
2004/
page

�

�

�

�

�

�

�

�

C H A P T E R 4

The Algorithm Structure
Design Space

4.1 INTRODUCTION
4.2 CHOOSING AN ALGORITHM STRUCTURE PATTERN
4.3 EXAMPLES
4.4 THE TASK PARALLELISM PATTERN
4.5 THE DIVIDE AND CONQUER PATTERN
4.6 THE GEOMETRIC DECOMPOSITION PATTERN
4.7 THE RECURSIVE DATA PATTERN
4.8 THE PIPELINE PATTERN
4.9 THE EVENT-BASED COORDINATION PATTERN

4.1 INTRODUCTION

The first phase of designing a parallel algorithm consists of analyzing the problem
to identify exploitable concurrency, usually by using the patterns of the Finding
Concurrency design space. The output from the Finding Concurrency design space
is a decomposition of the problem into design elements:

• A task decomposition that identifies tasks that can execute concurrently

• A data decomposition that identifies data local to each task

• A way of grouping tasks and ordering the groups to satisfy temporal constraints

• An analysis of dependencies among tasks

These elements provide the connection from the Finding Concurrency design
space to the Algorithm Structure design space. Our goal in the Algorithm Structure
design space is to refine the design and move it closer to a program that can execute
tasks concurrently by mapping the concurrency onto multiple UEs running on a
parallel computer.

Of the countless ways to define an algorithm structure, most follow one of
six basic design patterns. These patterns make up the Algorithm Structure design
space. An overview of this design space and its place in the pattern language is
shown in Fig. 4.1.

The key issue at this stage is to decide which pattern or patterns are most
appropriate for the problem.

57

2004/
page

�

�

�

�

�

�

�

�

58 Chapter 4 The Algorithm Structure Design Space

Finding Concurrency

Organize By Tasks

Task Parallelism

Divide and Conquer

Organize By Data Decomposition

Algorithm Structure

Geometric Decomposition

Recursive Data

Supporting Structures

Implementation Mechanisms

Organize By Flow of Data

Pipeline

Event-Based Coordination

Figure 4.1: Overview of the Algorithm Structure design space and its place in the pattern language

First of all, we need to keep in mind that different aspects of the analysis can
pull the design in different directions; one aspect might suggest one structure while
another suggests a different structure. In nearly every case, however, the following
forces should be kept in mind.

• Efficiency. It is crucial that a parallel program run quickly and make good
use of the computer resources.

• Simplicity. A simple algorithm resulting in easy-to-understand code is easier
to develop, debug, verify, and modify.

• Portability. Ideally, programs should run on the widest range of parallel
computers. This will maximize the “market” for a particular program. More
importantly, a program is used for many years, while any particular computer
system is used for only a few years. Portable programs protect a software
investment.

• Scalability. Ideally, an algorithm should be effective on a wide range of
numbers of processing elements (PEs), from a few up to hundreds or even
thousands.

These forces conflict in several ways, however.
Efficiency conflicts with portability: Making a program efficient almost always

requires that the code take into account the characteristics of the specific system
on which it is intended to run, which limits portability. A design that makes use
of the special features of a particular system or programming environment may
lead to an efficient program for that particular environment, but be unusable for
a different platform, either because it performs poorly or because it is difficult or
even impossible to implement for the new platform.

Efficiency also can conflict with simplicity: For example, to write efficient
programs that use the Task Parallelism pattern, it is sometimes necessary to use

2004/
page

�

�

�

�

�

�

�

�

4.2 Choosing an Algorithm Structure Pattern 59

complicated scheduling algorithms. These algorithms in many cases, however, make
the program very difficult to understand.

Thus, a good algorithm design must strike a balance between (1) abstraction
and portability and (2) suitability for a particular target architecture. The challenge
faced by the designer, especially at this early phase of the algorithm design, is to
leave the parallel algorithm design abstract enough to support portability while
ensuring that it can eventually be implemented effectively for the parallel systems
on which it will be executed.

4.2 CHOOSING AN ALGORITHM STRUCTURE PATTERN

Finding an effective Algorithm Structure pattern for a given problem can be accom-
plished by considering the questions in the following sections.

4.2.1 Target Platform

What constraints are placed on the parallel algorithm by the target machine or
programming environment?

In an ideal world, it would not be necessary to consider the details of the
target platform at this stage of the design, because doing so works against keeping
the program portable and scalable. This is not an ideal world, however, and software
designed without considering the major features of the target platform is unlikely
to run efficiently.

The primary issue is how many units of execution (UEs) the system will
effectively support, because an algorithm that works well for ten UEs may not work
well for hundreds of UEs. It is not necessary to decide on a specific number (in fact
to do so would overly constrain the applicability of the design), but it is important
to have in mind at this point an order of magnitude for the number of UEs.

Another issue is how expensive it is to share information among UEs. If there
is hardware support for shared memory, information exchange takes place through
shared access to common memory, and frequent data sharing makes sense. If the
target is a collection of nodes connected by a slow network, however, the com-
munication required to share information is very expensive and must be avoided
wherever possible.

When thinking about both of these issues—the number of UEs and the cost
of sharing information—avoid the tendency to over-constrain the design. Software
typically outlives hardware, so over the course of a program’s life it may be used
on a tremendous range of target platforms. The goal is to obtain a design that
works well on the original target platform, but at the same time is flexible enough
to adapt to different classes of hardware.

Finally, in addition to multiple UEs and some way to share information among
them, a parallel computer has one or more programming environments that can
be used to implement parallel algorithms. Different programming environments
provide different ways to create tasks and share information among UEs, and a
design that does not map well onto the characteristics of the target programming
environment will be difficult to implement.

2004/
page

�

�

�

�

�

�

�

�

60 Chapter 4 The Algorithm Structure Design Space

4.2.2 Major Organizing Principle

When considering the concurrency in the problem, is there a particular way of
looking at it that stands out and provides a high-level mechanism for organizing
this concurrency?

The analysis carried out using the patterns of the Finding Concurrency de-
sign space describes the potential concurrency in terms of tasks and groups of tasks,
data (both shared and task-local), and ordering constraints among task groups. The
next step is to find an algorithm structure that represents how this concurrency
maps onto the UEs. There is usually a major organizing principle implied by the
concurrency. This usually falls into one of three camps: organization by tasks, orga-
nization by data decomposition, and organization by flow of data. We now consider
each of these in more detail.

For some problems, there is really only one group of tasks active at one time,
and the way the tasks within this group interact is the major feature of the con-
currency. Examples include so-called embarrassingly parallel programs in which the
tasks are completely independent, as well as programs in which the tasks in a single
group cooperate to compute a result.

For other problems, the way data is decomposed and shared among tasks
stands out as the major way to organize the concurrency. For example, many prob-
lems focus on the update of a few large data structures, and the most productive
way to think about the concurrency is in terms of how this structure is decomposed
and distributed among UEs. Programs to solve differential equations or carry out
linear algebra computations often fall into this category because they are frequently
based on updating large data structures.

Finally, for some problems, the major feature of the concurrency is the pres-
ence of well-defined interacting groups of tasks, and the key issue is how the
data flows among the tasks. For example, in a signal-processing application, data
may flow through a sequence of tasks organized as a pipeline, each performing a
transformation on successive data elements. Or a discrete-event simulation might
be parallelized by decomposing it into a tasks interacting via “events”. Here, the
major feature of the concurrency is the way in which these distinct task groups
interact.

Notice also that the most effective parallel algorithm design might make use
of multiple algorithm structures (combined hierarchically, compositionally, or in se-
quence), and this is the point at which to consider whether such a design makes
sense. For example, it often happens that the very top level of the design is a se-
quential composition of one or more Algorithm Structure patterns. Other designs
might be organized hierarchically, with one pattern used to organize the interac-
tion of the major task groups and other patterns used to organize tasks within the
groups—for example, an instance of the Pipeline pattern in which individual stages
are instances of the Task Parallelism pattern.

4.2.3 The Algorithm Structure Decision Tree

For each subset of tasks, which Algorithm Structure design pattern most effectively
defines how to map the tasks onto UEs?

2004/
page

�

�

�

�

�

�

�

�

4.2 Choosing an Algorithm Structure Pattern 61

Linear Recursive

Task
Parallelism

Geometric
Decomposition

Recursive
Data Pipeline Event-Based

Coordination
Divide and

Conquer

Linear Recursive

Start

Regular Irregular

Organize By
Tasks

Organize By
Data Decomposition

Organize By
Flow of Data

Figure 4.2: Decision tree for the Algorithm Structure design space

Having considered the questions raised in the preceding sections, we are now
ready to select an algorithm structure, guided by an understanding of constraints
imposed by the target platform, an appreciation of the role of hierarchy and com-
position, and a major organizing principle for the problem. The decision is guided
by the decision tree shown in Fig. 4.2. Starting at the top of the tree, consider the
concurrency and the major organizing principle, and use this information to select
one of the three branches of the tree; then follow the upcoming discussion for the
appropriate subtree. Notice again that for some problems, the final design might
combine more than one algorithm structure: If no single structure seems suitable,
it might be necessary to divide the tasks making up the problem into two or more
groups, work through this procedure separately for each group, and then determine
how to combine the resulting algorithm structures.

Organize By Tasks. Select the Organize By Tasks branch when the execution of
the tasks themselves is the best organizing principle. Then determine how the tasks
are enumerated. If they can be gathered into a set linear in any number of dimen-
sions, choose the Task Parallelism pattern. This pattern includes both situations
in which the tasks are independent of each other (so-called embarrassingly parallel
algorithms) and situations in which there are some dependencies among the tasks
in the form of access to shared data or a need to exchange messages. If the tasks
are enumerated by a recursive procedure, choose the Divide and Conquer pattern.
In this pattern, the problem is solved by recursively dividing it into subproblems,
solving each subproblem independently, and then recombining the subsolutions into
a solution to the original problem.

Organize By Data Decomposition. Select the Organize By Data Decomposi-
tion branch when the decomposition of the data is the major organizing principle
in understanding the concurrency. There are two patterns in this group, differing
in how the decomposition is structured—linearly in each dimension or recursively.
Choose the Geometric Decomposition pattern when the problem space is decom-
posed into discrete subspaces and the problem is solved by computing solutions for
the subspaces, with the solution for each subspace typically requiring data from a
small number of other subspaces. Many instances of this pattern can be found in

2004/
page

�

�

�

�

�

�

�

�

62 Chapter 4 The Algorithm Structure Design Space

scientific computing, where it is useful in parallelizing grid-based computations, for
example. Choose the Recursive Data pattern when the problem is defined in terms
of following links through a recursive data structure (for example, a binary tree).

Organize By Flow of Data. Select the Organize By Flow of Data branch when
the major organizing principle is how the flow of data imposes an ordering on the
groups of tasks. This pattern group has two members, one that applies when this
ordering is regular and static and one that applies when it is irregular and/or
dynamic. Choose the Pipeline pattern when the flow of data among task groups is
regular, one-way, and does not change during the algorithm (that is, the task groups
can be arranged into a pipeline through which the data flows). Choose the Event-
Based Coordination pattern when the flow of data is irregular, dynamic, and/or
unpredictable (that is, when the task groups can be thought of as interacting via
asynchronous events).

4.2.4 Re-evaluation

Is the Algorithm Structure pattern (or patterns) suitable for the target platform?
It is important to frequently review decisions made so far to be sure the chosen
pattern(s) are a good fit with the target platform.

After choosing one or more Algorithm Structure patterns to be used in the de-
sign, skim through their descriptions to be sure they are reasonably suitable for the
target platform. (For example, if the target platform consists of a large number of
workstations connected by a slow network, and one of the chosen Algorithm Struc-
ture patterns requires frequent communication among tasks, it might be difficult to
implement the design efficiently.) If the chosen patterns seem wildly unsuitable for
the target platform, try identifying a secondary organizing principle and working
through the preceding step again.

4.3 EXAMPLES

4.3.1 Medical Imaging

For example, consider the medical imaging problem described in Sec. 3.1.3. This
application simulates a large number of gamma rays as they move through a body
and out to a camera. One way to describe the concurrency is to define the simulation
of each ray as a task. Because they are all logically equivalent, we put them into a
single task group. The only data shared among the tasks is a large data structure
representing the body, and since access to this data structure is read-only, the tasks
do not depend on each other.

Because there are many independent tasks for this problem, it is less necessary
than usual to consider the target platform: The large number of tasks should mean
that we can make effective use of any (reasonable) number of UEs; the independence
of the tasks should mean that the cost of sharing information among UEs will not
have much effect on performance.

Thus, we should be able to choose a suitable structure by working through the
decision tree shown previously in Fig. 4.2. Given that in this problem the tasks are

2004/
page

�

�

�

�

�

�

�

�

4.3 Examples 63

independent, the only issue we really need to worry about as we select an algorithm
structure is how to map these tasks onto UEs. That is, for this problem, the major
organizing principle seems to be the way the tasks are organized, so we start by
following the Organize By Tasks branch.

We now consider the nature of our set of tasks—whether they are arranged
hierarchically or reside in an unstructured or flat set. For this problem, the tasks
are in an unstructured set with no obvious hierarchical structure among them, so
we choose the Task Parallelism pattern. Note that in the problem, the tasks are
independent, a fact that we will be able to use to simplify the solution.

Finally, we review this decision in light of possible target-platform consider-
ations. As we observed earlier, the key features of this problem (the large number
of tasks and their independence) make it unlikely that we will need to reconsider
because the chosen structure will be difficult to implement on the target platform.

4.3.2 Molecular Dynamics

As a second example, consider the molecular dynamics problem described in
Sec. 3.1.3. In the Task Decomposition pattern, we identified the following groups of
tasks associated with this problem:

• Tasks that find the vibrational forces on an atom

• Tasks that find the rotational forces on an atom

• Tasks that find the nonbonded forces on an atom

• Tasks that update the position and velocity of an atom

• A task to update the neighbor list for all the atoms

The tasks within each group are expressed as the iterations of a loop over the
atoms within the molecular system.

We can choose a suitable algorithm structure by working through the decision
tree shown earlier in Fig. 4.2. One option is to organize the parallel algorithm in
terms of the flow of data among the groups of tasks. Note that only the first
three task groups (the vibrational, rotational, and nonbonded force calculations)
can execute concurrently; that is, they must finish computing the forces before the
atomic positions, velocities and neighbor lists can be updated. This is not very
much concurrency to work with, so a different branch in Fig. 4.2 should be used for
this problem.

Another option is to derive exploitable concurrency from the set of tasks
within each group, in this case the iterations of a loop over atoms. This suggests an
organization by tasks with a linear arrangement of tasks, or based on Fig. 4.2, the
Task Parallelism pattern should be used. Total available concurrency is large (on
the order of the number of atoms), providing a great deal of flexibility in designing
the parallel algorithm.

The target machine can have a major impact on the parallel algorithm for this
problem. The dependencies discussed in the Data Decomposition pattern (replicated
coordinates on each UE and a combination of partial sums from each UE to compute

2004/
page

�

�

�

�

�

�

�

�

64 Chapter 4 The Algorithm Structure Design Space

a global force array) suggest that on the order of 2 � 3 � N terms (where N is the
number of atoms) will need to be passed among the UEs. The computation, however,
is of order n � N , where n is the number of atoms in the neighborhood of each atom
and considerably less than N . Hence, the communication and computation are of
the same order and management of communication overhead will be a key factor
in designing the algorithm.

4.4 THE TASK PARALLELISM PATTERN

Problem

When the problem is best decomposed into a collection of tasks that can execute
concurrently, how can this concurrency be exploited efficiently?

Context

Every parallel algorithm is fundamentally a collection of concurrent tasks. These
tasks and any dependencies among them can be identified by inspection (for simple
problems) or by application of the patterns in the Finding Concurrency design
space. For some problems, focusing on these tasks and their interaction might not
be the best way to organize the algorithm: In some cases it makes sense to organize
the tasks in terms of the data (as in the Geometric Decomposition pattern) or the
flow of data among concurrent tasks (as in the Pipeline pattern). However, in many
cases it is best to work directly with the tasks themselves. When the design is based
directly on the tasks, the algorithm is said to be a task parallel algorithm.

The class of task parallel algorithms is very large. Examples include the
following.

• Ray-tracing codes such as the medical-imaging example described in the Task
Decomposition pattern: Here the computation associated with each “ray” be-
comes a separate and completely independent task.

• The molecular-dynamics example described in the Task Decomposition pat-
tern: The update of the nonbonded force on each atom is a task. The depen-
dencies among tasks are managed by replicating the force array on each UE
to hold the partial sums for each atom. When all the tasks have completed
their contributions to the nonbonded force, the individual force arrays are
combined (or “reduced”) into a single array holding the full summation of
nonbonded forces for each atom.

• Branch-and-bound computations, in which the problem is solved by repeat-
edly removing a solution space from a list of such spaces, examining it, and
either declaring it a solution, discarding it, or dividing it into smaller solution
spaces that are then added to the list of spaces to examine. Such computations
can be parallelized using this pattern by making each “examine and process a
solution space” step a separate task. The tasks weakly depend on each other
through the shared queue of tasks.

2004/
page

�

�

�

�

�

�

�

�

4.4 The Task Parallelism Pattern 65

The common factor is that the problem can be decomposed into a collection of
tasks that can execute concurrently. The tasks can be completely independent (as
in the medical-imaging example) or there can be dependencies among them (as in
the molecular-dynamics example). In most cases, the tasks will be associated with
iterations of a loop, but it is possible to associate them with larger-scale program
structures as well.

In many cases, all of the tasks are known at the beginning of the computation
(the first two examples). However, in some cases, tasks arise dynamically as the
computation unfolds, as in the branch-and-bound example.

Also, while it is usually the case that all tasks must be completed before the
problem is done, for some problems, it may be possible to reach a solution without
completing all of the tasks. For example, in the branch-and-bound example, we
have a pool of tasks corresponding to solution spaces to be searched, and we might
find an acceptable solution before all the tasks in this pool have been completed.

Forces

• To exploit the potential concurrency in the problem, we must assign tasks to
UEs. Ideally we want to do this in a way that is simple, portable, scalable,
and efficient. As noted in Sec. 4.1, however, these goals may conflict. A key
consideration is balancing the load, that is, ensuring that all UEs have roughly
the same amount of work to do.

• If the tasks depend on each other in some way (via either ordering constraints
or data dependencies), these dependencies must be managed correctly, again
keeping in mind the sometimes-conflicting goals of simplicity, portability, scal-
ability, and efficiency.

Solution

Designs for task-parallel algorithms involve three key elements: the tasks and how
they are defined, the dependencies among them, and the schedule (how the tasks
are assigned to UEs). We discuss them separately, but in fact they are tightly
coupled, and all three must be considered before final decisions are made. After
these factors are considered, we look at the overall program structure and then at
some important special cases of this pattern.

Tasks. Ideally, the tasks into which the problem is decomposed should meet two
criteria: First, there should be at least as many tasks as UEs, and preferably many
more, to allow greater flexibility in scheduling. Second, the computation associated
with each task must be large enough to offset the overhead associated with man-
aging the tasks and handling any dependencies. If the initial decomposition does
not meet these criteria, it is worthwhile to consider whether there is another way
of decomposing the problem into tasks that does meet the criteria.

For example, in image-processing applications where each pixel update is in-
dependent, the task definition can be individual pixels, image lines, or even whole
blocks in the image. On a system with a small number of nodes connected by

2004/
page

�

�

�

�

�

�

�

�

66 Chapter 4 The Algorithm Structure Design Space

a slow network, tasks should be large to offset high communication latencies, so
basing tasks on blocks of the image is appropriate. The same problem on a sys-
tem containing a large number of nodes connected by a fast (low-latency) network,
however, would need smaller tasks to make sure enough work exists to keep all the
UEs occupied. Notice that this imposes a requirement for a fast network, because
otherwise the smaller amount of work per task will not be enough to compensate
for communication overhead.

Dependencies. Dependencies among tasks have a major impact on the emerging
algorithm design. There are two categories of dependencies, ordering constraints and
dependencies related to shared data.

For this pattern, ordering constraints apply to task groups and can be handled
by forcing the groups to execute in the required order. For example, in a task-
parallel multidimensional Fast Fourier Transform, there is a group of tasks for
each dimension of the transform, and synchronization or other program constructs
are used to make sure computation on one dimension completes before the next
dimension begins. Alternatively, we could simply think of such a problem as a
sequential composition of task-parallel computations, one for each task group.

Shared-data dependencies are potentially more complicated. In the simplest
case, there are no dependencies among the tasks. A surprisingly large number of
problems can be cast into this form. Such problems are often called embarrassingly
parallel. Their solutions are among the simplest of parallel programs; the main
considerations are how the tasks are defined (as discussed previously) and scheduled
(as discussed later). When data is shared among tasks, the algorithm can be much
more complicated, although there are still some common cases that can be dealt
with relatively easily. We can categorize dependencies as follows.

• Removable dependencies. In this case, the dependency is not a true de-
pendency between tasks, but an apparent dependency that can be removed by
simple code transformations. The simplest case is a temporary variable whose
use is completely local to each task; that is, each task initializes the variable
without reference to other tasks. This case can be handled by simply creating
a copy of the variable local to each UE. In more complicated cases, iterative
expressions might need to be transformed into closed-form expressions to re-
move a loop-carried dependency. For example, consider the following simple
loop:

int ii = 0, jj = 0;

for(int i = 0; i< N; i++)
{

ii = ii + 1;
d[ii] = big_time_consuming_work(ii);
jj = jj + i;
a[jj] = other_big_calc(jj);

}

2004/
page

�

�

�

�

�

�

�

�

4.4 The Task Parallelism Pattern 67

The variables ii and jj create a dependency between tasks and prevent
parallelization of the loop. We can remove this dependency by replacing ii
and jj with closed-form expressions (noticing that the values of ii and i are
the same and that the value of jj is the sum of the values from 0 through i):

for(int i = 0; i< N; i++){

d[i] = big_time_consuming_work(i);
a[(i*i+i)/2] = other_big_calc((i*i+i)/2));

}

• “Separable” dependencies. When the dependencies involve accumulation
into a shared data structure, they can be separated from the tasks (“pulled
outside the concurrent computation”) by replicating the data structure at
the beginning of the computation, executing the tasks, and then combining
the copies into a single data structure after the tasks complete. Often the
accumulation is a reduction operation, in which a collection of data elements
is reduced to a single element by repeatedly applying a binary operation such
as addition or multiplication.

In more detail, these dependencies can be managed as follows: A copy
of the data structure used in the accumulation is created on each UE. Each
copy is initialized (in the case of a reduction, to the identity element for the
binary operation—for example, zero for addition and one for multiplication).
Each task then carries out the accumulation into its local data structure,
eliminating the shared-data dependency. When all tasks are complete, the
local data structures on each UE are combined to produce the final global
result (in the case of a reduction, by applying the binary operation again).
As an example, consider the following loop to sum the elements of array f:

for(int i = 0; i< N; i++){
sum = sum + f(i);

}

This is technically a dependency between loop iterations, but if we recognize
that the loop body is just accumulating into a simple scalar variable, it can
be handled as a reduction.

Reductions are so common that both MPI and OpenMP provide support
for them as part of the API. Sec. 6.4.2 in the Implementation Mechanisms
design space discusses reductions in more detail.

• Other dependencies. If the shared data cannot be pulled out of the tasks
and is both read and written by the tasks, data dependencies must be

2004/
page

�

�

�

�

�

�

�

�

68 Chapter 4 The Algorithm Structure Design Space

independent tasks

A
B C

D E
F

assigned to 4 UEs (poor load balance)

D
CA

E

B

F

assigned to 4 UEs (good load balance)

E
A

B

D
C

F

Figure 4.3: Good versus poor load balance

explicitly managed within the tasks. How to do this in a way that gives
correct results and also acceptable performance is the subject of the Shared
Data pattern.

Schedule. The remaining key element to consider is the schedule—the way in
which tasks are assigned to UEs and scheduled for execution. Load balance (as
described in Chapter 2) is a critical consideration in scheduling; a design that
balances the computational load among PEs will execute more efficiently than one
that does not. Fig. 4.3 illustrates the problem.

Two classes of schedules are used in parallel algorithms: static schedules, in
which the distribution of tasks among UEs is determined at the start of the com-
putation and does not change; and dynamic schedules, in which the distribution of
tasks among UEs varies as the computation proceeds.

In a static schedule, the tasks are associated into blocks and then assigned
to UEs. Block size is adjusted so each UE takes approximately the same amount
of time to complete its tasks. In most applications using a static schedule, the
computational resources available from the UEs are predictable and stable over the
course of the computation, with the most common case being UEs that are identical
(that is, the computing system is homogeneous). If the set of times required to
complete each task is narrowly distributed about a mean, the sizes of the blocks
should be proportional to the relative performance of the UEs (so, in a homogeneous

2004/
page

�

�

�

�

�

�

�

�

4.4 The Task Parallelism Pattern 69

system, they are all the same size). When the effort associated with the tasks
varies considerably, a static schedule can still be useful, but now the number of
blocks assigned to UEs must be much greater than the number of UEs. By dealing
out the blocks in a round-robin manner (much as a deck of cards is dealt among a
group of card players), the load is balanced statistically.

Dynamic schedules are used when (1) the effort associated with each task
varies widely and is unpredictable and/or (2) when the capabilities of the UEs
vary widely and unpredictably. The most common approach used for dynamic load
balancing is to define a task queue to be used by all the UEs; when a UE completes
its current task and is therefore ready to process more work, it removes a task from
the task queue. Faster UEs or those receiving lighter-weight tasks will access the
queue more often and thereby be assigned more tasks.

Another dynamic scheduling strategy uses work stealing, which works as fol-
lows. The tasks are distributed among the UEs at the start of the computation.
Each UE has its own work queue. When the queue is empty, the UE will try to
steal work from the queue on some other UE (where the other UE is usually ran-
domly selected). In many cases, this produces an optimal dynamic schedule without
incurring the overhead of maintaining a single global queue. In programming envi-
ronments or packages that provide support for the construct, such as Cilk [BJK+96],
Hood [BP99], or the FJTask framework [Lea00b,Lea], it is straightforward to use
this approach. But with more commonly used programming environments such as
OpenMP, MPI, or Java (without support such as the FJTask framework), this
approach adds significant complexity and therefore is not often used.

Selecting a schedule for a given problem is not always easy. Static schedules
incur the least overhead during the parallel computation and should be used when-
ever possible.

Before ending the discussion of schedules, we should mention again that while
for most problems all of the tasks are known when the computation begins and all
must be completed to produce an overall solution, there are problems for which one
or both of these is not true. In these cases, a dynamic schedule is probably more
appropriate.

Program structure. Many task-parallel problems can be considered to be loop-
based. Loop-based problems are, as the name implies, those in which the tasks are
based on the iterations of a loop. The best solutions for such problems use the
Loop Parallelism pattern. This pattern can be particularly simple to implement in
programming environments that provide directives for automatically assigning loop
iterations to UEs. For example, in OpenMP a loop can be parallelized by simply
adding a “parallel for” directive with an appropriate schedule clause (one that
maximizes efficiency). This solution is especially attractive because OpenMP then
guarantees that the resulting program is semantically equivalent to the analogous
sequential code (within roundoff error associated with different orderings of floating-
point operations).

For problems in which the target platform is not a good fit with the Loop
Parallelism pattern, or for problems in which the model of “all tasks known initially,
all tasks must complete” does not apply (either because tasks can be created during

2004/
page

�

�

�

�

�

�

�

�

70 Chapter 4 The Algorithm Structure Design Space

the computation or because the computation can terminate without all tasks being
complete), this straightforward approach is not the best choice. Instead, the best
design makes use of a task queue; tasks are placed on the task queue as they are
created and removed by UEs until the computation is complete. The overall program
structure can be based on either the Master/Worker pattern or the SPMD pattern.
The former is particularly appropriate for problems requiring a dynamic schedule.

In the case in which the computation can terminate before all the tasks are
complete, some care must be taken to ensure that the computation ends when it
should. If we define the termination condition as the condition that when true
means the computation is complete—either all tasks are complete or some other
condition (for example, an acceptable solution has been found by one task)—then
we want to be sure that (1) the termination condition is eventually met (which,
if tasks can be created dynamically, might mean building into it a limit on the
total number of tasks created), and (2) when the termination condition is met, the
program ends. How to ensure the latter is discussed in the Master/Worker and
SPMD patterns.

Common idioms. Most problems for which this pattern is applicable fall into
the following two categories.

Embarrassingly parallel problems are those in which there are no dependen-
cies among the tasks. A wide range of problems fall into this category, ranging
from rendering frames in a motion picture to statistical sampling in computational
physics. Because there are no dependencies to manage, the focus is on scheduling
the tasks to maximize efficiency. In many cases, it is possible to define schedules
that automatically and dynamically balance the load among UEs.

Replicated data or reduction problems are those in which dependencies can be
managed by “separating them from the tasks” as described earlier—replicating the
data at the beginning of computation and combining results when the termination
condition is met (usually “all tasks complete”). For these problems, the overall
solution consists of three phases, one to replicate the data into local variables, one to
solve the now-independent tasks (using the same techniques used for embarrassingly
parallel problems), and one to recombine the results into a single result.

Examples

We will consider two examples of this pattern. The first example, an image-
construction example, is embarrassingly parallel. The second example will build
on the molecular dynamics example used in several of the Finding Concurrency
patterns.

Image construction. In many image-construction problems, each pixel in the
image is independent of all the other pixels. For example, consider the well known
Mandelbrot set [Dou86]. This famous image is constructed by coloring each pixel
according to the behavior of the quadratic recurrence relation

Zn+1 = Z2
n + C (4.1)

2004/
page

�

�

�

�

�

�

�

�

4.4 The Task Parallelism Pattern 71

where C and Z are complex numbers and the recurrence is started with Z0 = C.
The image plots the imaginary part of C on the vertical axis and the real part on the
horizontal axis. The color of each pixel is black if the recurrence relation converges
to a stable value or is colored depending on how rapidly the relation diverges.

At the lowest level, the task is the update for a single pixel. First consider
computing this set on a cluster of PCs connected by an Ethernet. This is a coarse-
grained system; that is, the rate of communication is slow relative to the rate of
computation. To offset the overhead incurred by the slow network, the task size
needs to be large; for this problem, that might mean computing a full row of the
image. The work involved in computing each row varies depending on the number
of divergent pixels in the row. The variation, however, is modest and distributed
closely around a mean value. Therefore, a static schedule with many more tasks
than UEs will likely give an effective statistical balance of the load among nodes.
The remaining step in applying the pattern is choosing an overall structure for
the program. On a shared-memory machine using OpenMP, the Loop Parallelism
pattern described in the Supporting Structures design space is a good fit. On a
network of workstations running MPI, the SPMD pattern (also in the Supporting
Structures design space) is appropriate.

Before moving on to the next example, we consider one more target system,
a cluster in which the nodes are not heterogeneous—that is, some nodes are much
faster than others. Assume also that the speed of each node may not be known
when the work is scheduled. Because the time needed to compute the image for
a row now depends both on the row and on which node computes it, a dynamic
schedule is indicated. This in turn suggests that a general dynamic load-balancing
scheme is indicated, which then suggests that the overall program structure should
be based on the Master/Worker pattern.

Molecular dynamics. For our second example, we consider the computation
of the nonbonded forces in a molecular dynamics computation. This problem is
described in Sec. 3.1.3 and in [Mat95,PH95] and is used throughout the patterns in
the Finding Concurrency design space. Pseudocode for this computation is shown
in Fig. 4.4. The physics in this example is not relevant and is buried in code not
shown here (the computation of the neighbors list and the force function). The basic
computation structure is a loop over atoms, and then for each atom, a loop over
interactions with other atoms. The number of interactions per atom is computed
separately when the neighbors list is determined. This routine (not shown here)
computes the number of atoms within a radius equal to a preset cutoff distance.
The neighbor list is also modified to account for Newton’s third law: Because the
force of atom i on atom j is the negative of the force of atom j on atom i, only half
of the potential interactions need actually be computed. Understanding this detail
is not important for understanding this example. The key is that this causes each
loop over j to vary greatly from one atom to another, thereby greatly complicating
the load-balancing problem. Indeed, for the purposes of this example, all that must
really be understood is that calculating the force is an expensive operation and that
the number of interactions per atom varies greatly. Hence, the computational effort
for each iteration over i is difficult to predict in advance.

2004/
page

�

�

�

�

�

�

�

�

72 Chapter 4 The Algorithm Structure Design Space

function non_bonded_forces (N, Atoms, neighbors, Forces)

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)
forceX = non_bond_force(atoms(1,i), atoms(1,j))
forceY = non_bond_force(atoms(2,i), atoms(2,j))
forceZ = non_bond_force(atoms(3,i), atoms(3,j))
force(1,i) += forceX; force(1,j) -= forceX;
force(2,i) += forceY; force(2,j) -= forceY;
force(3,i) += forceZ; force(3,j) -= forceZ;

end loop [j]

end loop [i]
end function non_bonded_forces

Figure 4.4: Pseudocode for the nonbonded computation in a typical molecular dynamics code

Each component of the force term is an independent computation, meaning
that each (i, j) pair is fundamentally an independent task. The number of atoms
tends to be on the order of thousands, and squaring that gives a number of tasks
that is more than enough for all but the largest parallel systems. Therefore, we
can take the more convenient approach of defining a task as one iteration of the
loop over i. The tasks, however, are not independent: The force array is read and
written by each task. Inspection of the code shows that the arrays are only used to
accumulate results from the computation, however. Thus, the full array can be repli-
cated on each UE and the local copies combined (reduced) after the tasks complete.

After the replication is defined, the problem is embarrassingly parallel and
the same approaches discussed previously apply. We will revisit this example in
the Master/Worker, Loop Parallelism, and SPMD patterns. A choice among these
patterns is normally made based on the target platforms.

Known uses. There are many application areas in which this pattern is useful,
including the following.

Many ray-tracing programs use some form of partitioning with individual
tasks corresponding to scan lines in the final image [BKS91].

Applications written with coordination languages such as Linda are another
rich source of examples of this pattern [BCM+91]. Linda [CG91] is a simple lan-
guage consisting of only six operations that read and write an associative (that is,
content-addressable) shared memory called a tuple space. The tuple space provides

2004/
page

�

�

�

�

�

�

�

�

4.5 The Divide and Conquer Pattern 73

a natural way to implement a wide variety of shared-queue and master/worker
algorithms.

Parallel computational chemistry applications also make heavy use of this
pattern. In the quantum chemistry program GAMESS, the loops over two electron
integrals are parallelized with the task queue implied by the Nextval construct
within TCGMSG. An early version of the distance geometry program DGEOM
was parallelized with the master/worker form of this pattern. These examples are
discussed in [Mat95].

PTEP (Parallel Telemetry Processor) [NBB01], developed by NASA as the
downlink processing system for data from a planetary rover or lander, also makes
use of this pattern. The system is implemented in Java but can incorporate compo-
nents implemented in other languages. For each incoming data packet, the system
determines which instrument produced the data, and then performs an appropri-
ate sequential pipeline of processing steps. Because the incoming data packets are
independent, the processing of individual packets can be done in parallel.

4.5 THE DIVIDE AND CONQUER PATTERN

Problem

Suppose the problem is formulated using the sequential divide-and-conquer strat-
egy. How can the potential concurrency be exploited?

Context

The divide-and-conquer strategy is employed in many sequential algorithms. With
this strategy, a problem is solved by splitting it into a number of smaller subprob-
lems, solving them independently, and merging the subsolutions into a solution for
the whole problem. The subproblems can be solved directly, or they can in turn be
solved using the same divide-and-conquer strategy, leading to an overall recursive
program structure.

This strategy has proven valuable for a wide range of computationally inten-
sive problems. For many problems, the mathematical description maps well onto
a divide-and-conquer algorithm. For example, the famous fast Fourier transform
algorithm [PTV93] is essentially a mapping of the doubly nested loops of the
discrete Fourier transform into a divide-and-conquer algorithm. Less well known
is the fact that many algorithms from computational linear algebra, such as the
Cholesky decomposition [ABE+97, PLA], also map well onto divide-and-conquer
algorithms.

The potential concurrency in this strategy is not hard to see: Because the sub-
problems are solved independently, their solutions can be computed concurrently.
Fig. 4.5 illustrates the strategy and the potential concurrency. Notice that each
“split” doubles the available concurrency. Although the concurrency in a divide-
and-conquer algorithm is obvious, the techniques required to exploit it effectively
are not always obvious.

2004/
page

�

�

�

�

�

�

�

�

74 Chapter 4 The Algorithm Structure Design Space

solution

subproblem

subproblem subproblem subproblem subproblem

subsolution subsolution subsolution subsolution

subproblem

subsolution subsolution

problem

split

split

merge merge

merge

split

sequential

sequential

up to 2-way concurrency

up to 2-way concurrency

up to 4-way concurrency solve solve solve solve

Figure 4.5: The divide-and-conquer strategy

Forces

• The traditional divide-and-conquer strategy is a widely useful approach to
algorithm design. Sequential divide-and-conquer algorithms are almost trivial
to parallelize based on the obvious exploitable concurrency.

• As Fig. 4.5 suggests, however, the amount of exploitable concurrency varies
over the life of the program. At the outermost level of the recursion (initial
split and final merge), there is little or no exploitable concurrency, and the
subproblems also contain split and merge sections. Amdahl’s law (Chapter 2)
tells us that the serial parts of a program can significantly constrain the
speedup that can be achieved by adding more processors. Thus, if the split and
merge computations are nontrivial compared to the amount of computation
for the base cases, a program using this pattern might not be able to take
advantage of large numbers of processors. Further, if there are many levels of
recursion, the number of tasks can grow quite large, perhaps to the point that
the overhead of managing the tasks overwhelms any benefit from executing
them concurrently.

• In distributed-memory systems, subproblems can be generated on one PE
and executed by another, requiring data and results to be moved between the
PEs. The algorithm will be more efficient if the amount of data associated
with a computation (that is, the size of the parameter set and result for each
subproblem) is small. Otherwise, large communication costs can dominate the
performance.

• In divide-and-conquer algorithms, the tasks are created dynamically as the
computation proceeds, and in some cases, the resulting “task graph” will have
an irregular and data-dependent structure. If this is the case, then the solution
should employ dynamic load balancing.

2004/
page

�

�

�

�

�

�

�

�

4.5 The Divide and Conquer Pattern 75

func solve returns Solution; // a solution stage
func baseCase returns Boolean; // direct solution test
func baseSolve returns Solution; // direct solution
func merge returns Solution; // combine subsolutions
func split returns Problem[]; // split into subprobs

Solution solve(Problem P) {
if (baseCase(P))

return baseSolve(P);
else {

Problem subProblems[N];
Solution subSolutions[N];
subProblems = split(P);
for (int i = 0; i < N; i++)

subSolutions[i] = solve(subProblems[i]);
return merge(subSolutions);

}
}

Figure 4.6: Sequential pseudocode for the divide-and-conquer algorithm

Solution

A sequential divide-and-conquer algorithm has the structure shown in Fig. 4.6. The
cornerstone of this structure is a recursively invoked function (solve()) that drives
each stage in the solution. Inside solve, the problem is either split into smaller
subproblems (using split()) or it is directly solved (using baseSolve()). In the
classical strategy, recursion continues until the subproblems are simple enough to
be solved directly, often with just a few lines of code each. However, efficiency
can be improved by adopting the view that baseSolve() should be called when
(1) the overhead of performing further splits and merges significantly degrades
performance, or (2) the size of the problem is optimal for the target system (for
example, when the data required for a baseSolve() fits entirely in cache).

The concurrency in a divide-and-conquer problem is obvious when, as is
usually the case, the subproblems can be solved independently (and hence, con-
currently). The sequential divide-and-conquer algorithm maps directly onto a task-
parallel algorithm by defining one task for each invocation of the solve()
function, as illustrated in Fig. 4.7. Note the recursive nature of the design, with
each task in effect dynamically generating and then absorbing a task for each
subproblem.

At some level of recursion, the amount of computation required for a subprob-
lems can become so small that it is not worth the overhead of creating a new task
to solve it. In this case, a hybrid program that creates new tasks at the higher levels
of recursion, then switches to a sequential solution when the subproblems become
smaller than some threshold, will be more effective. As discussed next, there are
tradeoffs involved in choosing the threshold, which will depend on the specifics of
the problem and the number of PEs available. Thus, it is a good idea to design the
program so that this “granularity knob” is easy to change.

2004/
page

�

�

�

�

�

�

�

�

76 Chapter 4 The Algorithm Structure Design Space

merge

split split

base-case
solve

base-case
solve

base-case
solve

base-case
solve

merge merge

split

Figure 4.7: Parallelizing the divide-and-conquer strategy. Each dashed-line box represents a task.

Mapping tasks to UEs and PEs. Conceptually, this pattern follows a straight-
forward fork/join approach (see the Fork/Join pattern). One task splits the prob-
lem, then forks new tasks to compute the subproblems, waits until the subproblems
are computed, and then joins with the subtasks to merge the results.

The easiest situation is when the split phase generates subproblems that are
known to be about the same size in terms of needed computation. Then, a straight-
forward implementation of the fork/join strategy, mapping each task to a UE and
stopping the recursion when the number of active subtasks is the same as the num-
ber of PEs, works well.

In many situations, the problem will not be regular, and it is best to create
more, finer-grained tasks and use a master/worker structure to map tasks to units
of execution. This implementation of this approach is described in detail in the
Master/Worker pattern. The basic idea is to conceptually maintain a queue of
tasks and a pool of UEs, typically one per PE. When a subproblem is split, the new
tasks are placed in the queue. When a UE finishes a task, it obtains another one
from the queue. In this way, all of the UEs tend to remain busy, and the solution
shows a good load balance. Finer-grained tasks allow a better load balance at the
cost of more overhead for task management.

Many parallel programming environments directly support the fork/join con-
struct. For example, in OpenMP, we could easily produce a parallel application by
turning the for loop of Fig. 4.6 into an OpenMP parallel for construct. Then the
subproblems will be solved concurrently rather than in sequence, with the OpenMP
runtime environment handling the thread management. Unfortunately, this tech-
nique will only work with implementations of OpenMP that support true nesting of
parallel regions. Currently, only a few OpenMP implementations do so. Extending
OpenMP to better address recursive parallel algorithms is an active area of research

2004/
page

�

�

�

�

�

�

�

�

4.5 The Divide and Conquer Pattern 77

in the OpenMP community [Mat03]. One proposal likely to be adopted in a future
OpenMP specification is to add an explicit taskqueue construct designed to support
the expression of recursive algorithms [SHPT00].

The FJTask framework for Java [Lea00b,Lea] provides support for fork/join
programs with a pool of threads backing the implementation. Several example pro-
grams using a divide-and-conquer strategy are provided with the package.

Communication costs. Because tasks are generated dynamically from a single
top-level task, a task can be executed on a different PE than the one that generated
it. In a distributed-memory system, a higher-level task will typically have the data
necessary to solve its entire problem, the relevant data must be moved to the
subproblem’s PE, and the result moved back to the source. Thus it pays to consider
how to efficiently represent the parameters and results, and consider whether it
makes sense to replicate some data at the beginning of the computation.

Dealing with dependencies. In most algorithms formulated using the divide-
and-conquer strategy, the subproblems can be solved independently from each
other. Less commonly, the subproblems require access to a common data struc-
ture. These dependencies can be handled using the techniques described in the
Shared Data pattern.

Other optimizations. A factor limiting the scalability of this pattern is the serial
split and merge sections. Reducing the number of levels of recursion required by
splitting each problem into more subproblems can often help, especially if the split
and merge phases can be parallelized themselves. This might require restructuring,
but can be quite effective, especially in the limiting case of “one-deep divide and
conquer”, in which the initial split is into P subproblems, where P is the number
of available PEs. Examples of this approach are given in [Tho95].

Examples

Mergesort. Mergesort is a well-known sorting algorithm based on the divide-
and-conquer strategy, applied as follows to sort an array of N elements.

• The base case is an array of size less than some threshold. This is sorted using
an appropriate sequential sorting algorithm, often quicksort.

• In the split phase, the array is split by simply partitioning it into two con-
tiguous subarrays, each of size N/2.

• In the solve-subproblems phase, the two subarrays are sorted (by applying
the mergesort procedure recursively).

• In the merge phase, the two (sorted) subarrays are recombined into a single
sorted array.

This algorithm is readily parallelized by performing the two recursive mergesorts
in parallel.

2004/
page

�

�

�

�

�

�

�

�

78 Chapter 4 The Algorithm Structure Design Space

This example is revisited with more detail in the Fork/Join pattern in the
Supporting Structures design space.

Matrix diagonalization. Dongarra and Sorensen ([DS87]) describe a parallel
algorithm for diagonalizing (computing the eigenvectors and eigenvalues of) a sym-
metric tridiagonal matrix T . The problem is to find a matrix Q such that QT � T � Q
is diagonal; the divide-and-conquer strategy goes as follows (omitting the mathe-
matical details).

• The base case is a small matrix which is diagonalized sequentially.

• The split phase consists of finding matrix T ′ and vectors u, v, such that
T = T ′ + uvT , and T ′ has the form[

T1 0
0 T2

]

where T1 and T2 are symmetric tridiagonal matrices (which can be diagonal-
ized by recursive calls to the same procedure).

• The merge phase recombines the diagonalizations of T1 and T2 into a diago-
nalization of T .

Details can be found in [DS87] or in [GL96].

Known uses. Any introductory algorithms text will have many examples of algo-
rithms based on the divide-and-conquer strategy, most of which can be parallelized
with this pattern.

Some algorithms frequently parallelized with this strategy include the Barnes-
Hut [BH86] and Fast Multipole [GG90] algorithms used in N -body simulations;
signal-processing algorithms, such as discrete Fourier transforms; algorithms for
banded and tridiagonal linear systems, such as those found in the ScaLAPACK
package [CD97,Sca]; and algorithms from computational geometry, such as convex
hull and nearest neighbor.

A particularly rich source of problems that use the Divide and Conquer pat-
tern is the FLAME project [GGHvdG01]. This is an ambitious project to recast
linear algebra problems in recursive algorithms. The motivation is twofold. First,
mathematically, these algorithms are naturally recursive; in fact, most pedagogical
discussions of these algorithms are recursive. Second, these recursive algorithms
have proven to be particularly effective at producing code that is both portable
and highly optimized for the cache architectures of modern microprocessors.

Related Patterns

Just because an algorithm is based on a sequential divide-and-conquer strategy
does not mean that it must be parallelized with the Divide and Conquer pattern.
A hallmark of this pattern is the recursive arrangement of the tasks, leading to
a varying amount of concurrency and potentially high overheads on machines for

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 79

which managing the recursion is expensive. If the recursive decomposition into sub-
problems can be reused, however, it might be more effective to do the recursive
decomposition, and then use some other pattern (such as the Geometric Decom-
position pattern or the Task Parallelism pattern) for the actual computation. For
example, the first production-level molecular dynamics program to use the fast
multipole method, PMD [Win95], used the Geometric Decomposition pattern to
parallelize the fast multipole algorithm, even though the original fast multipole al-
gorithm used divide and conquer. This worked because the multipole computation
was carried out many times for each configuration of atoms.

4.6 THE GEOMETRIC DECOMPOSITION PATTERN

Problem

How can an algorithm be organized around a data structure that has been decom-
posed into concurrently updatable “chunks”?

Context

Many important problems are best understood as a sequence of operations on a
core data structure. There may be other work in the computation, but an effective
understanding of the full computation can be obtained by understanding how the
core data structures are updated. For these types of problems, often the best way
to represent the concurrency is in terms of decompositions of these core data struc-
tures. (This form of concurrency is sometimes known as domain decomposition, or
coarse-grained data parallelism.)

The way these data structures are built is fundamental to the algorithm. If
the data structure is recursive, any analysis of the concurrency must take this re-
cursion into account. For recursive data structures, the Recursive Data and Divide
and Conquer patterns are likely candidates. For arrays and other linear data struc-
tures, we can often reduce the problem to potentially concurrent components by
decomposing the data structure into contiguous substructures, in a manner anal-
ogous to dividing a geometric region into subregions—hence the name Geometric
Decomposition. For arrays, this decomposition is along one or more dimensions,
and the resulting subarrays are usually called blocks. We will use the term chunks
for the substructures or subregions, to allow for the possibility of more general data
structures, such as graphs.

This decomposition of data into chunks then implies a decomposition of the
update operation into tasks, where each task represents the update of one chunk,
and the tasks execute concurrently. If the computations are strictly local, that is, all
required information is within the chunk, the concurrency is embarrassingly parallel
and the simpler Task Parallelism pattern should be used. In many cases, however,
the update requires information from points in other chunks (frequently from what
we can call neighboring chunks—chunks containing data that was nearby in the
original global data structure). In these cases, information must be shared between
chunks to complete the update.

2004/
page

�

�

�

�

�

�

�

�

80 Chapter 4 The Algorithm Structure Design Space

Example: mesh-computation program. The problem is to model 1D heat
diffusion (that is, diffusion of heat along an infinitely narrow pipe). Initially, the
whole pipe is at a stable and fixed temperature. At time 0, we set both ends to
different temperatures, which will remain fixed throughout the computation. We
then calculate how temperatures change in the rest of the pipe over time. (What
we expect is that the temperatures will converge to a smooth gradient from one end
of the pipe to the other.) Mathematically, the problem is to solve a 1D differential
equation representing heat diffusion:

�U

�t
=

�2U

�x2
(4.2)

The approach used is to discretize the problem space (representing U by a one-
dimensional array and computing values for a sequence of discrete time steps). We
will output values for each time step as they are computed, so we need only save
values for U for two time steps; we will call these arrays uk (U at the timestep k)
and ukp1 (U at timestep k + 1). At each time step, we then need to compute for
each point in array ukp1 the following:

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

Variables dt and dx represent the intervals between discrete time steps and
between discrete points, respectively.

Observe that what is being computed is a new value for variable ukp1 at each
point, based on data at that point and its left and right neighbors.

We can begin to design a parallel algorithm for this problem by decomposing
the arrays uk and ukp1 into contiguous subarrays (the chunks described earlier).
These chunks can be operated on concurrently, giving us exploitable concurrency.
Notice that we have a situation in which some elements can be updated using only
data from within the chunk, while others require data from neighboring chunks, as
illustrated by Fig. 4.8.

update requiring information from another chunk

update requiring only local info

Figure 4.8: Data dependencies in the heat-equation problem. Solid boxes indicate the element
being updated; shaded boxes the elements containing needed data.

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 81

Example: matrix-multiplication program. Consider the multiplication of two
square matrices (that is, compute C =A � B). As discussed in [FJL+88], the ma-
trices can be decomposed into blocks. The summations in the definition of matrix
multiplication are likewise organized into blocks, allowing us to write a blockwise
matrix multiplication equation

Cij =
∑

k

Aik � Bkj (4.3)

where at each step in the summation, we compute the matrix product Aik � Bkj

and add it to the running matrix sum.
This equation immediately implies a solution in terms of the Geometric De-

composition pattern; that is, one in which the algorithm is based on decompos-
ing the data structure into chunks (square blocks here) that can be operated on
concurrently.

To help visualize this algorithm more clearly, consider the case where we
decompose all three matrices into square blocks with each task “owning” corre-
sponding blocks of A, B, and C. Each task will run through the sum over k to
compute its block of C, with tasks receiving blocks from other tasks as needed.
In Fig. 4.9, we illustrate two steps in this process showing a block being updated
(the solid block) and the matrix blocks required at two different steps (the shaded
blocks), where blocks of the A matrix are passed across a row and blocks of the
B matrix are passed around a column.

Forces

• To exploit the potential concurrency in the problem, we must assign chunks
of the decomposed data structure to UEs. Ideally, we want to do this in a way
that is simple, portable, scalable, and efficient. As noted in Sec. 4.1, however,
these goals may conflict. A key consideration is balancing the load, that is,
ensuring that all UEs have roughly the same amount of work to do.

• We must also ensure that the data required for the update of each chunk is
present when needed. This problem is somewhat analogous to the problem

update, step 1 update, step 2

Figure 4.9: Data dependencies in the matrix-multiplication problem. Solid boxes indicate the
"chunk" being updated (C); shaded boxes indicate the chunks of A (row) and B (column) required
to update C at each of the two steps.

2004/
page

�

�

�

�

�

�

�

�

82 Chapter 4 The Algorithm Structure Design Space

of managing data dependencies in the Task Parallelism pattern, and again
the design must keep in mind the sometimes-conflicting goals of simplicity,
portability, scalability, and efficiency.

Solution

Designs for problems that fit this pattern involve the following key elements: parti-
tioning the global data structure into substructures or “chunks” (the data decom-
position), ensuring that each task has access to all the data it needs to perform
the update operation for its chunk (the exchange operation), updating the chunks
(the update operation), and mapping chunks to UEs in a way that gives good
performance (the data distribution and task schedule).

Data decomposition. The granularity of the data decomposition has a signif-
icant impact on the efficiency of the program. In a coarse-grained decomposition,
there are a smaller number of large chunks. This results in a smaller number of
large messages, which can greatly reduce communication overhead. A fine-grained
decomposition, on the other hand, results in a larger number of smaller chunks, in
many cases leading to many more chunks than PEs. This results in a larger number
of smaller messages (and hence increases communication overhead), but it greatly
facilitates load balancing.

Although it might be possible in some cases to mathematically derive an
optimum granularity for the data decomposition, programmers usually experiment
with a range of chunk sizes to empirically determine the best size for a given system.
This depends, of course, on the computational performance of the PEs and on the
performance characteristics of the communication network. Therefore, the program
should be implemented so that the granularity is controlled by parameters that can
be easily changed at compile or runtime.

The shape of the chunks can also affect the amount of communication needed
between tasks. Often, the data to share between tasks is limited to the boundaries
of the chunks. In this case, the amount of shared information scales with the surface
area of the chunks. Because the computation scales with the number of points within
a chunk, it scales as the volume of the region. This surface-to-volume effect can
be exploited to maximize the ratio of computation to communication. Therefore,
higher-dimensional decompositions are usually preferred. For example, consider two
different decompositions of an N by N matrix into four chunks. In one case, we
decompose the problem into four column chunks of size N by N/4. In the second
case, we decompose the problem into four square chunks of size N/2 by N/2. For
the column block decomposition, the surface area is 2N + 2(N/4) or 5N/2. For
the square chunk case, the surface area is 4(N/2) or 2N . Hence, the total amount
of data that must be exchanged is less for the square chunk decomposition.

In some cases, the preferred shape of the decomposition can be dictated by
other concerns. It may be the case, for example, that existing sequential code can
be more easily reused with a lower-dimensional decomposition, and the potential
increase in performance is not worth the effort of reworking the code. Also, an in-
stance of this pattern can be used as a sequential step in a larger computation. If

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 83

the decomposition used in an adjacent step differs from the optimal one for this pat-
tern in isolation, it may or may not be worthwhile to redistribute the data for this
step. This is especially an issue in distributed-memory systems where redistribut-
ing the data can require significant communication that will delay the computation.
Therefore, data decomposition decisions must take into account the capability to
reuse sequential code and the need to interface with other steps in the computa-
tion. Notice that these considerations might lead to a decomposition that would be
suboptimal under other circumstances.

Communication can often be more effectively managed by replicating the non-
local data needed to update the data in a chunk. For example, if the data structure
is an array representing the points on a mesh and the update operation uses a
local neighborhood of points on the mesh, a common communication-management
technique is to surround the data structure for the block with a ghost boundary to
contain duplicates of data at the boundaries of neighboring blocks. So now each
chunk has two parts: a primary copy owned by the UE (that will be updated di-
rectly) and zero or more ghost copies (also referred to as shadow copies). These ghost
copies provide two benefits. First, their use may consolidate communication into
potentially fewer, larger messages. On latency-sensitive networks, this can greatly
reduce communication overhead. Second, communication of the ghost copies can
be overlapped (that is, it can be done concurrently) with the update of parts of
the array that don’t depend on data within the ghost copy. In essence, this hides
the communication cost behind useful computation, thereby reducing the observed
communication overhead.

For example, in the case of the mesh-computation example discussed earlier,
each of the chunks would be extended by one cell on each side. These extra cells
would be used as ghost copies of the cells on the boundaries of the chunks. Fig. 4.10
illustrates this scheme.

The exchange operation. A key factor in using this pattern correctly is en-
suring that nonlocal data required for the update operation is obtained before it is
needed.

If all the data needed is present before the beginning of the update opera-
tion, the simplest approach is to perform the entire exchange before beginning the
update, storing the required nonlocal data in a local data structure designed for
that purpose (for example, the ghost boundary in a mesh computation). This ap-
proach is relatively straightforward to implement using either copying or message
passing.

More sophisticated approaches in which computation and communication
overlap are also possible. Such approaches are necessary if some data needed for
the update is not initially available, and may improve performance in other cases

Figure 4.10: A data distribution with ghost boundaries. Shaded cells are ghost copies; arrows point
from primary copies to corresponding secondary copies.

2004/
page

�

�

�

�

�

�

�

�

84 Chapter 4 The Algorithm Structure Design Space

as well. For example, in the example of a mesh computation, the exchange of ghost
cells and the update of cells in the interior region (which do not depend on the
ghost cells) can proceed concurrently. After the exchange is complete, the bound-
ary layer (the values that do depend on the ghost cells) can be updated. On systems
where communication and computation occur in parallel, the savings from such an
approach can be significant. This is such a common feature of parallel algorithms
that standard communication APIs (such as MPI) include whole classes of message-
passing routines to overlap computation and communication. These are discussed
in more detail in the MPI appendix.

The low-level details of how the exchange operation is implemented can have
a large impact on efficiency. Programmers should seek out optimized implementa-
tions of communication patterns used in their programs. In many applications, for
example, the collective communication routines in message-passing libraries such
as MPI are useful. These have been carefully optimized using techniques beyond
the ability of many parallel programmers (we discuss some of these in Sec. 6.4.2)
and should be used whenever possible.

The update operation. Updating the data structure is done by executing the
corresponding tasks (each responsible for the update of one chunk of the data
structures) concurrently. If all the needed data is present at the beginning of the
update operation, and if none of this data is modified during the course of the
update, parallelization is easier and more likely to be efficient.

If the required exchange of information has been performed before beginning
the update operation, the update itself is usually straightforward to implement—it
is essentially identical to the analogous update in an equivalent sequential program,
particularly if good choices have been made about how to represent nonlocal data.

If the exchange and update operations overlap, more care is needed to ensure
that the update is performed correctly. If a system supports lightweight threads that
are well integrated with the communication system, then overlap can be achieved
via multithreading within a single task, with one thread computing while an-
other handles communication. In this case, synchronization between the threads is
required.

In some systems, for example MPI, nonblocking communication is supported
by matching communication primitives: one to start the communication (without
blocking), and the other (blocking) to complete the operation and use the results.
For maximal overlap, communication should be started as soon as possible, and
completed as late as possible. Sometimes, operations can be reordered to allow
more overlap without changing the algorithm semantics.

Data distribution and task scheduling. The final step in designing a par-
allel algorithm for a problem that fits this pattern is deciding how to map the
collection of tasks (each corresponding to the update of one chunk) to UEs. Each
UE can then be said to “own” a collection of chunks and the data they contain.
Thus, we have a two-tiered scheme for distributing data among UEs: partition-
ing the data into chunks and then assigning these chunks to UEs. This scheme is

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 85

flexible enough to represent a variety of popular schemes for distributing data
among UEs.

In the simplest case, each task can be statically assigned to a separate UE;
then all tasks can execute concurrently, and the intertask coordination needed to
implement the exchange operation is straightforward. This approach is most ap-
propriate when the computation times of the tasks are uniform and the exchange
operation has been implemented to overlap communication and computation within
each tasks.

The simple approach can lead to poor load balance in some situations, how-
ever. For example, consider a linear algebra problem in which elements of the matrix
are successively eliminated as the computation proceeds. Early in the computation,
all the rows and columns of the matrix have numerous elements to work with and
decompositions based on assigning full rows or columns to UEs are effective. Later
in the computation, however, rows or columns become sparse, the work per row
becomes uneven, and the computational load becomes poorly balanced between
UEs. The solution is to decompose the problem into many more chunks than there
are UEs and to scatter them among the UEs with a cyclic or block-cyclic distribu-
tion. (Cyclic and block-cyclic distributions are discussed in the Distributed Array
pattern.) Then, as chunks become sparse, there are (with high probability) other
nonsparse chunks for any given UE to work on, and the load becomes well balanced.
A rule of thumb is that one needs around ten times as many tasks as UEs for this
approach to work well.

It is also possible to use dynamic load-balancing algorithms to periodically
redistribute the chunks among the UEs to improve the load balance. These incur
overhead that must be traded off against the improvement likely to occur from
the improved load balance and increased implementation costs. In addition, the
resulting program is more complex than those that use one of the static methods.
Generally, one should consider the (static) cyclic allocation strategy first.

Program structure. The overall program structure for applications of this pat-
tern will normally use either the Loop Parallelism pattern or the SPMD pattern,
with the choice determined largely by the target platform. These patterns are de-
scribed in the Supporting Structures design space.

Examples

We include two examples with this pattern: a mesh computation and matrix multi-
plication. The challenges in working with the Geometric Decomposition pattern are
best appreciated in the low-level details of the resulting programs. Therefore, even
though the techniques used in these programs are not fully developed until much
later in the book, we provide full programs in this section rather than high-level
descriptions of the solutions.

Mesh computation. This problem is described in the Context section of this
pattern. Fig. 4.11 presents a simple sequential version of a program (some details
omitted) that solves the 1D heat-diffusion problem. The program associated with

2004/
page

�

�

�

�

�

�

�

�

86 Chapter 4 The Algorithm Structure Design Space

#include <stdio.h>
#include <stdlib.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukp1[]) {
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int i = 1; i < NX-1; ++i)
uk[i] = 0.0;

for (int i = 0; i < NX; ++i)
ukp1[i] = uk[i];

}

void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukp1 = malloc(sizeof(double) * NX);
double *temp;

double dx = 1.0/NX;
double dt = 0.5*dx*dx;

initialize(uk, ukp1);

for (int k = 0; k < NSTEPS; ++k) {

/* compute new values */
for (int i = 1; i < NX-1; ++i) {
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* "copy" ukp1 to uk by swapping pointers */
temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);
}
return 0;

}

Figure 4.11: Sequential heat-diffusion program

this problem is straightforward, although one detail might need further explanation:
After computing new values in ukp1 at each step, conceptually what we want to do
is copy them to uk for the next iteration. We avoid a time-consuming actual copy
by making uk and ukp1 pointers to their respective arrays and simply swapping
them at the end of each step. This causes uk to point to the newly computed
values and ukp1 to point to the area to use for computing new values in the next
iteration.

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 87

This program combines a top-level sequential control structure (the time-step
loop) with an array-update operation, which can be parallelized using the Geometric
Decomposition pattern. We show parallel implementations of this program using
OpenMP and MPI.

OpenMP solution. A particularly simple version of the program using
OpenMP and the Loop Parallelism pattern is shown in Fig. 4.12. Because OpenMP
is a shared-memory programming model, there is no need to explicitly partition
and distribute the two key arrays (uk and ukp1). The creation of the threads and
distribution of the work among the threads are accomplished with the parallel
for directive.

#pragma parallel for schedule(static)

The schedule(static) clause decomposes the iterations of the parallel loop
into one contiguous block per thread with each block being approximately the same
size. This schedule is important for Loop Parallelism programs implementing the
Geometric Decomposition pattern. Good performance for most Geometric Decom-
position problems (and mesh programs in particular) requires that the data in the
processor’s cache be used many times before it is displaced by data from new cache
lines. Using large blocks of contiguous loop iterations increases the chance that
multiple values fetched in a cache line will be utilized and that subsequent loop
iterations are likely to find at least some of the required data in cache.

The last detail to discuss for the program in Fig. 4.12 is the synchronization
required to safely copy the pointers. It is essential that all of the threads complete
their work before the pointers they manipulate are swapped in preparation for the
next iteration. In this program, this synchronization happens automatically due to
the implied barrier (see Sec. 6.3.2) at the end of the parallel loop.

The program in Fig. 4.12 works well with a small number of threads. When
large numbers of threads are involved, however, the overhead incurred by placing
the thread creation and destruction inside the loop over k would be prohibitive. We
can reduce thread-management overhead by splitting the parallel for directive
into separate parallel and for directives and moving the thread creation outside
the loop over k. This approach is shown in Fig. 4.13. Because the whole k loop is
now inside a parallel region, we must be more careful about how data is shared
between threads. The private clause causes the loop indices k and i to be local to
each thread. The pointers uk and ukp1 are shared, however, so the swap operation
must be protected. The easiest way to do this is to ensure that only one member of
the team of threads does the swap. In OpenMP, this is most easily done by placing
the update inside a single construct. As described in more detail in the OpenMP
appendix, Appendix A, the first thread to encounter the construct will carry out
the swap while the other threads wait at the end of the construct.

2004/
page

�

�

�

�

�

�

�

�

88 Chapter 4 The Algorithm Structure Design Space

#include <stdio.h>
#include <stdlib.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukp1[]) {
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int i = 1; i < NX-1; ++i)
uk[i] = 0.0;

for (int i = 0; i < NX; ++i)
ukp1[i] = uk[i];

}

void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukp1 = malloc(sizeof(double) * NX);
double *temp;

double dx = 1.0/NX;
double dt = 0.5*dx*dx;

initialize(uk, ukp1);

for (int k = 0; k < NSTEPS; ++k) {

#pragma omp parallel for schedule(static)
/* compute new values */
for (int i = 1; i < NX-1; ++i) {
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* "copy" ukp1 to uk by swapping pointers */
temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k);
}
return 0;

}

Figure 4.12: Parallel heat-diffusion program using OpenMP

MPI solution. An MPI-based program for this example is shown in
Figs. 4.14 and 4.15. The approach used in this program uses a data distribution
with ghost cells and the SPMD pattern.

Each process is given a single chunk of the data domain of size NX/NP, where
NX is the total size of the global data array and NP is the number of processes. For
simplicity, we assume NX is evenly divided by NP.

The update of the chunk is straightforward and essentially identical to that
from the sequential code. The length and greater complexity in this MPI program

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 89

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukp1[]){/* NOT SHOWN */}
void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukp1 = malloc(sizeof(double) * NX);
double *temp;
int i,k;

double dx = 1.0/NX;
double dt = 0.5*dx*dx;

#pragma omp parallel private (k, i)
{
initialize(uk, ukp1);

for (k = 0; k < NSTEPS; ++k) {
#pragma omp for schedule(static)
for (i = 1; i < NX-1; ++i) {
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
/* "copy" ukp1 to uk by swapping pointers */
#pragma omp single
{ temp = ukp1; ukp1 = uk; uk = temp; }

}
}
return 0;

}

Figure 4.13: Parallel heat-diffusion program using OpenMP. This version has less thread-
management overhead.

arises from two sources. First, the data initialization is more complex, because it
must account for the data values at the edges of the first and last chunks. Second,
message-passing routines are required inside the loop over k to exchange ghost cells.

The details of the message-passing functions can be found in the MPI ap-
pendix, Appendix B. Briefly, transmitting data consists of one process doing a send
operation, specifying the buffer containing the data, and another process doing a
receive operation, specifying the buffer into which the data should be placed. We
need several different pairs of sends and receives because the process that owns the
leftmost chunk of the array does not have a left neighbor it needs to communicate
with, and similarly the process that owns the rightmost chunk does not have a right
neighbor to communicate with.

2004/
page

�

�

�

�

�

�

�

�

90 Chapter 4 The Algorithm Structure Design Space

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpi.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukp1[], int numPoints,
int numProcs, int myID) {

for (int i = 1; i <= numPoints; ++i)
uk[i] = 0.0;

/* left endpoint */
if (myID == 0) uk[1] = LEFTVAL;
/* right endpoint */
if (myID == numProcs-1) uk[numPoints] = RIGHTVAL;
/* copy values to ukp1 */
for (int i = 1; i <= numPoints; ++i) ukp1[i] = uk[i];

}

void printValues(double uk[], int step, int numPoints, int myID)
{ /* NOT SHOWN */ }

int main(int argc, char *argv[]) {
/* pointers to arrays for two iterations of algorithm */
double *uk, *ukp1, *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

int numProcs, myID, leftNbr, rightNbr, numPoints;
MPI_Status status;

/* MPI initialization */
MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &myID); //get own ID

/* initialization of other variables */
leftNbr = myID - 1; // ID of left "neighbor" process
rightNbr = myID + 1; // ID of right "neighbor" process
numPoints = (NX / numProcs);
/* uk, ukp1 include a "ghost cell" at each end */
uk = malloc(sizeof(double) * (numPoints+2));
ukp1 = malloc(sizeof(double) * (numPoints+2));

initialize(uk, ukp1, numPoints, numProcs, myID);
/* continued in next figure */

Figure 4.14: Parallel heat-diffusion program using MPI (continued in Fig. 4.15)

We could further modify the code in Figs. 4.14 and 4.15 to use nonblocking
communication to overlap computation and communication, as discussed earlier
in this pattern. The first part of the program is unchanged from our first mesh
computation MPI program (that is, Fig. 4.14). The differences for this case are

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 91

/* continued from Figure 4.14 */

for (int k = 0; k < NSTEPS; ++k) {

/* exchange boundary information */
if (myID != 0)

MPI_Send(&uk[1], 1, MPI_DOUBLE, leftNbr, 0,
MPI_COMM_WORLD);

if (myID != numProcs-1)
MPI_Send(&uk[numPoints], 1, MPI_DOUBLE, rightNbr, 0,

MPI_COMM_WORLD);
if (myID != 0)

MPI_Recv(&uk[0], 1, MPI_DOUBLE, leftNbr, 0,
MPI_COMM_WORLD, &status);

if (myID != numProcs-1)
MPI_Recv(&uk[numPoints+1],1, MPI_DOUBLE, rightNbr, 0,

MPI_COMM_WORLD, &status);

/* compute new values for interior points */
for (int i = 2; i < numPoints; ++i) {
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
/* compute new values for boundary points */
if (myID != 0) {

int i=1;
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
if (myID != numProcs-1) {

int i=numPoints;
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* "copy" ukp1 to uk by swapping pointers */
temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k, numPoints, myID);
}

/* clean up and end */
MPI_Finalize();
return 0;

}

Figure 4.15: Parallel heat-diffusion program using MPI (continued from Fig. 4.14)

contained in the second part of the program containing the main computation loop.
This code is shown in Fig. 4.16.

While the basic algorithm is the same, the communication is quite different.
The immediate-mode communication routines, MPI_Isend and MPI_Irecv, are used
to set up and then launch the communication events. These functions (described
in more detail in the MPI appendix, Appendix B) return immediately. The update
operations on the interior points can then take place because they don’t depend on
the results of the communication. We then call functions to wait until the commu-
nication is complete and update the edges of each UE’s chunks using the results

2004/
page

�

�

�

�

�

�

�

�

92 Chapter 4 The Algorithm Structure Design Space

/* continued */
MPI_Request reqRecvL, reqRecvR, reqSendL, reqSendR; //needed for

// nonblocking I/O

for (int k = 0; k < NSTEPS; ++k) {
/* initiate communication to exchange boundary information */
if (myID != 0) {
MPI_Irecv(&uk[0], 1, MPI_DOUBLE, leftNbr, 0,

MPI_COMM_WORLD, &reqRecvL);
MPI_Isend(&uk[1], 1, MPI_DOUBLE, leftNbr, 0,

MPI_COMM_WORLD, &reqSendL);
}
if (myID != numProcs-1) {
MPI_Irecv(&uk[numPoints+1],1, MPI_DOUBLE, rightNbr, 0,

MPI_COMM_WORLD, &reqRecvR);
MPI_Isend(&uk[numPoints], 1, MPI_DOUBLE, rightNbr, 0,

MPI_COMM_WORLD, &reqSendR);
}
/* compute new values for interior points */
for (int i = 2; i < numPoints; ++i) {
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
/* wait for communication to complete */
if (myID != 0) {
MPI_Wait(&reqRecvL, &status); MPI_Wait(&reqSendL, &status);

}
if (myID != numProcs-1) {
MPI_Wait(&reqRecvR, &status); MPI_Wait(&reqSendR, &status);

}
/* compute new values for boundary points */
if (myID != 0) {
int i=1;
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
if (myID != numProcs-1) {
int i=numPoints;
ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
/* "copy" ukp1 to uk by swapping pointers */
temp = ukp1; ukp1 = uk; uk = temp;

printValues(uk, k, numPoints, myID);
}
/* clean up and end */
MPI_Finalize();
return 0;

}

Figure 4.16: Parallel heat-diffusion program using MPI with overlapping communication/
computation (continued from Fig. 4.14)

of the communication events. In this case, the messages are small in size, so it is
unlikely that this version of the program would be any faster than our first one.
But it is easy to imagine cases where large, complex communication events would
be involved and being able to do useful work while the messages move across the
computer network would result in significantly greater performance.

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 93

#include <stdio.h>
#include <stdlib.h>
#define N 100
#define NB 4

#define blockstart(M,i,j,rows_per_blk,cols_per_blk,stride) \
(M + ((i)*(rows_per_blk))*(stride) + (j)*(cols_per_blk))

int main(int argc, char *argv[]) {
/* matrix dimensions */
int dimN = N; int dimP = N; int dimM = N;

/* block dimensions */
int dimNb = dimN/NB; int dimPb = dimP/NB; int dimMb = dimM/NB;

/* allocate memory for matrices */
double *A = malloc(dimN*dimP*sizeof(double));
double *B = malloc(dimP*dimM*sizeof(double));
double *C = malloc(dimN*dimM*sizeof(double));

/* Initialize matrices */

initialize(A, B, dimN, dimP, dimM);

/* Do the matrix multiplication */

for (int ib=0; ib < NB; ++ib) {
for (int jb=0; jb < NB; ++jb) {
/* find block[ib][jb] of C */
double * blockPtr = blockstart(C, ib, jb, dimNb, dimMb, dimM);
/* clear block[ib][jb] of C (set all elements to zero) */
matclear(blockPtr, dimNb, dimMb, dimM);
for (int kb=0; kb < NB; ++kb) {
/* compute product of block[ib][kb] of A and

block[kb][jb] of B and add to block[ib][jb] of C */
matmul_add(blockstart(A, ib, kb, dimNb, dimPb, dimP),

blockstart(B, kb, jb, dimPb, dimMb, dimM),
blockPtr, dimNb, dimPb, dimMb, dimP, dimM, dimM);

}
}

}

/* Code to print results not shown */

return 0;
}

Figure 4.17: Sequential matrix multiplication

Matrix multiplication. The matrix multiplication problem is described in the
Context section. Fig. 4.17 presents a simple sequential program to compute the de-
sired result, based on decomposing the N by N matrix into NB*NB square blocks. The
notation block[i][j] in comments indicates the (i,j)-th block as described earlier.
To simplify the coding in C, we represent the matrices as 1D arrays (internally
arranged in row-major order) and define a macro blockstart to find the top-left

2004/
page

�

�

�

�

�

�

�

�

94 Chapter 4 The Algorithm Structure Design Space

/* Declarations, initializations, etc. not shown -- same as
first version */

/* Do the multiply */

matclear(C, dimN, dimM, dimM); /* sets all elements to zero */

for (int kb=0; kb < NB; ++kb) {

for (int ib=0; ib < NB; ++ib) {
for (int jb=0; jb < NB; ++jb) {
/* compute product of block[ib][kb] of A and

block[kb][jb] of B and add to block[ib][jb] of C */
matmul_add(blockstart(A, ib, kb, dimNb, dimPb, dimP),

blockstart(B, kb, jb, dimPb, dimMb, dimM),
blockstart(C, ib, jb, dimNb, dimMb, dimM),
dimNb, dimPb, dimMb, dimP, dimM, dimM);

}
}

}

/* Remaining code is the same as for the first version */

Figure 4.18: Sequential matrix multiplication, revised. We do not show the parts of the
program that are not changed from the program in Fig. 4.17.

corner of a submatrix within one of these 1D arrays. We omit code for functions
initialize (initialize matrices A and B), printMatrix (print a matrix’s values),
matclear (clear a matrix—set all values to zero), and matmul_add (compute the
matrix product of the two input matrices and add it to the output matrix). Pa-
rameters to most of these functions include matrix dimensions, plus a stride that
denotes the distance from the start of one row of the matrix to the start of the next
and allows us to apply the functions to submatrices as well as to whole matrices.

We first observe that we can rearrange the loops without affecting the result
of the computation, as shown in Fig. 4.18.

Observe that with this transformation, we have a program that combines a
high-level sequential structure (the loop over kb) with a loop structure (the nested
loops over ib and jb) that can be parallelized with the Geometric Decomposition
pattern.

OpenMP solution. We can produce a parallel version of this program for a
shared-memory environment by parallelizing the inner nested loops (over ib and/or
jb) with OpenMP loop directives. As with the mesh example, it is important to keep
thread-management overhead small, so once again the parallel directive should
appear outside of the loop over kb. A for directive would then be placed prior to
one of the inner loops. The issues raised by this algorithm and the resulting source
code modifications are essentially the same as those arising from the mesh program
example, so we do not show program source code here.

MPI solution. A parallel version of the matrix multiplication program us-
ing MPI is shown in Figs. 4.19 and 4.20. The natural approach with MPI is to use

2004/
page

�

�

�

�

�

�

�

�

4.6 The Geometric Decomposition Pattern 95

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#define N 100

#define blockstart(M,i,j,rows_per_blk,cols_per_blk,stride) \
(M + ((i)*(rows_per_blk))*(stride) + (j)*(cols_per_blk))

int main(int argc, char *argv[]) {
/* matrix dimensions */
int dimN = N; int dimP = N; int dimM = N;

/* block dimensions */
int dimNb, dimPb, dimMb;

/* matrices */
double *A, *B, *C;

/* buffers for receiving sections of A, B from other processes */
double *Abuffer, *Bbuffer;

int numProcs, myID, myID_i, myID_j, NB;
MPI_Status status;

/* MPI initialization */
MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &myID);

/* initialize other variables */
NB = (int) sqrt((double) numProcs);
myID_i = myID / NB;
myID_j = myID % NB;
dimNb = dimN/NB; dimPb = dimP/NB; dimMb = dimM/NB;
A = malloc(dimNb*dimPb*sizeof(double));
B = malloc(dimPb*dimMb*sizeof(double));
C = malloc(dimNb*dimMb*sizeof(double));
Abuffer = malloc(dimNb*dimPb*sizeof(double));
Bbuffer = malloc(dimPb*dimMb*sizeof(double));

/* Initialize matrices */
initialize(A, B, dimNb, dimPb, dimMb, NB, myID_i, myID_j);

/* continued in next figure */

Figure 4.19: Parallel matrix multiplication with message passing (continued in Fig. 4.20)

the SPMD pattern with the Geometric Decomposition pattern. We will use the
matrix multiplication algorithm described earlier.

The three matrices (A, B, and C) are decomposed into blocks. The UEs (pro-
cesses in the case of MPI) involved in the computation are organized into a grid
such that the indices of the matrix blocks map onto the coordinates of the processes
(that is, matrix block (i,j) is associated with the process with row index i and
column index j). For simplicity, we assume the number of processes numProcs is a
perfect square and its square root evenly divides the order of the matrices (N).

2004/
page

�

�

�

�

�

�

�

�

96 Chapter 4 The Algorithm Structure Design Space

/* continued from previous figure */

/* Do the multiply */

matclear(C, dimNb, dimMb, dimMb);
for (int kb=0; kb < NB; ++kb) {

if (myID_j == kb) {
/* send A to other processes in the same "row" */
for (int jb=0; jb < NB; ++jb) {
if (jb != myID_j)
MPI_Send(A, dimNb*dimPb, MPI_DOUBLE,

myID_i*NB + jb, 0, MPI_COMM_WORLD);
}
/* copy A to Abuffer */
memcpy(Abuffer, A, dimNb*dimPb*sizeof(double));

}
else {
MPI_Recv(Abuffer, dimNb*dimPb, MPI_DOUBLE,

myID_i*NB + kb, 0, MPI_COMM_WORLD, &status);
}
if (myID_i == kb) {
/* send B to other processes in the same "column" */
for (int ib=0; ib < NB; ++ib) {
if (ib != myID_i)
MPI_Send(B, dimPb*dimMb, MPI_DOUBLE,

ib*NB + myID_j, 0, MPI_COMM_WORLD);
}
/* copy B to Bbuffer */
memcpy(Bbuffer, B, dimPb*dimMb*sizeof(double));

}
else {
MPI_Recv(Bbuffer, dimPb*dimMb, MPI_DOUBLE,

kb*NB + myID_j, 0, MPI_COMM_WORLD, &status);
}

/* compute product of block[ib][kb] of A and
block[kb][jb] of B and add to block[ib][jb] of C */

matmul_add(Abuffer, Bbuffer, C,
dimNb, dimPb, dimMb, dimPb, dimMb, dimMb);

}
/* Code to print results not shown */

/* Clean up and end */
MPI_Finalize();
return 0;

}

Figure 4.20: Parallel matrix multiplication with message-passing (continued from Fig. 4.19)

Although the algorithm may seem complex at first, the overall idea is straight-
forward. The computation proceeds through a number of phases (the loop over kb).
At each phase, the process whose row index equals the kb index sends its blocks of
A across the row of processes. Likewise, the process whose column index equals kb
sends its blocks of B along the column of processes. Following the communication
operations, each process then multiplies the A and B blocks it received and sums

2004/
page

�

�

�

�

�

�

�

�

4.7 The Recursive Data Pattern 97

the result into its block of C. After NB phases, the block of the C matrix on each
process will hold the final product.

These types of algorithms are very common when working with MPI. The key
to understanding these algorithms is to think in terms of the set of processes, the
data owned by each process, and how data from neighboring processes flows among
the processes as the calculation unfolds. We revisit these issues in the SPMD and
Distributed Array patterns as well as in the MPI appendix.

A great deal of research has been carried out on parallel matrix multiplication
and related linear algebra algorithms. A more sophisticated approach, in which the
blocks of A and B circulate among processes, arriving at each process just in time
to be used, is given in [FJL+88].

Known uses. Most problems involving the solution of differential equations use
the Geometric Decomposition pattern. A finite-differencing scheme directly maps
onto this pattern. Another class of problems that use this pattern comes from com-
putational linear algebra. The parallel routines in the ScaLAPACK [Sca,BCC+97]
library are for the most part based on this pattern. These two classes of problems
cover a large portion of all parallel applications in scientific computing.

Related Patterns

If the update required for each chunk can be done without data from other chunks,
then this pattern reduces to the embarrassingly parallel algorithm described in the
Task Parallelism pattern. As an example of such a computation, consider computing
a 2D FFT (Fast Fourier Transform) by first applying a 1D FFT to each row of the
matrix and then applying a 1D FFT to each column. Although the decomposition
may appear data-based (by rows/by columns), in fact the computation consists of
two instances of the Task Parallelism pattern.

If the data structure to be distributed is recursive in nature, then the Divide
and Conquer or Recursive Data pattern may be applicable.

4.7 THE RECURSIVE DATA PATTERN

Problem

Suppose the problem involves an operation on a recursive data structure (such
as a list, tree, or graph) that appears to require sequential processing. How can
operations on these data structures be performed in parallel?

Context

Some problems with recursive data structures naturally use the divide-and-conquer
strategy described in the Divide and Conquer pattern with its inherent potential
for concurrency. Other operations on these data structures, however, seem to have
little if any potential for concurrency because it appears that the only way to solve
the problem is to sequentially move through the data structure, computing a result
at one element before moving on to the next. Sometimes, however, it is possible

2004/
page

�

�

�

�

�

�

�

�

98 Chapter 4 The Algorithm Structure Design Space

to reshape the operations in a way that a program can operate concurrently on all
elements of the data structure.

An example from [J92] illustrates the situation: Suppose we have a forest of
rooted directed trees (defined by specifying, for each node, its immediate ancestor,
with a root node’s ancestor being itself) and want to compute, for each node in the
forest, the root of the tree containing that node. To do this in a sequential program,
we would probably trace depth-first through each tree from its root to its leaf nodes;
as we visit each node, we have the needed information about the corresponding root.
Total running time of such a program for a forest of N nodes would be O(N). There
is some potential for concurrency (operating on subtrees concurrently), but there
is no obvious way to operate on all elements concurrently, because it appears that
we cannot find the root for a particular node without knowing its parent’s root.

However, a rethinking of the problem exposes additional concurrency: We first
define for each node a “successor”, which initially will be its parent and ultimately
will be the root of the tree to which the node belongs. We then calculate for each
node its “successor’s successor”. For nodes one “hop” from the root, this calcula-
tion does not change the value of its successor (because a root’s parent is itself).
For nodes at least two “hops” away from a root, this calculation makes the node’s
successor its parent’s parent. We repeat this calculation until it converges (that is,
the values produced by one step are the same as those produced by the preceding
step), at which point every node’s successor is the desired value. Fig. 4.21 shows

5 7

6

4

3

2

1

1411

10

9

8

13

12

step 1

5 7

6

4

3

2

1

1411

10

9

8

13

12

step 2

5 7

6

4

3

2

1

1411

10

9

8

13

12

step 3

Figure 4.21: Finding roots in a forest. Solid lines represent the original parent-child relationships
among nodes; dashed lines point from nodes to their successors.

2004/
page

�

�

�

�

�

�

�

�

4.7 The Recursive Data Pattern 99

an example requiring three steps to converge. At each step we can operate on
all N nodes in the tree concurrently, and the algorithm converges in at most
log N steps.

What we have done is transform the original sequential calculation (find roots
for nodes one “hop” from a root, then find roots for nodes two “hops” from a root,
etc.) into a calculation that computes a partial result (successor) for each node
and then repeatedly combines these partial results, first with neighboring results,
then with results from nodes two hops away, then with results from nodes four
hops away, and so on. This strategy can be applied to other problems that at first
appear unavoidably sequential; the Examples section presents other examples. This
technique is sometimes referred to as pointer jumping or recursive doubling.

An interesting aspect of this restructuring is that the new algorithm involves
substantially more total work than the original sequential one (O(N log N) versus
O(N)), but the restructured algorithm contains potential concurrency that if fully
exploited reduces total running time to O(log N) (versus O(N)). Most strategies
and algorithms based on this pattern similarly trade off an increase in total work
for a potential decrease in execution time. Notice also that the exploitable concur-
rency can be extremely fine-grained (as in the previous example), which may limit
the situations in which this pattern yields an efficient algorithm. Nevertheless, the
pattern can still serve as an inspiration for lateral thinking about how to parallelize
problems that at first glance appear to be inherently sequential.

Forces

• Recasting the problem to transform an inherently sequential traversal of the
recursive data structure into one that allows all elements to be operated upon
concurrently does so at the cost of increasing the total work of the computa-
tion. This must be balanced against the improved performance available from
running in parallel.

• This recasting may be difficult to achieve (because it requires looking at the
original problem from an unusual perspective) and may lead to a design that
is difficult to understand and maintain.

• Whether the concurrency exposed by this pattern can be effectively exploited
to improve performance depends on how computationally expensive the op-
eration is and on the cost of communication relative to computation on the
target parallel computer system.

Solution

The most challenging part of applying this pattern is restructuring the operations
over a recursive data structure into a form that exposes additional concurrency.
General guidelines are difficult to construct, but the key ideas should be clear from
the examples provided with this pattern.

After the concurrency has been exposed, it is not always the case that this
concurrency can be effectively exploited to speed up the solution of a problem.
This depends on a number of factors including how much work is involved as each

2004/
page

�

�

�

�

�

�

�

�

100 Chapter 4 The Algorithm Structure Design Space

element of the recursive data structure is updated and on the characteristics of the
target parallel computer.

Data decomposition. In this pattern, the recursive data structure is completely
decomposed into individual elements and each element is assigned to a separate UE.
Ideally each UE would be assigned to a different PE, but it is also possible to assign
multiple UEs to each PE. If the number of UEs per PE is too large, however, the
overall performance will be poor because there will not be enough concurrency to
overcome the increase in the total amount of work.

For example, consider the root-finding problem described earlier. We’ll ignore
overhead in our computations. If N = 1024 and t is the time to perform one
step for one data element, then the running time of a sequential algorithm will
be about 1024t. If each UE is assigned its own PE, then the running time of the
parallel algorithm will be around (log N)t or 10t. If only two PEs are available
for the parallel algorithm, however, then all N log N or 10240 computation steps
must be performed on the two PEs, and the execution time will be at least 5120t,
considerably more than the sequential algorithm.

Structure. Typically the result of applying this pattern is an algorithm whose
top-level structure is a sequential composition in the form of a loop, in which
each iteration can be described as “perform this operation simultaneously on all
(or selected) elements of the recursive data structure”. Typical operations include
“replace each element’s successor with its successor’s successor” (as in the example
in the Context section) and “replace a value held at this element with the sum of
the current value and the value of the predecessor’s element.”

Synchronization. Algorithms that fit this pattern are described in terms of si-
multaneously updating all elements of the data structure. Some target platforms
(for example, SIMD architectures such as the early Connection Machines) make this
trivial to accomplish by assigning each data element to a separate PE (possibly a
logical PE) and executing instructions in a lockstep fashion at each PE. MIMD
platforms with the right supporting programming environments (for example, High
Performance Fortran [HPF97]) provide similar semantics.

If the target platform doesn’t provide the required synchronization implicitly,
it will be necessary to introduce the synchronization explicitly. For example, if the
operation performed during a loop iteration contains the assignment

next[k] = next[next[k]]

then the parallel algorithm must ensure that next[k] is not updated before other
UEs that need its value for their computation have received it. One common tech-
nique is to introduce a new variable, say next2, at each element. Even-numbered
iterations then read next but update next2, while odd-numbered iterations read

2004/
page

�

�

�

�

�

�

�

�

4.7 The Recursive Data Pattern 101

next2 and update next. The necessary synchronization is accomplished by placing
a barrier (as described in the Implementation Mechanisms design space) between
each successive pair of iterations. Notice that this can substantially increase the
overhead associated with the parallel algorithm, which can overwhelm any speedup
derived from the additional concurrency. This is most likely to be a factor if the cal-
culation required for each element is trivial (which, alas, for many of the examples
it is).

If there are fewer PEs than data elements, the program designer must decide
whether to assign each data element to a UE and assign multiple UEs to each PE
(thereby simulating some of the parallelism) or whether to assign multiple data
elements to each UE and process them serially. The latter is less straightforward
(requiring an approach similar to that sketched previously, in which variables in-
volved in the simultaneous update are duplicated), but can be more efficient.

Examples

Partial sums of a linked list. In this example, adopted from Hillis and Steele
[HS86], the problem is to compute the prefix sums of all the elements in a linked
list in which each element contains a value x. In other words, after the computation
is complete, the first element will contain x0, the second will contain x0 + x1, the
third x0 + x1 + x2, etc.

Fig. 4.22 shows pseudocode for the basic algorithm. Fig. 4.23 shows the evo-
lution of the computation where xi is the initial value of the (i + 1)-th element in
the list.

This example can be generalized by replacing addition with any associative
operator and is sometime known as a prefix scan. It can be used in a variety of
situations, including solving various types of recurrence relations.

Known uses. Algorithms developed with this pattern are a type of data parallel
algorithm. They are widely used on SIMD platforms and to a lesser extent in
languages such as High Performance Fortran [HPF97]. These platforms support
the fine-grained concurrency required for the pattern and handle synchronization

for all k in parallel
{

temp[k] = next[k];
while temp[k] != null
{

x[temp[k]] = x[k] + x[temp[k]];
temp[k] = temp[temp[k]];

}
}

Figure 4.22: Pseudocode for finding partial sums of a list

2004/
page

�

�

�

�

�

�

�

�

102 Chapter 4 The Algorithm Structure Design Space

sum(x0:x0)
•
•

sum(x0:x1)
•
•

sum(x0:x2)
•
•

sum(x0:x3)
•
•

sum(x0:x4)
•
•

sum(x0:x5)
•
•

sum(x0:x6)
•
•

sum(x0:x7)
•
•

sum(x0:x0)
•
•

sum(x0:x1)
•
•

sum(x0:x2)
•
•

sum(x0:x3)
•
•

sum(x1:x4)
•
•

sum(x2:x5)
•
•

sum(x3:x6)
•
•

sum(x4:x7)
•
•

sum(x0:x0)
•
•

sum(x0:x1)
•
•

sum(x1:x2)
•
•

sum(x2:x3)
•
•

sum(x3:x4)
•
•

sum(x4:x5)
•
•

sum(x5:x6)
•
•

sum(x6:x7)
•
•

sum(x0:x0)
•
•

sum(x1:x1)
•
•

sum(x2:x2)
•
•

sum(x3:x3)
•
•

sum(x4:x4)
•
•

sum(x5:x5)
•
•

sum(x6:x6)
•
•

sum(x7:x7)
•
•

x0
•
•

x1
•
•

x2
•
•

x3
•
•

x4
•
•

x5
•
•

x6
•
•

x7
•
•

Figure 4.23: Steps in finding partial sums of a list. Straight arrows represent links between
elements; curved arrows indicate additions.

automatically because every computation step (logically if not physically) occurs in
lockstep on all the processors. Hillis and Steele [HS86] describe several interesting
applications of this pattern, including finding the end of a linked list, computing
all partial sums of a linked list, region labeling in two-dimensional images, and
parsing.

In combinatorial optimization, problems involving traversing all nodes in a
graph or tree can often be solved with this pattern by first finding an ordering on
the nodes to create a list. Euler tours and ear decomposition [EG88] are well-known
techniques to compute this ordering.

JáJá [J92] also describes several applications of this pattern: finding the roots
of trees in a forest of rooted directed trees, computing partial sums on a set of
rooted directed trees (similar to the preceding example with linked lists), and list-
ranking (determining for each element of the list its distance from the start/end of
the list).

Related Patterns

With respect to the actual concurrency, this pattern is very much like the Geometric
Decomposition pattern, a difference being that in this pattern the data structure
containing the elements to be operated on concurrently is recursive (at least con-
ceptually). What makes it different is the emphasis on fundamentally rethinking
the problem to expose fine-grained concurrency.

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 103

4.8 THE PIPELINE PATTERN

Problem

Suppose that the overall computation involves performing a calculation on many
sets of data, where the calculation can be viewed in terms of data flowing through
a sequence of stages. How can the potential concurrency be exploited?

Context

An assembly line is a good analogy for this pattern. Suppose we want to manu-
facture a number of cars. The manufacturing process can be broken down into a
sequence of operations each of which adds some component, say the engine or the
windshield, to the car. An assembly line (pipeline) assigns a component to each
worker. As each car moves down the assembly line, each worker installs the same
component over and over on a succession of cars. After the pipeline is full (and until
it starts to empty) the workers can all be busy simultaneously, all performing their
operations on the cars that are currently at their stations.

Examples of pipelines are found at many levels of granularity in computer
systems, including the CPU hardware itself.

• Instruction pipeline in modern CPUs. The stages (fetch instruction,
decode, execute, etc.) are done in a pipelined fashion; while one instruction
is being decoded, its predecessor is being executed and its successor is being
fetched.

• Vector processing (loop-level pipelining). Specialized hardware in some
supercomputers allows operations on vectors to be performed in a pipelined
fashion. Typically, a compiler is expected to recognize that a loop such as

for(i = 0; i < N; i++) { a[i] = b[i] + c[i]; }

can be vectorized in a way that the special hardware can exploit. After a short
startup, one a[i] value will be generated each clock cycle.

• Algorithm-level pipelining. Many algorithms can be formulated as recur-
rence relations and implemented using a pipeline or its higher-dimensional
generalization, a systolic array. Such implementations often exploit special-
ized hardware for performance reasons.

• Signal processing. Passing a stream of real-time sensor data through a
sequence of filters can be modeled as a pipeline, with each filter corresponding
to a stage in the pipeline.

• Graphics. Processing a sequence of images by applying the same sequence of
operations to each image can be modeled as a pipeline, with each operation

2004/
page

�

�

�

�

�

�

�

�

104 Chapter 4 The Algorithm Structure Design Space

corresponding to a pipeline stage. Some stages may be implemented by spe-
cialized hardware.

• Shell programs in UNIX. For example, the shell command

cat sampleFile | grep "word" | wc

creates a three-stage pipeline, with one process for each command (cat, grep,
and wc).

These examples and the assembly-line analogy have several aspects in com-
mon. All involve applying a sequence of operations (in the assembly line case it is
installing the engine, installing the windshield, etc.) to each element in a sequence
of data elements (in the assembly line, the cars). Although there may be ordering
constraints on the operations on a single data element (for example, it might be
necessary to install the engine before installing the hood), it is possible to perform
different operations on different data elements simultaneously (for example, one can
install the engine on one car while installing the hood on another.)

The possibility of simultaneously performing different operations on different
data elements is the potential concurrency this pattern exploits. In terms of the
analysis described in the Finding Concurrency patterns, each task consists of re-
peatedly applying an operation to a data element (analogous to an assembly-line
worker installing a component), and the dependencies among tasks are ordering
constraints enforcing the order in which operations must be performed on each
data element (analogous to installing the engine before the hood).

Forces

• A good solution should make it simple to express the ordering constraints.
The ordering constraints in this problem are simple and regular and lend
themselves to being expressed in terms of data flowing through a pipeline.

• The target platform can include special-purpose hardware that can perform
some of the desired operations.

• In some applications, future additions, modifications, or reordering of the
stages in the pipeline are expected.

• In some applications, occasional items in the input sequence can contain errors
that prevent their processing.

Solution

The key idea of this pattern is captured by the assembly-line analogy, namely
that the potential concurrency can be exploited by assigning each operation (stage

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 105

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

pipeline stage 1

time

pipeline stage 4

pipeline stage 3

pipeline stage 2

Figure 4.24: Operation of a pipeline. Each pipeline stage i computes the i-th step of
the computation.

of the pipeline) to a different worker and having them work simultaneously, with the
data elements passing from one worker to the next as operations are completed. In
parallel-programming terms, the idea is to assign each task (stage of the pipeline)
to a UE and provide a mechanism whereby each stage of the pipeline can send
data elements to the next stage. This strategy is probably the most straightforward
way to deal with this type of ordering constraints. It allows the application to
take advantage of special-purpose hardware by appropriate mapping of pipeline
stages to PEs and provides a reasonable mechanism for handling errors, described
later. It also is likely to yield a modular design that can later be extended or
modified.

Before going further, it may help to illustrate how the pipeline is supposed
to operate. Let Ci represent a multistep computation on data element i. Ci(j) is
the jth step of the computation. The idea is to map computation steps to pipeline
stages so that each stage of the pipeline computes one step. Initially, the first
stage of the pipeline performs C1(1). After that completes, the second stage of
the pipeline receives the first data item and computes C1(2) while the first stage
computes the first step of the second item, C2(1). Next, the third stage computes
C1(3), while the second stage computes C2(2) and the first stage C3(1). Fig. 4.24
illustrates how this works for a pipeline consisting of four stages. Notice that con-
currency is initially limited and some resources remain idle until all the stages are
occupied with useful work. This is referred to as filling the pipeline. At the end
of the computation (draining the pipeline), again there is limited concurrency and
idle resources as the final item works its way through the pipeline. We want the
time spent filling or draining the pipeline to be small compared to the total time of
the computation. This will be the case if the number of stages is small compared to
the number of items to be processed. Notice also that overall throughput/efficiency
is maximized if the time taken to process a data element is roughly the same for each
stage.

This idea can be extended to include situations more general than a completely
linear pipeline. For example, Fig. 4.25 illustrates two pipelines, each with four
stages. In the second pipeline, the third stage consists of two operations that can
be performed concurrently.

2004/
page

�

�

�

�

�

�

�

�

106 Chapter 4 The Algorithm Structure Design Space

linear pipeline

stage 1 stage 2 stage 3 stage 4

nonlinear pipeline

stage 1 stage 2 stage 4

stage 3a

stage 3b

Figure 4.25: Example pipelines

Defining the stages of the pipeline. Normally each pipeline stage will corre-
spond to one task. Fig. 4.26 shows the basic structure of each stage.

If the number of data elements to be processed is known in advance, then
each stage can count the number of elements and terminate when these have been
processed. Alternatively, a sentinel indicating termination may be sent through the
pipeline.

It is worthwhile to consider at this point some factors that affect performance.

• The amount of concurrency in a full pipeline is limited by the number of
stages. Thus, a larger number of stages allows more concurrency. However,
the data sequence must be transferred between the stages, introducing over-
head to the calculation. Thus, we need to organize the computation into
stages such that the work done by a stage is large compared to the communi-
cation overhead. What is “large enough” is highly dependent on the particu-
lar architecture. Specialized hardware (such as vector processors) allows very
fine-grained parallelism.

• The pattern works better if the operations performed by the various stages
of the pipeline are all about equally computationally intensive. If the stages
in the pipeline vary widely in computational effort, the slowest stage creates
a bottleneck for the aggregate throughput.

initialize
while (more data)
{

receive data element from previous stage
perform operation on data element
send data element to next stage

}
finalize

Figure 4.26: Basic structure of a pipeline stage

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 107

• The pattern works better if the time required to fill and drain the pipeline
is small compared to the overall running time. This time is influenced by the
number of stages (more stages means more fill/drain time).

Therefore, it is worthwhile to consider whether the original decomposition
into tasks should be revisited at this point, possibly combining lightly-loaded adja-
cent pipeline stages into a single stage, or decomposing a heavily-loaded stage into
multiple stages.

It may also be worthwhile to parallelize a heavily-loaded stage using one of
the other Algorithm Structure patterns. For example, if the pipeline is processing
a sequence of images, it is often the case that each stage can be parallelized using
the Task Parallelism pattern.

Structuring the computation. We also need a way to structure the overall
computation. One possibility is to use the SPMD pattern (described in the Sup-
porting Structures design space) and use each UE’s ID to select an option in a case
or switch statement, with each case corresponding to a stage of the pipeline.

To increase modularity, object-oriented frameworks can be developed that al-
low stages to be represented by objects or procedures that can easily be “plugged in”
to the pipeline. Such frameworks are not difficult to construct using standard OOP
techniques, and several are available as commercial or freely available products.

Representing the dataflow among pipeline elements. How dataflow be-
tween pipeline elements is represented depends on the target platform.

In a message-passing environment, the most natural approach is to assign one
process to each operation (stage of the pipeline) and implement each connection
between successive stages of the pipeline as a sequence of messages between the
corresponding processes. Because the stages are hardly ever perfectly synchronized,
and the amount of work carried out at different stages almost always varies, this
flow of data between pipeline stages must usually be both buffered and ordered.
Most message-passing environments (e.g., MPI) make this easy to do. If the cost
of sending individual messages is high, it may be worthwhile to consider sending
multiple data elements in each message; this reduces total communication cost at
the expense of increasing the time needed to fill the pipeline.

If a message-passing programming environment is not a good fit with the
target platform, the stages of the pipeline can be connected explicitly with buffered
channels. Such a buffered channel can be implemented as a queue shared between
the sending and receiving tasks, using the Shared Queue pattern.

If the individual stages are themselves implemented as parallel programs,
then more sophisticated approaches may be called for, especially if some sort of
data redistribution needs to be performed between the stages. This might be the
case if, for example, the data needs to be partitioned along a different dimension or
partitioned into a different number of subsets in the same dimension. For example,
an application might include one stage in which each data element is partitioned
into three subsets and another stage in which it is partitioned into four subsets.

2004/
page

�

�

�

�

�

�

�

�

108 Chapter 4 The Algorithm Structure Design Space

The simplest ways to handle such situations are to aggregate and disaggregate data
elements between stages. One approach would be to have only one task in each
stage communicate with tasks in other stages; this task would then be responsible
for interacting with the other tasks in its stage to distribute input data elements and
collect output data elements. Another approach would be to introduce additional
pipeline stages to perform aggregation/disaggregation operations. Either of these
approaches, however, involves a fair amount of communication. It may be preferable
to have the earlier stage “know” about the needs of its successor and communicate
with each task receiving part of its data directly rather than aggregating the data at
one stage and then disaggregating at the next. This approach improves performance
at the cost of reduced simplicity, modularity, and flexibility.

Less traditionally, networked file systems have been used for communication
between stages in a pipeline running in a workstation cluster. The data is written
to a file by one stage and read from the file by its successor. Network file systems
are usually mature and fairly well optimized, and they provide for the visibility
of the file at all PEs as well as mechanisms for concurrency control. Higher-level
abstractions such as tuple spaces and blackboards implemented over networked
file systems can also be used. File-system-based solutions are appropriate in large-
grained applications in which the time needed to process the data at each stage is
large compared with the time to access the file system.

Handling errors. For some applications, it might be necessary to gracefully
handle error conditions. One solution is to create a separate task to handle errors.
Each stage of the regular pipeline sends to this task any data elements it cannot
process along with error information and then continues with the next item in the
pipeline. The error task deals with the faulty data elements appropriately.

Processor allocation and task scheduling. The simplest approach is to allo-
cate one PE to each stage of the pipeline. This gives good load balance if the PEs
are similar and the amount of work needed to process a data element is roughly
the same for each stage. If the stages have different requirements (for example,
one is meant to be run on special-purpose hardware), this should be taken into
consideration in assigning stages to PEs.

If there are fewer PEs than pipeline stages, then multiple stages must be
assigned to the same PE, preferably in a way that improves or at least does not
much reduce overall performance. Stages that do not share many resources can be
allocated to the same PE; for example, a stage that writes to a disk and a stage
that involves primarily CPU computation might be good candidates to share a
PE. If the amount of work to process a data element varies among stages, stages
involving less work may be allocated to the same PE, thereby possibly improving
load balance. Assigning adjacent stages to the same PE can reduce communication
costs. It might also be worthwhile to consider combining adjacent stages of the
pipeline into a single stage.

If there are more PEs than pipeline stages, it is worthwhile to consider paral-
lelizing one or more of the pipeline stages using an appropriate Algorithm Structure

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 109

pattern, as discussed previously, and allocating more than one PE to the paral-
lelized stage(s). This is particularly effective if the parallelized stage was previously
a bottleneck (taking more time than the other stages and thereby dragging down
overall performance).

Another way to make use of more PEs than pipeline stages, if there are no
temporal constraints among the data items themselves (that is, it doesn’t matter
if, say, data item 3 is computed before data item 2), is to run multiple independent
pipelines in parallel. This can be considered an instance of the Task Parallelism
pattern. This will improve the throughput of the overall calculation, but does not
significantly improve the latency, however, since it still takes the same amount of
time for a data element to traverse the pipeline.

Throughput and latency. There are few more factors to keep in mind when
evaluating whether a given design will produce acceptable performance.

In many situations where the Pipeline pattern is used, the performance mea-
sure of interest is the throughput, the number of data items per time unit that can
be processed after the pipeline is already full. For example, if the output of the
pipeline is a sequence of rendered images to be viewed as an animation, then the
pipeline must have sufficient throughput (number of items processed per time unit)
to generate the images at the required frame rate.

In another situation, the input might be generated from real-time sampling
of sensor data. In this case, there might be constraints on both the throughput
(the pipeline should be able to handle all the data as it comes in without backing
up the input queue and possibly losing data) and the latency (the amount of time
between the generation of an input and the completion of processing of that input).
In this case, it might be desirable to minimize latency subject to a constraint that
the throughput is sufficient to handle the incoming data.

Examples

Fourier-transform computations. A type of calculation widely used in signal
processing involves performing the following computations repeatedly on different
sets of data.

1. Perform a discrete Fourier transform (DFT) on a set of data.
2. Manipulate the result of the transform elementwise.
3. Perform an inverse DFT on the result of the manipulation.

Examples of such calculations include convolution, correlation, and filtering opera-
tions ([PTV93]).

A calculation of this form can easily be performed by a three-stage pipeline.

• The first stage of the pipeline performs the initial Fourier transform; it re-
peatedly obtains one set of input data, performs the transform, and passes
the result to the second stage of the pipeline.

2004/
page

�

�

�

�

�

�

�

�

110 Chapter 4 The Algorithm Structure Design Space

• The second stage of the pipeline performs the desired elementwise manipu-
lation; it repeatedly obtains a partial result (of applying the initial Fourier
transform to an input set of data) from the first stage of the pipeline, per-
forms its manipulation, and passes the result to the third stage of the pipeline.
This stage can often itself be parallelized using one of the other Algorithm
Structure patterns.

• The third stage of the pipeline performs the final inverse Fourier transform; it
repeatedly obtains a partial result (of applying the initial Fourier transform
and then the elementwise manipulation to an input set of data) from the
second stage of the pipeline, performs the inverse Fourier transform, and
outputs the result.

Each stage of the pipeline processes one set of data at a time. However, except
during the initial filling of the pipeline, all stages of the pipeline can operate con-
currently; while the first stage is processing the N -th set of data, the second stage
is processing the (N − 1)-th set of data, and the third stage is processing the
(N − 2)-th set of data.

Java pipeline framework. The figures for this example show a simple Java
framework for pipelines and an example application.

The framework consists of a base class for pipeline stages, PipelineStage,
shown in Fig. 4.27, and a base class for pipelines, LinearPipeline, shown in
Fig. 4.28. Applications provide a subclass of PipelineStage for each desired stage,
implementing its three abstract methods to indicate what the stage should do
on the initial step, the computation steps, and the final step, and a subclass of
LinearPipeline that implements its abstract methods to create an array contain-
ing the desired pipeline stages and the desired queues connecting the stages. For the
queue connecting the stages, we use LinkedBlockingQueue, an implementation of
the BlockingQueue interface. These classes are found in the java.util.concurrent
package. These classes use generics to specify the type of objects the queue can
hold. For example, new LinkedBlockingQueue<String> creates a BlockingQueue
implemented by an underlying linked list that can hold Strings. The operations
of interest are put, to add an object to the queue, and take, to remove an object.
take blocks if the queue is empty. The class CountDownLatch, also found in the
java.util.concurrent package, is a simple barrier that allows the program to
print a message when it has terminated. Barriers in general, and CountDownLatch
in particular, are discussed in the Implementation Mechanisms design space.

The remaining figures show code for an example application, a pipeline to
sort integers. Fig. 4.29 is the required subclass of LinearPipeline, and Fig. 4.30
is the required subclass of PipelineStage. Additional pipeline stages to generate
or read the input and to handle the output are not shown.

Known uses. Many applications in signal and image processing are implemented
as pipelines.

The OPUS [SR98] system is a pipeline framework developed by the Space
Telescope Science Institute originally to process telemetry data from the Hubble

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 111

import java.util.concurrent.*;

abstract class PipelineStage implements Runnable {

BlockingQueue in;
BlockingQueue out;
CountDownLatch s;

boolean done;

//override to specify initialization step
abstract void firstStep() throws Exception;
//override to specify compute step
abstract void step() throws Exception;
//override to specify finalization step
abstract void lastStep() throws Exception;

void handleComputeException(Exception e)
{ e.printStackTrace(); }

public void run()
{
try
{ firstStep();

while(!done){ step();}
lastStep();

}
catch(Exception e){handleComputeException(e);}
finally {s.countDown();}

}

public void init(BlockingQueue in,
BlockingQueue out,
CountDownLatch s)

{ this.in = in; this.out = out; this.s = s;}

}

Figure 4.27: Base class for pipeline stages

Space Telescope and later employed in other applications. OPUS uses a blackboard
architecture built on top of a network file system for interstage communication and
includes monitoring tools and support for error handling.

Airborne surveillance radars use space-time adaptive processing (STAP) algo-
rithms, which have been implemented as a parallel pipeline [CLW+00]. Each stage
is itself a parallel algorithm, and the pipeline requires data redistribution between
some of the stages.

Fx [GOS94], a parallelizing Fortran compiler based on HPF [HPF97], has been
used to develop several example applications [DGO+94,SSOG93] that combine data
parallelism (similar to the form of parallelism captured in the Geometric Decompo-
sition pattern) and pipelining. For example, one application performs 2D Fourier
transforms on a sequence of images via a two-stage pipeline (one stage for the row

2004/
page

�

�

�

�

�

�

�

�

112 Chapter 4 The Algorithm Structure Design Space

import java.util.concurrent.*;

abstract class LinearPipeline {
PipelineStage[] stages;
BlockingQueue[] queues;
int numStages;
CountDownLatch s;

//override method to create desired array of pipeline stage objects
abstract PipelineStage[] getPipelineStages(String[] args);

//override method to create desired array of BlockingQueues
//element i of returned array contains queue between stages i and i+1
abstract BlockingQueue[] getQueues(String[] args);

LinearPipeline(String[] args)
{ stages = getPipelineStages(args);

queues = getQueues(args);
numStages = stages.length;
s = new CountDownLatch(numStages);

BlockingQueue in = null;
BlockingQueue out = queues[0];
for (int i = 0; i != numStages; i++)
{ stages[i].init(in,out,s);
in = out;
if (i < numStages-2) out = queues[i+1]; else out = null;
}

}

public void start()
{ for (int i = 0; i != numStages; i++)

{ new Thread(stages[i]).start();
}

}
}

Figure 4.28: Base class for linear pipeline

transforms and one stage for the column transforms), with each stage being itself
parallelized using data parallelism. The SIGPLAN paper ([SSOG93]) is especially
interesting in that it presents performance figures comparing this approach with a
straight data-parallelism approach.

[J92] presents some finer-grained applications of pipelining, including inserting
a sequence of elements into a 2-3 tree and pipelined mergesort.

Related Patterns

This pattern is very similar to the Pipes and Filters pattern of [BMR+96]; the key
difference is that this pattern explicitly discusses concurrency.

For applications in which there are no temporal dependencies between the
data inputs, an alternative to this pattern is a design based on multiple sequential
pipelines executing in parallel and using the Task Parallelism pattern.

2004/
page

�

�

�

�

�

�

�

�

4.8 The Pipeline Pattern 113

import java.util.concurrent.*;

class SortingPipeline extends LinearPipeline {

/*Creates an array of pipeline stages with the
number of sorting stages given via args. Input
and output stages are also included at the
beginning and end of the array. Details are omitted.
*/
PipelineStage[] getPipelineStages(String[] args)
{ //....

return stages;
}

/* Creates an array of LinkedBlockingQueues to serve as
communication channels between the stages. For this
example, the first is restricted to hold Strings,
the rest can hold Comparables. */

BlockingQueue[] getQueues(String[] args)
{ BlockingQueue[] queues = new BlockingQueue[totalStages - 1];

queues[0] = new LinkedBlockingQueue<String>();
for (int i = 1; i!= totalStages -1; i++)
{ queues[i] = new LinkedBlockingQueue<Comparable>();}
return queues;

}

SortingPipeline(String[] args)
{ super(args);
}

public static void main(String[] args)
throws InterruptedException

{ //create pipeline
LinearPipeline l = new SortingPipeline(args);
l.start(); //start threads associated with stages
l.s.await(); //terminate thread when all stages terminated.
System.out.println("All threads terminated");

}
}

Figure 4.29: Pipelined sort (main class)

At first glance, one might also expect that sequential solutions built using
the Chain of Responsibility pattern [GHJV95] could be easily parallelized using the
Pipeline pattern. In Chain of Responsibility, or COR, an “event” is passed along a
chain of objects until one or more of the objects handle the event. This pattern is
directly supported, for example, in the Java Servlet Specification1 [SER] to enable
filtering of HTTP requests. With Servlets, as well as other typical applications of
COR, however, the reason for using the pattern is to support modular structuring of

1A Servlet is a Java program invoked by a Web server. The Java Servlets technology is included
in the Java 2 Enterprise Edition platform for Web server applications.

2004/
page

�

�

�

�

�

�

�

�

114 Chapter 4 The Algorithm Structure Design Space

class SortingStage extends PipelineStage
{

Comparable val = null;
Comparable input = null;

void firstStep() throws InterruptedException
{ input = (Comparable)in.take();

done = (input.equals("DONE"));
val = input;
return;

}

void step() throws InterruptedException
{ input = (Comparable)in.take();

done = (input.equals("DONE"));
if (!done)
{ if(val.compareTo(input)<0)

{ out.put(val); val = input; }
else { out.put(input); }

} else out.put(val);
}

void lastStep() throws InterruptedException
{ out.put("DONE"); }

}

Figure 4.30: Pipelined sort (sorting stage)

a program that will need to handle independent events in different ways depending
on the event type. It may be that only one object in the chain will even handle the
event. We expect that in most cases, the Task Parallelism pattern would be more
appropriate than the Pipeline pattern. Indeed, Servlet container implementations
already supporting multithreading to handle independent HTTP requests provide
this solution for free.

The Pipeline pattern is similar to the Event-Based Coordination pattern in
that both patterns apply to problems where it is natural to decompose the com-
putation into a collection of semi-independent tasks. The difference is that the
Event-Based Coordination pattern is irregular and asynchronous where the Pipeline
pattern is regular and synchronous: In the Pipeline pattern, the semi-independent
tasks represent the stages of the pipeline, the structure of the pipeline is static, and
the interaction between successive stages is regular and loosely synchronous. In the
Event-Based Coordination pattern, however, the tasks can interact in very irregular
and asynchronous ways, and there is no requirement for a static structure.

4.9 THE EVENT-BASED COORDINATION PATTERN

Problem

Suppose the application can be decomposed into groups of semi-independent tasks
interacting in an irregular fashion. The interaction is determined by the flow of data

2004/
page

�

�

�

�

�

�

�

�

4.9 The Event-Based Coordination Pattern 115

between them which implies ordering constraints between the tasks. How can these
tasks and their interaction be implemented so they can execute concurrently?

Context

Some problems are most naturally represented as a collection of semi-independent
entities interacting in an irregular way. What this means is perhaps clearest if we
compare this pattern with the Pipeline pattern. In the Pipeline pattern, the entities
form a linear pipeline, each entity interacts only with the entities to either side, the
flow of data is one-way, and interaction occurs at fairly regular and predictable
intervals. In the Event-Based Coordination pattern, in contrast, there is no restric-
tion to a linear structure, no restriction that the flow of data be one-way, and the
interaction takes place at irregular and sometimes unpredictable intervals.

As a real-world analogy, consider a newsroom, with reporters, editors, fact-
checkers, and other employees collaborating on stories. As reporters finish stories,
they send them to the appropriate editors; an editor can decide to send the story to
a fact-checker (who would then eventually send it back) or back to the reporter for
further revision. Each employee is a semi-independent entity, and their interaction
(for example, a reporter sending a story to an editor) is irregular.

Many other examples can be found in the field of discrete-event simulation,
that is, simulation of a physical system consisting of a collection of objects whose
interaction is represented by a sequence of discrete “events”. An example of such a
system is the car-wash facility described in [Mis86]: The facility has two car-wash
machines and an attendant. Cars arrive at random times at the attendant. Each car
is directed by the attendant to a nonbusy car-wash machine if one exists, or queued
if both machines are busy. Each car-wash machine processes one car at a time. The
goal is to compute, for a given distribution or arrival times, the average time a
car spends in the system (time being washed plus any time waiting for a nonbusy
machine) and the average length of the queue that builds up at the attendant. The
“events” in this system include cars arriving at the attendant, cars being directed
to the car-wash machines, and cars leaving the machines. Fig. 4.31 sketches this
example. Notice that it includes “source” and “sink” objects to make it easier to
model cars arriving and leaving the facility. Notice also that the attendant must
be notified when cars leave the car-wash machines so that it knows whether the
machines are busy.

source attendant sink

car-wash
machine

car-wash
machine

Figure 4.31: Discrete-event simulation of a car-wash facility. Arrows indicate the flow of events.

2004/
page

�

�

�

�

�

�

�

�

116 Chapter 4 The Algorithm Structure Design Space

Also, it is sometimes desirable to compose existing, possibly sequential, pro-
gram components that interact in possibly irregular ways into a parallel program
without changing the internals of the components.

For problems such as this, it might make sense to base a parallel algorithm on
defining a task (or a group of tightly coupled tasks) for each component, or in the
case of discrete-event simulation, simulation entity. Interaction between these tasks
is then based on the ordering constraints determined by the flow of data between
them.

Forces

• A good solution should make it simple to express the ordering constraints,
which can be numerous and irregular and even arise dynamically. It should
also make it possible for as many activities as possible to be performed con-
currently.

• Ordering constraints implied by the data dependencies can be expressed by
encoding them into the program (for example, via sequential composition)
or using shared variables, but neither approach leads to solutions that are
simple, capable of expressing complex constraints, and easy to understand.

Solution

A good solution is based on expressing the data flow using abstractions called
events, with each event having a task that generates it and a task that processes it.
Because an event must be generated before it can be processed, events also define
ordering constraints between the tasks. Computation within each task consists of
processing events.

Defining the tasks. The basic structure of each task consists of receiving an
event, processing it, and possibly generating events, as shown in Fig. 4.32.

If the program is being built from existing components, the task will serve as
an instance of the Facade pattern [GHJV95] by providing a consistent event-based
interface to the component.

The order in which tasks receive events must be consistent with the applica-
tion’s ordering constraints, as discussed later.

initialize
while(not done)
{
receive event
process event
send events

}
finalize

Figure 4.32: Basic structure of a task in the Event-Based Coordination pattern

2004/
page

�

�

�

�

�

�

�

�

4.9 The Event-Based Coordination Pattern 117

Representing event flow. To allow communication and computation to over-
lap, one generally needs a form of asynchronous communication of events in which a
task can create (send) an event and then continue without waiting for the recipient
to receive it. In a message-passing environment, an event can be represented by a
message sent asynchronously from the task generating the event to the task that
is to process it. In a shared-memory environment, a queue can be used to simulate
message passing. Because each such queue will be accessed by more than one task,
it must be implemented in a way that allows safe concurrent access, as described in
the Shared Queue pattern. Other communication abstractions, such as tuple spaces
as found in the Linda coordination language or JavaSpaces [FHA99], can also be
used effectively with this pattern. Linda [CG91] is a simple language consisting of
only six operations that read and write an associative (that is, content-addressable)
shared memory called a tuple space. A tuple space is a conceptually shared repos-
itory for data containing objects called tuples that tasks use for communication in
a distributed system.

Enforcing event ordering. The enforcement of ordering constraints may make
it necessary for a task to process events in a different order from the order in which
they are sent, or to wait to process an event until some other event from a given
task has been received, so it is usually necessary to be able to look ahead in the
queue or message buffer and remove elements out of order. For example, consider
the situation in Fig. 4.33. Task 1 generates an event and sends it to task 2, which
will process it, and also sends it to task 3, which is recording information about all
events. Task 2 processes the event from task 1 and generates a new event, a copy
of which is also sent to task 3. Suppose that the vagaries of the scheduling and
underlying communication layer cause the event from task 2 to arrive before the
event from task 1. Depending on what task 3 is doing with the events, this may
or may not be problematic. If task 3 is simply tallying the number of events that
occur, there is no problem. If task 3 is writing a log entry that should reflect the
order in which events are handled, however, simply processing events in the order
in which they arrive would in this case produce an incorrect result. If task 3 is
controlling a gate, and the event from task 1 results in opening the gate and the
event from task 2 in closing the gate, then the out-of-order messages could cause
significant problems, and task 3 should not process the first event until after the
event from task 1 has arrived and been processed.

1

3

2

Figure 4.33: Event-based communication among three tasks. Task 2 generates its event in response
to the event received from task 1. The two events sent to task 3 can arrive in either order.

2004/
page

�

�

�

�

�

�

�

�

118 Chapter 4 The Algorithm Structure Design Space

In discrete-event simulations, a similar problem can occur because of the se-
mantics of the application domain. An event arrives at a station (task) along with
a simulation time when it should be scheduled. An event can arrive at a station
before other events with earlier simulation times.

The first step is to determine whether, in a particular situation, out-of-order
events can be a problem. There will be no problem if the “event” path is linear so
that no out-of-order events will occur, or if, according to the application semantics,
out-of-order events do not matter.

If out-of-order events may be a problem, then either an optimistic or pes-
simistic approach can be chosen. An optimistic approach requires the ability to
roll back the effects of events that are mistakenly executed (including the effects
of any new events that have been created by the out-of-order execution). In the
area of distributed simulation, this approach is called time warp [Jef85]. Optimistic
approaches are usually not feasible if an event causes interaction with the outside
world. Pessimistic approaches ensure that the events are always executed in order
at the expense of increased latency and communication overhead. Pessimistic ap-
proaches do not execute events until it can be guaranteed “safe” to do so. In the
figure, for example, task 3 cannot process an event from task 2 until it “knows”
that no earlier event will arrive from task 1 and vice versa. Providing task 3 with
that knowledge may require introducing null events that contain no information
useful for anything except the event ordering. Many implementations of pessimistic
approaches are based on time stamps that are consistent with the causality in the
system [Lam78].

Much research and development effort has gone into frameworks that take
care of the details of event ordering in discrete-event simulation for both op-
timistic [RMC+98] and pessimistic approaches [CLL+99]. Similarly, middleware
is available that handles event-ordering problems in process groups caused by
the communication system. An example is the Ensemble system developed at
Cornell [vRBH+98].

Avoiding deadlocks. It is possible for systems using this pattern to deadlock
at the application level—for some reason the system arrives in a state where no
task can proceed without first receiving an event from another task that will never
arrive. This can happen because of a programming error; in the case of a simulation,
it can also be caused by problems in the model that is being simulated. In the latter
case, the developer must rethink the solution.

If pessimistic techniques are used to control the order in which events are
processed, then deadlocks can occur when an event is available and actually could
be processed, but is not processed because the event is not yet known to be safe.
The deadlock can be broken by exchanging enough information that the event can
be safely processed. This is a very significant problem as the overhead of dealing
with deadlocks can cancel the benefits of parallelism and make the parallel algo-
rithms slower than a sequential simulation. Approaches to dealing with this type
of deadlock range from sending frequent enough “null messages” to avoid dead-
locks altogether (at the cost of many extra messages) to using deadlock detection
schemes to detect the presence of a deadlock and then resolve it (at the cost of

2004/
page

�

�

�

�

�

�

�

�

4.9 The Event-Based Coordination Pattern 119

possible significant idle time before the deadlock is detected and resolved). The
approach of choice will depend on the frequency of deadlock. A middle-ground
solution is to use timeouts instead of accurate deadlock detection, and is often the
best approach.

Scheduling and processor allocation. The most straightforward approach is
to allocate one task per PE and allow all the tasks to execute concurrently. If
insufficient PEs are available to do this, then multiple tasks can be allocated to each
PE. This should be done in a way that achieves good load balance. Load balancing
is a difficult problem in this pattern due to its potentially irregular structure and
possible dynamic nature. Some infrastructures that support this pattern allow task
migration so that the load can be balanced dynamically at runtime.

Efficient communication of events. If the application is to perform well, the
mechanism used to communicate events must be as efficient as is feasible. In a
shared-memory environment, this means making sure the mechanism does not have
the potential to become a bottleneck. In a message-passing environment, there are
several efficiency considerations; for example, whether it makes sense to send many
short messages between tasks or try to combine them. [YWC+96] and [WY95]
describe some considerations and solutions.

Examples

Known uses. A number of discrete-event simulation applications use this pat-
tern. The DPAT simulation used to analyze air traffic control systems [Wie01] is
a successful simulation that uses optimistic techniques. It is implemented using
the GTW (Georgia Tech Time Warp) System [DFP+94]. The paper ([Wie01]) de-
scribes application-specific tuning and several general techniques that allow the
simulation to work well without excessive overhead for the optimistic synchroniza-
tion. The Synchronous Parallel Environment for Emulation and Discrete-Event
Simulation (SPEEDES) [Met] is another optimistic simulation engine that has
been used for large-scale war-gaming exercises. The Scalable Simulation Frame-
work (SSF) [CLL+99] is a simulation framework with pessimistic synchronization
that has been used for large-scale modeling of the Internet.

The CSWEB application described in [YWC+96] simulates the voltage output
of combinational digital circuits (that is, circuits without feedback paths). The
circuit is partitioned into subcircuits; associated with each are input signal ports
and output voltage ports, which are connected to form a representation of the whole
circuit. The simulation of each subcircuit proceeds in a timestepped fashion; at each
time step, the subcircuit’s behavior depends on its previous state and the values
read at its input ports (which correspond to values at the corresponding output
ports of other subcircuits at previous time steps). Simulation of these subcircuits
can proceed concurrently, with ordering constraints imposed by the relationship
between values generated for output ports and values read on input ports. The
solution described in [YWC+96] fits the Event-Based Coordination pattern, defining
a task for each subcircuit and representing the ordering constraints as events.

2004/
page

�

�

�

�

�

�

�

�

120 Chapter 4 The Algorithm Structure Design Space

Related Patterns

This pattern is similar to the Pipeline pattern in that both patterns apply to prob-
lems in which it is natural to decompose the computation into a collection of semi-
independent entities interacting in terms of a flow of data. There are two key differ-
ences. First, in the Pipeline pattern, the interaction among entities is fairly regular,
with all stages of the pipeline proceeding in a loosely synchronous way, whereas in
the Event-Based Coordination pattern there is no such requirement, and the enti-
ties can interact in very irregular and asynchronous ways. Second, in the Pipeline
pattern, the overall structure (number of tasks and their interaction) is usually
fixed, whereas in the Event-Based Coordination pattern, the problem structure can
be more dynamic.

