
Part III

Integrating .NET Open
Source Projects in Your
Development

09Nantz.qxd 7/20/04 3:16 PM Page 241

09Nantz.qxd 7/20/04 3:16 PM Page 242

C H A P T E R 9

ASpell.NET Case Study

Nothing you can't spell will ever work.

—Will Rogers

Introduction

There are three excuses ever present in software development:

1. We don’t have time to automate the build.
2. We’ll do the documentation later.
3. We don’t have time to write tests.

I understand the importance of Time to Market and that the first
release of a product is always the hardest to get out the door. However, I
believe this “rush-to-market” approach to development is shortsighted and
outdated. This philosophy could wind up costing you a lot more time in the
end than if you spend a little time up front creating a solid development
procedural atmosphere.

Chapters 4 through 7 deal directly with how to solve these problems.
Writing documentation along the way is not difficult with NDoc. NAnt allows
for an intuitive and solid scriptable build. Testing can actually be enjoyable
with NUnit while you try to break your code with the test code you write.

This chapter is a simple but realistic case study of using Open Source
tools in everyday development. To illustrate this I chose to create a new Open
Source project: ASpell.NET. ASpell.NET (http://aspell-net.sourceforge.net)
is a .NET wrapper around the GNU ASpell project (http://aspell.source-
forge.net). ASpell is a commercial-caliber spell checking component that
supports twenty-some different language dictionaries.

243

09Nantz.qxd 7/20/04 3:16 PM Page 243

NOTE: ASpell.NET is not a good candidate for cross-platform support
because PInvoke is not very well supported on CLIs other than
Microsoft’s .NET.

Thorsten Maerz has created a Win32 port of ASpell, which I will wrap
in a C# component. I believe this to be a good example because it includes
PInvoke calls into unmanaged code. Realistically, this process of wrapping
existing functionality and making it available to managed code will proba-
bly be done for quite a while by most corporations.

TIP: For a good book on .NET Interop, see:

.NET and COM: The Complete Interoperability Guide
by Adam Nathan from Sams Publishing

Adam has also created a wiki (http://www.pinvoke.net) and a Visual
Studio.net add in (click the get visual studio add-in link on the Web site).

This example will check the code by using FxCop and NUnit. As we go
along, we will utilize NDoc to output a useful help file for redistribution. In
the end, an install will be created using MSI, and an iso file will be created
using the custom mkisofs task created in Chapter 4. The iso file will then be
uploaded to a server for distribution to a testing department or, depending
on the extent of your testing, to customers. All this will happen automati-
cally upon checking in code using Continuous Integration if the build suc-
ceeds (which also implies that the tests succeed).

I created ASpell.NET as a proof-of-concept to see how easy it would be
to get ASpell working for .NET. ASpell.NET would make a great Web serv-
ice. To eliminate the need to use pointers and the unsafe compiler option, I
wrapped the ASpell dll in another C++ dll (AspellDll.dll). This allows
ASpell.NET to use methods that have parameters that require pointers. So
the base functionality for ASpell.NET is already there, but with no docu-
mentation or tests and without support for dictionaries other than the Eng-
lish dictionary. The source is available from the SourceForge project site,
and you will be able to see that Log4Net also plays a part in ASpell.NET.
We will use .NET’s CuturalInfo to automatically detect which language
dictionary to use. Finally, we will demonstrate the use in a somewhat real-
world application similar to the WordPad app using #develop to create it as
Windows form.

244 Chapter 9 ASpell.NET Case Study

09Nantz.qxd 7/20/04 3:16 PM Page 244

Test First Development

Really, to be fair, I should have developed the tests for ASpell.NET first,
but I wanted to see if it was even feasible. Since it seems to be a useful com-
ponent, now is the time to write the tests while the project is still pretty
young. What is nice about developing the tests first is that is forces you to
create your API and think about your contract with the outside world in a
detailed way. After all, you cannot write the tests for components if you do
not know what the signatures of the public methods are or what properties
are available. For ASpell.NET, I did not have to spend too much time in
the design of the component because it pretty much mimics ASpell’s
design. This was done for two reasons. First, I wanted ASpell.NET to be
familiar to anyone who has used ASpell. Second, I realized the amount of
man-hours and development put into ASpell and decided that I probably
could not come up with a much better design.

I will start with the following tests:

� What if I pass in a null or empty string to spell check?
� What if I use numerals or punctuation?
� What if the program can’t find a dependant dll or dictionary?
� Can it support multiple cultures?
� What if there’s nothing to return?

To perform these tests, I will add a reference to NUnit into the build
and use it to create the tests. Listing 9.1 shows the simplest test if a null is
passed into ASpell.NET.

Listing 9.1 NUnit Test

[TestFixture]

public class AspellNullTest

{

private aspell.net.SpellChecker spellCheck;

[SetUp]
public void Init()

{

spellCheck = new aspell.net.SpellChecker();

}

Test First Development 245

09Nantz.qxd 7/20/04 3:16 PM Page 245

[Test]
[ExpectedException(typeof(aspell.net.ASpellNullException))]
public void NullCheck()

{

foreach(CultureInfo ci in spellCheck.CultureInfos)

{

spellCheck.CultureInfo = ci;

spellCheck.checkword(null);

}

}

[Test]
[ExpectedException(typeof(aspell.net.ASpellNullException))]
public void NullSuggest()

{

foreach(CultureInfo ci in spellCheck.CultureInfos)

{

spellCheck.CultureInfo = ci;

spellCheck.suggest(null);

}

}

}

NOTE: NUnit version 2.1.4 was used for these tests.

This test will take no time at all. The hardest test will be removing the
dictionaries and dependant dlls. In designing the tests, we must create
them in a way that will not require you to rewrite them for every culture.

NAnt Build

I will use the NAnt master build, simple dll, simple exe, and winform exe
templates all taken from Chapter 4. Listing 9.2 shows the master build file.

NOTE: NAnt 0.8.2 was used for this chapter.

246 Chapter 9 ASpell.NET Case Study

09Nantz.qxd 7/20/04 3:16 PM Page 246

Listing 9.2 ASpell.NET’s Build Projects File

<projects>
<!-- ASpell.Net -->

<project>

<name>aspell.net\aspell.net</name>

</project>

<!-- Tests -->

<project>

<name>tests\nunit\nunit</name>

<dependencies>

<dependency>aspell.net</dependency>
</dependencies>

</project>

<project>

<name>tests\ConsoleAppTester\ConsoleAppTester</name>

<dependencies>

<dependency>aspell.net</dependency>
</dependencies>

</project>

<!-- Examples -->

<project>

<name>examples\WindowsApp\WindowsApp</name>

<dependencies>

<dependency>aspell.net</dependency>
</dependencies>

</project>

<project>

<name>examples\WordPadSpell\WordPadSpell</name>

<dependencies>

<dependency>aspell.net</dependency>
</dependencies>

</project>

</projects>

Notice that all the example projects are dependent upon the
ASpell.NET project. Listing 9.3 shows that after the transform of the proj-
ect file and building all the subprojects, the setup project is run, and the iso
file is created. At this point, the file could be distributed a number of differ-
ent ways, but Listing 9.3 uses SCP (secure copy) to upload the file to a
server.

NAnt Build 247

09Nantz.qxd 7/20/04 3:16 PM Page 247

Listing 9.3 ASpell.NET’s Master Build File

<project name="Master Build" basedir="." default="build">

<sysinfo verbose='true'/>

<!-- General Build Properties -->

<property name="debug" value="true" />

<property name="define" value="DEBUG;TRACE" />

<property name="build.dir" value="C:\book" />

<property name="refassemblies" value="${build.dir}\refassemblies "

/>

<property name="isofile" value="release.iso" />

<!-- MSI Properties -->

<property name="product.name" value="ASpell.NET" />

<property name="company.name" value="OpenSource.NET" />

<property name="msi.version" value="1.0.2" />

<property name="msi.guid.product" value="{D9C16B65-BD89-44f5-AEC8-

16775D4A3619}" />

<property name="msi.guid.upgrade" value="{42D979E5-E2E8-45c6-89D4-

378353848479}" />

<!-- Location to output the complete msi -->

<property name="output.dir" value="${build.dir}\output" />

<target name='build'>

<exec program=îNantHelper.exeî commandline=îprojects.xmlî

output=îprojects.txtî basedir=î.î />

<!-- After applying Helper application transform pass the target

to the subprojects -->

<foreach item='Line' property='filename' in='projects.txt'>

<nant buildfile='${build.dir}\${filename}.build' target='build'

/>

</foreach>

<msi

sourcedir="${output.dir}"

license="license.rtf"

output="${company.name}.${product.name}.msi"

debug="true"

verbose="true"

>

248 Chapter 9 ASpell.NET Case Study

09Nantz.qxd 7/20/04 3:16 PM Page 248

<properties>

<property name="ProductName" value="${product.name}" />

<property name="ProductVersion" value="${msi.version}"

/>

<property name="Manufacturer" value="${company.name}" />

<property name="ProductCode" value="${msi.guid.product}"

/>

<property name="UpgradeCode" value="${msi.guid.upgrade}"

/>

</properties>

<directories>

<directory name="D__BINDIRECTORY" foldername="bin"

root="TARGETDIR" />

</directories>

<components>

<component name="C__MainFiles" id="{301CC44C-A3A4-4674-

AE04-23D91F156301}" attr="2"

directory="TARGETDIR" feature="F__DefaultFeature">

<key file="Test.xml" />

<fileset basedir="${build.dir}">

<includes name="*.*" />

</fileset>

</component>

</components>

<features>

<feature name="F__DefaultFeature" title="${product.name}

Main Feature" display="1" typical="true" directory="TARGETDIR">

<description>${product.name} core

files.</description>

</feature>

</features>

</msi>

<mkisofs isofilename='${build.dir}\${isofile}'

inputdir='output.dir' />

<scp file='${build.dir}\${isofile}' server="ReleaseServer"

path="~" />

</target>

</project>

NAnt Build 249

09Nantz.qxd 7/20/04 3:16 PM Page 249

Figure 9-1 is the assurance that the NAnt build, complete with NUnit
and NDoc integration, is working.

Before continuing any further, we should set up a Source Code Man-
agement (SCM) system.

250 Chapter 9 ASpell.NET Case Study

Subversion

I chose to use Subversion (SVN) with ASpell.NET, even though Source-
Forge does not support it, because it is easy to use and has some nice fea-
tures that CVS does not support.

NOTE: TortoiseSVN version 0.21.0 Build 277 and SVN version 0.32.1
were used in this chapter.

First, a repository must be created, which is simple, as Figure 9-2
demonstrates.

Next I will simply import ASpell.NET into the repository. Figure 9-3
shows how to import a Subversion project.

As you can see, using Subversion is very simple and not intrusive in the
development cycle. Another great feature of Subversion is that the reposi-
tory can be easily compressed and moved to a different machine, even if
that machine runs a different operating system.

Figure 9-1 ASpell.NET’s Build Output.

09Nantz.qxd 7/20/04 3:16 PM Page 250

Subversion 251

Figure 9-2 Creating an SVN repository with TortoiseSVN.

Figure 9-3 Importing ASpell.NET using TortoiseSVN.

09Nantz.qxd 7/20/04 3:16 PM Page 251

Draco.NET

I choose Draco.NET because it is so easy to install and simple to use.
Although CruiseControl.NET does offer nice features for a large develop-
ment team, I wanted to eliminate any complexity to emphasize the con-
cepts of a complete case study. Listing 9.4 is the configuration for
Draco.NET to build ASpell.NET. Figure 9-4 shows the email notification
sent from the initial import’s triggering of the build.

252 Chapter 9 ASpell.NET Case Study

Figure 9-4 Draco.NET’s Email Notification.

Listing 9.4 Draco.NET’s Configuration

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<configSections>

<section name="draco"

type="Chive.Draco.Config.ConfigurationSection, Draco"/>

</configSections>

<system.diagnostics>

<switches>

<add name="TraceLevelSwitch" value="4"/>

</switches>

09Nantz.qxd 7/20/04 3:16 PM Page 252

<trace autoflush="true" indentsize="4">

<listeners>

<remove name="Default"/>

</listeners>

</trace>

</system.diagnostics>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="Singleton"

objectUri="Draco" type="Chive.Draco.DracoRemote, Draco"/>

</service>

<channels>

<channel ref="tcp" port="8086"/>

</channels>

</application>

</system.runtime.remoting>

<draco xmlns="http://www.chive.com/draco">

<pollperiod>60</pollperiod>

<quietperiod>60</quietperiod>

<mailserver>mail.securityint.com</mailserver>

<fromaddress>brian.nantz@somwhere.com</fromaddress>

<builds>

<build>

<name>aspell-net</name>
<pollperiod>10</pollperiod>

<quietperiod>30</quietperiod>

<notification>
<email>

<recipient>brian.nantz@somewhere.com</recipient>
</email>
<file>

<dir>C:\book\BuildOutput</dir>
</file>

</notification>
<nant>

<buildfile>build\master.build</buildfile>

</nant>

<svn>

<url>file:///C:/book/svnrepository</url>

</svn>

<ignorechanges>

Draco.NET 253

09Nantz.qxd 7/20/04 3:16 PM Page 253

254 Chapter 9 ASpell.NET Case Study

<ignore comment="autobuild"/>
</ignorechanges>

</build>

</builds>

</draco>

</configuration>

Again, in Listing 9.4, all the comments have been removed. These com-
ments more than point you in the right direction with helpful examples. For
example, there is a section for each source control that it supports (i.e., Subver-
sion, Visual Source Safe, etc.), and you just have to uncomment it and changed
the values (like username, paths, passwords) to fit your environment. By just
uncommenting the proper notification XML node, you can now receive build
results in multiple formats. All of the supported SCMs are also very config-
urable and well documented. Notice that you can ignore certain checkins to
SCM (if you are triggering builds off of checkins and are not scheduled). You
can also potentially monitor multiple source repositories. In Listing 9.4, only
the svn XML tag is used to monitor a single Subversion repository.

Next we will add a new example client for greater stressing of the com-
ponent.

Adding Functionality

In the original proof-of-concept, I created two example applications. The
first example was a C# Console Application to take a word input and if
needed return the suggestions for the correct spelling (Figure 9-5).

The second application was a simple VB.NET application (Figure 9-6)
that showed checking a single word in a text box and returning the results in
a right-click context menu.

While these applications tested the functionality and demonstrated the
cross-language capability, they really were not real-world useable applica-
tions. There are a few things that Aspell.NET needs to support before even
a quality beta cycle. First, I wanted to add Log4Net to the project, even
though it is somewhat simple to support good behavior if the system starts
to error. This is one example where it may be useful to associate the Logger
configuration with a dll. This probably warrants some changes to the code.
In the meantime, ASpell.NET should just document the Log4Net require-
ment in the calling executables configuration file. Second, if I want to check

09Nantz.qxd 7/20/04 3:16 PM Page 254

Adding Funcionality 255

Figure 9-6 VB.NET Windows Form Test Application.

Figure 9-5 Console Test Application.

spelling, it usually is not a single textbox field but a whole document like
email or a text file, so I decided to create an application much like WordPad
that is a Rich Text Format-aware editor application. Figure 9-7 shows using
SharpDevelop, which is the only Open Source editor I am aware of that has
a Windows Forms designer.

09Nantz.qxd 7/20/04 3:16 PM Page 255

While eventually I would like all the functionality of WordPad, this
example application only allows for spell checking and opening a text file
for spell checking. Figure 9-8 shows WordpadSpell in action.

256 Chapter 9 ASpell.NET Case Study

Figure 9-7 SharpDevelop WordpadSpell Project.

Figure 9-8 WordpadSpell Example.

09Nantz.qxd 7/20/04 3:16 PM Page 256

Listing 9.5, a sample command-line application from the ASpell.NET
distribution, shows that the API for ASpell.NET is fairly simple. The Word-
padSpell is responsible for the logic to parse things down to a single word to
pass to ASpell.NET for checking.

Listing 9.5 A Simple Use of ASpell.NET

try
{

string word = args[0].ToString();

aspell.net.SpellChecker spellCheck = new

aspell.net.SpellChecker();

if(!spellCheck.checkword(word))

{

System.Collections.ArrayList suggestions =

spellCheck.suggest(word);

foreach(string suggestion in suggestions)

{

Console.WriteLine(suggestion);

}

}

else

{

Console.WriteLine(word + " is correct");

}

}

catch(Exception ex)

{

System.Diagnostics.Debug.WriteLine(ex.ToString());

Console.Write(ex.ToString());

}

Adding a NAnt build script is a simple copy and paste and a quick edit
of the template file. When we add the project to Subversion (Figure 9-9),
Draco.NET will be triggered to perform a build. The installation and iso
file are created, and the successful result is emailed out.

Adding Funcionality 257

09Nantz.qxd 7/20/04 3:16 PM Page 257

Summary

While this application is admittedly simple compared to what you develop
day in and day out, it is large enough to demonstrate that the process of
using these Open Source tools has great benefits. Most real projects can be
broken up into smaller projects that are not much more daunting than this
one. These tools do not require all that much overhead to the development
process. As the project or number of developers increases, the value of
these tools increases in more of an exponential rather than linear propor-
tion. These tools could easily be (and actually already are) used in Source-
Forge’s projects to remotely monitor CVS in a multi-developer project and
to automatically build and expose integration issues.

Figure 9-9 Adding to SVN.

258 Chapter 9 ASpell.NET Case Study

09Nantz.qxd 7/20/04 3:16 PM Page 258

