

65

C H A P T E R 4

Color

Since humanity began, we have been using the intrinsic colors of objects in
the natural world. The artists of Altamira and Lascaux used ochres, colored
earths, to draw their magnificent animals some 20,000 years ago. A now-
extinct shellfish provided the dye used for the purple stripe on a Roman sen-
ator’s toga. The blue robes of Sandro Botticelli’s gentle Madonnas are tinted
with ground lapis lazuli, a blue stone.

In this chapter, we move from typography to color theory—color’s char-
acteristics and interactions. Ultimately, of course, color is all about light,
and the way our eyes react to it. The human eye can distinguish upwards of
ten million distinct colors—a huge problem space that any systems analyst
will tell you must be structured and organized.

This is what color theory does. However, traditional color theory is
based on the mixture of pigments, while the display of color on a com-
puter monitor is a mixture of light, which, as we’ll see, is slightly different
in its details.

The first two sections of this chapter deal with traditional, pigment-
based color theory without translation. In designing color for your user
interfaces, it’s traditional theory that must guide you. The next section looks
at the differences between color models, including the ARGB model used on
computers, and finally, the last section looks at the .NET Framework objects
used to manipulate color.

Come on, admit it, it’s a lot more fun than memory allocation models (or
at least no more tedious).

Understanding Color

Like the other graphic elements that we’re examining in this first part of the
book, there’s a set of terms that folks in the field use to talk about color, and
we’ll examine them here.

riordan_ch04.fm Page 65 Thursday, June 17, 2004 10:11 PM

66

Chapter 4 Color

The Dimensions of Color

Every color can be defined along three dimensions: hue, saturation, and
value.

Hue

 is what we normally think of as the color itself—red, yellow, or
puce.

Value

 is the relative lightness or darkness of a color—pink or magenta.

Saturation

is measure of intensity, which is a function of purity of hue.
If you mix equal amounts of the three primary colors, the result is gray.
Imagine a gradient with a pure hue on one end and gray on the other—
that’s a measure of saturation.

The color wheel is a useful starting point for working with color. There
are actually quite a few different configurations of color wheels, and we’ll
look at a couple others in this chapter, but the one shown in Figure 4–1 in
the color insert, is the most common.

The three colors that cannot be created by combining other colors—
yellow, red, and blue—are the

primary colors

.

Secondary colors

, created
by mixing two primaries, are placed between them on the wheel. For exam-
ple, green is the mixture of blue and yellow.

As shown in Figure 4–2 in the color insert, the wheel can be further
refined by including the

tertiary colors

 such as red-orange or blue-green,
which are mixtures of a primary and secondary color.

You may be thinking that there are some colors missing from the color
wheel—black, white, gray, and brown, often called the

neutrals

. In fact,
black and white aren’t technically colors. If you think of light, of course,
black is its absence and white its presence.

You might expect that mixing the three primary colors would result in
white. In reality, the result is gray. (You can also get gray by mixing black
and white pigments, of course, because neither color,

as a pigment

, is a pure
color.) Black and white are effectively primaries because they can’t be
mixed from other pigments.

They can, of course, be mixed with other pigments. When you mix a
pigment with white, the result is a

tint

. When you mix a pigment with black,
the result is a

shade

. If you add both black and white to a pigment, the
result is a

tone

.
The other neutral is brown. Every time I’ve taught color mixing, some-

body asks how you get brown. It

is

 difficult to look at the color wheel and
see how you could possibly arrive at such a distinctive color. So, here’s the
secret: Brown is a shade of orange, while beige is its tone.

Colors have one more characteristic that deserves mentioning: They
are either warm or cold. The warm colors, as shown in Figure 4–3 in the
color insert, are in the red-orange range, while cool colors are in the blue-
green range.

riordan_ch04.fm Page 66 Thursday, June 17, 2004 10:11 PM

Understanding Color

67

Conventional wisdom has it that warm colors advance while cool colors
recede, and while there’s truth to that, it tends to be more important when
you’re painting walls than designing user interfaces. There’s a big difference
between the effect of an 8-foot wall and an 8-inch screen.

Color Harmonies

There is, of course, no limit to the number of effective color combinations,
but that knowledge isn’t much help when you’re faced with designing a
color scheme. Not to fear; there are traditional systems to help you organize
your work.

The physical relationship between colors on the color wheel is the basis
of traditional color systems, called

color harmonies

. Color harmonies are
often referred to as color schemes, but that’s not correct. A

color scheme

 is
simply the colors used in a project. A color harmony complies with one of
the relationships described here.

A

monochromatic

color harmony uses a single color, perhaps with the
addition of black and white. Monochromatic harmonies are obviously the
simplest to implement. Pick a color you like, use its tints, shades, and tones,
and away you go.

Like a document that uses a single typeface, monochro-
matic schemes are generally safe, slightly formal, and can be
invisible. Sounds boring, but if you’re building a data entry sys-
tem, invisible is a good thing.

Analogous color harmonies

are also fairly easy to use,
but a bit more vibrant. As shown in Figure 4–4 in the color insert, an analo-
gous harmony uses a primary hue along with one of its secondaries—blue
and green in the example shown. Analogous harmonies may also include the
intermediate colors—blue-green in the example.

Analogous color schemes can be beautiful, but you must be careful to
maintain enough contrast. Green text on a blue background is going to be

pretty close to unreadable. But, dark green text on a pale blue
background can be quite pleasant.

A

triadic color harmony

, shown in Figure 4–5 in the color
insert, combines three equidistant colors, either the three pri-
maries, the three secondaries, or three tertiaries.

Triadic color harmonies tend to be quite vibrant, even if you
use pale or unsaturated versions of your hues. To use a triadic

harmony successfully, you need to balance the three colors very carefully,
using only small amounts of two of the colors, for example.

Invisible color
schemes can be
a good thing.

Make sure you
have enough
contrast when
choosing an
analogous color
scheme.

riordan_ch04.fm Page 67 Thursday, June 17, 2004 10:11 PM

68

Chapter 4 Color

Complementary

colors are directly opposite each other on the color
wheel, as shown in Figure 4–6 in the color insert. Complementary colors

have a special relationship. You’ve probably done the exercise—
stare at a square of green for a few seconds and then look at a
white wall. You’ll see an after-image of red. Red and green are,
of course, complementary colors.

If you put two complementary colors side by side, the edges tend to
vibrate. So, for example, if you choose a text color that’s the complementary

of the window background, the text will start to move around on
the screen. (Try it. It’ll make you homesick for the sixties.)

Complementary colors are tricky to use in large doses, but
using a color’s complement is an excellent technique for draw-
ing attention to an area of the screen.

Complementary color harmonies can also work if you contrast the value
and intensity of the two colors. Maroon and pale green, for example, are a
classic Art Deco combination, and can work even for text and background,

at least in relatively small doses.
The final classic color harmony is the

split complementary

,
which combines one color with the two colors on either side of its
complementary, as shown in Figure 4–7 in the color insert.

The split complementary harmony sounds tricky, but is
actually difficult to mess up, which makes it a good, safe choice
for polychrome color schemes.

The split complementary is one of my favorite harmonies. A
color scheme based on the split complementary

is

colorful, but
hardly ever loud. It might not be the best choice for straight data entry appli-
cations, where efficiency is more important than appearance, but remember
that any color harmony can combine black and white for its text display.

Using Color

A lot of the basic principles of using color are implicit in the color harmonies
we’ve just examined—these color harmonies represent basic organizing
principles.

Beyond the harmonies, one begins to enter areas of aesthetics that are,
unfortunately, outside our scope. Is red sexy? Is blue calming? Yeah, well,
sometimes. And sometimes pink is romantic, and sometimes it’s funky.

Realistically, the only useful advice I can give you is to look at stuff. Art
galleries are wonderful, of course, but magazines, and restaurants, and the
people you see walking down the street are also sources of color ideas.

Balance triadic
harmonies
carefully.

Use your main
color’s
complement as an
attention-getter.

The split
complementary
harmony is a good
choice for
polychrome
schemes because
it’s so hard to
mess up.

riordan_ch04.fm Page 68 Thursday, June 17, 2004 10:11 PM

Using Color

69

Most importantly, if you work for a company, look at their marketing
materials. Even small companies probably have brochures, or at least busi-
ness cards, and the colors used there are de facto standards for the com-
pany. Think of IBM blue, UPS brown, or Martha Stewart green.

In choosing your color scheme, you should also remember
the basic principles we studied in Chapter 1,

Interface Design

.
Alignment and proximity don’t really apply, of course, but con-
trast, consistency, and focus and flow certainly do.

At the beginning of this chapter we talked about the three dimensions
of color: hue, saturation, and value. Any combination of these qualities can
be used to establish contrast.

Obviously, you must have sufficient contrast between elements for
visual clarity. That said, color schemes with greater contrast, or contrast in
multiple dimensions, tend to be brighter and more casual, while color
schemes with less contrast tend to be more formal. There are exceptions, of
course, but think of a page in several bright primary colors compared to one
with, for example, navy blue type against a pale blue background.

Contrast in color is one of the two primary methods for controlling
focus and flow. (The other is size.) The one red item on an otherwise beige
page will invariably have the most visual weight.

Red is often used to indicate danger, and we’re conditioned to pay
attention to it. But that principle has less weight on a computer screen than
it does in the physical world—the single beige item on an otherwise red
page will also be the first to draw the eye. It’s the contrast that attracts the
viewer’s attention, not the color’s conventional meaning.

Red is one of the best examples of conventional color uses. Green and
yellow are others. The conventional meanings of these colors—stop, go,
caution—are constantly reinforced. As always, it’s best to comply with the
convention unless you have compelling reason not to.

There’s a reason warning icons are yellow. Make yours purple, and
you’re just going to confuse people. The exception, of course, is if your color
scheme is predominantly yellow. In that case, purple’s not a bad choice,
since it’s yellow’s complement, and thus stands out strongly. (But I’d proba-
bly use red, myself.)

One final note on using color: Color is useful for distinguishing things,
but not particularly good for coding them. We all do it of course, and color-
coding doesn’t do any harm; just don’t rely on it exclusively. In the first
place, a surprising number of people are color-blind. But even among those
who can distinguish colors easily, you can’t just assume that people are going
to remember that the green Contact Details screen is used for customers
while the otherwise-identical Contact Details screen is used for employees.
(Yep, I’ve seen it.)

To learn to use
color, look at
stuff.

riordan_ch04.fm Page 69 Thursday, June 17, 2004 10:11 PM

70

Chapter 4 Color

Think about it—when you were a baby, somebody (presumably)
taught you that red things were often hot. But unless you’re a prodigy, it’s
unlikely you got it the first time up, and I’d be willing to bet that you’ve
burned yourself once or twice since then. And “red means ouch” is a lot
more compelling than “yellow means employee.” So use multiple cues—
color by itself is insufficient.

Color Models

Color is a very slippery thing to quantify, but of course we must quantify it if
we are to work in the digital world. There are three different models in
common usage, and we’ll examine each in this section. But ultimately, all
three models are derived from the physics of color, and so we’ll begin our
examination of color models with a little (very little) of that.

Additive and Subtractive Color

You’ve probably seen the results of shining light through a prism—the white
light is split into its component colors, the

spectrum

. You may recall that
what’s happening here is that each color has a different wave length.

All color is a function of the way our eyes perceive different wave
lengths of light. When you look at a hyacinth, you see it as white because
the petals reflect all wave lengths of light back to you. You see the leaves as
green because they absorb all wave lengths

except

those our eyes perceive
as green. Pigments work exactly the same way—titanium white reflects all
wave lengths, while lamp black absorbs them.

NOTE:

Technically, pigments are never pure in the sense that physicists use
the term. Titanium white reflects

almost

 all wave lengths of light, but not all of
them. If you doubt this, just walk into the nearest paint store. There are dozens
of whites, each of which absorbs a slightly different range of wave lengths. But

the model is close enough for our purposes.

Now, the important thing to understand here is that if you’re looking at
anything that doesn’t actually glow, its color is determined by the color that’s

absorbed

. Yellow crocus absorbs all the red, green, and blue wave lengths.
Purple iris absorbs the red, yellow, blue, and green.

riordan_ch04.fm Page 70 Thursday, June 17, 2004 10:11 PM

Color Models

71

When you combine colors in the form of paint or pigment, you’re not so
much adding colors together as subtracting them. Blue and yellow make
green because the blue absorbs some of the yellow, the yellow absorbs some
of the blue, they both absorb red, and what’s left over is green.

I do understand that this particular bit of knowledge is singularly
unhelpful when you’re up to your elbows in finger paint. But it does explain
why the color mixtures that are represented on the traditional color wheel
are called the

subtractive

model.
The inverse of the subtractive model is the additive model. While the

subtractive model explains what happens when you combine things that
don’t emit light, the

additive

model explains the interaction of light of vari-
ous wave lengths—the combination of colored light. Combining colored
light is, of course, precisely what you’re doing when you specify color on a
computer screen.

I suppose because the ability to combine colored light is fairly new,
most color theory is based on the subtractive model, and that’s what we’ve

been examining so far in this chapter. The additive model has a
different color wheel, as shown in Figure 4–8 in the color insert.

The primary colors on the additive color wheel are red,
green, and blue rather than red, yellow, and blue. Red and green,
for example, combine to make yellow. (I don’t think I shall ever
get used to that.)

Notice that the relationships between colors aren’t the same on the
additive color wheel. Yellow and blue are directly opposite each other on
the wheel, but they aren’t complements, and they don’t behave the same
way in relationship to one another. When you’re working out color schemes,
work from the subtractive color wheel.

HSB Color

Hue, saturation, and value are the dimensions used when we talk and think
about color. The additive and subtractive models, and the color wheels that
represent them, are used when we physically manipulate color. The HSB
color model sits somewhere between the two.

The

HSB model

specifies color as a combination of three values: hue,
saturation, and brightness. Hue and saturation correspond directly to the
hue and saturation of color theory, while brightness corresponds roughly to
value. The difference between brightness and value is the difference
between the additive and subtractive models—a lack of light isn’t so much
black as, well, dark.

Use the
subtractive color
wheel for
designing color
schemes.

riordan_ch04.fm Page 71 Thursday, June 17, 2004 10:11 PM

72

Chapter 4 Color

In the HSB model, hue is measured as degrees on the color wheel, with
pure red being both 0 and 360 degrees

Saturation and brightness are both measured as percentages in the HSB
model. For example, a saturation value of 0 is white, while 100 is the fully
saturated color.

As we’ll see, the .NET Framework provides only limited support for the
HSB model, and in fact it is not as widely used as the next two models.

CMYK Color

The color model most often used for printing is

CMYK

, which stands for

C

yan-

M

agenta-

Y

ellow-blac

K

. (I

think

 the K is to avoid confusion between
the “b” in black and the one in blue, but I wouldn’t swear to that.)

All four values in the CMYK are expressed as percentages, which trans-
late directly to the percentage of the corresponding color ink required to
reproduce the color in the four-color printing process.

Because of its importance in the printing process, the CMYK model is
widely supported in drawing and publishing software, but surprisingly, isn’t
supported by the .NET Framework.

RGB and ARGB Color

The final common color model is RGB, which represents the additive pri-
maries

R

ed,

G

reen, and

B

lue. This is the standard model used for specify-
ing color for computers.

The .NET Framework adds an additional value to red, green, and blue:
the alpha value. The

alpha value

specifies the transparency of the color,
the extent to which the color is blended with its background. Like the other
values in the RGB model, alpha values are specified as an integer between 0
(transparent) and 255 (fully opaque).

NOTE:

By convention, ARGB values are specified in hexadecimal, making the

range 0x00 to 0xFF.

When the alpha value is less than 0x00, the actual color of each pixel is
determined by the following formula:

displayColor = sourceColor

×

 alpha / 255 + backgroundColor

×

 (255 – alpha) / 255

riordan_ch04.fm Page 72 Thursday, June 17, 2004 10:11 PM

Figure 4–1

Basic Color Wheel

Yellow BlueRed

Hue

Saturation (Red)

Value (Blue)

Yellow

Orange

Red

Purple

Blue

Green

riordan_ColorInsert.fm Page a Thursday, May 27, 2004 2:06 PM

Figure 4–2

Tertiary Color Wheel

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page b Thursday, May 27, 2004 2:06 PM

Figure 4–3

Warm and Cold Colors

Warm

Cool

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page c Thursday, May 27, 2004 2:06 PM

Figure 4–4

An Analogous Color Harmony

This is really
difficult to read.

This is much
easier to read.

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page d Thursday, May 27, 2004 2:06 PM

Figure 4–5

A Triadic Color Harmony

This is an
example.

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page e Thursday, May 27, 2004 2:06 PM

Figure 4–6

Complementary Colors

This is an
example.

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page f Thursday, May 27, 2004 2:06 PM

Figure 4–7

Split Complementary Color Harmony

This is an
example.

Yellow-
Green

Yellow

Red-
Orange

Yellow-
Orange

OrangeGreen

Red

Blue-
Green

Purple-
Red

Blue

Purple

Purple-
Blue

riordan_ColorInsert.fm Page g Thursday, May 27, 2004 2:06 PM

Figure 4–8

The Additive Color Wheel

Red

Yellow

Green

Cyan

Blue

Magenta

riordan_ColorInsert.fm Page h Thursday, May 27, 2004 2:06 PM

Color in the .NET Framework

73

Fortunately, GDI+ takes care of the calculations for you. You need
only specify the alpha value. (It’s easiest to think of alpha as a percentage
value, although that does require a little arithmetic translation to arrive at
the hex value.)

There’s an ARGB exerciser included in the sample code of this chapter,
so you can play with alpha values to get a feel for them.

Color in the .NET Framework

As you’d expect, color is represented by an object in the .NET Framework;
in this case, a structure rather than a class, the Color structure in the Sys-
tem.Drawing namespace.

The Color structure is supported by the KnownColor enumeration and
the SystemColor and ColorTranslator classes, all also part of System.Drawing.

The Color Structure

The Color structure exposes three static methods that function as pseudo-
constructors, as shown in Table 4–1.

The FromArgb method is overloaded, exposing four different versions
that allow you to specify various combinations of the ARGB component val-
ues. The FromKnownColor and FromName versions create a Color structure
based on the KnownColor enumeration.

As shown in Listing 4–1, you pass the enumeration member directly to
the FromKnownColor method, and the name of the color, as a string, to the
FromName method.

Table 4–1

Color Pseudo-Constructors

Method Description

FromArgb Creates a Color structure from its ARGB component
values

FromKnownColor Creates a Color structure representing the specified
member of the KnownColor enumeration

FromName Creates a Color structure representing the member of
the KnownColor enumeration specified its name (passed
as a String)

riordan_ch04.fm Page 73 Thursday, June 17, 2004 10:11 PM

74

Chapter 4 Color

Listing 4–1

Two methods for creating a Color structure based on the

KnownColor enumeration

Dim clrEnum As Color, clrName As Color
clrEnum = Color.FromKnownColor(KnownColor.Beige)

clrName = Color.FromName("Beige")

In addition to the pseudo-constructors, the Color structure exposes five
methods that are useful for translating between various color models, as
shown in Table 4–2.

NOTE:

You can’t create a Color directly from the HSB model in the .NET

Framework, although as we’ll see, the Visual Studio color picker allows it.

In addition to its methods, the Color structure exposes two sets of
properties. The first set, shown in Table 4–3, provides information regard-
ing the Color.

The A, R, G, and B properties should be self-explanatory, as should the
Name property.

The IsKnownColor and IsNamedColor properties, which always return
the same value, indicate whether the Color structure was created from a
KnownColor using either the FromKnownColor or FromName method.
These properties will

not

return true if the ARGB value of a Color happens

Table 4–2

Color Structure Translation Methods

Method Description

GetHue Returns the HSB hue in degrees
GetSaturation Returns the HSB saturation percentage as a value

between 0 and 1
GetBrightness Returns the HSB brightness percentage as a value

between 0 and 1
ToArgb Returns the 32-bit ARGB value representing the color
ToKnownColor Returns a member of the KnownColor enumeration if one

was used to create the color; otherwise, returns zero

riordan_ch04.fm Page 74 Thursday, June 17, 2004 10:11 PM

Color in the .NET Framework

75

to match that of a member of the KnownColor enumeration—they don’t
perform a search or compare ARGB values.

The IsSystemColor property indicates whether the Color is one of the
colors set by the user in the control panel. As we’ll see in the next section,
SystemColors are represented by the first 26 members of the KnownColor
enumeration.

The sample program for this chapter includes a form that displays each
of these properties for the KnownColors.

The other set of Color properties match the values of the KnownColor
enumeration. These static properties allow you to quickly create an instance
of one of the known colors.

Listing 4–2, a reprise of Listing 4–1, uses the static Beige property to
create a third instance of the Color structure.

Listing 4–2

Using a static property to obtain an instance of a Color structure

Dim clrEnum As Color, clrName As Color, clrStatic as Color

clrEnum = Color.FromKnownColor(KnownColor.Beige)
clrName = Color.FromName("Beige")

clrStatic = Color.Beige

Table 4–3 Color Structure Properties

Properties Description

A Alpha component value
R Red component value
G Green component value
B Blue component value
IsKnownColor Indicates whether the color was created from the Known-

Color enumeration
IsNamedColor Indicates whether the color was created from the Known-

Color enumeration
IsSystemColor Indicates whether the color was created from one of the first

26 members of the KnownColor enumeration
Name The name of a known color

riordan_ch04.fm Page 75 Thursday, June 17, 2004 10:11 PM

76 Chapter 4 Color

Known and System Colors

The .NET Framework supports a set of 140 standard colors through its
KnownColor enumeration (and the related static properties of the Color
structure).

These colors, which are listed in Table 4–4, were proposed, but not
included, in the CSS standard, although they do not coincide with the so-
called Web Safe color range. Despite this, they do represent a de facto
HTML standard, and they’re supported by recent versions of both of the
two main browsers, Internet Explorer and Netscape Navigator.

Table 4–4 The KnownColor Enumeration

AliceBlue DarkSlateGray LightSalmon PaleVioletRed
AntiqueWhite DarkTurquoise LightSeaGreen PapayaWhip
Aqua DarkViolet LightSkyBlue PeachPuff
Aquamarine DeepPink LightSlateGray Peru
Azure DeepSkyBlue LightSteelBlue Pink
Beige DimGray LightYellow Plum
Bisque DodgerBlue Lime PowderBlue
Black Firebrick LimeGreen Purple
BlanchedAlmond FloralWhite Linen Red
Blue ForestGreen Magenta RosyBrown
BlueViolet Fuschia Maroon RoyalBlue
Brown Gainsboro MediumAquamarine SaddleBrown
BurlyWood GhostWhite MediumBlue Salmon
CadetBrown Gold MediumOrchid SandyBrown
Chartreuse Goldenrod MediumPurple SeaGreen
Chocolate Gray MediumSeaGreen SeaShell
Coral Green MediumSlateBlue Sienna
CornflowerBlue GreenYellow MediumSpringGreen Silver
Cornsilk Honeydew MediumTurquoise SkyBlue
Crimson HotPink MediumVioletRed SlateGray
Cyan IndianRed MidnightBlue Snow
DarkBlue Indigo MintCream SpringGreen
DarkCyan Ivory MistyRose SteelBlue
DarkGoldenrod Khaki Moccasin Tan
DarkGrey Lavender NavajoWhite Teal
DarkGreen LavenderBlush Navy Thistle
DarkKhaki LawnGreen OldLace Tomato
DarkMagenta LemonChiffon Olive Transparent

riordan_ch04.fm Page 76 Thursday, June 17, 2004 10:11 PM

Color in the .NET Framework 77

While it must be said that some of these colors are spectacularly ugly,
the .NET Framework does make them easy to access. For example,
Listing 4–3, excerpted from the chapter’s example program, demonstrates
how to read the names of the KnownColor enumeration into an array, and
then display that list in a ListBox control.

Listing 4–3 Reading the names of the KnownColor enumeration into an array

Dim theNamedColors() as String

theNamedColors = System.Enum.GetNames(GetType(KnownColor))

Me.theListBox.Items.AddRange(theNamedColors)

The KnownColor enumeration also includes 26 colors (in positions 0
to 25) that correspond to the static properties of the SystemColors class,
shown in Table 4–5.

Like SystemPens and SystemBrushes, the System Colors class repre-
sents the ambient properties set by the user in the control panel.

DarkOliveGreen LightBlue OliveDrab Turquoise
DarkOrange LightCoral Orange Violet
DarkOrchid LightCyan OrangeRed Wheat
DarkRed LightGoldenrodYellow Orchid White
DarkSalmon LightGray PaleGoldenRod WhiteSmoke
DarkSeaGreen LightGreen PaleGreen Yellow
DarkSlateBlue LightPink PaleTurquoise YellowGreen

Table 4–4 The KnownColor Enumeration (Continued)

Table 4–5 SystemColors Properties

Property Description

ActiveBorder The color of the active window’s border
ActiveCaption The color of the background of the active window’s title bar
ActiveCaptionText The color of the text in the active window’s title bar
AppWorkspace The color of the background of the application workspace

(the area in a MDI view that is not occupied by documents)

riordan_ch04.fm Page 77 Thursday, June 17, 2004 10:11 PM

78 Chapter 4 Color

Other Supporting Classes

Two additional .NET Framework classes are of use when working with
color: the ColorTranslator class and the ControlPaint class.

The ColorTranslator class does exactly what you might expect. It pro-
vides methods to translate a .NET Framework Color structure to an HTML
color, an OLE color, or a Win32 color, and back, as shown in Table 4–6.

The ToHtml method is particularly useful when combined with a
SystemColor. Instead of returning the color name, it returns the CSS
name of the System element.

Finally, the ControlPaint class, which we examined in Chapter 2, .NET
Graphic Objects, provides four methods for manipulating the value of a
color, as shown in Table 4–7.

Control The color of the face color of a 3-D element
ControlDark The color of the shadow color of a 3-D element
ControlDarkDark The color of the dark shadow color of a 3-D element
ControlLight The color of the light color of a 3-D element
ControlLightLight The color of the lightest color of a 3-D element
ControlText The color of the text in a 3-D element
Desktop The color of the operating system desktop
GrayText The color of dimmed (disabled) text
Highlight The color of the background of selected items
HighlightText The color of the text of selected items
HotTrack The color used to designate a hot track item (hot track

items are activated by a single click)
InactiveBorder The color of an inactive window’s border
InactiveCaption The color of the background of an inactive window’s

title bar
InactiveCaptionText The color of the text of an inactive window’s title bar
Info The color of the background of a ToolTip
InfoText The color of the text of a ToolTip
Menu The color of a menu’s background
MenuText The color of the text of a menu
Window The color of the background of the client area of a window
WindowFrame The color of the window frame
WindowText The color of the text in the client area of a window

Table 4–5 SystemColors Properties (Continued)

Property Description

riordan_ch04.fm Page 78 Thursday, June 17, 2004 10:11 PM

Color in the .NET Framework 79

These four methods can be used to easily create a set of colors for
drawing three-dimensional objects, provided the base color isn’t one of
the SystemColors.

The Dark and Light methods optionally allow you specify a percentage
value that indicates the amount by which the value is to change. Using this
capability, you can create an entire suite of shaded (or tinted) hues with
which to achieve some very sophisticated effects.

In the next chapter, the last in Part I, we’ll examine the classes that the
.NET Framework provides for manipulating images.

Table 4–6 ColorTranslator Methods

Method Description

FromHtml Creates a Color structure from an HTML color
FromOle Creates a Color structure from an OLE color value
FromWin32 Creates a Color structure from a Win32 color value
ToHtml Translates a Color structure into an HTML color string
ToOle Translates a Color structure into an OLE color value
ToWin32 Translates a Color structure into a Win32 color value

Table 4–7 ControlPaint Color Methods

Method Description

Dark Returns ControlDark if the color is a SystemColor; otherwise,
creates a new, darker version of the specified color

DarkDark Returns ControlDarkDark if the color is a SystemColor; other-
wise, returns a new, darker version of the specified color

Light Returns ControlLight if the color is a SystemColor; otherwise,
returns a new, lighter version of the specified color

LightLight Returns ControlLightLight if the color is a SystemColor; other-
wise, returns a new, lighter version of the specified color

riordan_ch04.fm Page 79 Thursday, June 17, 2004 10:11 PM

