
153

C H A P T E R 5

Caching Data with SQL
Server CE

Executive Summary

Chapter 3 focused on how applications written with the Compact Frame-
work could manipulate data locally on a mobile device. Although this capa-
bility is important, many application scenarios require more robust data
caching. These scenarios comprise many applications of the occasionally
connected type, including sales-force automation, field-service automation,
real estate, and home-visit medical applications, among others. For these
applications a local relational database that features data integrity, built-in
synchronization, access from multiple development environments, and
strong security is a must.

Shortly before VS .NET 2003 and the Compact Framework were
released, Microsoft shipped SQL Server 2000 Windows CE Edition 2.0
(SQLCE 2.0),1 which fulfills these requirements. This local database engine
consisting of a storage engine and query processor is implemented as an
OLE DB provider and runs in-process with Compact Framework applica-
tions. SQLCE 2.0 includes a number of new features, including parameter-
ized queries, index seeks, and the UNION clause.

To provide access to SQLCE, Compact Framework developers can use
the SqlServerCe .NET Data Provider. This provider is implemented using a
common set of interfaces and classes and therefore allows developers to
leverage their existing ADO.NET knowledge and begin writing applications
for SQLCE. The classes in the provider, for example, SqlCeEngine, can be
used to create databases, tables, and indexes programmatically, in addition
to compacting databases and querying and modifying data in disconnected

1 Some prefer to use the acronym SSCE, but we prefer SQLCE because we believe it is eas-
ier to understand.

Fox/Box.book Page 153 Tuesday, September 30, 2003 9:10 PM

154 Chapter 5 Caching Data with SQL Server CE

and connected scenarios. In particular, the ability of SqlServerCe to support
index seeks directly on tables can greatly speed the performance of an
application because it eliminates the overhead of the query processor. A
common approach to manipulating data in a SQLCE database is to write
data-access utility classes that encapsulate calls to the provider and distrib-
ute the classes to other developers in an organization in an assembly.

Because the Compact Framework supports accessing both a remote
SQL Server through the SqlClient .NET Data Provider and local SQLCE
databases, developers can use the Abstract Factory design pattern to create
factory classes that can be utilized to abstract which provider is used at run-
time. This is particularly effective for occasionally connected applications
that require access to a remote SQL Server when connected to the network
through a WLAN, for example.

SQLCE also offers a high level of security by supporting both password
protection and encryption of the database on the device. This is important
because the device on which SQLCE is running is inherently mobile and can
easily fall into the wrong hands. The encryption algorithm is based on the pass-
word; therefore, passwords of eight or more characters are recommended.

SQLCE is included with VS .NET 2003 and automatically installs on
the developer workstations. It is deployed automatically when a developer
references the SqlServerCe .NET Data Provider in his or her application. It
is also possible, and sometimes a preferred strategy, to prebuild SQLCE
databases that will be included in RAM or on a storage card and that are
large or will be deployed to a large number of devices.

The Role of SQLCE

In Chapter 3 the discussion focused on how to handle file, XML, and rela-
tional data locally on a smart device. Part of that discussion showed how
data could be persisted on the device and later reretrieved and displayed to
the user. Although these techniques are acceptable for some applications,
many applications require more sophisticated local storage. To address this
need, this chapter focuses on the third essential architectural concept:
robust data caching.

History of SQLCE

Along with the release of the Pocket PC 2000 platform, Microsoft antici-
pated the need to extend the data-management capabilities of enterprise-

Fox/Box.book Page 154 Tuesday, September 30, 2003 9:10 PM

The Role of SQLCE 155

to-mobile devices. As a result, they shipped SQL Server 2000 Windows CE
Edition 1.0 (SQLCE 1.0), code-named “Pegasus,” in late 2000 to coincide
with the release of SQL Server 2000.2 SQLCE provides a local relational
database of multiple tables running on a device that can be queried with a
subset of the Transact-SQL syntax supported in SQL Server 2000. In addi-
tion, the first version supported referential integrity, transactions, and even
accessing data remotely from SQL Server 6.5, as well as merge replication
with SQL Server 2000. Developers could access SQLCE 1.0 using the
ActiveX Data Objects for Windows CE 3.1 (ADOCE 3.1) library that
shipped with the product.3 This library, analogous to the ADO 2.x compo-
nents used with VB 6.0 to access server-based relational data, allowed eVB
developers to manipulate SQLCE databases on the device, while eVC++
developers could make OLE DB calls directly using the OLE DB provider
for SQL Server CE (OLE DB CE).

Although SQLCE was well received, in order to access remote servers
in version 1.0, the device had to be connected to the network via a modem
or network card. Microsoft released version 1.1 in June of 2001 and added
the SQL Server CE Relay product, which allowed the device to access
remote servers when cradled using ActiveSync 3.1. In addition, version 1.1
was included in Microsoft Platform Builder 3.0 as a component and could
be deployed as part of an embedded device, as described in Chapter 1.

With the planned release of the .NET Compact Framework in early
2003, it became essential that Compact Framework applications be able to
take advantage of SQLCE easily. In September of 2002 Microsoft officially
released SQL Server 2000 Windows CE Edition 2.0 (SQLCE 2.0, or from
here on out simply SQLCE), which added integration with the Compact
Framework through the System.Data.SqlServerCe namespace and also
added important new functionality in the query processor and storage
engine. As a result, applications built on the Compact Framework can use
SQLCE for robust data caching directly from managed code and needn’t
use ADOCE or the OLE DB CE API.

2 Prior to this, developers had to rely on proprietary schemes, Pocket Access, or the Windows
CE database (CEDB) format accessible through Windows CE APIs or through ADOCE,
which, to say the least, lacked many of the features developers expect in a relational database
system.
3 In addition, Microsoft released the ActiveX Data Object Extensions for Data Definition
Language and Security (ADOXCE) to extend ADOCE for creating, deleting, and modifying
schema objects.

Fox/Box.book Page 155 Tuesday, September 30, 2003 9:10 PM

156 Chapter 5 Caching Data with SQL Server CE

NOTE: As you might imagine, because SQLCE and the Compact Framework are
separate products, they do not always overlap. For example, SQLCE can be run
on Handheld PC 2000 (H/PC 2K) devices, including the HP Jornada 720 and
Intermec 6651, and embedded devices built with the Platform Builder 3.0,
such as the Intermec 5020. For using SQLCE on these devices, developers will
need to use eVB and eVC++.

Robust Data Caching

So what does the term “robust data caching” actually mean? This concept
addresses several key elements, including the following:

� Local relational database access: SQLCE supports a programming
model on a smart device, which most developers are familiar with on
the desktop. This allows developers to leverage their skills when creating
applications and organizations to extend their data-management
capabilities to devices. This is particularly the case for SQL Server
developers because SQLCE supports familiar Transact-SQL syntax.
Desktop Framework developers will also be able to get up to speed
quickly because access to SQLCE is provided through a .NET Data
Provider, using the standard classes and interfaces of ADO.NET.

� Disconnected data integrity: SQLCE provides a robust cache for
storing data on the device for use when the device is disconnected
from the network. Because SQLCE supports relational database fea-
tures such as unique indexes and foreign keys, the data can be
manipulated on the device while it is disconnected and still maintain
its integrity.

� Built-in synchronization: SQLCE includes two different synchroni-
zation mechanisms that are built in, thereby saving developers from
having to write complex infrastructure code for occasionally connected
applications. These techniques will be addressed in Chapter 7.

� Managed or unmanaged access: SQLCE is architected as an OLE
DB CE provider and, therefore, can be accessed using either the
native SqlServerCe .NET Data Provider in the Compact Framework
or ADOCE; therefore it can be used with both VS .NET 2003 and
eVB/eVC++.

� Security: A key part of being a robust data cache is securing the data.
As will be discussed later in this chapter, SQLCE supports password
protection and data encryption so that data stored on the device is
secure.

Fox/Box.book Page 156 Tuesday, September 30, 2003 9:10 PM

The Role of SQLCE 157

Obviously, applications that can utilize these features run the gamut,
but typically they fall into the occasionally connected scenario where data is
downloaded to the device, stored in SQLCE, accessed from SQLCE and
updated on the device, and then later synchronized with a back-end data
store such as SQL Server 2000, as shown in Figure 5-1.

As you can imagine, an architecture like that shown in Figure 5-1 is useful
in a variety of application scenarios, including sales-force automation, where
mobile users are downloading and updating customer information; field-service
automation, where delivery drivers and maintenance workers download and
process deliveries and work orders; real estate, where agents download MLS
listings; and medical applications, where doctors and nurses download and update
patient and prescription information. Many of these solution scenarios have
been implemented and documented as cases studies on the SQL Server CE
Web site referenced in the “Related Reading” section at the end of the chapter.

Differences with Local Data Handling

As discussed in Chapter 3, Compact Framework developers can use the
ADO.NET DataSet object to persist data on the device.4 As covered in

Figure 5–1 The Role of SQLCE. This diagram shows the role of SQLCE in storing local cop-
ies of data that are then modified on the device and later synchronized with the remote
server.

Remote server
running SQL Server 2000

(2) Local application displays
data using .NET CF or ADOCE
and saves changes in SQLE on
the device

(3) Application synchronizes data
with SQL Server 2000

(1) Data is downloaded to SQLE on device

SQLCE

4 Although not mentioned in Chapter 3, the Compact Framework does not support typed
DataSet objects, which are classes derived from the DataSet class and generated through a
visual designer and code generator in VS .NET.

Fox/Box.book Page 157 Tuesday, September 30, 2003 9:10 PM

158 Chapter 5 Caching Data with SQL Server CE

Chapter 4, the DataSet can be populated from a remote server by calling an
XML Web Service or by connecting to a remote SQL Server directly, using
the SqlClient .NET Data Provider. While these techniques are well suited
to some applications, there are several important advantages that a robust
data-caching product such as SQLCE provides that ADO.NET cannot:

� Secure and efficient data storage: As mentioned previously, SQLCE
supports encryption and database passwords. Data stored in DataSet
objects is persisted to XML and has no such protection. In addition,
XML is a verbose format and consumes more memory on the device
than does data stored natively in SQLCE.

� Query access to multiple tables: Although the DataSet object can
include multiple DataTable objects and can even include primary
and foreign keys, it does not provide the ability to query those tables
using SQL and JOIN clauses. SQLCE, as a relational database, makes
it easy to query multiple tables through joins.

� Query performance for large data sets: As a corollary to the previous
point, DataSet objects must be programmatically manipulated and,
therefore, are much more processor-intensive to query. SQLCE is
well suited to querying large amounts of data using a data reader,
whereas DataSet objects are useful when manipulating between 10
and 100 rows.

� Performance when populating: Populating a DataSet from an XML
Web Service does not offer any support for compression during the
transmission of the data, whereas SQLCE does compress data when
using its synchronization techniques. As a result, a larger amount of
bandwidth is required for accessing the same amount of data with a
DataSet and XML Web Service.

SQLCE Architecture

Once you understand the role that SQLCE plays in a solution, it is impor-
tant to understand its architecture and features. The diagram shown in Fig-
ure 5-2 illustrates the architecture of SQLCE and the various software
components that make up a solution that uses it.

As you can see from Figure 5-2, SQLCE itself is implemented as a DLL
and an OLE DB provider (OLE DB CE) that can be accessed from both
managed code using the .NET Data Provider for SQL Server CE (SqlServerCe
is discussed in the following section) and eVB using ADOCE and directly

Fox/Box.book Page 158 Tuesday, September 30, 2003 9:10 PM

SQLCE Architecture 159

using eVC++. This provider encapsulates the SQL Server Client Agent that
is responsible for replication and RDA, discussed further in Chapter 7, and
the SQL Server CE Engine.

SQL Server CE Engine

Unlike the server version, the SQLCE database engine is implemented in a
DLL for performance reasons, even though the engine will be loaded in each
process, using SQLCE on the device. However, because typically only one
application using SQLCE will be active at any one time and because SQLCE
supports only one concurrent connection, it is not a significant issue.

The database engine consists of two components: the storage engine
that manages the data stored on the device in 4K pages and the query pro-
cessor that processes (compiles, optimizes, and generates query plans) que-
ries sent from applications. Together these two components support the
following features, among others:

� Query processor supports SQL, including SELECT, MAX, MIN, COUNT,
SUM, AVG, INNER/OUTER JOIN, GROUP BY/HAVING, ORDER BY, UNION,

Figure 5–2 SQLCE Architecture. This diagram shows all the software components that
make up an application that uses SQLCE. Note that both client and server components
are required and that SQLCE can be accessed from managed and unmanaged code.

SQLCE

eVC++Visual Studio .NET eVB

ADOCE,
ADOXCE

SqlServerCE .NET
Data Provider

SQL Server CE Client Agent

SQL Server CE Engine

OLE DB CE

Smart Device

SQL
Server

SQL Server CE
Server Agent

Server: IIS

ActiveSync 3.5

SQL CE Relay

HTTP

Fox/Box.book Page 159 Tuesday, September 30, 2003 9:10 PM

160 Chapter 5 Caching Data with SQL Server CE

and operators including ALL, AND, ANY, BETWEEN, EXISTS, NOT, SOME,
OR, LIKE, IN, also Transact-SQL including DATEADD, DATEDIFF, GET-
DATE, COALESCE, SUBSTRING, and @@IDENTITY5 among others

� 249 indexes per table, multicolumn indexes
� Databases of up to 2GB
� BLOBs of up 1GB
� 255 columns per table
� 128 character identifiers
� Unlimited nested subqueries
� Nested transactions
� Support for NULL values
� Parameterized queries
� Data Manipulation Language (DML): INSERT, UPDATE, and DELETE
� Data Definition Language (DDL): CREATE, DROP, ALTER on data-

bases, tables, and indexes
� 17 data types, including Unicode (nchar, ntext) and GUID

(uniqueidentifier)
� PRIMARY KEY, UNIQUE, and FOREIGN KEY constraints
� Replication tracking capability that tracks changed data on the device

as discussed in Chapter 7

Query Analyzer

Although not shown in Figure 5-2, SQLCE also ships with an improved
Query Analyzer that runs on the device and can be used to create databases,
tables, and indexes; query data; insert and delete rows; compact and repair
a database. It is generally used by developers to ensure that their local data-
base is accessible.

When using the Compact Framework, Query Analyzer (Isqlw20.exe)
is deployed to the device automatically using a .cab file if the application
references the SqlServerCe provider, and a shortcut is placed in the Start
menu on the device.6

To use the Query Analyzer, a developer need simply navigate to the
database file (typically with an .sdf extension) and tap the green arrow on

5 Both IDENTITY columns and uniqueidentifier can be used to create system-assigned
primary key values in a SQLCE table. However, if all rows in the table are deleted and the
database compacted, the identity counter is reset to its original value. This behavior can
affect applications that need to synchronize with a back-end database.
6 eVB and eVC++ developers must manually copy the Query Analyzer to the device, along
with the appropriate supporting files, as noted in the documentation.

Fox/Box.book Page 160 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 161

the bottom of the screen. The tables and their structures can then be navi-
gated, as shown in Figure 5-3. Developers can then query the data in a table
by tapping on the arrow or tapping the SQL pane and writing the SQL
directly.

Accessing SQLCE

To access SQLCE Compact Framework programmatically, developers can
use the managed .NET Data Provider referred to as SqlServerCe. In this
section we’ll explore the data provider and how it can be used to connect to,
query, and update SQLCE, and we’ll also show a technique for writing pro-
vider-independent code when an application must access both a remote
SQL Server and SQLCE.

Figure 5–3 Query Analyzer. This screen shot shows navigating tables and col-
umns in a local SQLCE database using the Query Analyzer.

Fox/Box.book Page 161 Tuesday, September 30, 2003 9:10 PM

162

Chapter 5 Caching Data with SQL Server CE

SqlServerCe Provider Architecture

The SqlServerCe provider was implemented using the same pattern as the
SqlClient .NET Data Provider used to access remote SQL Servers, as dis-
cussed in the previous chapter; therefore, it consists of the same basic
classes. This parity with the desktop provider allows developers to leverage
their existing ADO.NET knowledge and begin writing applications for
SQLCE.

Unlike SqlClient, however, the SqlServerCe provider is shipped in an
assembly separate from

System.Data.dll

 and, so, must be explicitly refer-
enced by the developer in his or her SDP. Figure 5-4 shows a diagram of
the architecture of the provider, all of whose classes are found in the

System.Data.SqlServerCe

 namespace.

7

You’ll notice in Figure 5-4 that the layout of the classes is similar to that
found in Figure 4-4. For example, SqlServerCe supports both the discon-
nected programming model using the

DataSet

 via the

SqlCeDataAdapter

7

All the listings and code snippets in this chapter assume that the

System.Data.SqlServerCe

and

System.Data

 namespaces have been imported (using C#).

Figure 5–4

SqlServerCe

Architecture

. This diagram shows the primary classes
found in the

System.Data.SqlServerCe

 namespace in the SqlServerCe .NET
data provider. Not shown are the

collection

 and

events

 classes, delegates,
and enumerations.

SqlCeDataAdapter

DataSet

SqlCeDataReader
SqlCeCommandBuilder

SqlCeConnection SqlCeCommand

SqlCeException

SqlCeParameter

SqlCeError
SqlCeTransaction

SqlCeEngine

SqlCeReplication
SqlCeRemoteDataAccess

SQLCE

SqlServerCe .NET Data Provider

Fox/Box.book Page 162 Monday, October 13, 2003 8:58 PM

Accessing SQLCE 163

object and the connected model using SqlCeDataReader. SQL commands
are encapsulated with the SqlCommand class and can use parameters repre-
sented by SqlCeParameter. The SqlCeConnection and SqlCeTransac-
tion objects also support local transactions, while database engine errors
are captured in SqlCeError objects and thrown using a SqlCeException
object. In fact, SqlServerCe even supports the SqlCeCommandBuilder
class that can be used to create the INSERT, UPDATE, and DELETE statements
automatically for synchronizing data in a data set with SQLCE. However,
you’ll also notice that SqlServerCe includes the additional classes shown in
Table 5-1. These classes are found only in the SqlServerCe provider and
have no analogs in SqlClient.

Although SqlCeEngine will be discussed in the following section, both
SqlCeReplication and SqlCeRemoteDataAccess used for synchroniza-
tion will be covered in detail in Chapter 7.

Manipulating Data with SqlServerCe

Once the SqlServerCe provider is referenced in an SDP, it can be used to
manipulate SQLCE on the device. In this section we’ll look at the common
tasks developers will need to perform against SQLCE.

Creating Databases and Objects

Although a database with the appropriate structure and data can be
deployed with the application, it is sometimes necessary for developers to
create databases and objects on the fly. This can be accomplished using the
CreateDatabase method of the SqlCeEngine object. In fact, a good strat-
egy is to encapsulate the creation in a utility class and expose the functional-
ity through shared methods like that shown in Listing 5-1.

Table 5–1 Additional SqlServerCe Classes

Namespace Use

SqlCeEngine Includes the methods and properties used to
manipulate the SQL Server CE engine directly.

SqlCeReplication Allows developers to use merge replication with
SQL Server 2000; discussed fully in Chapter 7.

SqlCeRemoteDataAccess Allows developers to access a data store remotely
and synchronize its data with SQLCE; discussed
fully in Chapter 7.

Fox/Box.book Page 163 Tuesday, September 30, 2003 9:10 PM

164 Chapter 5 Caching Data with SQL Server CE

TIP: If you or your developers do elect to create a utility class to encapsulate
common database functionality, you should consider marking the class as
sealed (NotInheritable in VB) and giving it a private constructor. In this way,
other developers can neither derive from the class nor create public instances
of it. All the listings in this section can be thought of as methods in such a
data-access utility class.

Listing 5–1 Creating a SQLCE Database. This method shows how to create a
SQLCE database on the device using the SqlCeEngine class.

Public Shared Function CreateDb(ByVal filePath As String) As Boolean
 ' Delete and create the database

 Try
 If File.Exists(filePath) Then
 File.Delete(filePath)
 End If
 Catch e As Exception
 _lastException = e
 MsgBox("Could not delete the existing " & filePath, _
 MsgBoxStyle.Critical)
 Return False
 End Try

 Dim eng As SqlCeEngine
 Try
 eng = New SqlCeEngine("Data Source=" & filePath)
 eng.CreateDatabase()
 Return True
 Catch e As SqlCeException
 _lastException = e
 LogSqlError("CreateDb",e)
 MsgBox("Could not create the database at " & filePath, _
 MsgBoxStyle.Critical)
 Return False
 Finally
 eng.Dispose()
 End Try
End Function

Fox/Box.book Page 164 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 165

In this case you’ll notice that the CreateDb method first attempts to
delete the database if it exists; it then passes the path to the database to the
constructor of SqlCeEngine before calling the CreateDatabase method.
The connection string need only consist of the Data Source attribute, and
the Provider attribute will be defaulted to Microsoft.SQLSERVER.OLE-
DB.CE.2.0.8 Other attributes may also be used, as discussed later in the
chapter.

If an exception is found, the exception is placed in a private variable
called _lastException that is exposed as a read-only shared property of
the class. In this way the caller can optionally access full information about
the exception that occurred. The database error is also logged using a cus-
tom method. To use this method the calling code would look like the follow-
ing (assuming the method was placed in the Atomic.SqlCeUtils class):

If Atomic.SqlCeUtils.CreateDatabase(FileSystem.DocumentsFolder & _
 "\Personal\mydb.sdf") Then
 ' Go ahead and create some tables
End If

Note that the calling code uses the FileSystem class shown in Listing
3-5 to retrieve the My Documents folder on the device and then creates the
database in the Personal folder.

NOTE: Databases may also be created using the CREATE DATBASE DDL state-
ment when already connected to a different database. This statement also
supports password protecting and encrypting the database, as discussed later
in the chapter.

To create objects within a database, the application must first create a
connection with the SqlCeConnection object. This is easily accomplished
by passing the same connection string used to initialize the SqlCeEngine
object in Listing 5-1 to the constructor of SqlCeConnection and calling the
Open method as follows:

Dim cnCE As New SqlCeConnection(dbConnect)
cnCE.Open()

8 This differs from ADOCE used in eVB, where omitting the Provider attribute assumes
the CEDB provider and not SQLCE.

Fox/Box.book Page 165 Tuesday, September 30, 2003 9:10 PM

166 Chapter 5 Caching Data with SQL Server CE

As you would expect, the previous snippet may throw a SqlCeExcep-
tion on either line if the connection string is malformed or the database is
already open or does not exist. For this reason the opening of a connection
should also be wrapped in a Try-Catch block.

More important, as SQLCE supports only one concurrent connection
(unlike SQL Server 2000) because Windows CE is a single-user operating sys-
tem, the connection object is usually obtained early in the run of the appli-
cation and persisted in a variable until the application closes. It is therefore
important to ensure that the connection eventually gets closed so that other
applications (for example, the Query Analyzer) may connect to the database.

After creating a connection, DDL statements can be executed against
the connection to create the appropriate tables and indexes. Each DDL
statement must be encapsulated in a SqlCeCommand object and executed
with the ExecuteNonQuery method. However, if the application requires
that multiple statements be executed (to create several tables and their
indexes, for example), it is possible to create a utility function to read the
SQL from a resource file deployed with the application. This is accomplished
by adding a text file to SDP and setting its Build Action property in the
Properties window to Embedded Resource. Then the resource file can be
populated with CREATE and ALTER statements, like those shown below, to
create a table to hold batting statistics and add a primary key and an index.

CREATE TABLE Batting (Id int NOT NULL, LastName nvarchar(50),
 FirstName nvarchar(50),Year smallint NOT NULL,Team nchar(3),
 G smallint NULL,AB smallint NULL,R smallint NULL ,
 H smallint NULL,"2B" smallint NULL,"3B" smallint NULL ,
 HR smallint NULL,RBI smallint NULL);
ALTER TABLE Batting ADD CONSTRAINT pk_batting PRIMARY KEY (Id, Year);
CREATE INDEX idx_bat_team ON Batting (Year, Team ASC);

When the project is built, the file will then be compiled as a resource in
the assembly and deployed to the device.

To read the resource script and execute its DDL, a method like that
shown in Listing 5-2 can be written.

Listing 5–2 Running a SQL Script. This method reads from a resource file and
executes all the commands found therein. Note that none of the commands
may use parameters.

Public Shared Function RunScript(ByVal scriptName As String, _
 ByVal cn As SqlCeConnection) As Boolean

Fox/Box.book Page 166 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 167

 ' Perform a simple execute non query
 Dim closeIt As Boolean = False
 Dim resource As Stream

 Try
 Resource = _
 [Assembly].GetExecutingAssembly().GetManifestResourceStream(_
 scriptName))
 Dim sr As New StreamReader(resource)
 Dim script As String = sr.ReadToEnd()
 Dim commands() As String
 commands = script.Split(";"c)

 ' Open the connection if closed
 If cn.State = ConnectionState.Closed Then
 cn.Open()
 closeIt = True
 End If

 Dim cm As New SqlCeCommand()
 cm.Connection = cn
 Dim s As String
 For Each s In commands
 If s <> "" Then
 cm.CommandText = s
 cm.ExecuteNonQuery()
 End If
 Next

 ' Clean up
 Catch e As SqlCeException
 _lastException = e
 LogSqlError("RunScript",e)
 MsgBox("Could not run script " & scriptName, _
 MsgBoxStyle.Critical)
 Return False
 Catch e As Exception
 _lastException = e
 MsgBox("Could not run script " & scriptName, _
 MsgBoxStyle.Critical)
 Return False
 Finally
 If closeIt Then cn.Close()
 End Try
 Return True
 End Sub

Fox/Box.book Page 167 Tuesday, September 30, 2003 9:10 PM

168 Chapter 5 Caching Data with SQL Server CE

In Listing 5-2 you’ll notice that the GetManifestResourceStream method
of the System.Reflection.Assembly class is used to read the resource file
into a Stream object. The Stream object is then read by a StreamReader
and placed into a string variable. In this scenario, the method is expecting strings
delimited with a semicolon and, therefore, creates an array of strings using
the Split method. This is required in order to execute multiple statements,
because SQLCE does not support batch SQL as SQL Server does. In other
words, SQLCE can execute only one statement per SqlCeCommand object.

The method then proceeds to open the connection object if it is closed
and create a SqlCeCommand object. The command object is then populated
repeatedly in a loop, and each statement is executed using ExecuteNon-
Query. You’ll notice in the Finally block that the connection is closed only
if it were opened by the method. The advantage to this technique is that it
allows for looser coupling between the script and the code that executes it,
so that the script can be changed without changing any code and the project
recompiled and deployed. To put it all together, an application could use
code like the following in its main form’s Load event to create the database,
connect to it, and create tables and indexes:

If Atomic.SqlCeUtils.CreateDatabase(FileSystem.DocumentsFolder & _
 "\Personal\mydb.sdf") Then
 ' Connect (cnCE is global)
 cnCE = New SqlCeConnection(dbConnect)
 cnCE.Open()
 ' Go ahead and create some tables
 If Atomic.SqlCeUtils.RunScript("firstrun.sql", cnCE) Then
 ' All is well and the database is ready
 End If
End If

Querying Data

As mentioned previously, SqlServerCe supports both the disconnected and
connected programming models using the DataSet and data reader that
were discussed in Chapter 4. Unfortunately, unlike in SQL Server 2000,
SQLCE does not support stored procedures. As a result, developers will
need to formulate SQL within the application and submit it to the database
engine (although SQLCE does support parameterized queries, as will be
discussed later). Also, as mentioned previously, SQLCE does not support
batch SQL, and so, multiple SELECT statements cannot be executed and
their results cannot be automatically populated in multiple DataTable
objects in a DataSet or through multiple result sets using the NextResult

Fox/Box.book Page 168 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 169

property of the SqlCeDataReader. However, developers can still create
data-access helper methods that reduce the amount of code required by the
caller. For example, the method in Listing 5-3 adds data to a DataSet based
on the SQL passed to the method.

Listing 5–3 Populating a Data Set. This method adds data to a data set given
the SQL statement and the connection object to use.

Public Shared Sub FillSimpleDataSet(ByVal ds As DataSet, _
 ByVal sql As String, ByVal cn As SqlCeConnection, _
 ByVal acceptChanges As Boolean)

 Try
 Dim cm As New SqlCeCommand(sql, cn)
 Dim da As New SqlCeDataAdapter(cm)
 da.AcceptChangesDuringFill = acceptChanges

 da.MissingMappingAction = MissingMappingAction.Passthrough
 da.MissingSchemaAction = MissingSchemaAction.AddWithKey

 da.Fill(ds)
 Catch e As SqlCeException
 LogSqlError("FillSimpleDataSet",e)
 Throw New SqlCEUtilException(_
 "Could not fill dataset for: " & sql, e)
 End Try
End Function

You’ll notice that in Listing 5-3 an existing connection object is used and
that the caller determines whether AcceptChangesDuringFill is set to
True or False to determine if the newly added rows are treated as new rows
(with their RowState property set to Added) or as unmodified rows. In this
case the connection object needn’t be opened explicitly because the SqlCe-
DataAdapter will open it if it is not already open. The MissingMapping-
Action and MissingSchemaAction properties are also set to allow the
data adapter to create any missing tables or columns in the DataSet and to
add primary key information if available. Obviously, this method would not
be useful if more sophisticated table mappings were required.9 If any errors

9 See Chapter 12 of Teach Yourself ADO.NET in 21 Days, by Dan Fox, for a complete expla-
nation of how data adapters use table and column mappings.

Fox/Box.book Page 169 Tuesday, September 30, 2003 9:10 PM

170 Chapter 5 Caching Data with SQL Server CE

occur, a custom exception of type SqlCeUtilException inherited from
ApplicationException is thrown.

NOTE: Creating custom exception classes like SqlCeUtilException in Listing
5-3 that can be used to encapsulate application-specific messages and cus-
tom methods and properties is a good strategy. The original exception can
then be chained to the custom exception using the InnerException property.
This technique of exception wrapping, or chaining, allows the application to
add specific messages at multiple levels in the call stack.

Data readers can similarly be created to stream through the results
from a table as shown in Listing 5-4.

Listing 5–4 Creating a Data Reader. This method creates and returns a
SqlCeDataReader given a SQL statement and a connection object.

Public Shared Function ExecDataReader(ByVal sql As String, _
 ByVal cn As SqlCeConnection) As SqlCeDataReader

 Try
 ' Create the command
 Dim cm As New SqlCeCommand(sql, cn)
 If cn.State = ConnectionState.Closed Then
 cn.Open()
 End If

 ' Execute data reader
 Dim dr As SqlCeDataReader
 dr = cm.ExecuteReader()
 Return dr
 Catch e As SqlCeException
 LogSqlError("ExecDataReader",e)
 Throw New SqlCEUtilException(_
 "Could not execute data reader for :" & sql, e)
 End Try
End Function

In Listing 5-4 the method creates a command object and associates it
with the connection passed into the method. In this case the method must

Fox/Box.book Page 170 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 171

also open the connection if it is not already open before executing the data
reader and returning it. Note that although the ExecuteReader method
supports the CloseConnection and other command behaviors, it is not
used because typically a single global database connection remains open for
the lifetime of the application.

A caller would then use the method as follows:

Dim dr As SqlCeDataReader
dr = SqlCeUtils.ExecDataReader(_
 "SELECT * FROM Batting WHERE Id = 660", cnCE)

Do While dr.Read()
 ' Process the data
Loop
dr.Close()

Although not shown in this listing, it is also interesting to note that
unlike the SqlClient provider, the SqlServerCe provider does support mul-
tiple data readers on the same open connection object. In other words,
developers needn’t close the SqlCeDataReader before using the connec-
tion to execute another command. Again, this is the case because SQLCE
supports only a single concurrent connection.

One of the most interesting new features of SQLCE is the inclusion of
parameterized queries. Using parameterized queries, developers can simply
populate SqlCeParameter objects associated with a SqlCeCommand, rather
than having to manually concatenate parameters into a single string. In
addition, parameterized queries are recommended for performance reasons.
However, unlike SqlClient, SQLCE supports only positional parameters,
and the parameters must be defined in the SQL statement using a question
mark. In other words, developers must declare a SqlCeParameter object
for each question mark in the SQL statement so that the SqlCeCommand
object can perform the substitution at runtime. For example, in order to
execute the query shown above as a parameterized query, a developer could
do the following:

Dim dr As SqlCeDataReader
Dim cm As New SqlCeCommand("SELECT * FROM Batting WHERE Id = ?", cnCE)
cm.Parameters.Add(New SqlCeParameter("@Id", SqlDbType.Int))
cm.Parameters(0).Value = 660

dr = SqlCeUtils.ExecDataReader()

Fox/Box.book Page 171 Tuesday, September 30, 2003 9:10 PM

172 Chapter 5 Caching Data with SQL Server CE

In this case, although the parameter was referenced by its ordinal, it
could alternatively have been referenced by its name (@Id).

In a helper or utility class, the creation of parameter objects and their
association with a command object can be handled by a structure and pri-
vate method like that shown in Listing 5-5.

Listing 5–5 Listing 5-5: Automating Parameterized Queries. This structure and
method can be used to create and attach parameters automatically to a
SqlCeCommand object.

Public Structure ParmData
 Public Name As String
 Public Value As Object
 Public DataType As SqlDbType

 Public Sub New(ByVal name As String, ByVal dataType As SqlDbType, _
 ByVal value As Object)
 Me.Name = name
 Me.DataType = dataType
 Me.Value = value
 End Sub
End Structure

Private Shared Function PopulateCommand(ByVal sql As String, _
 ByVal parms As ArrayList, ByVal cn As SqlCeConnection) _
 As SqlCeCommand

 Dim cm As New SqlCeCommand(sql, cn)
 cm.CommandType = CommandType.Text

 ' Populate parameters
 Dim p As Object
 For Each p In parms
 Dim p1 As ParmData = CType(p, ParmData)
 cm.Parameters.Add(_
 New SqlCeParameter(p1.Name, p1.DataType, p1.Value))
 Next

 Return cm

End Function

Fox/Box.book Page 172 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 173

In Listing 5-5 you’ll notice that the private PopulateCommand method
accepts an ArrayList of ParmData objects as a parameter and uses it to
populate a SqlCeCommand created from the SQL statements and SqlCe-
Connection object passed in as well.10 With this technique an overloaded
version of the method in Listing 5-4 can be created to accept parameterized
SQL, as shown in Listing 5-6.

Listing 5–6 Creating a Data Reader with Parameters. This method creates and
returns a SqlCeDataReader given a SQL statement, parameters, and a con-
nection object.

Public Shared Function ExecDataReader(ByVal sql As String, _
 ByVal cn As SqlCeConnection, _
 ByVal parms As ArrayList) As SqlCeDataReader

 Try
 ' Create the command
 Dim cm As SqlCeCommand = Me.PopulateCommand(sql, parms, cn)
 If cn.State = ConnectionState.Closed Then
 cn.Open()
 End If

 ' Execute data reader
 Dim dr As SqlCeDataReader
 dr = cm.ExecuteReader()
 Return dr
 Catch e As SqlCeException
 LogSqlError("ExecDataReader",e)
 Throw New SqlCEUtilException(_
 "Could not execute data reader for :" & sql, e)
 End Try
End Function

At this point the caller need create only the ParmData objects, specify-
ing the appropriate data type, and place them in an ArrayList before pass-
ing them to ExecDataReader, as shown in this snippet:

10 Since SQLCE does not support stored procedures, the StoredProcedure CommandType
is also not supported.

Fox/Box.book Page 173 Tuesday, September 30, 2003 9:10 PM

174 Chapter 5 Caching Data with SQL Server CE

Dim dr As SqlCeDataReader
Dim sql As String = "SELECT * FROM Batting WHERE Id = ?"
Dim parms As New ArrayList()

parms.Add(New ParmData("id", SqlDbType.Int, 660))
dr = SqlCeUtils.ExecDataReader(sql, cnCE, parms)

Using Indexes

Perhaps the biggest difference between the SqlClient provider and the
SqlServerCe provider is the inclusion of index seeks using data readers in
SqlServerCe. Using this technique allows developers to write code that per-
forms better than issuing SELECT statements with WHERE clauses. This is the
case because the SQLCE query processor must compile, optimize, and gen-
erate a query plan for each query, while performing the index seek directly
avoids these costly steps. The caveat is that this works only against single
tables, and the table must of course have an index. As a result, for complex
queries developers will likely want to rely on the query processor.

NOTE: In one example documented on Microsoft’s SQLCE Web site and refer-
enced in the “Related Reading” section, using an index seek versus the query
processor improved performance by a factor of 20 or greater.

For example, consider the scenario where a developer wanted to
retrieve the statistics for a specific team and year from the batting table cre-
ated in Listing 5-2, and it is known that the year will be in the range from
1980 to 1989. The batting table has a composite index on the Year and Team
columns, and so a method like that shown in Listing 5-7 can be written to
return a SqlCeDataReader positioned on the correct row.

Listing 5–7 Seeking a Row Using an Index. This method creates and returns a
SqlCeDataReader positioned on the appropriate row for a given set of index
values.

public static SqlCeDataReader ExecTeamReader(SqlCeConnection cn,
 string team, int year)
{
 SqlCeCommand cmd = new SqlCeCommand("Batting",cn);
 cmd.CommandType = CommandType.TableDirect;

Fox/Box.book Page 174 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 175

 if (cn.State == ConnectionState.Closed)
 {
 cn.Open();
 }

 // Index contains Year and Team
 cmd.IndexName = "idx_bat_team";

 object[] start = {1980, 1989};
 object[] end = {null, null};
 cmd.SetRange(DbRangeOptions.InclusiveStart |
 DbRangeOptions.InclusiveEnd, start, end);

 Try
 {
 SqlCeDataReader rdr = cmd.ExecuteReader();
 rdr.Seek(DbSeekOptions.AfterEqual, year, team);
 return rdr;
 }
 Catch (SqlCeException e)
 {
 LogSqlError("ExecTeamReader",e);
 // Throw a custom exception
 return null;
 }
}

You’ll notice in Listing 5-7 that the SqlCeCommand must have its
CommandText property set to the name of the table to search and that the
CommandType must be set to TableDirect. The name of the index is then
set using the IndexName property. Although it is not required, this listing also
shows that the range of values searched can be restricted by passing arrays
of start and end values to the SetRange method. The DbRangeOptions
enumeration determines how the Seek method uses the start and end val-
ues. After opening the data reader using ExecuteReader, its Seek method
is then called with a value from the DbSeekOptions enumeration. This
value specifies which row if any is to be returned. In this case, AfterEqual
is used and if a row is not found, the first row after the index range will be
the one pointed to by the data reader. Alternatively, if FirstEqual is used,
the Seek method will throw a SqlCeException if a row cannot be located.

Fox/Box.book Page 175 Tuesday, September 30, 2003 9:10 PM

176 Chapter 5 Caching Data with SQL Server CE

A caller can then invoke the method to position a data reader at the sta-
tistics for the 1984 Chicago Cubs as follows:

SqlCeDataReader dr = SqlCeUtils.ExecTeamReader(cnCE,"CHN",1984);

Modifying Data

Inserting, updating, and deleting data in SQLCE are not handled any dif-
ferently than they are using the SqlClient provider, with the exception, of
course, that SQLCE does not support stored procedures. In other words
developers may use the SqlCeDataAdapter to modify data in an underly-
ing base table utilizing the table and column mappings collections and then
invoking the Update method of the data adapter. Developers may also exe-
cute command objects directly. In either case parameterized queries are
used and, in fact, are required for use with the SqlCeDataAdapter.

For example, to insert a new row into the Batting Table, the method
shown in Listing 5-8 could be written to return the command object used in
either scenario.

Listing 5–8 Inserting Data with a Command. This method creates and returns
a SqlCeCommand to insert new rows into the Batting Table.

Public Shared Function GetBattingCmd(cnCE As SqlCeConnection, _
 trans As SqlCeTransaction) As SqlCeCommand

 Dim sql As String = "INSERT INTO Batting (Id, LastName, " & _
 "FirstName, Year, Team, G, AB, R, H, ""2B"", ""3B"", " & _
 "HR, RBI) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

 battingCmd = New SqlCeCommand(sql)
 battingCmd.CommandType = CommandType.Text
 If Not trans Is Nothing Then
 battingCmd.Transaction = trans
 End If

 battingCmd.Parameters.Add(New SqlCeParameter("Id", _
 SqlDbType.NVarChar, 9, "Id"))
 battingCmd.Parameters.Add(New SqlCeParameter("LastName", _
 SqlDbType.NVarChar, 50, "LastName"))
 battingCmd.Parameters.Add(New SqlCeParameter("FirstName", _
 SqlDbType.NVarChar, 50, "FirstName"))
 battingCmd.Parameters.Add(New SqlCeParameter("Year", _
 SqlDbType.SmallInt, 4, "Year"))

Fox/Box.book Page 176 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 177

 battingCmd.Parameters.Add(New SqlCeParameter("Team", _
 SqlDbType.NVarChar, 3, "Team"))
 battingCmd.Parameters.Add(New SqlCeParameter("G", _
 SqlDbType.SmallInt, 4, "G"))
 battingCmd.Parameters.Add(New SqlCeParameter("AB", _
 SqlDbType.SmallInt, 4, "AB"))
 battingCmd.Parameters.Add(New SqlCeParameter("R", _
 SqlDbType.SmallInt, 4, "R"))
 battingCmd.Parameters.Add(New SqlCeParameter("H", _
 SqlDbType.SmallInt, 4, "H"))
 battingCmd.Parameters.Add(New SqlCeParameter("2B", _
 SqlDbType.SmallInt, 4, "2B"))
 battingCmd.Parameters.Add(New SqlCeParameter("3B", _
 SqlDbType.SmallInt, 4, "3B"))
 battingCmd.Parameters.Add(New SqlCeParameter("HR", _
 SqlDbType.SmallInt, 4, "HR"))
 battingCmd.Parameters.Add(New SqlCeParameter("RBI", _
 SqlDbType.SmallInt, 4, "RBI"))

 return battingCmd
End Function

The GetBattingCmd static method could then be used by a caller to
retrieve the appropriate command before populating the parameters with
values manually through code or by setting it to the InsertCommand prop-
erty of the SqlCeDataAdapter.

Although not typically recommended for production scenarios with the
SqlClient provider,11 the command builder included with SqlServerCe
(SqlCeCommandBuilder) can be used in place of code like that shown in
Listing 5-7. This is due to the fact that SQLCE is single user and runs in
process with the application; therefore, an extra round trip isn’t as costly in
terms of performance. In any case, it can be used simply by passing the
SqlCeDataAdapter to the constructor of the command builder:

Dim cb as New SqlCeCommandBuilder(da)

When needed,12 the command builder will then build the insert,
update, and delete commands based on the SELECT statement exposed in

11 Using the SqlCommandBuilder object always engenders one extra trip to the database
server so that the command builder can determine column names and data types.
12 When the RowUpdating events fire on the SqlCeDataAdapter object.

Fox/Box.book Page 177 Tuesday, September 30, 2003 9:10 PM

178 Chapter 5 Caching Data with SQL Server CE

the CommandText property of the SelectCommand. Note that just as with
the SqlClient provider, the SELECT statement used by the data adapter
mustn’t be complex (contain aggregates columns and joins) and must return
at least one primary key or unique column, or an exception will be thrown.

NOTE: If the SELECT statement changes or the connection or transaction asso-
ciated with the command changes, a developer can call the RefreshSchema
method of the SqlCeCommandBuilder to regenerate the insert, update, and
delete commands.

Handling Transactions

Just like SqlClient, the SqlServerCe provider supports transactions, or the
ability to group a series of data modifications in an atomic operation. This is
useful if an application needs to update two tables, with the requirement that
if one of the updates fails, they both fail (a parent/child relationship, for example).

This is accomplished through the BeginTransaction method of the
SqlCeConnection object, which spawns a SqlCeTransaction object used
to control the outcome (Commit or Rollback) of the transaction. For exam-
ple, the following code snippet uses the GetBattingCmd method shown in
Listing 5-8 and the GetPitchingCmd method (not shown) to execute two
commands in a single transaction:

SqlCeTransaction trans = null;
Try
{
 trans = cnCE.BeginTransaction();
 SqlCeCommand bat = SqlCeUtils.GetBattingCmd(cnCE, trans);
 SqlCeCommand pitch = SqlCeUtils.GetPitchingCmd(cnCE, trans);

 // populate the commands with the new values

 bat.ExecuteNonQuery();
 pitch.ExecuteNonQuery();
 trans.Commit();
}
catch (SqlCeException e)
{
 if (trans != null) {trans.Rollback();}
 LogSqlError("MyMethod",e);
 // most likely throw a custom exception
}

Fox/Box.book Page 178 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 179

You’ll notice here that the GetBattingCmd and GetPitchingCmd
methods accept a transaction as the second argument. Referring to Listing
5-8, this transaction, if instantiated, is associated with the command object
using its Transaction property.

However, the transactional behavior of SQLCE differs from SQL
Server 2000, and so developers must be aware of four differences. First,
SQLCE only supports an isolation level of ReadCommitted, which exclusively
locks data being modified in a transaction. As a result, the IsolationLevel
property of SqlCeTransaction can only be set to the ReadCommitted
value of the IsolationLevel enumeration. Second, SQLCE supports
nested transactions, but only up to five levels. Third, SQLCE holds an
exclusive lock on any table that has been modified in a transaction.13 This
means that any attempt to access any data from the table outside the trans-
action, while it is pending, will result in an exception. Fourth, if a data
reader is opened within a transaction, the data reader will automatically be
closed if the transaction is rolled back. If the transaction commits, the data
reader can still be used.

Abstracting .NET Data Providers

As discussed in Chapter 4, applications written with VS .NET 2003 and the
Compact Framework can access a SQL Server 2000 server remotely using
the SqlClient .NET Data Provider. And, as discussed in this chapter, appli-
cations can store data locally in SQLCE using the SqlServerCe .NET Data
Provider. In some scenarios, an application may wish to do both, for exam-
ple, by accessing the remote SQL Server when connected to a corporate
LAN via a direct connection, WLAN, or WAN and accessing SQLCE when
disconnected.

In these instances, developers can take advantage of the object-oriented
nature of the Compact Framework to write code that can be used with either
provider. Doing so allows a greater level of code reuse and easier porting of
code from the desktop Framework to the Compact Framework. Abstracting
data providers is possible since, as mentioned in Chapter 4, all .NET Data
Providers are implemented using the same underlying base classes and
interfaces. These include the interfaces IDbConnection, IDbCommand,
IDataRecord, IDataParameter, IDbDataParameter, IDataParameter-
Collection, IDataReader, IDataAdapter, IDbDataAdapter, and IDb-
Transaction, along with the DataAdapter and DbDataAdapter classes,

13 As opposed to row- and page-level locks used by SQL Server 2000.

Fox/Box.book Page 179 Tuesday, September 30, 2003 9:10 PM

180 Chapter 5 Caching Data with SQL Server CE

among others, found in the System.Data and System.Data.Common
namespaces.

One technique for abstracting the data provider used is to implement
the Abstract Factory design pattern documented in the book Design Pat-
terns, as noted in the “Related Reading” section at the end of the chapter.
This design pattern allows code to create families of related classes without
specifying their concrete classes at design time. In this case, the family of
related classes comprises the classes that make up a data provider, including
connection, command, data adapter, and parameter.

Although it is possible to use the Abstract Factory pattern as docu-
mented in Design Patterns, a slight variant of the pattern, shown in Listing 5-9,
is flexible because it allows the data provider to be specified in a shared
method of the Abstract Factory class rather than having to be hard-coded at
the creation of the class at runtime.

Interfaces or Base Classes?
The Compact Framework relies on both interfaces and base classes to allow
code reuse through inheritance and polymorphism. Simply put, interfaces (typi-
cally prefixed with an “I”) enable interface inheritance by allowing a class to
implement a set of method signatures defined in the interface. When using
interface inheritance, the class implementing the interface must include all of
the method signatures from the interface but must implement the functionality
of the methods itself. Using a base class, a class may use implementation
inheritance to inherit both the method signatures and the implementation (the
code) in the base class. The derived class may then override the methods of the
base class to augment or replace the base class code.

Both techniques are useful, and, as you would imagine, interface inherit-
ance is used when a variety of different classes needs to implement the same
behavior (methods) in different ways, while implementation inheritance is used
when classes form a natural hierarchy represented with an “is a” relationship
(Employee is a Person). Both can be used together in the same class, although
in the Compact Framework, implementation inheritance is restricted to a single
inheritance, meaning that each class may inherit only from one base class.

Using both techniques, developers can write polymorphic (literally “multi-
form”) code by targeting the reference variables in their code at the interfaces
and base classes, rather than at the class inheriting from the interface or base
class (often called the concrete class). In this way, at runtime the reference vari-
ables may actually refer to instances of any of the concrete classes in the inher-
itance relationship, thereby allowing the code to work in a variety of scenarios.

Fox/Box.book Page 180 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 181

Listing 5–9 Implementing the Abstract Factory Pattern. This listing shows the
code necessary to implement the Abstract Factory pattern so that polymorphic
code can be written to use either of the data providers that ships with the
Compact Framework. Note that the SqlClientFactory class is not shown.

Public Enum ProviderType
 SqlClient = 0
 SqlServerCe = 1
End Enum

Public MustInherit Class ProviderFactory

 Public Shared Function CreateFactory(_
 ByVal provider As ProviderType) As ProviderFactory
 If provider = ProviderType.SqlClient Then
 Return New SqlClientFactory
 Else
 Return New SqlServerCeFactory
 End If
 End Function

 Public MustOverride Function CreateConnection(_
 ByVal connect As String) As IDbConnection
 Public MustOverride Overloads Function CreateDataAdapter(_
 ByVal cmdText As String, _
 ByVal connection As IDbConnection) As IDataAdapter
 Public MustOverride Overloads Function CreateDataAdapter(_
 ByVal command As IDbCommand) As IDataAdapter
 Public MustOverride Overloads Function CreateParameter(_
 ByVal paramName As String, _
 ByVal paramType As DbType) As IDataParameter
 Public MustOverride Overloads Function CreateParameter(_
 ByVal paramName As String, _
 ByVal paramType As DbType, _
 ByVal value As Object) As IDataParameter
 Public MustOverride Function CreateCommand(_
 ByVal cmdText As String, _
 ByVal connection As IDbConnection) As IDbCommand

End Class

Public NotInheritable Class SqlServerCeFactory
 Inherits ProviderFactory

Fox/Box.book Page 181 Tuesday, September 30, 2003 9:10 PM

182 Chapter 5 Caching Data with SQL Server CE

 Public Overrides Function CreateConnection(_
 ByVal connect As String) As IDbConnection
 Return New SqlCeConnection(connect)
 End Function

 Public Overloads Overrides Function CreateDataAdapter(_
 ByVal cmdText As String, _
 ByVal connection As IDbConnection) As IDataAdapter
 Return New SqlCeDataAdapter(cmdText, _
 CType(connection, SqlCeConnection))
 End Function

 Public Overloads Overrides Function CreateDataAdapter(_
 ByVal command As IDbCommand) As IDataAdapter
 Return New SqlCeDataAdapter(CType(command, SqlCeCommand))
 End Function

 Public Overloads Overrides Function CreateParameter(_
 ByVal paramName As String, _
 ByVal paramType As DbType) As IDataParameter
 Return New SqlCeParameter(paramName, paramType)
 End Function

 Public Overloads Overrides Function CreateParameter(_
 ByVal paramName As String, _
 ByVal paramType As DbType, _
 ByVal value As Object) As IDataParameter
 Dim parm As New SqlCeParameter(paramName, paramType)
 parm.Value = value
 Return parm
 End Function

 Public Overrides Function CreateCommand(ByVal cmdText As String, _
 ByVal connection As IDbConnection) As IDbCommand
 Return New SqlCeCommand(cmdText, _
 CType(connection, SqlCeConnection))
 End Function

End Class

As you’ll notice in Listing 5-9, the ProviderType enumeration identifies
which factory classes are available. The heart of the listing is the abstract

Fox/Box.book Page 182 Tuesday, September 30, 2003 9:10 PM

Accessing SQLCE 183

(marked as MustInherit in VB and abstract in C#) ProviderFactory
class. This class implements a shared method to create an instance of a con-
crete ProviderFactory class, along with a set of method signatures
marked with the MustOverride keyword. This keyword ensures that the
class inheriting from ProviderFactory will override the methods to pro-
vide an implementation. The SqlServerCeFactory class inherits from
ProviderFactory, overriding the base class methods and returning instances
of the appropriate SqlServerCe objects (SqlCeConnection, SqlCeData-
Adapter, and so forth). Note that the methods of the ProviderFactory
class return references to the interfaces implemented by data providers dis-
cussed earlier. This is the key to enabling the writing of polymorphic code.
Although not shown in the listing due to space constraints, there would, of
course, be a corresponding factory class for the SqlClient provider that also
inherits from ProviderFactory.

NOTE: To extend the ProviderFactory to support new providers (for example,
one for Sybase SQL Anywhere Studio), a developer need only create a factory
class that inherits from ProviderFactory. He or she would also likely want to
extend the ProviderType enumeration and the CreateFactory method.

To use the ProviderFactory class, a caller need only instantiate the
correct class using the shared method, as follows:

Dim pf As ProviderFactory
If CheckForNetworkConn() Then
 ' Go remote
 pf = ProviderFactory.CreateFactory(ProviderType.SqlClient)
Else
 ' Go local
 pf = ProviderFactory.CreateFactory(ProviderType.SqlServerCe)
End If

In this snippet the CheckForNetworkConn method shown in Chapter 4
is used first to determine if a network connection is available; if so, it uses
SqlClient and if not, SqlServerCe. Of course, the value for the Provider-
Type enumeration could also easily be read from a configuration file or
passed into the method as a variable to allow for flexibility.

Once the concrete ProviderFactory has been created, it can be passed
into methods like those shown in the listings in this chapter so that the methods

Fox/Box.book Page 183 Tuesday, September 30, 2003 9:10 PM

184 Chapter 5 Caching Data with SQL Server CE

can be used against either provider. For example, the ExecDataReader
method shown in Listing 5-4 could then be rewritten as shown in Listing 5-10.

Listing 5–10 Using the Abstract Factory Pattern. This method shows the
ExecDataReader method rewritten to use an instance of the Provider-
Factory class to enable provider-independent database access.

Public Shared Function ExecDataReader(ByVal pf As ProviderFactory, _
 ByVal sql As String, ByVal cn As IDbConnection) As IDataReader

 Try
 ' Create the command
 Dim cm As IDbCommand = pf.CreateCommand(sql, cn)
 If cn.State = ConnectionState.Closed Then
 cn.Open()
 End If

 ' Execute data reader
 Dim dr As IDataReader
 dr = cm.ExecuteReader()
 Return dr
 Catch e As Exception
 LogSqlError("ExecDataReader",e)
 Throw New Exception(_
 "Could not execute data reader for :" & sql, e)
 End Try
End Function

Note that because the ExecDataReader method can now be used with
either provider, it returns an object that implements the IDataReader
interface and accepts an IDbConnection object, rather than the concrete
types for SqlServerCe. In addition, the creation of the SqlCeCommand
object has been replaced with a call to the CreateCommand method of the
ProviderFactory, and the reference to the SqlCeException object in the
Catch block has been replaced with the generic Exception object.14

14 An alternative and more dynamic approach to creating an abstract factory class using the
runtime type creation methods of the desktop Framework and Compact Framework can be
found in Chapter 18 of Teach Yourself ADO.NET in 21 Days.

Fox/Box.book Page 184 Tuesday, September 30, 2003 9:10 PM

Administering SQLCE 185

Administering SQLCE

Because SQLCE is separate from the Compact Framework, it must be
administered separately. The administration tasks take the form of security
administration, database maintenance, and installation and deployment.

Security

As with any database, it is important that the data in SQLCE be secure.
This is particularly the case because the device on which SQLCE is running
is inherently mobile and can easily fall into the hands of someone who is not
the intended user. As a result, it is important that Compact Framework
applications be able to present an authentication dialog to users before pro-
viding access to the data and that the data itself can be encrypted on the
device.

NOTE: Keep in mind that because Windows CE is a single-user operating sys-
tem, there is no support in SQLCE for individual user authentication or permis-
sions; and, in fact, the syslogins, sysprotects, and sysusers system tables
present in SQL Server 2000 to support these functions are not included in
SQLCE. Any user who can open the database has full permissions. Along the
same lines, the Windows CE file system does not support permissions; so,
there is no inherent protection for the .sdf file.

SQLCE supports these requirements by offering both password protec-
tion for the entire database file and encryption for the entire file using a
128-bit key.

Password Protection

Password protecting a SQLCE database can be done only when the data-
base is created or compacted (as discussed in the next section) and can be
done with either the CreateDatabase method of the SqlCeEngine object
or the CREATE DATABASE DDL statement.

When using the CreateDatabase method, the password attribute is
simply appended to the connection string passed into the constructor of the
SqlCeEngine class. As a result, the CreateDb method shown in Listing 5-1
could be altered as shown in the following snippet to accept a password of
up to 40 characters to use when creating the database.

Fox/Box.book Page 185 Tuesday, September 30, 2003 9:10 PM

186 Chapter 5 Caching Data with SQL Server CE

Public Shared Function CreateDb(ByVal filePath As String, _
 ByVal pwd As String) As Boolean

 ' Code ommitted for brevity

 Dim eng As SqlCeEngine
 Try
 eng = New SqlCeEngine("Data Source=" & filePath & _
 ";password= & pwd)
 eng.CreateDatabase()
 Return True
 Catch e As SqlCeException
 ' Code ommitted for brevity
 End Try
End Function

Once the password has been created, there is no way to recover it; how-
ever, the password can be changed by compacting the database, as will be
discussed later in this section.

If the application is executing DDL to create a database, a CREATE
DATABASE statement like the following can be issued:

CREATE DATABASE 'mydb.sdf' DATABASEPASSWORD 'sdfg53$h'

Encryption

Just as with password protection, encrypting a SQLCE database can be
accomplished with the CreateDatabase method, the process of compact-
ing, or the CREATE DATABASE DDL statement.

To encrypt using CreateDatabase, the encrypt database attribute
needs to be added to the connection string in addition to the password, as
shown in the following snippet, where the CreateDb method from Listing
5-1 is once again modified to support an argument to determine if the data-
base should be encrypted. Note, however, that the attribute needn’t be pro-
vided when the database is opened.

Public Shared Function CreateDb(ByVal filePath As String, _
 ByVal pwd As String, ByVal encrypt As Boolean) As Boolean

 ' Code ommitted for brevity

 Dim eng As SqlCeEngine

Fox/Box.book Page 186 Tuesday, September 30, 2003 9:10 PM

Administering SQLCE 187

 Try
 Dim connect = "Data Source=" & filePath & _
 ";password= & pwd
 If encrypt Then
 connect &= ";encrypt database=TRUE"
 End If
 eng = New SqlCeEngine(connect)
 eng.CreateDatabase()
 Return True
 Catch e As SqlCeException
 ' Code ommitted for brevity
 End Try
End Function

The password attribute must be included because SQLCE uses the
MD515 hashing algorithm to create the 128-bit key required by the RC416

algorithm used to encrypt the database. For this reason it is important that
the password chosen be of a reasonable length to avoid easy cracking by
hackers.17 Although it would be cumbersome to force users to input 40-
character passwords, passwords of at least 8 characters (including letters,
numbers, and at least once special character) should suffice to offer a reason-
able amount of protection. Changing passwords periodically via compaction
is also a good strategy because it moves the target for any potential hacker.

To encrypt the database file using the CREATE DATABASE statement, the
ENCRYPTION ON clause is used as follows:

CREATE DATABASE 'mydb.sdf' DATABASEPASSWORD 'sdfg53$h' ENCRYPTION ON

Database Maintenance

As alluded to earlier, the SqlCeEngine class also supports the Compact-
Database method, which can be used to compact and reclaim wasted space
that collects in the database as data and objects are deleted and tables are

15 A message-digest algorithm developed in 1991 by RSA Security.
16 A symmetric encryption algorithm designed by RSA Security in 1987 and used in Secure
Sockets Layer (SSL) and other commercial applications.
17 Hackers can extract the hash value from the .sdf file and then run either a dictionary or a
brute-force attack to discover the password. Longer passwords are recommended because
the effort required in using a brute-force method increases exponentially. For example, two-
character passwords take seconds to break, while eight-character passwords can require years.

Fox/Box.book Page 187 Tuesday, September 30, 2003 9:10 PM

188 Chapter 5 Caching Data with SQL Server CE

reindexed. It is recommended that SQLCE databases be periodically com-
pacted because this also leads to improved query performance through
index reordering and the refreshing of statistics used by the query processor
to generate execution plans.

Compacting a database can also be used to change the collating order,18

encryption, or password for the database, as mentioned previously in this
section. This method creates a new database and requires that the source
database be closed and that the destination file not exist. It is also important
to remember that because a copy is created, the device will need to have
enough room to make the copy or an error will result.

Once again, it makes sense to wrap the CompactDatabase functionality
in a method that checks for the existence of the source database and then
automatically copies the destination back to the source when completed, as
shown in Listing 5-11, which takes advantage of the FileSystem class in
Listing 3-5 to create the temporary destination that is ultimately moved
back to the original file name.

Listing 5–11 Compacting a SQLCE Database. This method compacts a data-
base, reclaiming wasted space, and copies the newly created database back
to the old name.

Public Shared Function CompactDb(ByVal filePath As String) As Boolean

 If Not File.Exists(filePath) Then
 MsgBox("Source database does not exist = " & filePath, _
 MsgBoxStyle.Critical)
 Return False
 End If

 Dim eng As SqlCeEngine
 Try
 eng = New SqlCeEngine("Data Source=" & filePath)
 eng.Compact("Data Source=" & _
 FileSystem.GetSpecialFolderPath(ceFolders.PERSONAL) & _
 "\temp000.sdf")
 File.Delete(filePath)

18 If not specified in the CREATE DATABASE statement or the destination database connection
string, the default collation assigned is Latin1_General. This collation uses Latin 1 General
dictionary sorting rules, code page 1,252, and is case-insensitive and accent-insensitive. All
databases in SQLCE are always case-sensitive and accent-insensitive. To see the available
collations, see the Books Online for SQLCE.

Fox/Box.book Page 188 Tuesday, September 30, 2003 9:10 PM

Administering SQLCE 189

 File.Move(FileSystem.GetSpecialFolderPath(_
 ceFolders.PERSONAL) & "\temp000.sdf", filePath)
 Catch e As Exception
 _lastException = e
 MsgBox("Could not compact the database at " & filePath, _
 MsgBoxStyle.Critical)
 Return False
 Finally
 eng.Dispose()
 End Try

 Return True

End Function

It should also be noted that SQLCE creates a temporary file each time
the database engine is initialized and attempts to delete it when the engine
terminates normally. This file is used for storing pages that exceed the
SQLCE buffer cache, as well as interim results and tables used in queries.
By default, the file is created in the Temp directory on the device, although
its location can be specified using the temp file directory attribute of
the connection string as shown here:

Dim connect = "Data Source=\mydb.sdf;temp file directory=\StorageCard"
Dim eng As New SqlCeEngine(connect)

This may be required if the need to store the temporary file on a storage
card, rather than in RAM, arises. The file will grow the most when transac-
tions and large UPDATE and DELETE statements are executed. However,
keep in mind that accessing storage cards is typically slower than accessing
RAM; so, query performance may suffer as a result.

Installation and Deployment

To use SQLCE in a solution, components must be installed both on the
development machines as well on the device. Fortunately for Compact
Framework developers, all the required SQLCE components are installed
and configured with VS .NET 2003. This allows a developer to reference
the System.Data.SqlServerCe.dll assembly from any SDP and begin
coding against SQLCE.

Fox/Box.book Page 189 Tuesday, September 30, 2003 9:10 PM

190 Chapter 5 Caching Data with SQL Server CE

When an SDP that accesses SQLCE is deployed to either an emulator
or an actual device from VS .NET using the Build menu, two .cab files are
automatically copied to the device and extracted. Which .cab files are
deployed is determined by the processor type and version of Windows CE
running on the device. They include a development-only time .cab
(Sqlce.dev.platform.processor.cab) that contains Query Analyzer
and error string files, as well as the .cab file that contains the SQLCE data-
base engine (Sqlce.platform.processor.cab).

When an application is ready for final deployment, the SQLCE .cab file
must be added to the deployment and extracted on the device, as discussed
in Chapter 10. The amount of space required on the device varies with the
platform and processor, but it ranges from 1 to 3MB.

NOTE: In order to use SQLCE to connect to SQL Server 2000 using RDA or rep-
lication, additional configuration steps must be undertaken on the server
machine as discussed in Chapter 7.

Deploying a SQLCE Database

Finally, it’s important to note that in many instances it is more efficient and
reduces load on the database server to prebuild a SQLCE database and
deploy it to the device, rather than forcing clients to perform an initial syn-
chronization using RDA or replication, as discussed in Chapter 7. This ben-
efit only increases as the number of deployed devices in a solution
increases. For example, a field service solution could be initially deployed
with parts lists and geographic data.

To prebuild a SQLCE database, a developer can write an administrative
application that creates the database on the device or the emulator and
pulls in the appropriate data using RDA. The database can then be copied
back to the development machine using ActiveSync and included in a VS
.NET project as a content file using the Properties window. In this way, the
database will be deployed with the application, as discussed in Chapter 10.
Although it would be a welcome addition, at this time there is no desktop-
or server-based utility to allow developers to create and populate SQLCE
databases.

Alternatively, and especially if the database is large, the database file can
be distributed on CompactFlash memory and CompactFlash disk drives,
both of which are supported by SQLCE.

Fox/Box.book Page 190 Tuesday, September 30, 2003 9:10 PM

Related Reading 191

What’s Ahead

This chapter has discussed the need for robust data caching and how that
need is addressed using SQL Server CE. However, mobile applications that
cache data locally using XML or SQLCE also typically need to synchronize
their data with back-end systems. This final essential architectural concept
will be addressed in the following two chapters, which look at both primi-
tive synchronization using ActiveSync and more complex synchronization
using RDA and merge replication.

Related Reading

Microsoft SQL Serve CE 2.0 Web site, at www.microsoft.com/sql/CE/
default.asp.

SQL Server CE case studies, at www.microsoft.com/sql/ce/productinfo/cas-
estudies.asp. Many of these case studies involve using RDA or merge repli-
cation or both.

Xue, Song. “SQL Server 2000 Windows CE Edition 2.0 Query Processor
Overview and Performance Tuning Approaches.” Microsoft TechNet (Octo-
ber 2002), at www.microsoft.com/technet/treeview/default.asp?url=/technet/
prodtechnol/sql/maintain/Optimize/SSCEQPOP.asp.

Yao, Paul, and David Durant. “SQL Server CE: New Version Lets You Store
and Update Data on Handheld Devices.” MSDN Magazine (June 2001), at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsqlce/html/
sqlce_secmodelscen20.asp.

Fox, Dan. Teach Yourself ADO.NET in 21 Days. Sams, 2002. ISBN 0-672-
32386-9. See especially Chapter 18.

Gamma, Erich, et al. Design Patterns. Addison-Wesley, 1995. ISBN 0-201-
63361-2. See p. 87 and following for a discussion of the Abstract Factory
pattern.

Download the page for the Sybase Anywhere Studio .NET Data Provider
from www.sybase.com.

Fox, Dan. “Protect Private Data with the Cryptography Namespaces of the
desktop Framework.” MSDN Magazine (June 2002), at http://msdn.micro-
soft.com/msdnmag/issues/02/06/Crypto/default.aspx.

Fox/Box.book Page 191 Tuesday, September 30, 2003 9:10 PM

Fox/Box.book Page 192 Tuesday, September 30, 2003 9:10 PM

