attack. If we dissect the attack, we see that someone accessed the C:\winnt\
system32\cmd.exe executable. The Web server should never access the cmd.exe command
shell. In short, 95.208.123.64 was able to run commands on JBRWWW in the context of
IUSR_JBRWWW (not Administrator). The first two bolded lines of this set show what is
known as the Unicode attack. The last line shows the Double Decode attack (also refer-
enced earlier in this chapter). Both attacks are a directory traversal attack in which the
attacker escapes the directory to which the Web server is restricted to run arbitrary pro-
grams on the victim machine. To quickly locate similar attacks on other machines, we
could easily search for cmd.exe in the IIS logs and see whether the result code was 200.
Because JBRWWW did not enable more fields in the W3C extended logs, we cannot see
what the attacker ran with the command shell.

ANALYZING NONVOLATILE DATA

41

Jones_01.qxd 8/25/2005 3:34 PM Page 41

SUSPICIOUS FILES

If we were not acquiring a forensic duplication of JBRWWW, we could transfer any sus-
picious file with our “Poor Man’s FTP” using netcat. The syntax for the command to
run on the forensic workstation is as follows:

nc –v –l –p 2222 > filename

Now, type the following command on JBRWWW to transfer the file named filename to
our forensic workstation. Remember that the file named filename does not have to con-
tain ASCII text. You can also transfer binary files on the victim machine in this manner.

type filename | nc forensic_workstation_ip_address 2222

The binaries that were flagged by our file system analysis because they were created
during the intrusion include the following, in Table 1-3:

Table 1-3 The Suspicious Binaries Transferred from JBRWWW

File Name

c:\WINNT\system32\PSEXESVC.EXE

c:\WINNT\system32\os2\dll\nc.exe

c:\WINNT\system32\os2\dll\Configure

c:\WINNT\system32\os2\dll\COPYING

c:\WINNT\system32\os2\dll\cygregex.dll

c:\WINNT\system32\os2\dll\cygwin1.dll

c:\WINNT\system32\os2\dll\iroffer.cron

c:\WINNT\system32\os2\dll\iroffer.exe

c:\WINNT\system32\os2\dll\Makefile.config

c:\WINNT\system32\os2\dll\mybot.ignl

c:\WINNT\system32\os2\dll\mybot.ignl.bkup

c:\WINNT\system32\os2\dll\mybot.ignl.tmp

CHAPTER 1 WINDOWS LIVE RESPONSE

42

Jones_01.qxd 8/25/2005 3:34 PM Page 42

File Name

c:\WINNT\system32\os2\dll\mybot.log

c:\WINNT\system32\os2\dll\mybot.msg

c:\WINNT\system32\os2\dll\mybot.pid

c:\WINNT\system32\os2\dll\myconfig

c:\WINNT\system32\os2\dll\README

c:\WINNT\system32\os2\dll\sample.config

c:\WINNT\system32\os2\dll\WHATSNEW

c:\update.exe

c:\WINNT\system32\os2\dll\update.exe

c:\WINNT\system32\os2\dll\setup.exe

c:\WINNT\system32\os2\dll\samdump.dll

c:\WINNT\system32\os2\dll\temp.txt

c:\WINNT\system32\os2\dll\mybot.xdcc.bkup

c:\WINNT\system32\os2\dll\mybot.xdcc

c:\WINNT\system32\os2\dll\mybot.xdcc.txt

We transferred these files to our forensic workstation and they are included on your
DVD for further analysis.

PUTTING IT ALL TOGETHER

The initial objective was to determine whether or not an incident occurred. The
volatile and nonvolatile data collected during the Windows live response indicates that
an unauthorized intrusion did in fact occur. Figure 1-1 indicates the status of ongoing
unauthorized network connections detected during the response.

PUTTING IT ALL TOGETHER

43

Jones_01.qxd 8/25/2005 3:34 PM Page 43

Figure 1-1 Network Connections During Intrusion Response at 9:58PM on 1 October 2003

CHAPTER 1 WINDOWS LIVE RESPONSE

44

JBRWWW
(103.98.91.41)

IR
C

95.145.128.17 95.16.3.2395.208.123.64

N
et

B
IO

S

F
T

P

netcat

iro
ffe

r

Although there were no Windows Security Event Logs, the IIS logs indicated that
JBRWWW was scanned with a well-known Web scanning utility known as Nikto at
6:51:17PM on September 23, 2003, from IP address 95.16.3.79. Approximately 18 sec-
onds prior to the scan, a default IIS Web page was accessed from the IP address
95.16.3.23. It is common before and after an attack for the intruder to check the status
of the Web site by accessing such a page. This may indicate that the attacker had access or
control of the system at 95.16.3.73 or perhaps was working with someone else who did.

Then on October 1, 2003, an attacker from IP address 95.208.123.64, possibly work-
ing in conjunction with 95.16.3.79, initiated a successful Unicode attack after failed
“.printer” buffer overflow attempts.

Although the details haven’t been determined, it appears that the attackers were able
to execute commands on JBRWWW via the IIS Unicode attack and establish an FTP ses-
sion back to one of their systems. They were also able to install netcat and iroffer in
the C:\WINNT\system32\os2\dll directory. Figure 1-2 shows a general sequence of the
activity based on information collected during the response.

Jones_01.qxd 8/25/2005 3:34 PM Page 44

Figure 1-2 Timeline for October 1, 2003

PUTTING IT ALL TOGETHER

45

System taken
off-line and forensic

image obtained

NetBIOS NULL
administrator
 session from
95.208.123.64

9:52 PM

Intrusion
response
started

9:58:19 PM

PSEXESVC
CMD.EXE

7:17 PM

FTP.EXE

7:19 PM

PSEXESVC
CMD.EXE

7:34 PM

NETCAT

7:35 PM

CMD.EXE

7:36 PM

IROFFER

7:37 PM

CMD.EXE

7:58 PM

Successful
Unicode

attack from
95.16.3.79

6:58 PM
~

7:08 PM
10:30 PM

Failed .printer
buffer overflow
attacks from

95.208.123.64
95.16.3.79

Up to this point, we’ve conducted the initial system approach, identified an intrusion,
and obtained a forensic image of the victim system. In Chapters 3, “Collecting Network-
Based Evidence,” and 4, “Analyzing Network-Based Evidence for a Windows Intrusion,”
we will analyze network traffic captured as part of this intrusion, and in Chapter 8,
“Noncommercial-Based Forensic Duplications,” we will perform a forensic analysis of
the system. Combining these processes will help “fill in the gaps” and will play a critical
role in subsequent incident response cycles such as containment and eradication.

Jones_01.qxd 8/25/2005 3:34 PM Page 45

Jones_01.qxd 8/25/2005 3:34 PM Page 46

