

xv

Foreword

Design Patterns

 described several ways to use patterns. Some people plan for
patterns long before they write any code, while other people add a pattern after
a lot of code has been written. The second way of using patterns is refactoring,
because you are changing the design of the system without adding features or
changing the external behavior. Some people put a pattern into a program
because they think the pattern will make the program easier to change, but
other people do it as a way to simplify the current design. If code has been writ-
ten, then both of these are refactorings, because the first is refactoring to make
a change easier, while the second is refactoring to clean up after a change.

Although a pattern is something you can see in a program, a pattern is also a
program transformation. Each pattern can be explained by showing a program
before the pattern was used and then afterwards. This is another way that pat-
terns can be thought of as refactorings.

Unfortunately, many readers missed the connection between design patterns
and refactoring. They thought of patterns as entirely related to design, not to
code. I suppose that the name might have misled them, but the fact that the
book was mostly C++ code should have indicated that patterns are about code
as well as design, and adding a pattern usually requires changing code.

Joshua Kerievsky got the connection right away. I met him soon after he
started the Design Patterns Study Group of New York City. He introduced the
idea of a “before and after” study of a pattern, an example that shows the
effect of a pattern on a system. Before he left town, his infectious enthusiasm
had led to a group of over sixty people meeting several times a month. He
started teaching patterns courses to companies and has taught them on-site, at
his own location, and on the Internet. He has even taught other people how to
teach them.

Joshua has gone on to become an XP practitioner and teacher as well. So, it
is perfectly fitting that he has written a book that shows the connection between

Kerievsky_book.fm Page xv Thursday, July 8, 2004 12:12 PM

xvi

F

OREWORD

design patterns and refactoring, one of the core XP practices. Refactoring is not
orthogonal to patterns—it is intimately related. Not all of the patterns that he
talks about are from

Design Patterns

, but they all are in the style of

Design Pat-
terns.

 Joshua’s book shows how patterns can help you design without causing
you to create an up-front design.

If you practice what this book teaches, you will improve both your ability to
create good designs and your ability to think about them.

—Ralph Johnson

Kerievsky_book.fm Page xvi Thursday, July 8, 2004 12:12 PM

xvii

Foreword

For several years now, I’ve been involved with advocating agile methods in gen-
eral and extreme programming in particular. When I do, people often question
how this fits in with my long-running interest in design patterns. Indeed, I’ve
heard people claim that by encouraging refactoring and evolutionary design,
I’m recanting what I’ve previously written about analysis and design patterns.

Yet all it takes is a quick look at people to realize that this view is flawed.
Look at the leading members of the patterns community and at the leading
members of the agile and XP communities, and you see a huge intersection. The
truth is that patterns and evolutionary design have had a close relationship
since their very beginnings.

Josh Kerievsky has been at the heart of this overlap. I first met him when he
organized the successful patterns study groups in New York City. These groups
did a collaborative study of the growing literature on design patterns. I quickly
learned that Josh’s understanding of design patterns was second to none, and I
gained a lot of insight into those patterns by listening to him. Josh adopted
refactoring early and was an extremely helpful reviewer on my book. As such it
was no surprise to me that he also was a pioneer of extreme programming. His
paper on patterns and extreme programming at the first XP conference is one of
my favorites.

So if anyone is perfectly suited to write about the interplay of patterns and
refactoring, Josh is. It’s territory I explored a little bit in

Refactoring

, but I didn’t
take it too far because I wanted to concentrate on the basic refactorings. This
book greatly expands that area, discussing in good detail how to evolve most of
the popular patterns used in

Design Patterns

 [DP], showing that they need not
be designed into a system up front but can be evolved to as a system grows.

As well as the specific knowledge about these refactorings that you can gain
from studying them, this book also tells you more about patterns and refactor-
ing in general. Many people have said they find a refactoring approach to be a

Kerievsky_book.fm Page xvii Thursday, July 8, 2004 12:12 PM

xviii

F

OREWORD

better way of learning about patterns because they see in gradual stages the
interplay of problem and solution. These refactorings also reinforce the critical
fact that refactoring is all about making large changes in tiny steps.

So I’m pleased to be able to present this book to you. I’ve spent a long time
cajoling Josh to write a book and then working with him on this one. I’m
delighted with the result, and I think you will be too.

—Martin Fowler

Kerievsky_book.fm Page xviii Thursday, July 8, 2004 12:12 PM

